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DEPREM SONRASI BETONARME KOLONLARDA BOYUNA DONATI
BURKULMASININ MAKINE OGRENMESI iLE TESPIiTi

OZET

Bu tez c¢alismasinda, 6 Subat 2023 tarihinde meydana gelen Kahramanmaras
depremleri sonrasinda, betonarme yapilarin kolonlarinda olusan boyuna donati
burkulma hasarlarinin fotograf iizerinden tespiti amactyla derin 6grenme tabanli nesne
algilama modellerinin performanslar1 karsilagtirmali olarak incelenmistir. Calismada,
Faster R-CNN ve YOLOv8 olmak iizere iki farkli derin 6grenme tabanli nesne
algilama modeli degerlendirilmistir. Faster R-CNN modeli, iki asamali yapisi
sayesinde kiiciik ve lokalize hasar bolgelerinin hassas tespitinde giiclii bir performans
sunarken; YOLOvV8 modeli, hizli ve tek asamali yapisiyla gercek zamanh
uygulamalara uygunlugu ile 6ne ¢ikmaktadir.

Tezde kullanilan veri seti, deprem sonrasi yapilan saha incelemeleriyle toplanan 539
yiiksek ¢Oziiniirliiklii goriintiiden olugsmaktadir. Bu goriintiilerde toplamda 1494 adet
donat1 burkulma bdlgesi sinirlayict kutularla etiketlenmistir. Veri seti egitim (%80),
dogrulama (%10) ve test (%10) alt kiimelerine ayrilmis; goriintiilerdeki farkli 1g1k
kosullar1, ¢ekim acilar1 ve donati gesitliligi gibi zorluklar modellerin genelleme
kapasitesini sinamistir. Her iki model de bu veri seti iizerinde, ¢esitli veri artirma
teknikleri ve optimize edilmis hiperparametrelerle egitilmistir.

Test verisi lizerinde yapilan degerlendirmeler sonucunda, YOLOv8m modeli en
yiiksek kesinlik (0.850) ve ortalama kesinlik (0.852) degerlerine ulagmistir. Bu model,
131 dogru pozitif (TP), 27 yanhs pozitif (FP) ve 29 yanlis negatif (FN) tahmin
tiretmistir. ResNet-152 omurgasiyla Faster R-CNN modeli ise 135 TP, 106 FP ve 25
FN degerleriyle en yiiksek duyarlilik (0.844) degerine sahip olmustur. Bu sonuglar,
YOLOv8m modelinin daha yiiksek dogruluk oraniyla yanhs tespit etme riskini
azalttigini, buna karsin Faster R-CNN modelinin daha fazla hasar bolgesi tespit ederek
kapsamli bir tarama imkan1 sundugunu ortaya koymustur.

Bu calisma ayrica, goriintiilerin ¢ekim agis1 ve hasar bolgesinin goriintiideki
biiyiikliigii gibi faktorlerin model performansina dogrudan etki ettigini gostermistir.
Hasar bolgelerinin goriintiide daha genis yer kapladigr durumlarda modellerin daha
yiiksek dogrulukla tahminler yaptig1 gézlemlenmistir. Bu bulgu, saha ¢alismalarinda
yuksek kaliteli ve uygun agida c¢ekilmis goriintiilerin saglanmasinin 6nemini
vurgulamaktadir.

Sonuglar, iki modelin kendi igindeki karsilastirilmasiyla hangi modelin hangi
uygulamada daha avantajli olacagini net bir sekilde ortaya koymaktadir. YOLOv8m
modeli, yanlis tespit etme riskinin azaltilmasinin 6n planda oldugu durumlarda
giivenilir bir ¢6zlim sunarken; Faster R-CNN modeli, tiim hasar bdlgelerinin eksiksiz
tespit edilmesinin 6nemli oldugu senaryolarda daha uygun bir alternatif olarak
degerlendirilmektedir. Bdylece model se¢imi, uygulama amacina ve projenin
ithtiyaglarina gore esnek bir sekilde yapilabilir.

XiX



Sonug olarak, bu tez ¢aligmasi her iki derin 6grenme modelinin de geleneksel hasar
tespiti yontemlerine gore ¢cok daha hizli, objektif ve kapsamli bir ¢6ziim sundugunu
ortaya koymaktadir. Yapay zeka temelli bu yaklagimlar, yap1 miithendisligi ve deprem
sonrasi hasar taramalar1 gibi alanlarda 6nemli bir potansiyele sahip oldugunu
kanitlamaktadir. Gelecekte veri setinin g¢esitlendirilmesi, ti¢ boyutlu veri kiimelerinin
kullanilmas1 ve daha gelismis derin 6grenme mimarileriyle modellerin performansinin
artirtlmas1 hedeflenebilir.
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DETECTION OF LONGITUDINAL REINFORCEMENT BUCKLING IN
REINFORCED CONCRETE COLUMNS POST-EARTHQUAKE BY
MACHINE LEARNING

SUMMARY

This thesis explores the application of advanced deep learning-based object detection
models for the automatic identification of reinforcement buckling damage in
reinforced concrete columns following the devastating February 6, 2023, Turkey-Syria
earthquakes. Reinforced concrete structures are the most widely used building
systems, with columns serving as critical vertical load-bearing members that transfer
loads from the superstructure to the foundation and the ground. The performance of
these columns directly influences the overall stability and safety of structures,
particularly during seismic events. Among the various types of structural damage,
reinforcement buckling in columns is one of the most critical as it can significantly
reduce the load-carrying capacity and overall stability of the structure.

The study employs two prominent deep learning-based object detection models—
Faster R-CNN and YOLOv8—to comprehensively assess their effectiveness in
detecting these critical structural damages. Faster R-CNN utilizes a two-stage
architecture that provides high detection sensitivity for small and localized damage
regions, which is essential for accurately identifying reinforcement buckling that may
be difficult to observe visually. In contrast, YOLOvVS features a simplified single-stage
architecture that enables real-time detection capabilities, making it advantageous for
rapid post-disaster evaluations where rapid decision-making is paramount.

The dataset used in this thesis consists of 539 images collected from field
investigations conducted after the earthquake, containing a total of 1494 reinforcement
buckling instances annotated with bounding boxes. These images were carefully
curated to include various challenges such as different lighting conditions (day and
night), variable camera angles, and differences in reinforcement types, including
ribbed and plain bars as well as corroded reinforcement. These variations introduced
significant complexity, thereby testing the robustness of the models to real-world
conditions and ensuring that the findings are widely applicable.

