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DEPREM SONRASI BETONARME KOLONLARDA BOYUNA DONATI 

BURKULMASININ MAKİNE ÖĞRENMESİ İLE TESPİTİ  

ÖZET 

Bu tez çalışmasında, 6 Şubat 2023 tarihinde meydana gelen Kahramanmaraş 

depremleri sonrasında, betonarme yapıların kolonlarında oluşan boyuna donatı 

burkulma hasarlarının fotoğraf üzerinden tespiti amacıyla derin öğrenme tabanlı nesne 

algılama modellerinin performansları karşılaştırmalı olarak incelenmiştir. Çalışmada, 

Faster R-CNN ve YOLOv8 olmak üzere iki farklı derin öğrenme tabanlı nesne 

algılama modeli değerlendirilmiştir. Faster R-CNN modeli, iki aşamalı yapısı 

sayesinde küçük ve lokalize hasar bölgelerinin hassas tespitinde güçlü bir performans 

sunarken; YOLOv8 modeli, hızlı ve tek aşamalı yapısıyla gerçek zamanlı 

uygulamalara uygunluğu ile öne çıkmaktadır. 

Tezde kullanılan veri seti, deprem sonrası yapılan saha incelemeleriyle toplanan 539 

yüksek çözünürlüklü görüntüden oluşmaktadır. Bu görüntülerde toplamda 1494 adet 

donatı burkulma bölgesi sınırlayıcı kutularla etiketlenmiştir. Veri seti eğitim (%80), 

doğrulama (%10) ve test (%10) alt kümelerine ayrılmış; görüntülerdeki farklı ışık 

koşulları, çekim açıları ve donatı çeşitliliği gibi zorluklar modellerin genelleme 

kapasitesini sınamıştır. Her iki model de bu veri seti üzerinde, çeşitli veri artırma 

teknikleri ve optimize edilmiş hiperparametrelerle eğitilmiştir. 

Test verisi üzerinde yapılan değerlendirmeler sonucunda, YOLOv8m modeli en 

yüksek kesinlik (0.850) ve ortalama kesinlik (0.852) değerlerine ulaşmıştır. Bu model, 

131 doğru pozitif (TP), 27 yanlış pozitif (FP) ve 29 yanlış negatif (FN) tahmin 

üretmiştir. ResNet-152 omurgasıyla Faster R-CNN modeli ise 135 TP, 106 FP ve 25 

FN değerleriyle en yüksek duyarlılık (0.844) değerine sahip olmuştur. Bu sonuçlar, 

YOLOv8m modelinin daha yüksek doğruluk oranıyla yanlış tespit etme riskini 

azalttığını, buna karşın Faster R-CNN modelinin daha fazla hasar bölgesi tespit ederek 

kapsamlı bir tarama imkânı sunduğunu ortaya koymuştur. 

Bu çalışma ayrıca, görüntülerin çekim açısı ve hasar bölgesinin görüntüdeki 

büyüklüğü gibi faktörlerin model performansına doğrudan etki ettiğini göstermiştir. 

Hasar bölgelerinin görüntüde daha geniş yer kapladığı durumlarda modellerin daha 

yüksek doğrulukla tahminler yaptığı gözlemlenmiştir. Bu bulgu, saha çalışmalarında 

yüksek kaliteli ve uygun açıda çekilmiş görüntülerin sağlanmasının önemini 

vurgulamaktadır. 

Sonuçlar, iki modelin kendi içindeki karşılaştırılmasıyla hangi modelin hangi 

uygulamada daha avantajlı olacağını net bir şekilde ortaya koymaktadır. YOLOv8m 

modeli, yanlış tespit etme riskinin azaltılmasının ön planda olduğu durumlarda 

güvenilir bir çözüm sunarken; Faster R-CNN modeli, tüm hasar bölgelerinin eksiksiz 

tespit edilmesinin önemli olduğu senaryolarda daha uygun bir alternatif olarak 

değerlendirilmektedir. Böylece model seçimi, uygulama amacına ve projenin 

ihtiyaçlarına göre esnek bir şekilde yapılabilir. 
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Sonuç olarak, bu tez çalışması her iki derin öğrenme modelinin de geleneksel hasar 

tespiti yöntemlerine göre çok daha hızlı, objektif ve kapsamlı bir çözüm sunduğunu 

ortaya koymaktadır. Yapay zeka temelli bu yaklaşımlar, yapı mühendisliği ve deprem 

sonrası hasar taramaları gibi alanlarda önemli bir potansiyele sahip olduğunu 

kanıtlamaktadır. Gelecekte veri setinin çeşitlendirilmesi, üç boyutlu veri kümelerinin 

kullanılması ve daha gelişmiş derin öğrenme mimarileriyle modellerin performansının 

artırılması hedeflenebilir. 
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DETECTION OF LONGITUDINAL REINFORCEMENT BUCKLING IN 

REINFORCED CONCRETE COLUMNS POST-EARTHQUAKE BY 

MACHINE LEARNING 

SUMMARY 

This thesis explores the application of advanced deep learning-based object detection 

models for the automatic identification of reinforcement buckling damage in 

reinforced concrete columns following the devastating February 6, 2023, Turkey-Syria 

earthquakes. Reinforced concrete structures are the most widely used building 

systems, with columns serving as critical vertical load-bearing members that transfer 

loads from the superstructure to the foundation and the ground. The performance of 

these columns directly influences the overall stability and safety of structures, 

particularly during seismic events. Among the various types of structural damage, 

reinforcement buckling in columns is one of the most critical as it can significantly 

reduce the load-carrying capacity and overall stability of the structure. 

The study employs two prominent deep learning-based object detection models—

Faster R-CNN and YOLOv8—to comprehensively assess their effectiveness in 

detecting these critical structural damages. Faster R-CNN utilizes a two-stage 

architecture that provides high detection sensitivity for small and localized damage 

regions, which is essential for accurately identifying reinforcement buckling that may 

be difficult to observe visually. In contrast, YOLOv8 features a simplified single-stage 

architecture that enables real-time detection capabilities, making it advantageous for 

rapid post-disaster evaluations where rapid decision-making is paramount. 

The dataset used in this thesis consists of 539 images collected from field 

investigations conducted after the earthquake, containing a total of 1494 reinforcement 

buckling instances annotated with bounding boxes. These images were carefully 

curated to include various challenges such as different lighting conditions (day and 

night), variable camera angles, and differences in reinforcement types, including 

ribbed and plain bars as well as corroded reinforcement. These variations introduced 

significant complexity, thereby testing the robustness of the models to real-world 

conditions and ensuring that the findings are widely applicable. 

To optimize model performance, extensive data augmentation techniques were applied 

during training. These included horizontal flipping, random brightness adjustments, 

geometric transformations such as rotation and scaling, and color jittering to simulate 

the diverse environmental conditions present in the dataset. Hyperparameter tuning 

was also conducted to ensure stable convergence during training and to achieve the 

best possible detection performance. For the Faster R-CNN model, three backbone 

networks—ResNet-50, ResNet-101, and ResNet-152—were evaluated to examine 

how the depth of the network influences detection capability. Similarly, YOLOv8 was 

evaluated using all five of its model variants: YOLOv8n, YOLOv8s, YOLOv8m, 

YOLOv8l, and YOLOv8x, each with varying levels of complexity and computational 

demands. 



xxii 

Model performance was evaluated on a test dataset, using several key metrics: 

precision, recall, F1 score, and average precision (AP). The YOLOv8m variant 

emerged as the best-performing model in terms of precision (0.850) and average 

precision (0.852), correctly identifying 131 true positive (TP) instances of 

reinforcement buckling while producing 27 false positive (FP) and 29 false negative 

(FN) predictions. Conversely, the Faster R-CNN model with the ResNet-152 backbone 

achieved the highest recall (0.844), detecting 135 true positives but with 106 false 

positives and 25 false negatives. These results highlight the distinct advantages of each 

model: YOLOv8m’s precision-focused approach minimizes false alarms and enhances 

reliability, making it suitable for prioritizing urgent structural assessments and 

reducing the risk of unnecessary interventions. In contrast, Faster R-CNN’s high recall 

ensures more comprehensive detection, which is particularly valuable in scenarios 

where a complete damage inventory is critical for decision-making. 

Beyond numerical performance, this study also examined how various image 

characteristics influenced the models’ predictive capabilities. Factors such as the size 

of the damage region within the image and the camera angle during capture had a 

notable impact on detection accuracy. Images in which the buckling damage occupied 

a larger portion of the frame consistently resulted in higher detection accuracy for both 

models. Conversely, images captured from side angles or with significant background 

clutter reduced detection performance. These findings underscore the importance of 

strategic image acquisition during field surveys and suggest that ensuring clear, well-

framed images can significantly enhance the accuracy of automated detection systems. 

The comprehensive evaluation extended to an internal comparison within each model 

family, guiding the selection of the most suitable variant for specific post-earthquake 

applications. The YOLOv8m model, with its balanced precision and recall (F1 score 

of 0.82), offers an optimal balance between accuracy and speed for scenarios where 

rapid assessments are essential. In contrast, the Faster R-CNN model with the ResNet-

152 backbone, despite producing more false positives, ensures a broader and more 

thorough detection of potential damage regions, making it valuable in detailed 

inspections where missing any damage could have serious safety implications. 

The study’s findings highlight the importance of aligning model selection with specific 

assessment goals. In applications where minimizing false alarms is critical—such as 

emergency resource allocation and prioritization of repairs—the YOLOv8m model’s 

high precision makes it the preferred choice. On the other hand, for comprehensive 

inspections requiring exhaustive documentation of all potential damage areas, the 

Faster R-CNN model’s high recall offers a more suitable solution. By replacing labor-

intensive and subjective visual inspections with automated evaluations, these models 

can streamline post-disaster damage assessments, providing consistent, objective 

insights that support data-driven decision-making and reduce the time required for 

comprehensive surveys. 

Future researchs include expanding the dataset to encompass a wider variety of real-

world damage scenarios, incorporating three-dimensional data to provide richer 

structural insights, and developing hybrid approaches that combine YOLOv8’s 

precision with Faster R-CNN’s thorough coverage. Furthermore, the optimization of 

data augmentation strategies and the integration of advanced feature-fusion techniques 

has the potential to further enhance detection performance under challenging field 

conditions. 
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In conclusion, this thesis provides a comprehensive evaluation of deep learning-based 

object detection models for the rapid and reliable identification of reinforcement 

buckling damage in RC columns after earthquakes. The results demonstrate that these 

AI-driven models can significantly enhance the speed, consistency, and objectivity of 

post-disaster damage assessments. Structural engineers are able to adapt their 

methodologies to address the distinct requirements of various damage assessment 

scenarios by leveraging the distinct strengths of YOLOv8m and Faster R-CNN. This 

research contributes to the advancement of the field of automated structural health 

monitoring and supports the development of safer and more resilient urban 

environments in the context of seismic risks. 
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1.  GİRİŞ  

Betonarme yapılar günümüzde en çok tercih edilen yapı sistemleridir. Yapının düşey 

taşıyıcı sistemi olan kolonlar yükleri üstyapıdan temel ve zemine aktarırlar. Düşey 

yüklerin yanında yatay yükler için de önemli bir rol alan kolonlar deprem durumunda 

yapının dayanıklılığını belirler. Kolonların performansı yapının stabilitesi açısından 

hayati bir öneme sahiptir. 