To optimize model performance, extensive data augmentation techniques were applied
during training. These included horizontal flipping, random brightness adjustments,
geometric transformations such as rotation and scaling, and color jittering to simulate
the diverse environmental conditions present in the dataset. Hyperparameter tuning
was also conducted to ensure stable convergence during training and to achieve the
best possible detection performance. For the Faster R-CNN model, three backbone
networks—ResNet-50, ResNet-101, and ResNet-152—were evaluated to examine
how the depth of the network influences detection capability. Similarly, YOLOv8 was
evaluated using all five of its model variants: YOLOv8n, YOLOv8s, YOLOv8m,
YOLOV8I, and YOLOV8X, each with varying levels of complexity and computational
demands.
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Model performance was evaluated on a test dataset, using several key metrics:
precision, recall, F1 score, and average precision (AP). The YOLOv8m variant
emerged as the best-performing model in terms of precision (0.850) and average
precision (0.852), correctly identifying 131 true positive (TP) instances of
reinforcement buckling while producing 27 false positive (FP) and 29 false negative
(FN) predictions. Conversely, the Faster R-CNN model with the ResNet-152 backbone
achieved the highest recall (0.844), detecting 135 true positives but with 106 false
positives and 25 false negatives. These results highlight the distinct advantages of each
model: YOLOv8m’s precision-focused approach minimizes false alarms and enhances
reliability, making it suitable for prioritizing urgent structural assessments and
reducing the risk of unnecessary interventions. In contrast, Faster R-CNN’s high recall
ensures more comprehensive detection, which is particularly valuable in scenarios
where a complete damage inventory is critical for decision-making.

Beyond numerical performance, this study also examined how various image
characteristics influenced the models’ predictive capabilities. Factors such as the size
of the damage region within the image and the camera angle during capture had a
notable impact on detection accuracy. Images in which the buckling damage occupied
a larger portion of the frame consistently resulted in higher detection accuracy for both
models. Conversely, images captured from side angles or with significant background
clutter reduced detection performance. These findings underscore the importance of
strategic image acquisition during field surveys and suggest that ensuring clear, well-
framed images can significantly enhance the accuracy of automated detection systems.

The comprehensive evaluation extended to an internal comparison within each model
family, guiding the selection of the most suitable variant for specific post-earthquake
applications. The YOLOv8m model, with its balanced precision and recall (F1 score
of 0.82), offers an optimal balance between accuracy and speed for scenarios where
rapid assessments are essential. In contrast, the Faster R-CNN model with the ResNet-
152 backbone, despite producing more false positives, ensures a broader and more
thorough detection of potential damage regions, making it valuable in detailed
inspections where missing any damage could have serious safety implications.

The study’s findings highlight the importance of aligning model selection with specific
assessment goals. In applications where minimizing false alarms is critical—such as
emergency resource allocation and prioritization of repairs—the YOLOv8m model’s
high precision makes it the preferred choice. On the other hand, for comprehensive
inspections requiring exhaustive documentation of all potential damage areas, the
Faster R-CNN model’s high recall offers a more suitable solution. By replacing labor-
intensive and subjective visual inspections with automated evaluations, these models
can streamline post-disaster damage assessments, providing consistent, objective
insights that support data-driven decision-making and reduce the time required for
comprehensive surveys.

Future researchs include expanding the dataset to encompass a wider variety of real-
world damage scenarios, incorporating three-dimensional data to provide richer
structural insights, and developing hybrid approaches that combine YOLOvVS8’s
precision with Faster R-CNN’s thorough coverage. Furthermore, the optimization of
data augmentation strategies and the integration of advanced feature-fusion techniques
has the potential to further enhance detection performance under challenging field
conditions.
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In conclusion, this thesis provides a comprehensive evaluation of deep learning-based
object detection models for the rapid and reliable identification of reinforcement
buckling damage in RC columns after earthquakes. The results demonstrate that these
Al-driven models can significantly enhance the speed, consistency, and objectivity of
post-disaster damage assessments. Structural engineers are able to adapt their
methodologies to address the distinct requirements of various damage assessment
scenarios by leveraging the distinct strengths of YOLOv8m and Faster R-CNN. This
research contributes to the advancement of the field of automated structural health
monitoring and supports the development of safer and more resilient urban
environments in the context of seismic risks.
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1. GIRIS

Betonarme yapilar giiniimiizde en ¢ok tercih edilen yap1 sistemleridir. Yapinin diisey
tasiyici sistemi olan kolonlar yiikleri iistyapidan temel ve zemine aktarirlar. Diisey
yiiklerin yaninda yatay yiikler i¢in de dnemli bir rol alan kolonlar deprem durumunda
yapinin dayanikliligini belirler. Kolonlarin performansi yapinin stabilitesi agisindan

hayati bir 6neme sahiptir.

Burkulma hasar1 kolonlarda olusan yapisal hasar tiirleri arasinda en kritiklerden biridir
(Tripathi ve dig. 2019). Betonarme kolonlarda burkulma, kolonlarin maruz kaldig
eksenel yiikler ve deprem sirasinda olusan yatay yiikler sebebiyle tasima giiciinii
asmas1 ve bdylece stabilitesini yitirmesiyle ani bir deformasyona ugramasidir. Bu
durum kolonun tasima kapasitesini biiyiik 6l¢iide azaltarak yapisal sistem biitiinliigiinii
bozmaktadir. Deprem sonrasinda kolonlarda olusabilecek burkulma hasar1 agir yapisal
smifina girer (Murray ve Sasani, 2017). Bu sebeple deprem bdlgelerinde kolon
burkulmalarinin erken tespiti ve gerekli dnlemlerin alinmasi, yap1 hasarlarinin ve can

kayiplarinin 6niine gegmek i¢in 6nem arz eder.

Giinlimiizde yapilarin hasar tespiti ve degerlendirilmesi, ¢ogunlukla geleneksel
yontemler ve saha incelemeleriyle yapilmaktadir ancak bu yontemler zaman alici ve
subjektiftir. Bu nedenle hasar tespitinin hizli, giivenilir ve objektif olabilmesi igin
yenilik¢i yOntemlere ihtiya¢ duyulmaktadir. Bu baglamda makine Ogrenmesi
yontemleri son yillarda ingaat miithendisliginde bazi alanlarda kullanilmaya baglanmus,

hasar siniflandirilmasi ve tespiti konusunda yiiksek performans gostermistir.

Bu tez ¢alismasinda, 6 Subat 2023 Kahramanmaras depremleri sonras1 bolgedeki
yapilarin kolonlarinda olusan burkulma hasarinin fotograflarinin makine 6grenmesi
yontemleriyle tespit edilmesi {izerine bir aragtirma ve uygulama gergeklestirilecektir.
Makine 6grenmesi algoritmalariyla kolonlardaki burkulma hasar1 otomatik olarak
tespit edilecek ve bu yoOntemlerin saha calismalarina gore etkinligi
degerlendirilecektir. Ayrica farkli makine 6grenmesi yontemlerinin burkulma hasar

tespiti konusunda etkinlikleri karsilagtirilacaktir. Calisma sonucunda makine



O0grenmesi yontemlerinin deprem hasar tespiti sirasinda c¢ekilen fotograflardaki
betonarme kolonlardaki boyuna donati burkulma hasar tespiti konusundaki potansiyeli

ortaya konacaktir.



2. LITERATUR CALISMASI VE ARASTIRMA

Bu c¢alisma kapsaminda, betonarme kolonlarin burkulma davranist ve makine

O0grenmesinin yap1 miithendisligi alanindaki uygulamalar1 arastirilmistir.