Burkulma hasarı kolonlarda oluşan yapısal hasar türleri arasında en kritiklerden biridir 

(Tripathi ve diğ. 2019). Betonarme kolonlarda burkulma, kolonların maruz kaldığı 

eksenel yükler ve deprem sırasında oluşan yatay yükler sebebiyle taşıma gücünü 

aşması ve böylece stabilitesini yitirmesiyle ani bir deformasyona uğramasıdır. Bu 

durum kolonun taşıma kapasitesini büyük ölçüde azaltarak yapısal sistem bütünlüğünü 

bozmaktadır. Deprem sonrasında kolonlarda oluşabilecek burkulma hasarı ağır yapısal 

sınıfına girer (Murray ve Sasani, 2017). Bu sebeple deprem bölgelerinde kolon 

burkulmalarının erken tespiti ve gerekli önlemlerin alınması, yapı hasarlarının ve can 

kayıplarının önüne geçmek için önem arz eder.  

Günümüzde yapıların hasar tespiti ve değerlendirilmesi, çoğunlukla geleneksel 

yöntemler ve saha incelemeleriyle yapılmaktadır ancak bu yöntemler zaman alıcı ve 

subjektiftir. Bu nedenle hasar tespitinin hızlı, güvenilir ve objektif olabilmesi için 

yenilikçi yöntemlere ihtiyaç duyulmaktadır. Bu bağlamda makine öğrenmesi 

yöntemleri son yıllarda inşaat mühendisliğinde bazı alanlarda kullanılmaya başlanmış, 

hasar sınıflandırılması ve tespiti konusunda yüksek performans göstermiştir. 

Bu tez çalışmasında, 6 Şubat 2023 Kahramanmaraş depremleri sonrası bölgedeki 

yapıların kolonlarında oluşan burkulma hasarının fotoğraflarının makine öğrenmesi 

yöntemleriyle tespit edilmesi üzerine bir araştırma ve uygulama gerçekleştirilecektir. 

Makine öğrenmesi algoritmalarıyla kolonlardaki burkulma hasarı otomatik olarak 

tespit edilecek ve bu yöntemlerin saha çalışmalarına  göre etkinliği 

değerlendirilecektir. Ayrıca farklı makine öğrenmesi yöntemlerinin burkulma hasar 

tespiti konusunda etkinlikleri karşılaştırılacaktır. Çalışma sonucunda makine 
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öğrenmesi yöntemlerinin deprem hasar tespiti sırasında çekilen fotoğraflardaki 

betonarme kolonlardaki boyuna donatı burkulma hasar tespiti konusundaki potansiyeli 

ortaya konacaktır. 
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2.  LİTERATÜR ÇALIŞMASI VE ARAŞTIRMA 

Bu çalışma kapsamında, betonarme kolonların burkulma davranışı ve makine 

öğrenmesinin yapı mühendisliği alanındaki uygulamaları araştırılmıştır. 

2.1 Betonarme Kolon Burkulması 

Betonarme yapılarda düşey yüklerin temel ve zemine aktarılmasında büyük rol 

oynayan kolonlar, yapı bütünlüğü için önemli bir göreve sahiptir. Deprem veya 

herhangi bir yükleme durumunda tasarım yüklerinin aşılması, kolonların yük taşıma 

kapasitesini aşması halinde üst yapıların çökmesine varan hasarlar meydana 

getirebilir. Bu sebeple deprem sonrası betonarme kolonlarda oluşan burkulma 

hasarının tespit edilmesi kritik bir öneme sahiptir. Betonarme kolonlarda burkulma 

davranışı genel burkulma ve lokal burkulma olarak iki sınıfa ayrılır. 

2.1.1 Global (Eksenel) burkulma 

Genel burkulma, kolonun ekseni boyunca eğilerek kısalmasıyla ortaya çıkan klasik 

Euler burkulmasıdır. Bu burkulmada kolon bir yay şeklini alır ve taşıma gücü kritik 

yük ile sınırlanır. Narin kolonlar genel burkulmaya daha eğilimlidir ve yapılardaki ara 

kat kolonlarında bulunan kesintisiz yüksek kolonlarda görülebilmesi daha olasıdır.  

Narin kolonlar, uygulanan görece küçük yükler altında stabilitesini kaybederek global 

burkulma davranışını gösterebilir. Yüksek dayanımlı beton kullanılmasıyla kolon 

kesitlerinin küçülmesi kolonların narinliğini artırarak global burkulma ihtimalini 

artırabilir. Paultre ve diğ. (2001), yaptıkları deneysel çalışmada beton dayanımının 

artırılmasıyla sünek davranışın kötüleştiğini ve boyuna donatıların burkulmaya daha 

yatkın olduğu görülmüştür. Ek olarak bu çalışmada, yüksek dayanımlı beton kullanılan 

ve narin kolonlarda enine sargı kullanımının burkulma kapasitesini artırdığı ortaya 

konmuştur. Akademik çalışmalar genel burkulma davranışının, narin kolonlarda 

ikincil mertebe etkiler ve stabilite kayıpları dikkate alınarak incelenmesi gerektiğini, 

yapılan analitik ve deneysel uygulamaların bazı tasarım kriterleri gerektirdiğini 

göstermiştir. 
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2.1.2 Lokal burkulma 

Betonarme kolonlarda global burkulma olmadan yüksek deformasyonlar sonucu kolon 

içindeki boyuna donatılar burkulabilir. Bu burkulma kolon uç bölgelerinde plastik 

mafsal oluşumu sırasında boyuna donatıların etriyelerin arasında burkulmasıdır ve 

deprem gibi tekrarlı yüklemelerde önemli bir hasar mekanizmasıdır. Kolon kesitinin 

çekirdeği etriye ile çevrilidir ancak örtü beton yüksek deformasyon seviyelerinde 

dökülür ve boyuna donatılar kısmen dışarı çıkar. Bu durum boyuna donatıların yanal 

olarak kısmen serbest kalmasına sebep olarak donatıda burkulma ihtimalini artırır. 

Etriye aralığının genişliği veya kenetlenme zayıflığı boyuna donatıların burkulma 

ihtimalini artırmaktadır. Bunların yanında lokal burkulma çekirdek betonun yanal 

desteğini kaybetmesini sağlayarak kolon dayanım ve sünekliliğini azaltır (Çırak, 

2011). Tripathi ve diğ. (2019) betonarme perdelerde farklı sınır bölgesi 

detaylandırmalarının donatı burkulmasını doğrudan etkilediğini ve bu etkinin perde 

elemanların süneklik ve enerji sönümleme kapasitelerini belirgin şekilde değiştirdiğini 

vurgulamıştır. Çalışmada farklı detaylandırmalara sahip betonarme perdelerin 

deneysel incelemesi sonucu, enine donatıların sıklaştırılması ve doğru şekilde 

konumlandırılmasının donatıların burkulma boyunu azalttığı ve bu sayede yapı 

elemanının genel performansını iyileştirdiği belirtilmiştir. Dhakal ve Su (2018), enine 

donatıların tasarımında, donatıların erken burkulmasını önleyecek yeterli yanal rijitliği 

sağlayacak kriterler geliştirmişlerdir. Araştırmacılar, donatı burkulma parametresini 

(donatı çapı, akma dayanımı ve burkulma boyunu birleştiren bir parametre) esas alarak 

geliştirdikleri yöntem ile tasarlanmış enine donatıların, donatı burkulmasını 

geciktirerek yapısal elemanın daha büyük plastik deformasyonlara ulaşabilmesine 

olanak sağladığını göstermişlerdir. 

Donatıların basınç altındaki geometrik lineer olmayan davranışı ilk araştırma 

konularından biri olmuştur. Monti ve Nuti (1992), çevrimsel yüklemeye maruz kalan 

boyuna donatılarda lokal burkulmanın etkisini dikkate alan bir histeretik model 

geliştirmiştir. Çalışma, inelastik burkulmanın enerji sönümleme kapasitesini 

düşürdüğünü ve çevrimsel dayanımı azalttığını göstermiş; modelin, gerilme-şekil 

değiştirme döngülerini gerçekçi biçimde temsil edebildiği belirtilmiştir. Benzer 

şekilde Gomes ve Appleton (1997), örtü betonun dökülmesiyle yanal desteğini 

kaybeden donatıların lokal burkulmasını dikkate alan geliştirilmiş bir model 

önermiştir. Geliştirilen model, çevrimsel yük altında burkulma sonrası donatı 
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davranışını başarılı şekilde temsil ederek deneysel verilerle yüksek uyum sağlamıştır. 

Kashani (2024), boyuna donatıların inelastik burkulma davranışını ele aldığı derleme 

çalışmasında, mevcut deneysel ve sayısal modelleme yaklaşımlarını kapsamlı şekilde 

incelemiştir. Çalışmada, özellikle donatının etriye aralığında lokal olarak 

burkulmasının, kesit rijitliğinde azalma, plastik şekil değiştirme kapasitesinin düşmesi 

ve süneklik kaybı gibi kritik etkiler doğurduğu vurgulanmıştır. Mevcut modellerin bu 

karmaşık davranışı sınırlı doğrulukla temsil edebildiği, bu nedenle lokal burkulmanın 

daha gerçekçi simülasyonu için ileri modelleme tekniklerine ihtiyaç olduğu 

belirtilmiştir. Dhakal ve Maekawa (2002), lif modeli tabanlı bir modelleme 

çalışmasıyla boyuna donatıların akma sonrası burkulma hasarına bir analiz 

geliştirmiştir. Bu çalışmada geometrik kusurların önemine ve akma sonrasında boyuna 

donatıların basınç yönünde taşıma kapasitesinde büyük bir düşüş görülmüştür. 

Massone ve Moroder (2009), başlangıç kusurlarına sahip donatıların burkulma 

kapasitelerinin ciddi oranda azaldığını belirterek, bu tür kusurların burkulma 

davranışını modellemek için kritik olduğunu göstermiştir. Başlangıç kusurlarının 

simülasyonlarda dikkate alınmasının, donatıların burkulma kapasitelerini doğru bir 

şekilde öngörmekte önemli bir adım olduğunu deneysel ve nümerik olarak 

ispatlamışlardır. Kunnath ve diğ. (2009), boyuna donatıların burkulmasını içeren, 

betonarme yapıların doğrusal olmayan analizinde kullanmak adına tek eksenli bir 

malzeme modeli geliştirdi. Urmson ve Mander (2012), mekanik temelli bir analiz 

yöntemi geliştirerek boyuna donatıların lokal burkulma davranışını modellemiş ve 

etriye aralığına bağlı olarak kritik burkulma gerilmesini ve burkulma sonrası eksenel 

gerilme-şekil değiştirme ilişkisini tek bir analitik eğri ile tanımlamıştır. Bu analitik 

modeller, donatı burkulmasının kolonların moment-eğrilik ve yorulma davranışlarına 

etkisini anlamada önemlidir. Akkaya ve diğ. (2019), donatıların inelastik burkulma 

sonrası davranışını tanımlayan, deneysel verilerle doğrulanan basit ve pratik bir kurucu 

model önermiştir. Önerilen model, çeşitli deneysel ve analitik test sonuçlarıyla 

doğrulanarak, farklı malzeme ve geometrik özelliklere sahip donatıların burkulma 

davranışını başarılı bir şekilde öngörmüştür. Ayrıca bu model, donatıların tam 

kapsamlı gerilme-şekil değiştirme ilişkilerini tanımlamak için pratik bir yaklaşım 

sağlamıştır. Murray & Sasani (2017), sünek olmayan betonarme kolonlarda yaptıkları 

hibrit simülasyon çalışmasında, yüksek eksenel basınç ve yetersiz etriye aralığı 

nedeniyle boyuna donatılarda oluşan lokal burkulma mekanizmasını incelemiştir. Bu 

tür burkulmanın, ani taşıma gücü kaybına yol açtığı ve yapının genel davranışını 
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etkilediği gözlemlenmiştir. Çalışma, lokal donatı burkulmasının sistem düzeyinde yük 

aktarımı ve göçme riski üzerindeki önemine dikkat çekmektedir. Benzer şekilde 

Sagiroglu ve  Sasani (2014), betonarme sistemlerde başlangıçtaki donatı burkulması 

gibi hasar türlerinin, ilerlemeli göçme senaryoları üzerindeki etkisini değerlendirmiştir 

ve lokal donatı burkulmasının sistem davranışında ikincil etkiler yaratabileceğine 

dikkat çekmektedir. McKee ve diğ. (2023) donatı burkulmasının mekanik ve 

geometrik özelliklere bağlı bir makro-mekanik model ile güvenilir şekilde tahmin 

edilebileceğini ortaya koymuşlardır. Önerilen model, donatıların burkulma sonrası 

oluşabilecek düşük çevrim yorulma hasarlarını ve bunların yapısal elemanların genel 

performansına etkisini doğru ve etkin bir biçimde modellemiştir. 

Deneysel çalışmalar, modelleme çalışmalarının yanında donatıların burkulma 

davranışını destekler sonuçlar vermiştir. Moyer ve Kowalsky (2003), yaptıkları 

deneysel çalışmalarda, yaklaşık %6.5 çekme şekil değiştirmeleri altında olan boyuna 

donatıların, takip eden basınç yüklemelerinde daha hızlı burkulduğunu 

belirlemişlerdir. Özellikle yüksek düzeyde çekme geçmişine sahip donatılarda, bu 

durumun daha belirgin olduğu ve literatürde "çekme-temelli burkulma mekanizması" 

(tension-induced buckling mechanism) olarak adlandırıldığı ifade edilmiştir. Bae ve 

diğ. (2005), gerçekleştirdikleri kapsamlı deneysel çalışmada farklı çapa ve boyuta 

sahip toplam 162 boyuna donatıyı yalnızca basınç etkisi altında test ederek, donatıların 

burkulma sonrası malzeme davranışlarını incelemişlerdir. Çalışma, burkulma 

sonrasında donatıların eksenel taşıma kapasitelerinde belirgin bir azalma ve şekil 

değiştirme yeteneklerinde düşüş yaşandığını ortaya koymuştur. Çalışmada elde edilen 

veriler, sonlu eleman modellerine eklenebilecek şekilde bir malzeme modeli 

oluşturulmasına olanak sağlamış ve bu sayede plastik mafsal bölgesinin daha gerçekçi 

biçimde modellenmesine katkı sağlamıştır. Tripathi ve diğ. (2018), düşük çevrimli 

tekrarlı yüklemeye maruz kalan boyuna donatıların inelastik burkulma davranışını 

deneysel olarak incelemiştir. Çalışmada, lokal burkulmanın, donatıların döngüsel 

deformasyon kapasitesini azalttığı, yorulma ömrünü kısalttığı ve enerji sönümleme 

kapasitesini düşürdüğü belirlenmiştir. Bu sonuçlar, deprem gibi tekrarlı yüklemelerde 

lokal burkulmanın yapısal performans üzerindeki kritik rolünü ortaya koymaktadır. 

Boyuna donatı burkulmasının kolonun genel yapısal performansıyla ilişkisini araştıran 

önemli çalışmalardan biri Berry ve Eberhard (2005) tarafından sunulmuştur. Bu 

çalışmada, literatürde yer alan 100'ü aşkın betonarme kolon testinin bulguları 
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incelenerek, burkulma hasarının başladığı deplasman seviyelerini öngören ampirik 

denklemler geliştirilmiştir. Geliştirilen model; boyuna donatı oranı, enine donatı 

aralığı ve beton basınç dayanımı gibi değişkenleri dikkate alarak, donatı burkulmasının 

oluştuğu andaki göreli kat ötelemesi oranını tahmin etmektedir. Özellikle önerilen 

formüller, plastik dönme veya göreli kat ötelemesinin belirli bir sınır değerine ulaşması 

durumunda burkulmanın başladığını öngörmektedir. Bu türden parametrik ilişkiler, 

performansa dayalı deprem tasarımında kolonların göçme sınır durumlarını 

tanımlamak amacıyla kullanılabilmektedir. 

2.1.3 Deprem etkisindeki kolon burkulması 

Betonarme kolonlar deprem etkisi altında tek yönlü statik yüklerden farklı olarak 

düşük çevrimli yorulma etkisi altındadır. İlk büyük deprem çevriminde kolon uç 

noktalarında plastik mafsal oluşabilir. Beton örtüsünün de dökülmesiyle bu bölgedeki 

donatılar burkulabilir. Sonraki tersinir çevrimde ise boyuna donatının burkulduğu 

bölgede yoğun bir plastik şekil değiştirme meydana gelebilir. Bu döngü, donatıda 

yorulma çatlaklarının oluşmasına ve birkaç çevrimde donatı kopmasına varan sonuçlar 

doğurabilir. Bu nedenle bir kolonun sismik yükler altındaki deformasyon kapasitesinin 

belirlenmesinde donatı burkulması önemli bir etkendir. Syntzirma ve diğ. (2010) 

çevrimsel yükleme altındaki donatı burkulmasının kolonların şekil değiştirme 

kapasitesi üzerindeki etkisini analitik olarak incelemişlerdir. Çalışmada ardışık 

çevrimlerin, çevrimlerin büyüklüğü ve sırası göz önüne alınarak burkulma kontrollü 

elemanların deformasyon kapasitesini önemli ölçüde etkilediği gösterilmiştir. 

Özellikle değişken genlikli yükleme senaryolarında, erken evrede meydana gelen 

büyük yer değiştirmeler, donatı burkulmasını daha erken tetikleyerek ilerleyen 

çevrimlerde bile dayanım kaybına neden olabilmektedir. 

Betonarme kolonların sismik performansının değerlendirilmesinde kolonların 

taşıyıcılık ve süneklik üzerindeki etkisi pek çok çalışmaya konu olmuştur. Lehman ve 

diğ. (2004), sismik yüklemeler altında köprü kolonlarının performansını inceledikleri 

deneysel araştırmada, sargı detayları yetersiz olan kolonların burkulma ve hasar 

oluşumunun erken evrelerde başladığını tespit etmişlerdir. Buna karşılık, güncel 

yönetmeliklere uygun şekilde sık sargı donatısıyla tasarlanmış kolonlar, belirgin bir 

burkulma meydana gelmeden daha yüksek dönme taleplerine karşı dayanım 

göstermiştir. Elde edilen bulgular, yetersiz enine donatılı kolonların deprem sırasında 
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ani dayanım kaybına uğrayabileceğini ve bunun özellikle plastik mafsal bölgesinde 

hızlı kapasite azalmasına neden olabileceğini göstermektedir. Benzer şekilde, 

parametrik analizlere dayanan çalışmalar, kolonlarda donatı burkulmasının sismik 

performans üzerinde ciddi etkiler oluşturabileceğini göstermektedir. Su ve diğ. (2015), 

donatı burkulma etkisini basitleştirilmiş bir modelle yapısal analize dahil etmiş ve bu 

etkinin ihmal edilmesinin kolonun enerji tüketimi ve şekil değiştirme kapasitesinin 

gerçekte olduğundan daha yüksek tahmin edilmesine neden olduğunu ortaya 

koymuştur. Yapılan analizler, burkulmanın hesaba katıldığı durumlarda maksimum 

deplasman kapasitesi ve sönümleme özelliklerinin daha düşük değerlere ulaştığını 

göstermiştir. Bu nedenle, modern performans değerlendirme yaklaşımlarında donatı 

burkulmasının, kritik bir limit durum olarak ele alınması gerektiği vurgulanmaktadır. 

2.2 Yapı Mühendisliği ve Yapay Zeka 

Yapı mühendisliğinde yapay zekânın kullanımı, son yirmi yılda hasar tespiti ve 

sınıflandırması alanında giderek artan bir şekilde uygulanmaktadır. Özellikle yapısal 

sağlık izleme (SHM) verilerinden hasar belirleme konusunda erken dönem 

çalışmalarda görüntü işleme teknikleri kullanılmıştır. Görüntü işleme tekniğiyle 

yapılan çalışmalarda binalar ve altyapılar değerlendirilmiş ve beton çatlaklar tespit 

edilmiştir. Tung ve diğ. (2002), yaptıkları çalışmada beton köprülerde oluşan 

çatlakların tespitini otomatikleştirebilmek için kamera görüntüleme sistemi 

geliştirmiştir. Abdel-Qader ve diğ. (2003), beton köprülerde çatlakları tespit etmek için 

Fourier dönüşümleri ve kenar algılama algoritmalarını uygulamıştır. Sinha ve Fieguth 

(2006), gömülü beton borular için filtre tabanlı bir çatlak algılayıcı geliştirmiştir. 