2.1 Betonarme Kolon Burkulmasi

Betonarme yapilarda diisey yiiklerin temel ve zemine aktarilmasinda biiyiik rol
oynayan kolonlar, yap1 biitiinliigli i¢cin 6nemli bir gdreve sahiptir. Deprem veya
herhangi bir ylikleme durumunda tasarim yiiklerinin asilmasi, kolonlarin yiik tagima
kapasitesini asmasi halinde iist yapilarin ¢6kmesine varan hasarlar meydana
getirebilir. Bu sebeple deprem sonrasi betonarme kolonlarda olusan burkulma
hasarinin tespit edilmesi kritik bir 6neme sahiptir. Betonarme kolonlarda burkulma

davranig1 genel burkulma ve lokal burkulma olarak iki sinifa ayrilir.

2.1.1 Global (Eksenel) burkulma

Genel burkulma, kolonun ekseni boyunca egilerek kisalmasiyla ortaya ¢ikan klasik
Euler burkulmasidir. Bu burkulmada kolon bir yay seklini alir ve tagima giicii kritik
yiik ile sinirlanir. Narin kolonlar genel burkulmaya daha egilimlidir ve yapilardaki ara

kat kolonlarinda bulunan kesintisiz yiiksek kolonlarda goriilebilmesi daha olasidir.

Narin kolonlar, uygulanan gorece kii¢iik yiikler altinda stabilitesini kaybederek global
burkulma davranmisimi gosterebilir. Yiiksek dayanimli beton kullanilmasiyla kolon
kesitlerinin kiigiilmesi kolonlarmn narinligini artirarak global burkulma ihtimalini
artirabilir. Paultre ve dig. (2001), yaptiklar1 deneysel ¢aligmada beton dayaniminin
artirtlmasiyla siinek davranisin kotiilestigini ve boyuna donatilarin burkulmaya daha
yatkin oldugu goriilmiistiir. Ek olarak bu ¢alismada, yiiksek dayanimli beton kullanilan
ve narin kolonlarda enine sargi kullanimimin burkulma kapasitesini artirdig1 ortaya
konmustur. Akademik caligmalar genel burkulma davraniginin, narin kolonlarda
ikincil mertebe etkiler ve stabilite kayiplar dikkate alinarak incelenmesi gerektigini,
yapilan analitik ve deneysel uygulamalarin bazi tasarim kriterleri gerektirdigini

gostermistir.



2.1.2 Lokal burkulma

Betonarme kolonlarda global burkulma olmadan yiiksek deformasyonlar sonucu kolon
igindeki boyuna donatilar burkulabilir. Bu burkulma kolon ug boélgelerinde plastik
mafsal olusumu sirasinda boyuna donatilarin etriyelerin arasinda burkulmasidir ve
deprem gibi tekrarl yiiklemelerde 6nemli bir hasar mekanizmasidir. Kolon kesitinin
cekirdegi etriye ile cevrilidir ancak oOrtii beton yiiksek deformasyon seviyelerinde
dokiiliir ve boyuna donatilar kismen disar1 ¢ikar. Bu durum boyuna donatilarin yanal
olarak kismen serbest kalmasina sebep olarak donatida burkulma ihtimalini artirir.
Etriye araliginin genisligi veya kenetlenme zayifligi boyuna donatilarin burkulma
ihtimalini artirmaktadir. Bunlarin yaninda lokal burkulma c¢ekirdek betonun yanal
destegini kaybetmesini saglayarak kolon dayanim ve siinekliligini azaltir (Cirak,
2011). Tripathi ve dig. (2019) betonarme perdelerde farkli smir bolgesi
detaylandirmalarinin donati burkulmasin1 dogrudan etkiledigini ve bu etkinin perde
elemanlarin stineklik ve enerji sontimleme kapasitelerini belirgin sekilde degistirdigini
vurgulamistir. Calismada farkli detaylandirmalara sahip betonarme perdelerin
deneysel incelemesi sonucu, enine donatilarin siklastirilmast ve dogru sekilde
konumlandirilmasmin donatilarin burkulma boyunu azalttigi ve bu sayede yapi
elemaninin genel performansini iyilestirdigi belirtilmistir. Dhakal ve Su (2018), enine
saglayacak kriterler gelistirmislerdir. Arastirmacilar, donat1 burkulma parametresini
(donat1 ¢ap1, akma dayanimi ve burkulma boyunu birlestiren bir parametre) esas alarak
gelistirdikleri yontem ile tasarlanmis enine donatilarin, donati burkulmasin
geciktirerek yapisal elemanin daha biiyiik plastik deformasyonlara ulagabilmesine

olanak sagladigini gostermislerdir.

Donatilarin basing altindaki geometrik lineer olmayan davranisi ilk arastirma
konularindan biri olmustur. Monti ve Nuti (1992), ¢cevrimsel yiikklemeye maruz kalan
boyuna donatilarda lokal burkulmanin etkisini dikkate alan bir histeretik model
gelistirmistir. Calisma, inelastik burkulmanin enerji soniimleme kapasitesini
diisiirdigiinii ve g¢evrimsel dayanimi azalttigini gostermis; modelin, gerilme-sekil
degistirme dongiilerini gergekci bicimde temsil edebildigi belirtilmistir. Benzer
sekilde Gomes ve Appleton (1997), ortii betonun dokiilmesiyle yanal destegini
kaybeden donatilarin lokal burkulmasini dikkate alan gelistirilmis bir model

Onermistir. Gelistirilen model, g¢evrimsel yiik altinda burkulma sonrasi donati



davranigin1 basarili sekilde temsil ederek deneysel verilerle yliksek uyum saglamistir.
Kashani (2024), boyuna donatilarin inelastik burkulma davranigini ele aldig1 derleme
calismasinda, mevcut deneysel ve sayisal modelleme yaklagimlarin1 kapsamli sekilde
incelemistir. Calismada, oOzellikle donatinin etriye araliginda lokal olarak
ve silineklik kaybi gibi kritik etkiler dogurdugu vurgulanmistir. Mevcut modellerin bu
karmasik davranisi sinirli dogrulukla temsil edebildigi, bu nedenle lokal burkulmanin
daha ger¢ekei simiilasyonu icin ileri modelleme tekniklerine ihtiyag oldugu
belirtilmistir. Dhakal ve Maekawa (2002), lif modeli tabanli bir modelleme
calismasiyla boyuna donatilarin akma sonrasi burkulma hasarina bir analiz
gelistirmistir. Bu calismada geometrik kusurlarin 6nemine ve akma sonrasinda boyuna
donatilarin basing yoniinde tasima kapasitesinde biiylik bir diisiis goriilmiistiir.
Massone ve Moroder (2009), baslangi¢c kusurlarmma sahip donatilarin burkulma
kapasitelerinin ciddi oranda azaldigini belirterek, bu tir kusurlarin burkulma
davranigini modellemek icin kritik oldugunu goéstermistir. Baslangi¢c kusurlarinin
simiilasyonlarda dikkate alinmasinin, donatilarin burkulma kapasitelerini dogru bir
sekilde Ongormekte Onemli bir adim oldugunu deneysel ve nilimerik olarak
ispatlamiglardir. Kunnath ve dig. (2009), boyuna donatilarin burkulmasini igeren,
betonarme yapilarin dogrusal olmayan analizinde kullanmak adina tek eksenli bir
malzeme modeli gelistirdi. Urmson ve Mander (2012), mekanik temelli bir analiz
yontemi gelistirerek boyuna donatilarin lokal burkulma davranisinit modellemis ve
etriye araligina bagl olarak kritik burkulma gerilmesini ve burkulma sonrasi eksenel
gerilme-sekil degistirme iligkisini tek bir analitik egri ile tanimlamistir. Bu analitik
modeller, donat1 burkulmasinin kolonlarin moment-egrilik ve yorulma davranislarina
etkisini anlamada 6nemlidir. Akkaya ve dig. (2019), donatilarin inelastik burkulma
sonrasi davranigini tanimlayan, deneysel verilerle dogrulanan basit ve pratik bir kurucu
model Onermistir. Onerilen model, gesitli deneysel ve analitik test sonuclariyla
dogrulanarak, farkli malzeme ve geometrik 6zelliklere sahip donatilarin burkulma
davranigini basarili bir sekilde Ongdrmiistiir. Ayrica bu model, donatilarin tam
kapsamli gerilme-sekil degistirme iligkilerini tanimlamak i¢in pratik bir yaklasim
saglamistir. Murray & Sasani (2017), siinek olmayan betonarme kolonlarda yaptiklar
hibrit simiilasyon ¢alismasinda, yiiksek eksenel basing ve yetersiz etriye aralifi
nedeniyle boyuna donatilarda olusan lokal burkulma mekanizmasini incelemistir. Bu