Benzer şekilde Yu ve diğ. (2007), betonarme bir tünel için entegre bir çatlak tespit 

sistemi önermiştir. Higgins ve Turan (2013), çelik levha bağlantılarının 

değerlendirilmesi ve derecelendirilmesi amacıyla kullanılan levha geometrisini hızlı 

şekilde toplamak için görüntü işleme ve yakın mesafe fotogrametri tekniklerini 

kullanmıştır. Wang ve diğ. (2023), bilgisayara dayalı görüntü işleme ve insansız hava 

araçları kullanarak yapı geometrisinin otomatik çıkarımına dayalı bir sistem 

önermiştir; çıkarılan verileri birleştirerek köprülerin sismik risk değerlendirmesi 

yapılmıştır. 
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Zamanla makine öğrenmesi tabanlı yaklaşımlarda kayda değer bir artış görülmüştür. 

Destek vektör makineleri (Support Vector Machines, SVM) ve yapay sinir ağları 

(Artificial Neural Networks, ANN) de hasar tespitinde kullanılan yöntemlerdir. Ho-

Thu ve Mita (2013), yalnızca ilk üç doğal frekansı kullanarak yapısal hasar tespiti 

gerçekleştiren bir destek vektör makineleri modeli geliştirmiştir. Bu model, herhangi 

bir kat seviyesindeki hasarın yerini, sınırlı modal bilgiyle başarıyla belirleyebilmiştir. 

O’Byrne ve diğ. (2013), görüntülere dokusal özellikler ekleyerek altyapıdaki hasarları 

belirlemek için SVM sınıflandırma modellerini kullanmıştır.  Lee ve diğ. (2013), beton 

yüzeylerdeki çatlakların genişlik, uzunluk ve yönlerini ölçmek için ANN kullanmıştır.  

Shimada ve diğ. (2006), farklı sınır koşullarına sahip yapılar üzerinde 

gerçekleştirdikleri çalışmada, her yapısal eleman için ayrı sınıflar tanımlayarak çok 

sınıflı SVM ile hasar tespitini yüksek doğrulukla gerçekleştirmiştir. O’Byrne ve diğ. 

(2014), yeni bir bölgesel olarak geliştirilmiş çok aşamalı segmentasyon tekniği sunmuş 

ve altyapıların korozyona uğramış yüzeylerini sınıflandırmak için SVM kullanmıştır. 

Bakhary ve diğ. (2010), çok aşamalı alt yapılandırma yaklaşımına dayanan bir yapay 

sinir ağı (ANN) sistemi geliştirerek, yapıların modal verilerini kullanarak hasar tespiti 

gerçekleştirmiştir. Doğal frekanslar ve mod şekilleri gibi dinamik parametreler, ağın 

girdi verisi olarak kullanılmış ve hem betonarme döşeme hem de çok katlı çerçeve 

sistemleri üzerinde çeşitli hasar senaryolarıyla yöntemin doğruluğu test edilmiştir. 

Elde edilen bulgular, bu yöntemin düşük seviyeli ve lokal hasarları dahi etkin biçimde 

belirleyebildiğini göstermektedir. 

İlerleyen yıllarda derin öğrenme tekniklerinin gelişimiyle hasar sınıflandırılması ve 

tespiti konusunda büyük ilerleme sağlanmıştır. Özellikle görüntü verilerinin işlenmesi 

konusunda başarılı olan evrişimsel sinir ağları (Convolutional Neural Networks, 

CNN), yapı hasarlarının tespitinde kullanılmaya başlanmıştır. Cha ve diğ. (2017), 

beton yüzeylerden elde edilen fotoğraflar aracılığıyla çatlak tespiti yapmak üzere özel 

yapılandırılmış bir derin öğrenme mimarisi geliştirmiştir. Eğitiminde 40.000’den fazla 

görüntü kullanılan bu CNN modeli, manuel özellik çıkarımı gerektirmeden ince ve 

görülmesi zor çatlakları yüksek doğrulukla tespit edebilmiş, test setinde yaklaşık %97 

başarı sağlamıştır. Derin öğrenme, ham veriden özellikleri büyük ölçüde öğrenebildiği 

için, titreşim tabanlı hasar tespitinde de kullanılmıştır. Abdeljaber ve diğ. (2017), bir 

boyutlu CNN mimarisi kullanarak, ivmeölçerlerden elde edilen titreşim zaman 

serilerini doğrudan işleyen ve ön işleme gerektirmeden köprü tipi yapıların gerçek 
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zamanlı hasar tespitini gerçekleştiren bir yöntem önermiştir. Geliştirilen yaklaşım, 

deneysel olarak modellenmiş bir çelik köprü yapısında hasarın hem varlığını hem de 

konumunu insan müdahalesi olmadan başarıyla belirlemiş; ayrıca geleneksel 

yöntemlere kıyasla çok daha kısa sürede ve yüksek doğrulukla sonuç üretmiştir. Bazı 

araştırmacılar klasik CNN modellerini önceden büyük veri setleri ile eğiterek yapısal 

hasar tespiti için kullanılmıştır. Hassan ve diğ. (2019), önceden ImageNet üzerinde 

eğitilmiş AlexNet mimarisini transfer öğrenme yöntemiyle kanalizasyon borularının 

kapalı devre televizyon (Close Circuit TeleVision, CCTV) görüntülerine uyarlayarak, 

altyapı kusurlarını altı farklı sınıfta başarıyla sınıflandıran bir derin öğrenme sistemi 

geliştirmiştir (Krizhevsky ve diğ. 2017). 47.072 gerçek  veriyle eğitilen bu model, 

farklı tipteki boru kusurlarını yüksek doğrulukla tespit etmiş ve altyapı denetiminde 

derin öğrenmenin potansiyelini ortaya koymuştur. Liu ve diğ. (2022), hasar almış 

binalardan toplanan çok sayıda görsel veriyi kullanarak, yapıların genel hasar 

durumunu otomatik sınıflandırabilen bir bilgi füzyonu tabanlı sistem geliştirmiştir. 

Çalışmada, binaya ait görüntülerden hasarın betonarme ve yığma bileşenlerine göre 

ayrı ayrı belirlenmesini sağlayan CNN tabanlı sınıflayıcılar eğitilmiş ve daha sonra bu 

bilgiler Naïve Bayes füzyon algoritması ile birleştirilerek binaya ait genel bir hasar 

sınıfı elde edilmiştir. Bu yaklaşım, saha verilerinin daha hızlı analiz edilmesini 

sağlayarak araştırma sürecini hızlandırmaktadır. 

Görüntü tabanlı hasar tespitinde sadece sınıflandırma değil, hasarın konumunu tespit 

eden nesne tespiti yöntemleri de kullanılmıştır. Bu yöntemin kullanılması adına 

geliştirilen R-CNN modelleri, yapısal hasarı sınırlayıcı kutular sayesinde lokalize 

etmiştir. Cheng ve Wang (2018), iki aşamalı bir nesne algılama algoritması olan Faster 

R-CNN'i kullanarak kanalizasyon borularındaki çatlak, sızıntı, birikinti ve kök istilası 

gibi yaygın kusurları CCTV görüntüleri üzerinden otomatik olarak belirleyen bir 

yöntem geliştirmiştir. Yaklaşık 3000 görüntü üzerinde eğitilen bu derin öğrenme 

modeli, daha önce manuel olarak saatler süren video inceleme sürecini dakikalar içinde 

tamamlayarak kusurlu bölgeleri doğru biçimde tespit edebilmiş ve görsel incelemeyi 

yüksek doğrulukla hızlandırmıştır. Zhang ve diğ. (2020), insansız hava araçları ile elde 

edilen yüksek çözünürlüklü köprü görüntülerinde çatlak, dökülme, beton örtü kaybı ve 

donatı açığa çıkması gibi farklı hasar türlerini aynı anda tespit edebilmek amacıyla 

YOLO (You Look Only Once) tabanlı bir tek-aşamalı nesne algılama yöntemi 

geliştirmiştir. Çalışma kapsamında eğitilen YOLOv3 modeli, 2.206 görüntü ile 
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eğitilerek %80'e yakın bir ortalama doğruluk (Mean Average Precision, mAP) ile dört 

farklı hasar sınıfını başarıyla tanımlamıştır. Bu modelin, farklı ölçeklerdeki hasarları 

gerçek zamanlı olarak tek bir derin öğrenme mimarisiyle tespit edebildiği 

gösterilmiştir. Yao ve diğ. (2021), beton yüzeylerdeki çatlakları tespit etmek amacıyla, 

simetri özellikleri için optimize edilmiş ve sadeleştirilmiş bir YOLOv4 modelini 

önermiştir. Geliştirilen bu algoritma, 10.000 görüntüden oluşan bir veri kümesi 

üzerinde eğitilmiş ve %94,09 mAP (Mean Average Precision) elde ederek, mobil 

cihazlarda gerçek zamanlı hasar tespiti uygulamaları için kayda değer bir performans 

sergilemiştir. Lee ve diğ. (2023), yapının dinamik karakteristiklerini yansıtacak 

şekilde sonlu eleman modelleri oluşturmuş ve bu modeller üzerinde çeşitli hasar 

durumlarını modelleyerek bir eğitim veri seti oluşturmuştur. Bu verilerle eğitilen sinir 

ağı, hedef yapıda meydana gelen hasarın yerini ve şiddetini yüksek doğrulukla tahmin 

etmiş ve fiziksel modellemenin sağladığı yapısal analiz verisi ile yapay zekânın 

öğrenme kapasitesi birleştirilerek sınırlı veri ortamlarında bile etkili bir hasar tespiti 

yapabilmiştir. Han ve diğ. (2024), dijital ikiz yaklaşımını yapay zekâ tabanlı darbe 

tespitiyle entegre ederek Transfer-AE adını verdikleri yeni bir (Autoencoder, AE) 

mimari geliştirmiştir. Bu model, fiziksel yapılarla sayısal modeller arasındaki 

sistematik farkları azaltarak hem darbenin konumunu hem de şiddetini yüksek 

doğrulukla tahmin edebilmiş; böylece, özellikle fiziksel veri yetersizliğinin sorun 

olduğu durumlarda güvenilir yapısal sağlık izleme performansı göstermiştir. Iturburu 

ve diğ. (2024), betonarme yapıların taşıyıcı sistem özelliklerini yalnızca bina cephe 

görüntülerinden otomatik olarak çıkartabilmek amacıyla, bina görüntülerini kullanan 

yapay zekâ sistemi geliştirmiştir. Geliştirilen yöntem, sınıflandırıcı, nesne tespit edici 

ve poz tahminleyici olmak üzere üç aşamalı bir derin öğrenme mimarisine 

dayanmaktadır. Meksika’daki yapılardan oluşturulan veri setinde kolon ve kat bilgileri 

yüksek doğrulukla tahmin edilebilmiş ve bu sistemin, bina envanterlerinin 

oluşturulmasına katkı sağlayabileceği ifade edilmiştir.
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3.  VERİ SETİNİN OLUŞTURULMASI VE DÜZENLENMESİ  

Bu çalışmada, 6 Şubat 2023 tarihinde Pazarcık ve Elbistan merkez üssü olmak üzere 

sırasıyla 7.8 ve 7.6 büyüklüğünde gerçekleşen depremler sonrasında bölgedeki 

betonarme yapıların hasar görüntüleri veri seti olarak oluşturulmuştur (Mai ve diğ. 

2023).  

6 Şubat 2023 Kahramanmaraş merkezli depremler sonucunda yapılan hasar tespit 

çalışmalarına göre 37.984 bina tamamen yıkılmış, 42.936 bina ağır hasar almış ve 

toplamda 300.649 bina çeşitli derecelerde hasar görmüştür. Bu yıkım ve hasarlar, çok 

sayıda yapının kullanılamaz hale gelmesine neden olmuştur (AFAD, 2023). Bölgede 

hasar belirleme çalışmaları kapsamında yapıların hasarları kaydedilmiş ve görüntüler 

depolanmıştır. Tez çalışmasında oluşturulmuş veri setinde birçok yapısal hasarın 

yanında betonarme kolonlarda meydana gelen boyuna donatı burkulma hasarına 

odaklanılmış ve bu hasar görselleri toplanarak veri seti oluşturulmuştur. Bazı boyuna 

donatı burkulma hasar görüntüleri Şekil 3.1’de gösterilmiştir.  
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Şekil 3.1 : Kullanılan bazı boyuna donatı burkulma hasarı görüntüleri. 

Veri seti toplam 539 adet fotoğraf içermektedir ve bu fotoğraflarda toplam 1494 adet 

donatı burkulması bulunmaktadır. Bu fotoğrafları Şekil 3.2’de gösterildiği gibi 

sınırlayıcı kutular ile etiketlenerek derin öğrenme modellerinin eğitilmesi için 

hazırlanmıştır.  Etiketleme işlemi, CVAT (Computer Vision Annotation Tool) aracı 

kullanılarak gerçekleştirilmiştir. 
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Şekil 3.2 : Donatı burkulmalarının etiketlenmesi. 

3.1 Veri Setinin Bölünmesi 

Veri seti, modelin öğrenme gücünü artırmak, hiperparametre optimizasyonunu 

sağlamak ve bağımsız test verisi ile objektif performans değerlendirmesi yapmak için 

literatürde yaygın önerilen %80 eğitim, %10 doğrulama ve %10 test oranına 

bölünmüştür (Golchubian ve diğ. 2021). Bölünme işlemi sonrası her veri setindeki 

burkulma bölgesi sayısı Çizelge 3.1’de verilmiştir. 

Çizelge 3.1 : Burkulma bölgelerinin veri setine dağılımı. 

Veri seti Fotoğraf sayısı Sınırlayıcı kutu sayısı 

Eğitim 433 1196 

Doğrulama 53 138 

Test 53 160 
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3.2  Veri Setinin Özellikleri ve Sınırlayıcılar 

Veri setini oluşturan hasar fotoğraflarını başka alanlarda yapılan derin öğrenme 

çalışmalarında kullanılan fotoğraf sayılarına göre görece azlığı kullanılan derin 

öğrenme modellerinin eğitim süreçlerini zorlaştıran bir etken olarak görülmektedir. 

Buna ek olarak fotoğrafların çeşitliliği, fotoğraf sayısının görece azlığının zorluğunu 

artırmaktadır. 

Fotoğrafların farklı ışık ortamlarında (gece-gündüz) çekilmiş olması eğitim sürecini 

zorlaştırabilecek etkenlerden biridir. Bu durum Şekil 3.3’te gösterilmiştir.  

  

Şekil 3.3 : Farklı ışık koşullarında burkulma hasarı fotoğrafları. 

Ortam şartlarının yanında fotoğrafların çekilme açısı da eğitim sürecini zorlaştıran 

etkenlerden biri olabilmektedir. Bunun sebebi Şekil 3.4’te de görüldüğü gibi burkulma 

hasarına uğramış kolonun fotoğrafının karşıdan çekilmesi yerine başka bir yan açıdan 

çekilmesidir. Bu durum burkulma hasarını sınırlayan kutuların üst üste gelmesine 

sebep olup ve eğitim sürecini zorlayan faktörlerden biridir.  

  

Şekil 3.4 : Farklı derinlik dolayısı ile sınırlayıcı kutuların iç içe geçmesi. 
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Son olarak fotoğraf çeşitliliğini artıran en büyük kriterlerden biri ise donatının 

durumudur. Yapılarda kullanılan çeliğin nervürlü veya nervürsüz olması durumu 

modelin eğitim sürecindeki negatif faktörlerden biridir. Burkulma hasarı tespit edilen 

kolonlardaki bazı donatılar nervürlü (Şekil 3.5(a)), bazı donatılar nervürsüz (Şekil 

3.5(b)) olarak gözlemlenmiştir ve bunun yanında donatıların korozyona uğramış 

olması (Şekil 3.5(c)) sebebiyle de veri setinin çeşitliliği artmış, derin öğrenme 

modellerinin eğitim süreci bu gibi birçok sınırlayıcılar ile zorlaşmıştır.  

  

             (a) Nervürlü yapısal çelik            (b) Nervürsüz yapısal çelik 

 

 

(c) Korozyon başlangıcı görülen yapısal çelik 

Şekil 3.5 : Farklı donatı koşulları. 
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4.  DERİN ÖĞRENME MODELLERİ 

Bu çalışmada, betonarme kolonlarda deprem sonrası meydana gelen boyuna donatı 

burkulmalarının otomatik olarak tespit edilmesi için son yıllarda yüksek başarımla öne 

çıkan iki nesne algılama modeli kullanılmıştır: Bunlardan ilki olan Faster R-CNN 

modeli, iki aşamalı yapısı sayesinde özellikle küçük ve yerel hasar bölgelerinin 

tespitinde yüksek hassasiyet sağlamaktadır. Bu model kapsamında ResNet50, 

ResNet101 ve ResNet152 gibi farklı derinliklerdeki omurga ağları kullanılarak, ağ 

derinliğinin performansa etkileri de incelenmiştir (He ve diğ. 2016). Diğer taraftan 

YOLOv8 modeli, tek aşamalı ve yüksek hız sağlayan mimarisi sayesinde gerçek 

zamanlı uygulamalarda avantaj sunmaktadır Yaseen (2024). Bu çalışmada YOLOv8 

modelinin n, s, m, l ve x versiyonları karşılaştırmalı olarak değerlendirilmiş, farklı 

ölçek ve derinlikteki modellerin performans etkileri analiz edilmiştir. 

4.1 Faster R-CNN Modeli 

Faster R-CNN iki aşamalı bir nesne tespit modelidir. İlk aşamada girdilerden özellik 

haritası çıkaran önceden eğitilmiş bir omurga ağından (ResNet-50/101/152) oluşur. Bu 

özellik haritası bölge öneri ağı (Region Proposal Network, RPN) katmanına bağlanır. 

RPN, görüntüyü farklı bağlantı kutuları ile taradıktan sonra hesapladığı puanlar ile 

bölge önerilerinde bulunur. İkinci aşama olan ilgi bölgesi havuzlama katmanı (Region 

of Interest, ROI) bu bölgeyi alır ve nesne sınıflandırması yapar (Ren ve diğ. (2015). 

Böylece Şekil 4.1’de mimarisi gösterilen Faster R-CNN modeli uçtan uca eğitilebilir 

bir sistemde hem bölge önerisi hem de sınıflandırma görevlerini gerçekleştirir (Karim 

ve diğ. 2020).  
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Şekil 4.1 : Faster R-CNN mimarisi (Karim ve diğ. 2020). 

ResNet omurgaları Faster R-CNN modellerinde sıkça tercih edilir. ResNet-

50/101/152, derinlikleri sırasıyla 50, 101 ve 152 katman olan kalınlaştırılmış 

evrişimsel sinir ağlarıdır (Convolutional Neural Network, CNN). Bu ağlar giriş 

özelliklerini sonraki katmanın çıktısına toplayarak derin ağ eğitimini kolaylaştırır. 

ResNet-50 16 tane darboğaz katmanı içerirken, ResNet-101 33, ResNet-152 ise 50 

tane darboğaz katmanı içerir. Bu modelin kapasitesinin artmasına ve bilgi genişliğinin 

artmasına sebep olur. Darboğaz katmanının artışı hassasiyet artışının yanı sıra, eğitim 

sürelerinin artmasına sebep olur ve bu sebeple hız-performans dengesini optimize 

ederek en doğru omurga seçilmelidir (He ve diğ. 2016). 

4.2 YOLOv8 Modeli 

Faster YOLOv8 mimarisi omurga (backbone), boyun (neck) ve kafa (head) olmak 

üzere üç ana bloktan oluşur. Mimari Şekil 4.2’de gösterilmiştir(Yao ve diğ. 2024). 

Omurga, özellik çıkarma adına tasarlanmış özel bir CNN omurgasıdır ve nesne tespiti 

için önemli olan anlamsal bilgileri temsil eden hiyerarşik bir özellik haritası oluşturur. 

Bu bölüm hem hız hem doğruluk açısından en iyi performans verecek şekilde 

evrişimsel katmanlar ve YOLOv8 modelinde bulunan bilgi akışını optimize ederek 

genel performansı artıran C2f katmanı ile oluşturulmuştur. Boyun katmanı omurga 

katmanından gelen gelen özellik haritalarını birleştirerek nesne ayrımlarını daha iyi 

yapar ve daha küçük nesneleri daha iyi tespit eder. PANet (Path Aggregation Network) 

adı verilen yapı sayesinde farklı ölçeklerdeki özelliklerin birleştirilmesi için 

birleştirme (Concat) ve yeniden boyutlandırma (Unsample) katmanları ile modelin 

nesne tespiti konusundaki genel becerisi artırılmıştır. Kafa katmanı ise farklı 

çözünürlükteki özellik haritasından sınırlayıcı kutular, sınıf ve güven skorları üreten 
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üç tespit başlığı bulunur. YOLOv8 modelinde önceki modellerden farklı olarak 

çapasız (anchor-free) tespit başlıkları kullanılmıştır ve bu başlıklar sayesinde modelin 

hiperparametre ihtiyacı azalmış ve nesnelerin boyut farklarına karşı daha iyi 

performans sergilemiştir (Yaseen, 2024).  

  

Şekil 4.2 : YOLOv8 mimarisi (Yao ve diğ. 2024). 