tir burkulmanin, ani tagima giicii kaybina yol agtig1 ve yapinin genel davranisin



etkiledigi gozlemlenmistir. Calisma, lokal donat1 burkulmasinin sistem diizeyinde yiik
aktarimi ve go¢me riski lizerindeki onemine dikkat ¢cekmektedir. Benzer sekilde
Sagiroglu ve Sasani (2014), betonarme sistemlerde baslangigtaki donati burkulmasi
gibi hasar tiirlerinin, ilerlemeli gogme senaryolari lizerindeki etkisini degerlendirmistir
ve lokal donati burkulmasinin sistem davranisinda ikincil etkiler yaratabilecegine
dikkat cekmektedir. McKee ve dig. (2023) donati burkulmasmin mekanik ve
geometrik ozelliklere bagli bir makro-mekanik model ile giivenilir sekilde tahmin
edilebilecegini ortaya koymuslardir. Onerilen model, donatilarm burkulma sonrasi
olusabilecek diisiik cevrim yorulma hasarlarin1 ve bunlarin yapisal elemanlarin genel

performansina etkisini dogru ve etkin bir bicimde modellemistir.

Deneysel calismalar, modelleme ¢alismalarinin yaninda donatilarin  burkulma
davranisin1 destekler sonuglar vermistir. Moyer ve Kowalsky (2003), yaptiklar
deneysel ¢alismalarda, yaklasik %6.5 ¢ekme sekil degistirmeleri altinda olan boyuna
donatilarin, takip eden basing yiiklemelerinde daha hizli burkuldugunu
belirlemislerdir. Ozellikle yiiksek diizeyde cekme geg¢misine sahip donatilarda, bu
durumun daha belirgin oldugu ve literatiirde "¢ekme-temelli burkulma mekanizmas1"
(tension-induced buckling mechanism) olarak adlandirildig: ifade edilmistir. Bae ve
dig. (2005), gerceklestirdikleri kapsamli deneysel calismada farkli ¢capa ve boyuta
sahip toplam 162 boyuna donatiy1 yalnizca basing etkisi altinda test ederek, donatilarin
burkulma sonrasi malzeme davranislarini incelemislerdir. Calisma, burkulma
sonrasinda donatilarin eksenel tasima kapasitelerinde belirgin bir azalma ve sekil
degistirme yeteneklerinde diisiis yasandigini ortaya koymustur. Calismada elde edilen
veriler, sonlu eleman modellerine eklenebilecek sekilde bir malzeme modeli
olusturulmasina olanak saglamis ve bu sayede plastik mafsal bolgesinin daha gercekci
bicimde modellenmesine katki saglamistir. Tripathi ve dig. (2018), diisiik ¢evrimli
tekrarli yiikklemeye maruz kalan boyuna donatilarin inelastik burkulma davranigini
deneysel olarak incelemistir. Calismada, lokal burkulmanin, donatilarin dongiisel
deformasyon kapasitesini azalttig1, yorulma dmriinii kisalttig1 ve enerji soniimleme
kapasitesini diislirdiigli belirlenmistir. Bu sonuglar, deprem gibi tekrarli yiiklemelerde

lokal burkulmanin yapisal performans tizerindeki kritik roliinii ortaya koymaktadir.

Boyuna donat1 burkulmasinin kolonun genel yapisal performansiyla iligkisini arastiran
onemli c¢aligmalardan biri Berry ve Eberhard (2005) tarafindan sunulmustur. Bu

calismada, literatiirde yer alan 1001 askin betonarme kolon testinin bulgular



incelenerek, burkulma hasarinin basladigi deplasman seviyelerini 6ngdren ampirik
denklemler gelistirilmistir. Gelistirilen model; boyuna donati orani, enine donati
aralig1 ve beton basing dayanimi gibi degiskenleri dikkate alarak, donat1 burkulmasinin
olustugu andaki goreli kat dtelemesi oranmni tahmin etmektedir. Ozellikle 6nerilen
formiiller, plastik donme veya goreli kat 6telemesinin belirli bir sinir degerine ulagmasi
durumunda burkulmanin basladigini 6ngoérmektedir. Bu tiirden parametrik iliskiler,
performansa dayali deprem tasariminda kolonlarin gé¢me sinir durumlarini

tanimlamak amaciyla kullanilabilmektedir.

2.1.3 Deprem etkisindeki kolon burkulmasi

Betonarme kolonlar deprem etkisi altinda tek yonlii statik yiiklerden farkli olarak
diisiik cevrimli yorulma etkisi altindadir. ilk biiyiik deprem g¢evriminde kolon ug
noktalarinda plastik mafsal olusabilir. Beton ortiisiiniin de dokiilmesiyle bu bolgedeki
donatilar burkulabilir. Sonraki tersinir ¢evrimde ise boyuna donatinin burkuldugu
bolgede yogun bir plastik sekil degistirme meydana gelebilir. Bu dongii, donatida
yorulma ¢atlaklarinin olugsmasina ve birkag ¢evrimde donati kopmasina varan sonuglar
dogurabilir. Bu nedenle bir kolonun sismik yiikler altindaki deformasyon kapasitesinin
belirlenmesinde donati burkulmasi 6nemli bir etkendir. Syntzirma ve dig. (2010)
cevrimsel yiikleme altindaki donati burkulmasinin kolonlarin sekil degistirme
kapasitesi {lizerindeki etkisini analitik olarak incelemislerdir. Caligmada ardisik
cevrimlerin, ¢evrimlerin biiyiikliigii ve siras1 géz oniine alinarak burkulma kontrollii
elemanlarin deformasyon kapasitesini Onemli Olgiide etkiledigi gosterilmistir.
Ozellikle degisken genlikli yiikleme senaryolarinda, erken evrede meydana gelen
biiylik yer degistirmeler, donati burkulmasini daha erken tetikleyerek ilerleyen

cevrimlerde bile dayanim kaybina neden olabilmektedir.