YOLOv8 ihtiyaca göre 5 ana varyant içerir: YOLOv8n, YOLOv8s, YOLOv8m, 

YOLOv8l ve YOLOv8x. Bu varyantlar aynı temel mimariye sahip olmalarına karşın 

katmanlardaki kanal sayısı ve derinlik farkları sebebiyle farklı doğruluk oranlarına 

sahiptir. Varyantlarda basitçe en küçük model olan YOLOv8n’den YOLOv8x’e kadar 

parametre artışı görülerek doğruluk değeri artar ancak hesaplama hızı düşer ve ek 

olarak hesaplama ve bellek kaynağı ihtiyacı artar (Ultralytics, 2023). 
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5.  MODELLERİN EĞİTİLMESİ  

Bu çalışmada deprem sonrası betonarme kolonlarda oluşan boyuna donatı burkulma 

hasarının tespit edilmesi için Faster R-CNN ve YOLOv8 modelleri kullanılacaktır. 

Faster R-CNN modellerinde ResNet-50, ResNet-101 ve Resnet-152 omurgalı olmak 

üzere 3 farklı model, YOLOv8 modeli için ise YOLOv8’de bulunan tüm varyantlar 

olmak üzere (YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x) 5 model 

hazırlanan veri seti kullanılarak eğitilecek ve modellerin performansları ortaya 

konacaktır. Modellerin eğitimi aşamasında birçok veri artırma teknikleri ve 

hiperparametreler kullanılmıştır. Veri artırma teknikleri modelin eğitimi sırasında veri 

setinin çeşitliliğini artırma konusunda yardımcı olarak veri setini olası zorlayıcı ve 

gelecekte karşılaşabileceği durumlara karşı hazırlamaya yardımcı olur. 

Hiperparametreler ise modelin eğitimi sırasında oluşan kayıp değerleri ve modelin 

doğrulama veri setindeki başarısına göre optimize edilerek modelin en optimum 

noktada çalışmasına katkı sağlamaktadır.  

5.1 Faster R-CNN Modelleri 

Veri seti üzerinde eğitilen üç Faster R-CNN modeli de ImageNet veri seti üzerinde 

önceden eğitilmiş modellerdir ve başlangıçta bu önceden eğitilen modellerin ağırlıkları 

kullanılmıştır.  

5.1.1 Veri artırma teknikleri 

Faster R-CNN modellerinin eğitiminde birçok veri artırma tekniği kullanılmıştır. 

Bunlardan ilki, yatay çevirmedir ve bu veri artırma teknikleri fotoğrafın ve sınırlayıcı 

kutuların yatay eksende %50 olasılıkla çevrilmesidir. Kolon ve donatıların simetrik 

olmama durumuna karşı bir önlem olarak kullanılabilir ve burkulma bölgelerini daha 

kolay öğrenmesini sağlar. 

Rastgele parlaklık tekniği de kullandığımız veri setinde karşılaşabildiğimiz bir durum 

olan farklı ışık koşullarında burkulma bölgelerinin tespit edilmesi konusunda model 
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için uygundur. Bu parlaklık değişikliği fotoğrafın parlaklığının %50 oranında artırılıp 

veya azaltılmasıyla yapılır ve %50 ihtimalle uygulanır. 

Renk oynatma tekniği ile parlaklık, kontrast, doygunluk ve renk tonu değerlerinin 

rastgele olarak değiştirilmesi ve modelin farklı durumlara adaptasyonunu geliştirmesi 

hedeflenmiştir. Parlaklık %20, kontrast %20, doygunluk %20 ve renk tonu 0.1 

(yaklaşık 36°) oranlarında rastgele artırılıp azaltılmıştır. Bu veri artırma tekniği %50 

ihtimalle uygulanıyor olup, veri çeşitliliğinin artmasına katkı sağlamaktadır. Bu durum 

modelin kolon donatılarında oluşan korozyon gibi durumlara karşı adapte olabilmesine 

katkı sağlamaktadır. 

Rastgele döndürme ile %50 ihtimalle fotoğraflar 10° iki yöne de döndürülür. Bu durum 

donatı burkulmalarının farklı açılardan çekilmesinin getirdiği zorluklara karşı modelin 

performansını iyileştirmesi adına kullanılmıştır. 

Rastgele ölçekleme, fotoğrafları 0.2 oranında küçülterek ve büyülterek yeniden 

boyutlandırır ve böylece yakından veya uzaktan çekilen fotoğraflarda burkulmanın 

farklı büyüklüklerde olmasına karşı model daha sağlam hale gelir. %50 ihtimalle 

uygulanır. 

Dolgu ve kırpma işlemleri ise fotoğrafların boyutlarının eğitim süresince 

değiştirilmesiyle oluşabilecek boşlukların veya dolguların sırasıyla doldurulması ve 

kırpılmasıdır. Bu işlem gereken her veri artırma adımında kullanılarak modelin her 

zaman sabit boyutlu fotoğraflar ile öğrenmeye devam etmesini sağlar. önceden 

eğitilmiş modellerdir ve başlangıçta bu önceden eğitilen modellerin ağırlıkları 

kullanılır.  

5.1.2 Hiperparametreler 

Birçok hiperparametre modelin eğitimi için belirlenmiştir. Yığın büyüklüğü (batch 

size) yani eğitim sürecinde her iterasyonda kullanılan fotoğrafların sayısı, kullanılan 

GPU (Graphics Processing Unit) belleği de göz önüne alınarak 8 olarak belirlenmiştir. 

Öğrenme oranı 0.01-0.001 aralığında değiştirilmiştir ve 0.9 momentum değeri ile 

modelin daha hızlı ve kararlı yakınsamasını desteklenmiştir. Her devirde modelin 

ağırlıklarının güncellenmesini sağlayan optimizatör, Stokastik Gradyan İnişi 

(Stochastic Gradient Descent, SGD) olarak belirlenmiştir. Ağırlık zayıflatma (weight 

decay) değeri öğrenme oranına bağlı olarak 0.001 ile 0.0001 arasında değiştirilmiştir. 
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Bu hiperparametre modelin aşırı uyum (overfitting) sağlamasını engellemek adına 

kullanılan bir düzenleme tekniğidir.  

5.2 YOLOv8 Modelleri 

Bu çalışmada kullanılan YOLOv8 varyantları (n, s, m, l, x), MS COCO veri seti 

üzerinde önceden eğitilmiş ağırlıkları barındırmaktadır. İlk etapta bu ön-eğitimli 

ağırlıklar yüklenmiş; daha sonra transfer öğrenme yaklaşımı ile modeller, kolonlarda 

boyuna donatı burkulma hasarını içeren veri seti üzerinde ince ayara tabi tutularak 

güncellenmiştir. Önceden eğitilmiş modellerdir ve başlangıçta bu önceden eğitilen 

modellerin ağırlıkları kullanılır.  

5.2.1 Veri artırma teknikleri 

YOLOv8 modellerinin eğitiminde birçok veri artırma tekniği kullanılmıştır. 

Mozaik birleştirme tekniği her yığında kullanılmıştır ve dört fotoğrafın birleştirilerek 

2x2 halinde eğitilmesi sağlanır. Böylece model farklı ölçekteki burkulma durumlarına 

karşı daha dirençli hale gelerek küçük ve büyük burkulma bölgelerine karşı modelin 

daha iyi performans göstermesini amaçlamaktadır. 

Karıştırma artırımı (MixUp) tekniği her fotoğraf için %50 ihtimalle aktif olur. İki 

fotoğraf ve etiketleri iç içe geçirilerek model eğitilir ve böylece modelin aşırı uyum 

sağlamasını engelleyerek daha sağlam genelleme yapmasına yardımcı olur. 

Kullanılan bir diğer veri artırma tekniği türü de yatay çevirmedir. Bu yöntemde 

fotoğraflar %50 ihtimalle yatay çevrilir ve böylece simetri durumlarına yakalamak 

üzere model daha iyi eğitilmiştir. 

Dikey çevirme tekniği ile birlikte görüntü dikey eksende çevrilir. Bu yöntem %20 

kullanılmıştır çünkü dikey simetri durumları bizim veri setimizde nadir bir durumdur.  

Fotoğrafların renk, parlaklık ve kontrast özelliklerine de yığınlarda rastgele şekilde 

düzenlemeler yapılarak veri setinin çeşitliliği artırılmıştır. Fotoğrafların tonu ±1.5% 

aralığında, doygunluğu ±70% aralığında ve parlaklık ±40% aralığında değiştirerek 

modelin fotoğrafların farklı varyasyonlarına karşı daha iyi performans sağlaması 

amaçlanmıştır. 
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Fotoğraflar geometrik açıdan da bazı veri artırma teknikleri ile çeşitlendirilmiştir. 

Fotoğraflar  ±%10 oranında yatay/dikey kaydırılmakta ve %50–150% arasında 

rastgele ölçeklenmektedir.  

5.2.2 Hiperparametreler 

Birçok hiperparametre modelin eğitimi için belirlenmiştir. Yığın büyüklüğü kullanılan 

GPU belleği de göz önünde bulundurularak 16 ve 32 birim olarak kullanılmıştır ve 

kullanılan modellerde performansa etkileri dikkate alınmıştır. Öğrenme oranı 0.01 

olarak belirlenmiş ve 0.9 momentum değeri ile modelin optimizasyonu 

desteklenmiştir. Her devirde modelin ağırlıklarının güncellenmesini sağlayan 

optimizatör, Stokastik Gradyan İnişi (Stochastic Gradient Descent, SGD) olarak 

belirlenmiştir. Ağırlık zayıflatma (weight decay) değeri 0.0005 olarak kullanılmıştır.  
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6.  MODELLERİN DEĞERLENDİRİLMESİ 

Modellerin değerlendirilmesi, test veri setindeki performanslarının karşılaştırılması 

amacıyla çeşitli metrikler kullanılarak gerçekleştirilmiştir. Bu metrikler, eğitim veri 

setinde eğitilen modellerin test veri setindeki görüntüler üzerinde gerçekleştirdikleri 

tahminlerin sayısal verilere dönüştürülmesi yoluyla elde edilmiştir. 

Modellerin test veri setindeki fotoğraflarda bulunan boyuna donatı burkulma hasarını 

içeren kutuların bazılarını doğru tahmin etmiş, bazılarını yanlış tespit etmiş ve bazı 

donatı burkulmalarını ise bulamamıştır. Modelin tahmin ettiği kutu, boyuna donatı 

burkulması içeren bir kutuysa doğru pozitif (true positive, TP), tahmin edilen kutu bir 

burkulma donatısı içermiyorsa yanlış pozitif (false positive, FP), bulamadığı burkulma 

hasarı kutuları ise yanlış negatif (false negative, FN) olarak değerlendirilmiştir. Bu 

değerlendirme Çizelge 6.1’de gösterilmiştir ve bu çizelge karışıklık matrisini de temsil 

etmektedir.  