Betonarme kolonlarin sismik performansinin degerlendirilmesinde kolonlarin
tastyicilik ve stineklik iizerindeki etkisi pek ¢ok ¢alismaya konu olmustur. Lehman ve
dig. (2004), sismik yiiklemeler altinda koprii kolonlarinin performansini inceledikleri
deneysel arastirmada, sargi detaylar1 yetersiz olan kolonlarin burkulma ve hasar
olusumunun erken evrelerde bagladigini tespit etmislerdir. Buna karsilik, giincel
yonetmeliklere uygun sekilde sik sargi donatisiyla tasarlanmis kolonlar, belirgin bir
burkulma meydana gelmeden daha yiikksek donme taleplerine karsi dayanim

gostermistir. Elde edilen bulgular, yetersiz enine donatili kolonlarin deprem sirasinda



ani dayanim kaybina ugrayabilecegini ve bunun 6zellikle plastik mafsal bdlgesinde
hizli kapasite azalmasimna neden olabilecegini gostermektedir. Benzer sekilde,
parametrik analizlere dayanan g¢alismalar, kolonlarda donati burkulmasinin sismik
performans lizerinde ciddi etkiler olusturabilecegini gostermektedir. Su ve dig. (2015),
donat1 burkulma etkisini basitlestirilmis bir modelle yapisal analize dahil etmis ve bu
etkinin ihmal edilmesinin kolonun enerji tiiketimi ve sekil degistirme kapasitesinin
ger¢ekte oldugundan daha yiiksek tahmin edilmesine neden oldugunu ortaya
koymustur. Yapilan analizler, burkulmanin hesaba katildig1 durumlarda maksimum
deplasman kapasitesi ve soniimleme Ozelliklerinin daha diisiik degerlere ulastigini
gostermistir. Bu nedenle, modern performans degerlendirme yaklagimlarinda donati

burkulmasinin, kritik bir limit durum olarak ele alinmasi1 gerektigi vurgulanmaktadir.

2.2 Yap1 Miihendisligi ve Yapay Zeka

Yapr miihendisliginde yapay zekanin kullanimi, son yirmi yilda hasar tespiti ve
siniflandirmasi alaninda giderek artan bir sekilde uygulanmaktadir. Ozellikle yapisal
saglik izleme (SHM) verilerinden hasar belirleme konusunda erken donem
calismalarda goriintii isleme teknikleri kullanilmistir. Goriintii isleme teknigiyle
yapilan ¢alismalarda binalar ve altyapilar degerlendirilmis ve beton gatlaklar tespit
edilmigtir. Tung ve dig. (2002), yaptiklart caligmada beton kopriilerde olusan
catlaklarin tespitini otomatiklestirebilmek igin kamera goriintiileme sistemi
gelistirmistir. Abdel-Qader ve dig. (2003), beton kopriilerde catlaklari tespit etmek i¢in
Fourier doniisiimleri ve kenar algilama algoritmalarini uygulamistir. Sinha ve Fieguth
(2006), gomiilii beton borular i¢in filtre tabanli bir gatlak algilayici gelistirmistir.
Benzer sekilde Yu ve dig. (2007), betonarme bir tilinel i¢in entegre bir ¢atlak tespit
sistemi  Onermistir. Higgins ve Turan (2013), ¢elik levha baglantilarinin
degerlendirilmesi ve derecelendirilmesi amaciyla kullanilan levha geometrisini hizli
sekilde toplamak i¢in goriintii isleme ve yakin mesafe fotogrametri tekniklerini
kullanmistir. Wang ve dig. (2023), bilgisayara dayal1 goriintii isleme ve insansiz hava
araclart kullanarak yapi geometrisinin otomatik c¢ikarimina dayali bir sistem
onermistir; cikarilan verileri birlestirerek kopriilerin sismik risk degerlendirmesi

yapilmistir.



Zamanla makine 6grenmesi tabanli yaklagimlarda kayda deger bir artis goriilmiistiir.
Destek vektor makineleri (Support Vector Machines, SVM) ve yapay sinir aglari
(Artificial Neural Networks, ANN) de hasar tespitinde kullanilan yontemlerdir. Ho-
Thu ve Mita (2013), yalnizca ilk ii¢ dogal frekansi kullanarak yapisal hasar tespiti
gerceklestiren bir destek vektor makineleri modeli gelistirmistir. Bu model, herhangi
bir kat seviyesindeki hasarin yerini, sinirli modal bilgiyle basariyla belirleyebilmistir.
O’Byrne ve dig. (2013), goriintiilere dokusal 6zellikler ekleyerek altyapidaki hasarlari
belirlemek i¢in SVM siniflandirma modellerini kullanmistir. Lee ve dig. (2013), beton
yiizeylerdeki catlaklarin genislik, uzunluk ve yonlerini 6lgmek i¢in ANN kullanmustir.
Shimada ve dig. (2006), farkli smir kosullarina sahip yapilar {izerinde
gerceklestirdikleri ¢alismada, her yapisal eleman i¢in ayr1 smiflar tanimlayarak ¢ok
sinifli SVM ile hasar tespitini yliksek dogrulukla gergeklestirmistir. O’Byrne ve dig.
(2014), yeni bir bolgesel olarak gelistirilmis ¢ok asamali segmentasyon teknigi sunmus
ve altyapilarin korozyona ugramis yiizeylerini siniflandirmak i¢in SVM kullanmustir.
Bakhary ve dig. (2010), cok asamali alt yapilandirma yaklagimina dayanan bir yapay
sinir ag1 (ANN) sistemi gelistirerek, yapilarin modal verilerini kullanarak hasar tespiti
gerceklestirmistir. Dogal frekanslar ve mod sekilleri gibi dinamik parametreler, agin
girdi verisi olarak kullanilmis ve hem betonarme doseme hem de ¢ok katli ¢ergeve
sistemleri iizerinde ¢esitli hasar senaryolariyla yontemin dogrulugu test edilmistir.
Elde edilen bulgular, bu yontemin diisiik seviyeli ve lokal hasarlar1 dahi etkin bi¢imde

belirleyebildigini gostermektedir.

Ilerleyen yillarda derin 6grenme tekniklerinin gelisimiyle hasar siflandiriimas: ve
tespiti konusunda biiyiik ilerleme saglanmistir. Ozellikle goriintii verilerinin islenmesi
konusunda basarili olan evrisimsel sinir aglar1 (Convolutional Neural Networks,
CNN), yap1 hasarlarinin tespitinde kullanilmaya baglanmigtir. Cha ve dig. (2017),
beton yiizeylerden elde edilen fotograflar araciligiyla catlak tespiti yapmak {izere 6zel
yapilandirilmis bir derin 6grenme mimarisi gelistirmistir. Egitiminde 40.000’den fazla
goriintii kullanilan bu CNN modeli, manuel 6zellik ¢ikarimi gerektirmeden ince ve
goriilmesi zor catlaklar1 yiiksek dogrulukla tespit edebilmis, test setinde yaklagik %97
basari saglamistir. Derin 6grenme, ham veriden 6zellikleri biiyiik 6l¢iide 6grenebildigi
igin, titresim tabanli hasar tespitinde de kullanilmistir. Abdeljaber ve dig. (2017), bir
boyutlu CNN mimarisi kullanarak, ivmeodlgerlerden elde edilen titresim zaman

serilerini dogrudan isleyen ve on isleme gerektirmeden koprii tipi yapilarin gergek



zamanli hasar tespitini gergeklestiren bir yontem onermistir. Gelistirilen yaklagim,
deneysel olarak modellenmis bir ¢elik koprii yapisinda hasarin hem varligint hem de
konumunu insan miidahalesi olmadan basariyla belirlemis; ayrica geleneksel
yontemlere kiyasla ¢ok daha kisa siirede ve yiiksek dogrulukla sonug iiretmistir. Bazi
arastirmacilar klasik CNN modellerini dnceden biiyiik veri setleri ile egiterek yapisal
hasar tespiti i¢in kullanilmistir. Hassan ve dig. (2019), 6nceden ImageNet iizerinde
egitilmis AlexNet mimarisini transfer 6grenme yontemiyle kanalizasyon borularinin
kapali devre televizyon (Close Circuit TeleVision, CCTV) goriintiilerine uyarlayarak,
altyap1 kusurlarini alt1 farkli sinifta basariyla siniflandiran bir derin 6grenme sistemi
gelistirmistir (Krizhevsky ve dig. 2017). 47.072 gercek veriyle egitilen bu model,
farkl tipteki boru kusurlarii yiiksek dogrulukla tespit etmis ve altyapi denetiminde
derin 6grenmenin potansiyelini ortaya koymustur. Liu ve dig. (2022), hasar almis
binalardan toplanan cok sayida gorsel veriyi kullanarak, yapilarin genel hasar
durumunu otomatik siniflandirabilen bir bilgi fiizyonu tabanli sistem gelistirmistir.
Calismada, binaya ait goriintiilerden hasarin betonarme ve yigma bilesenlerine gore
ayr1 ayr1 belirlenmesini saglayan CNN tabanli siniflayicilar egitilmis ve daha sonra bu
bilgiler Naive Bayes fiizyon algoritmasi ile birlestirilerek binaya ait genel bir hasar
smifi elde edilmistir. Bu yaklasim, saha verilerinin daha hizli analiz edilmesini

saglayarak arastirma siirecini hizlandirmaktadir.

Gorlintli tabanli hasar tespitinde sadece siniflandirma degil, hasarin konumunu tespit
eden nesne tespiti yontemleri de kullanilmistir. Bu yontemin kullanilmasi adina
gelistirilen R-CNN modelleri, yapisal hasari sinirlayict kutular sayesinde lokalize
etmistir. Cheng ve Wang (2018), iki asamal1 bir nesne algilama algoritmasi olan Faster
R-CNN'i kullanarak kanalizasyon borularindaki catlak, sizinti, birikinti ve kok istilast
gibi yaygin kusurlart CCTV goriintiileri lizerinden otomatik olarak belirleyen bir
yontem gelistirmistir. Yaklasik 3000 goriintii lizerinde egitilen bu derin 6§renme
modeli, daha 6nce manuel olarak saatler siiren video inceleme siirecini dakikalar i¢inde
tamamlayarak kusurlu bolgeleri dogru bigimde tespit edebilmis ve gorsel incelemeyi
yiiksek dogrulukla hizlandirmistir. Zhang ve dig. (2020), insansiz hava araglari ile elde
edilen yiiksek ¢oziiniirliiklii koprii goriintiilerinde ¢atlak, dokiilme, beton ortii kaybi ve
donat1 aciga ¢ikmasi gibi farkli hasar tiirlerini ayni anda tespit edebilmek amaciyla
YOLO (You Look Only Once) tabanli bir tek-asamali nesne algilama yontemi
gelistirmistir. Calisma kapsaminda egitilen YOLOv3 modeli, 2.206 gorinti ile
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egitilerek %80'e yakin bir ortalama dogruluk (Mean Average Precision, mAP) ile dort
farkli hasar sinifin1 basariyla tanimlamistir. Bu modelin, farkli 6l¢eklerdeki hasarlari
gercek zamanli olarak tek bir derin 6grenme mimarisiyle tespit edebildigi
gosterilmistir. Yao ve dig. (2021), beton yiizeylerdeki catlaklari tespit etmek amaciyla,
simetri Ozellikleri i¢in optimize edilmis ve sadelestirilmis bir YOLOv4 modelini
Onermistir. Gelistirilen bu algoritma, 10.000 goriintiiden olusan bir veri kiimesi
tizerinde egitilmis ve %94,09 mAP (Mean Average Precision) elde ederek, mobil
cihazlarda ger¢cek zamanli hasar tespiti uygulamalari i¢in kayda deger bir performans
sergilemigstir. Lee ve dig. (2023), yapinin dinamik karakteristiklerini yansitacak
sekilde sonlu eleman modelleri olusturmus ve bu modeller iizerinde gesitli hasar
durumlarin1 modelleyerek bir egitim veri seti olusturmustur. Bu verilerle egitilen sinir
ag1, hedef yapida meydana gelen hasarin yerini ve siddetini yiiksek dogrulukla tahmin
etmis ve fiziksel modellemenin sagladig1 yapisal analiz verisi ile yapay zekanin
ogrenme kapasitesi birlestirilerek sinirli veri ortamlarinda bile etkili bir hasar tespiti
yapabilmistir. Han ve dig. (2024), dijital ikiz yaklasimini yapay zeka tabanli darbe
tespitiyle entegre ederek Transfer-AE adini verdikleri yeni bir (Autoencoder, AE)
mimari gelistirmistir. Bu model, fiziksel yapilarla sayisal modeller arasindaki
sistematik farklar1 azaltarak hem darbenin konumunu hem de siddetini yiiksek
dogrulukla tahmin edebilmis; bdylece, ozellikle fiziksel veri yetersizliginin sorun
oldugu durumlarda giivenilir yapisal saglik izleme performansi géstermistir. Iturburu
ve dig. (2024), betonarme yapilarin tastyict sistem Ozelliklerini yalnizca bina cephe
goriintiilerinden otomatik olarak ¢ikartabilmek amaciyla, bina goriintiilerini kullanan
yapay zeka sistemi gelistirmistir. Gelistirilen yontem, siniflandirici, nesne tespit edici
ve poz tahminleyici olmak {iizere {ic asamali bir derin Ogrenme mimarisine
dayanmaktadir. Meksika’daki yapilardan olusturulan veri setinde kolon ve kat bilgileri
yiiksek dogrulukla tahmin edilebilmis ve bu sistemin, bina envanterlerinin

olusturulmasina katki saglayabilecegi ifade edilmistir.
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3. VERI SETININ OLUSTURULMASI VE DUZENLENMESI

Bu ¢alismada, 6 Subat 2023 tarihinde Pazarcik ve Elbistan merkez {issii olmak {izere
sirastyla 7.8 ve 7.6 biyiikliigiinde gergeklesen depremler sonrasinda bolgedeki

betonarme yapilarin hasar goriintiileri veri seti olarak olusturulmustur (Mai ve dig.
2023).