Çizelge 6.1 : Karışıklık matriksi. 

 Gerçek burkulma durumu Burkulma olmama durumu 

Burkulma tahmini 

yapılması 
TP FP 

Burkulma tahmini 

yapılmaması 
FN - 

Model, burkulma bölgelerini tahmin ederken her bir bölge için bir güven skoru belirler 

ve böylece tahmin edilen kutunun doğruluk olasılığını nicelendirir. Bu güven skoru 

0.5 ile sınırlandırılıp modelin güven skoru değerine 0.5 ve üzeri değerleri verdiği 

kutular dikkate alınmıştır. Ayrıca modelin tahmin ettiği burkulma kutularının gerçek 

burkulma kutuları ile kesişim oranı (Intersection over Union, IoU) da 0.5 ile 

sınırlandırılmıştır. Modelin tahmininin TP sayılabilmesi yani burkulma bölgesinin 

doğru tahmin edilebilmesi için güven skoru değerinin 0.5’ten büyük olması ve IoU 

değerinin 0.5’ten büyük olması gerekmektedir.  
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Modelin doğru tahminlerinin toplam pozitif tahminlere oranı kesinlik (precision) 

değerini ifade eder. Tahmin edilen kutuların gerçekten doğru olma oranını ifade eden 

kesinlik değeri denklem 6.1’de verildiği gibi hesaplanmaktadır. 

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃)  (6.1) 

Modelin doğru pozitif tahminlerinin toplam gerçek pozitif tahminlere oranı ise 

duyarlılık (recall) değerini ifade eder. Böylece modelin tüm burkulma kutularından 

kaçını bulabildiği tespit edilmiş olur. Duyarlılık değerinin hesaplanması denklem 

6.2’de verilmiştir. 

𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑁)  (6.2) 

Kesinlik ve duyarlılık metrikleri kendi başlarına modelin farklı açılardan 

performansını incelese de bu iki metriğin beraber değerlendirilmesi F1 skoru ile 

mümkündür. Bu iki metriğin harmonik ortalamasını veren F1 skoru denklem 6.3’de 

verildiği gibi hesaplanmaktadır. verilmiştir. 

𝐹1 𝑠𝑘𝑜𝑟𝑢 = 2 𝑥 
𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 𝑥 𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 + 𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘
  (6.3) 

Kesinlik ve duyarlılık değerleri test veri setinde yapılan tahmin değerlerine göre 

hesaplanır. Bu değerler hesaplandıktan sonra modelin genel performansını incelemek 

adına ortalama kesinlik (average precision, AP) değeri hesaplanır. Bu değer test veri 

setinde yapılan tahminlerin güven skorlarına göre sıralanmasının ardından en yüksek 

skorlu tahminden en düşük skorlu tahmine kadar her güven skoru eşiğinde yeni 

kesinlik ve duyarlılık değerleri hesaplanır. Bu her eşikte hesaplanan kesinlik-duyarlılık 

değerleri düşey eksen kesinlik yatay eksen ise duyarlılık olacak şekilde bir eğri olarak 

çizilir ve bu eğrinin altında kalan alan ortalama kesinlik değerini verir. En iyi 

performans gösteren modelin seçiminde genel performansı iyi bir şekilde ifade etmesi 

açısından ortalama keskinlik ilk dikkat edilen metrik olmuştur. Ortalama kesinlik 

değeri denklem 6.4’te verildiği gibi hesaplanmıştır. 
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𝑂𝑟𝑡𝑎𝑙𝑎𝑚𝑎 𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 = ∑(𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘𝑖 − 𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘𝑖−1)𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘𝑖

𝑁

𝑖=1

      (6.4) 

6.1 Faster R-CNN Modellerinin Değerlendirilmesi 

ResNet-50/101/152 omurgalarından oluşan Faster R-CNN modelleri eğitim veri seti 

üzerinde eğitildikten sonra test veri setinde kesinlik, duyarlılık, F1 skoru ve ortalama 

kesinlik metrikleri açısından incelenmiştir. Bu 3 modelin test veri setindeki 

performansının incelenmesinin ardından en yüksek ortalama kesinlik değerine göre 

modeller belirlenmiş ve bu modeller kullanılmıştır. Bu modellerde kullanılan 

hiperparametreler Çizelge 6.2’de verilmiştir. 

Çizelge 6.2 : ResNet modellerinin hiperparametreleri. 

Model Öğrenme oranı Momentum Ağırlık zayıflatma 

ResNet-50 0.01 0.9  0.001 

ResNet-101 0.005 0.9  0.0005 

ResNet-152   0.01       0.9        0.001 

Bu 3 modelin test veri seti üzerinde göstermiş olduğu performans; bulunan, yanlış 

bulunan veya bulunamayan kutuları ifade eden TP, FP ve FN değerleri ile 

değerlendirilebilir. Bu değer Çizelge 6.3’te verilmiştir.  

Çizelge 6.3 : ResNet modellerinin kutu tahmin performansı. 

Model TP FP FN 

ResNet-50 137 103  23 

ResNet-101 137 94  23 

ResNet-152 135 106        25 

Modellerin yaptığı kutu tahminlerinin ardından, bu değerlerin kullanılmasıyla elde 

edilen performans metrikleri Çizelge 6.4’te verilmiştir. Ortalama keskinlik değerinin 

hesaplandığı Kesinlik-Duyarlılık (Precision-Recall) eğrileri Şekil 6.1’de 

gösterilmiştir. Eğriler grafiğin üstüne ve sağına ne kadar yakınsıyorsa yani eğri altında 

kalan alanı ne kadar büyütüyorsa model o kadar fazla performans verir denebilir. 
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Çizelge 6.4 : ResNet modellerinin performans metrikleri. 

Model Kesinlik Duyarlılık F1 Skoru Ortalama Kesinlik 

ResNet-50 0.570 0.856 0.684  0.762 

ResNet-101 0.590 0.856 0.700  0.756 

ResNet-152 0.560 0.844      0.673 0.779 

 

  

                        (a) ResNet-50                         (b) ResNet-101 

 

 

(c) ResNet-152 

Şekil 6.1 : ResNet modelleri kesinlik-duyarlılık eğrileri. 

Yapılan sayısal hesaplamaların ardından ve Şekil 6.1’de de açıkça görüldüğü üzere 

ResNet-152 modeli en iyi performansı sergilemiştir. ResNet-152 modelinin test veri 

setindeki fotoğraflarda bulunan donatı burkulmalarına yaptığı bazı tahminler Şekil 

6.2’de verilmiştir. Fotoğraflarda mavi kutular önceden etiketlenen gerçek burkulma 

bölgelerinin kutularıdır. Turuncu kesikli çizgiler ise eğitilen modelin yaptığı tahmin 

kutusudur. Tahmin kutusunun üstündeki değer güven skorunu belirtirken tahmin 

kutusunun altındaki değer ise kesişim oranı (IoU) değerini göstermektedir. 
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Şekil 6.2 : ResNet-152 modeli donatı burkulması tahminleri. 

6.2 YOLOv8 Modellerinin Değerlendirilmesi 

YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l ve YOLOv8x modelleri eğitim veri seti 

üzerinde eğitildikten sonra test veri setinde kesinlik, duyarlılık, F1 skoru ve ortalama 

kesinlik metrikleri açısından incelenmiştir. Bu 5 modelin test veri setindeki 
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performansının incelenmesinin ardından en yüksek ortalama kesinlik değerine göre 

modeller belirlenmiş ve bu modeller kullanılmıştır. Modellerde kullanılan 

parametreler Çizelge 6.5’te verilmiştir. Bu parametreler, modellerin performansının en 

yüksek olduğu tespit edilen eğitim modelindeki parametre değerleridir. 

Çizelge 6.5 : YOLOv8 modellerinin parametreleri. 

Model Öğrenme 

oranı 

Momentum Ağırlık 

zayıflatma 

Yığın boyutu 

YOLOv8n 0.01 0.9  0.0005 16 

YOLOv8s 0.01 0.9  0.0005 32 

YOLOv8m   0.01      0.9       0.0005      16 

YOLOv8l   0.01      0.9       0.0005      16 

YOLOv8x   0.01      0.9       0.0005       32 

Kullanılan 5 YOLO modeli test veri setindeki fotoğraflar üzerinde tahminlerde 

bulunmuş ve bu tahminler sonucu elde edilen TP, FP ve FN değerleri Çizelge 6.6’da 

verilmiştir.  

Çizelge 6.6 : YOLO modellerinin kutu tahmin performansı. 

Model TP FP FN 

YOLOv8n 116 27 44  

YOLOv8s 118 17 42  

YOLOv8m 131 27 29 

YOLOv8l 125 26 35 

YOLOv8x 124 24 36 

Modellerin yaptığı kutu tahminlerinin ardından, bu değerlerin kullanımıyla 

performans metrikleri hesaplanmıştır ve Çizelge 6.7’de verilmiştir. 

Çizelge 6.7 : YOLO modellerinin performans metrikleri. 

Model Kesinlik Duyarlılık F1 Skoru Ortalama Kesinlik 

YOLOv8n 0.843 0.706 0.763 0.791 

YOLOv8s 0.850 0.781 0.813 0.840 

YOLOv8m 0.854 0.806 0.824 0.852 

YOLOv8l 0.827 0.806 0.816 0.848 

YOLOv8x 0.848 0.800 0.823 0.834 

Çizelge 6.7’de hesaplanan veriler kullanılarak çizilen Kesinlik-Recall eğrileri ise Şekil 

6.3’te verilmiştir. 
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(a) YOLOv8n     (b) YOLOv8s 

 

(c) YOLOv8m    (d) YOLOv8l 

 

(e) YOLOv8x 

Şekil 6.3 : YOLO modellerinin Kesinlik-Duyarlılık eğrileri. 
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Çizelge 6.7’de verilen metrik değerlerine ve Şekil 6.3’te verilmiş olan eğrilerden de 

görüleceği gibi birçok modelin performansı birbirine yakındır ancak ortalama kesinlik 

değeri en yüksek olan ve kesinlik-duyarlılık eğrisinde de daha düzgün bir dağılım 

gösteren YOLOv8m modeli kullanılmaya en uygun model seçilmiştir. YOLOv8m 

modelinin test veri seti üzerinde yaptığı bazı tahminler Şekil 6.4’te verilmiştir.  

  
 

  
 

  

Şekil 6.4 : YOLOv8m modeli donatı burkulması tahminleri. 
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6.3 Modellerin Performansının Karşılaştırılması 

Eğitim ve test süreçlerinde üç Faster R-CNN(ResNet-50, ResNet-101 ve ResNet-152) 

ve beş YOLOv8 (n, s, m l ve x) modeli kullanılmıştır. Test verisi üzerindeki 

performans göz önüne alındığında Resnet-152 omurgalı Faster R-CNN ve YOLOv8m 

modeli donatı burkulmasının tespitinde en yüksek performansı göstermiştir. Bu iki 

modelin değerlendirme metrikleri Çizelge 6.8’de verilmiştir.  