6 Subat 2023 Kahramanmaras merkezli depremler sonucunda yapilan hasar tespit
calismalarina gore 37.984 bina tamamen yikilmis, 42.936 bina agir hasar almis ve
toplamda 300.649 bina ¢esitli derecelerde hasar gérmiistiir. Bu yikim ve hasarlar, ¢ok
sayida yapinin kullanilamaz hale gelmesine neden olmustur (AFAD, 2023). Bolgede
hasar belirleme ¢alismalar1 kapsaminda yapilarin hasarlar1 kaydedilmis ve goriintiiler
depolanmistir. Tez ¢alismasinda olusturulmus veri setinde bircok yapisal hasarin
yaninda betonarme kolonlarda meydana gelen boyuna donati burkulma hasarina
odaklanilmis ve bu hasar gorselleri toplanarak veri seti olusturulmustur. Baz1 boyuna

donat1 burkulma hasar goriintiileri Sekil 3.1°de gosterilmistir.
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Sekil 3.1 : Kullanilan bazi boyuna donati burkulma hasar1 goriintiileri.

Veri seti toplam 539 adet fotograf igermektedir ve bu fotograflarda toplam 1494 adet
donati burkulmasi bulunmaktadir. Bu fotograflar1 Sekil 3.2°de gosterildigi gibi
sinirlayict kutular ile etiketlenerek derin ogrenme modellerinin egitilmesi igin
hazirlanmistir. Etiketleme islemi, CVAT (Computer Vision Annotation Tool) araci

kullanilarak gergeklestirilmistir.
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Sekil 3.2 : Donat1 burkulmalarinin etiketlenmesi.

3.1 Veri Setinin Boliinmesi

Veri seti, modelin 6grenme giiclinii artirmak, hiperparametre optimizasyonunu
saglamak ve bagimsiz test verisi ile objektif performans degerlendirmesi yapmak i¢in
literatiirde yaygin Onerilen %80 egitim, %10 dogrulama ve %10 test oranina
bolinmistiir (Golchubian ve dig. 2021). Boliinme islemi sonrast her veri setindeki

burkulma bolgesi sayisi1 Cizelge 3.1°de verilmistir.

Cizelge 3.1 : Burkulma bdlgelerinin veri setine dagilima.

Veri seti Fotograf sayist  Sinirlayict kutu sayisi
Egitim 433 1196
Dogrulama 53 138
Test 53 160

15



3.2 Veri Setinin Ozellikleri ve Simirlayicilar

Veri setini olusturan hasar fotograflarin1 baska alanlarda yapilan derin &grenme
calismalarinda kullanilan fotograf sayilarina goére goérece azligi kullanilan derin
o6grenme modellerinin egitim siireclerini zorlastiran bir etken olarak goriilmektedir.
Buna ek olarak fotograflarin gesitliligi, fotograf sayisinin goérece azliginin zorlugunu

artirmaktadir.

Fotograflarin farkli 151k ortamlarinda (gece-giindiiz) ¢ekilmis olmasi egitim siirecini

zorlagtirabilecek etkenlerden biridir. Bu durum Sekil 3.3°te gosterilmistir.

Sekil 3.3 : Farkli 151k kosullarinda burkulma hasar1 fotograflari.

Ortam sartlarinin yaninda fotograflarin ¢ekilme agis1 da egitim siirecini zorlagtiran
etkenlerden biri olabilmektedir. Bunun sebebi Sekil 3.4’te de goriildiigii gibi burkulma
hasarma ugramis kolonun fotografinin karsidan ¢ekilmesi yerine baska bir yan agidan
¢ekilmesidir. Bu durum burkulma hasarini sinirlayan kutularin iist liste gelmesine

sebep olup ve egitim siirecini zorlayan faktorlerden biridir.

& = 2

Sekil 3.4 : Farkli derinlik dolaysi ile sinirlayici kutularin i¢ ige gegmesi.
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Son olarak fotograf ¢esitliligini artiran en biiyiik kriterlerden biri ise donatinin
durumudur. Yapilarda kullanilan ¢eligin nerviirlii veya nerviirsiiz olmasi durumu
modelin egitim siirecindeki negatif faktorlerden biridir. Burkulma hasari tespit edilen
kolonlardaki bazi donatilar nerviirlii (Sekil 3.5(a)), baz1 donatilar nerviirsiiz (Sekil
3.5(b)) olarak goézlemlenmistir ve bunun yaninda donatilarin korozyona ugramis
olmasi (Sekil 3.5(c)) sebebiyle de veri setinin ¢esitliligi artmig, derin 6grenme

modellerinin egitim siireci bu gibi bir¢ok sinirlayicilar ile zorlagmstir.

(a) Nerviirlii yapisal ¢elik (b) Nerviirsiiz yapisal ¢elik

(c) Korozyon baglangici goriilen yapisal ¢elik
Sekil 3.5 : Farkli donati kosullari.
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4. DERIN OGRENME MODELLERI

Bu ¢alismada, betonarme kolonlarda deprem sonrasi meydana gelen boyuna donati
burkulmalarinin otomatik olarak tespit edilmesi i¢in son yillarda yiiksek basarimla 6ne
¢ikan iki nesne algilama modeli kullanilmistir: Bunlardan ilki olan Faster R-CNN
modeli, iki asamali yapisi sayesinde Ozellikle kiiglik ve yerel hasar bolgelerinin
tespitinde yiliksek hassasiyet saglamaktadir. Bu model kapsaminda ResNet50,
ResNet101 ve ResNetl152 gibi farkli derinliklerdeki omurga aglar1 kullanilarak, ag
derinliginin performansa etkileri de incelenmistir (He ve dig. 2016). Diger taraftan
YOLOvS8 modeli, tek asamali ve yiiksek hiz saglayan mimarisi sayesinde gergek
zamanli uygulamalarda avantaj sunmaktadir Yaseen (2024). Bu ¢alismada YOLOVS
modelinin n, s, m, 1 ve x versiyonlar1 karsilastirmali olarak degerlendirilmis, farkl

Olcek ve derinlikteki modellerin performans etkileri analiz edilmistir.

4.1 Faster R-CNN Modeli

Faster R-CNN iki asamal1 bir nesne tespit modelidir. Ik asamada girdilerden 6zellik
haritasi ¢ikaran 6nceden egitilmis bir omurga agindan (ResNet-50/101/152) olusur. Bu
0zellik haritas1 bolge 6neri ag1 (Region Proposal Network, RPN) katmanina baglanir.
RPN, goriintiiyli farkli baglant1 kutular: ile taradiktan sonra hesapladigi puanlar ile
bolge dnerilerinde bulunur. Ikinci asama olan ilgi bolgesi havuzlama katmani (Region
of Interest, ROI) bu bolgeyi alir ve nesne siniflandirmasi yapar (Ren ve dig. (2015).
Boylece Sekil 4.1°’de mimarisi gosterilen Faster R-CNN modeli ugtan uca egitilebilir
bir sistemde hem bolge 6nerisi hem de siniflandirma gorevlerini gergeklestirir (Karim

ve dig. 2020).
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Sekil 4.1 : Faster R-CNN mimarisi (Karim ve dig. 2020).