Çizelge 6.8 : Faster R-CNN(ResNet-152) ve YOLOv8m değerlendirme metrikleri 

Model Kesinlik Duyarlılık F1 skoru Ortalama 

kesinlik 

Faster R-CNN (ResNet-152) 0.560 0.844 0.673 0.779 

YOLOv8m 0.854 0.806 0.824 0.852 

Çizelge 6.8’de görüldüğü üzere, Faster R-CNN (ResNet-152) modeli, yüksek 

duyarlılık değeri (0.844) elde ederken, YOLOv8m modeli daha yüksek kesinlik değeri 

(0.854) göstermektedir. Bu durum, Faster R-CNN modelinin daha fazla pozitif örneği 

doğru şekilde yakalama eğiliminde olduğunu göstermektedir ve YOLOv8m modeline 

göre daha fazla burkulma tahmini yapmasına karşın oransal olarak bu tahminlerin 

doğruluk oranı daha düşüktür. YOLOv8m modelinin ise tespit ettiği pozitif örneklerin 

doğruluk oranının daha yüksek olduğu görülmektedir ve Faster R-CNN modeline göre 

toplam burkulan donatı sayısını daha az sayıda bulmuştur. Kesinlik ve duyarlılık 

metriklerinin arasındaki dengeyi ifade eden F1 skoru yönünden ise YOLOv8m modeli 

daha iyi performans göstermiştir. Ortalama kesinlik değerleri (AP), YOLOv8m’nin 

genel olarak tahmin kutularının gerçek burkulma kutularıyla daha iyi örtüştüğünü ve 

daha hassas sonuçlar ürettiğini ortaya koymaktadır.  

Sonuç olarak, YOLOv8m modeli donatı burkulmasının tespitinde yüksek doğruluk 

oranı ve dengeli kesinlik-duyarlılık performansı ile avantajlı görünmektedir. Bununla 

birlikte, Faster R-CNN (ResNet-152) modeli daha yüksek duyarlılık oranıyla eksik 

tespitleri en aza indirerek, daha kapsamlı taramalar yapabilmektedir. Uygulama 

alanına bağlı olarak, olabilecek bir yanlış alarmın kritik olduğu durumlarda 

YOLOv8m modeli; tüm burkulmaların olabildiğince tespit edilmesinin önemli olduğu 

durumlarda ise Faster R-CNN (ResNet-152) modeli tercih edilebilir. 

Modellerin bazı fotoğraf koşullarına karşı performansları da incelenmiştir. Test veri 

setinde modellerin tahmin yapması için kullanılan Şekil 6.5’te gösterilen fotoğraf, 
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görüntülenen açı sebebiyle birçok gerçek donatı burkulmasını içeren birçok kutunun 

bölgelerinin kesişmesini içerir. Şekil 6.5(a)’da Faster R-CNN (ResNet-152) modelinin 

yapmış olduğu tahminler, Şekil 6.5(b)’de ise YOLOv8m modelinin yapmış olduğu 

burkulma bölgesi tahminleri verilmiştir. Görüldüğü üzere Faster R-CNN modeli 

birçok tahmin yapmış fakat bu tahminlerin birçoğu yanlıştır. YOLOv8m modeli ise 

yaptığı tahminlerin hepsini doğru yapmasına rağmen bazı donatı burkulması 

bölgelerini yakalayamamıştır. Bu durum fotoğrafların çekilme açısının modellerin iyi 

performans göstermesini zorlaştırdığı görülmektedir. 

  

(a) Faster R-CNN (ResNet-152)   (b) YOLOv8m 

Şekil 6.5 : Modellerin görüntü açısına karşın performansı. 

Bir başka açıdan modelin bazı fotoğraf koşullarına sağladığı uyum Şekil 6.6’dan yola 

çıkarak açıklanmıştır. Şekil 6.6(a)’da Faster R-CNN modelinin yaptığı tahmin kutuları 

yer almaktadır ve görüldüğü gibi sol altta bulunan burkulmuş bir donatı şeklinde fakat 

donatı olmayan bir nesnenin tespit edildiği görülmektedir. Şekil 6.6(b)’de YOLOv8m 

modelinin tahminleri verilmiştir ve görüldüğü üzere aynı fotoğrafın yine aynı şekilde 

sol üstünde bulunan nesnenin tespit edilmediği görülmektedir. Buradan yola çıkarak 

YOLOv8m modelinin burkulma donatılarının tespitinde modeli zorlayabilecek bu gibi 

durumlara karşı daha iyi performans gösterdiği görülmektedir. 
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(a) Faster R-CNN (ResNet-152)   (b) YOLOv8m 

Şekil 6.6 : Modellerin donatı benzeri şekillere karşı performansı. 

Ayrıca iki modelin de donatı burkulmalarının tespitinde fotoğraf boyutlarının ve 

fotoğrafta bulunan burkulma donatısı bölgesini çevreleyen sınırlayıcı kutuların 

büyüklüklerinin bir önemi olduğu görülmüştür. Fotoğraf boyutlarının çok büyük 

olduğu fotoğraflarda yani görece donatı burkulmasına uzak bir konumdan çekilen 

fotoğraflarda donatı burkulmasını kapsayan sınırlayıcı kutunun resme göre çok küçük 

olması modelin performansını düşürmektedir. Bu sebeple büyük çözünürlüğe sahip 

fotoğrafların gereksiz kısımlarının kırpılarak modelin eğitimi için kullanıldığında iki 

modelin de performansının arttığı gözlemlenmiştir. Liu ve diğ. (2022), yaptıkları 

çalışmada hasarlı bölgenin oranının tüm resme olan oranının en az %30 olması 

gerektiği ve performansın bu şekilde artığını göstermiştir.   
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7.  SONUÇLAR 

Bu tez çalışmasında, 6 Şubat 2023 Kahramanmaraş depremleri sonrasında deprem 

bölgesinde hasar alan yapılardaki betonarme kolonlarda meydana gelen boyuna donatı 

burkulma hasarlarının, makine öğrenmesi tabanlı nesne algılama modelleri 

kullanılarak otomatik olarak tespit edilmesi amaçlanmıştır. Bu kapsamda Faster R-

CNN ve YOLOv8 modelleri detaylı bir şekilde eğitilmiş ve performansları test 

edilmiştir. 

Test verisinde yapılan performans ölçümlerine göre, ResNet-152 omurgalı Faster R-

CNN modeli yüksek duyarlılık oranı (0.844) ile kolonlardaki burkulma bölgelerini 

tespit etme konusunda güçlü bir performans sergilemiştir. Buna karşın, YOLOv8m 

modeli daha yüksek kesinlik (0.85) ve ortalama kesinlik (0.852) değerleri ile dikkat 

çekmiş ve tespit edilen burkulma bölgelerinin doğruluk oranını artırmıştır. YOLOv8m 

modeli ayrıca kesinlik ve duyarlılık dengesini ifade eden F1 skoru (0.82) açısından da 

en iyi sonuçları elde etmiştir. 

Her iki modelin de bazı avantajları ve sınırlamaları olduğu gözlemlenmiştir. Faster R-

CNN modeli, daha fazla sayıda burkulma bölgesini tespit ederek kapsamlı bir tarama 

sağlamış; ancak yanlış pozitif tahmin sayısı görece yüksek olmuştur. Öte yandan, 

YOLOv8m modeli daha az yanlış pozitif tahmin yaparak güvenilirliğini kanıtlamış; 

ancak bazı gerçek burkulma bölgelerini kaçırabilmiştir. Bu durum, farklı uygulama 

ihtiyaçlarına göre modellerin seçiminde dikkate alınması gereken önemli bir parametre 

olarak öne çıkmaktadır. Örneğin, deprem sonrası hızlı tarama ve riskli bölgelerin 

öncelikli olarak belirlenmesi gereken durumlarda, daha yüksek duyarlılık sunan Faster 

R-CNN tercih edilebilirken; yanlış alarmın minimize edilmesinin önemli olduğu 

alanlarda YOLOv8m daha uygun bir seçenek olarak değerlendirilebilir. 

Model performanslarının incelenmesinde ayrıca fotoğraf kalitesi, çekim açısı, ışık 

koşulları ve hasar bölgesinin fotoğraftaki büyüklüğü gibi etkenlerin önemli rol 

oynadığı tespit edilmiştir. Özellikle donatı burkulma bölgesinin görüntüde yeterli 

oranda temsil edilmesi model performansını doğrudan etkilemektedir. Bu gözlem, 
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saha çalışmalarında çekilen görüntülerin kalitesi ve çekim noktalarının önemini bir kez 

daha ortaya koymaktadır. 

Çalışma sonucunda, hem Faster R-CNN hem de YOLOv8m modellerinin kolon 

burkulma hasarlarının otomatik tespiti için güçlü araçlar olduğu ve geleneksel 

yöntemlere kıyasla hızlı ve objektif sonuçlar sağladığı gösterilmiştir.  

Yapay zeka tabanlı yaklaşımların deprem sonrası hızlı hasar tespitlerinde aktif olarak 

kullanılabileceğini çalışma ortaya koymaktadır. Böylece, afet sonrası müdahale 

süreçlerinin hızlandırılması ve riskli yapıların öncelikli olarak değerlendirilmesi 

mümkün hale gelebilecektir. 

Veri setinin çeşitliliği ve zorluk seviyesinin model performansını etkilediği 

anlaşılmıştır. Özellikle farklı ışık koşulları ve çekim açılarında veri çeşitliliğinin 

artırılması, modellerin genelleme yeteneğini geliştirmek için önemlidir. 

Ayrıca, veri setinin artırılması ve özellikle üç boyutlu veri kümelerinin kullanılması, 

modellerin kolon burkulma tespitinde daha kapsamlı bir değerlendirme yapmasına 

katkı sağlayacaktır. Ek olarak benzer veri setlerine farklı derin öğrenme modellerinin 

uygulanması dahilinde daha yüksek performans elde edilebilir ve mevcut modellerin 

zayıf yönleri giderilebilir. 

Sonuç olarak, bu tez çalışması, makine öğrenmesi tabanlı hasar tespiti uygulamalarının 

yapı mühendisliği alanında önemli bir potansiyele sahip olduğunu göstermektedir. 

Geliştirilen ve test edilen modeller, deprem sonrası hasar belirleme süreçlerinde hızlı 

ve güvenilir bir alternatif sunmakta ve bu alanda yapılacak çalışmalara katkı 

sağlamaktadır. 
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