ResNet omurgalar1 Faster R-CNN modellerinde sikga tercih edilir. ResNet-
50/101/152, derinlikleri sirastyla 50, 101 ve 152 katman olan kalinlastirilmig
evrisimsel sinir aglaridir (Convolutional Neural Network, CNN). Bu aglar giris
ozelliklerini sonraki katmanin ¢iktisina toplayarak derin ag egitimini kolaylastirir.
ResNet-50 16 tane darbogaz katmani igerirken, ResNet-101 33, ResNet-152 ise 50
tane darbogaz katmani icerir. Bu modelin kapasitesinin artmasina ve bilgi genisliginin
artmasina sebep olur. Darbogaz katmaninin artisi hassasiyet artigsinin yani sira, egitim
slirelerinin artmasina sebep olur ve bu sebeple hiz-performans dengesini optimize

ederek en dogru omurga se¢ilmelidir (He ve dig. 2016).

4.2 YOLOV8 Modeli

Faster YOLOV8 mimarisi omurga (backbone), boyun (neck) ve kafa (head) olmak
izere li¢ ana bloktan olusur. Mimari Sekil 4.2°de gosterilmistir(Yao ve dig. 2024).
Omurga, 6zellik ¢ikarma adina tasarlanmig 6zel bir CNN omurgasidir ve nesne tespiti
i¢cin 6nemli olan anlamsal bilgileri temsil eden hiyerarsik bir 6zellik haritas1 olusturur.
Bu boliim hem hiz hem dogruluk agisindan en iyi performans verecek sekilde
evrigimsel katmanlar ve YOLOV8 modelinde bulunan bilgi akisini optimize ederek
genel performansi artiran C2f katmani ile olusturulmustur. Boyun katmani omurga
katmanindan gelen gelen 6zellik haritalarini birlestirerek nesne ayrimlarini daha iyi
yapar ve daha kiigiik nesneleri daha iyi tespit eder. PANet (Path Aggregation Network)
adi1 verilen yap1 sayesinde farkli Olgeklerdeki oOzelliklerin birlestirilmesi ig¢in
birlestirme (Concat) ve yeniden boyutlandirma (Unsample) katmanlari ile modelin
nesne tespiti konusundaki genel becerisi artirilmigtir. Kafa katmani ise farkl

coziiniirliikteki 6zellik haritasindan siirlayicit kutular, sinif ve giiven skorlar iireten
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tic tespit basligt bulunur. YOLOv8 modelinde 6nceki modellerden farkli olarak
capasiz (anchor-free) tespit basliklar1 kullanilmigtir ve bu basliklar sayesinde modelin
hiperparametre ihtiyact azalmis ve nesnelerin boyut farklarma karsi daha iyi

performans sergilemistir (Yaseen, 2024).

Backbone Neck Head

Sekil 4.2 : YOLOv8 mimarisi (Yao ve dig. 2024).

YOLOVS ihtiyaca gore 5 ana varyant icerir: YOLOv8n, YOLOvV8s, YOLOv8m,
YOLOVS8I ve YOLOVS8X. Bu varyantlar ayni temel mimariye sahip olmalarina kargin
katmanlardaki kanal sayis1 ve derinlik farklar1 sebebiyle farkli dogruluk oranlarina
sahiptir. Varyantlarda basitce en kiiciik model olan YOLOv8n’den YOLOv8x’e kadar
parametre artis1 goriilerek dogruluk degeri artar ancak hesaplama hizi diiser ve ek

olarak hesaplama ve bellek kaynag ihtiyaci artar (Ultralytics, 2023).
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5. MODELLERIN EGITiLMESI

Bu ¢aligmada deprem sonrasi betonarme kolonlarda olusan boyuna donati burkulma
hasarmin tespit edilmesi i¢in Faster R-CNN ve YOLOv8 modelleri kullanilacaktir.
Faster R-CNN modellerinde ResNet-50, ResNet-101 ve Resnet-152 omurgali olmak
tizere 3 farkli model, YOLOvVS modeli i¢in ise YOLOVS’de bulunan tiim varyantlar
olmak tizere (YOLOv8n, YOLOvS8s, YOLOv8m, YOLOVS], YOLOv8x) 5 model
hazirlanan veri seti kullanilarak egitilecek ve modellerin performanslar1 ortaya
konacaktir. Modellerin egitimi asamasinda birgok Veri artirma teknikleri ve
hiperparametreler kullanilmistir. Veri artirma teknikleri modelin egitimi sirasinda veri
setinin ¢esitliligini artirma konusunda yardimci olarak veri setini olas1 zorlayici ve
gelecekte karsilagabilecegi  durumlara karst  hazirlamaya yardimci  olur.
Hiperparametreler ise modelin egitimi sirasinda olusan kayip degerleri ve modelin
dogrulama veri setindeki basarisina gore optimize edilerek modelin en optimum

noktada ¢aligmasina katki saglamaktadir.

5.1 Faster R-CNN Modelleri

Veri seti iizerinde egitilen ti¢ Faster R-CNN modeli de ImageNet veri seti iizerinde
onceden egitilmis modellerdir ve baslangicta bu 6nceden egitilen modellerin agirliklar

kullanilmastir.
5.1.1 Veri artirma teknikleri

Faster R-CNN modellerinin egitiminde bir¢ok veri artirma teknigi kullanilmistir.

Bunlardan ilki, yatay ¢evirmedir ve bu veri artirma teknikleri fotografin ve siirlayici
kutularin yatay eksende %350 olasilikla ¢evrilmesidir. Kolon ve donatilarin simetrik
olmama durumuna kars1 bir 6nlem olarak kullanilabilir ve burkulma bolgelerini daha

kolay 6grenmesini saglar.

Rastgele parlaklik teknigi de kullandigimiz veri setinde karsilagabildigimiz bir durum

olan farkli 151k kosullarinda burkulma bdolgelerinin tespit edilmesi konusunda model
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icin uygundur. Bu parlaklik degisikligi fotografin parlakliginin %50 oraninda artirilip

veya azaltilmastyla yapilir ve %50 ihtimalle uygulanir.

Renk oynatma teknigi ile parlaklik, kontrast, doygunluk ve renk tonu degerlerinin
rastgele olarak degistirilmesi ve modelin farkli durumlara adaptasyonunu gelistirmesi
hedeflenmistir. Parlaklik %20, kontrast %20, doygunluk %20 ve renk tonu 0.1
(yaklasik 36°) oranlarinda rastgele artirtlip azaltilmistir. Bu veri artirma teknigi %50
ihtimalle uygulantyor olup, veri ¢esitliliginin artmasina katki saglamaktadir. Bu durum
modelin kolon donatilarinda olusan korozyon gibi durumlara kars1 adapte olabilmesine

katk1 saglamaktadir.

Rastgele dondiirme ile %50 ihtimalle fotograflar 10° iki yone de dondiirtiliir. Bu durum
donat1 burkulmalarinin farkli agilardan ¢ekilmesinin getirdigi zorluklara karsi modelin

performansini iyilestirmesi adina kullanilmastir.

Rastgele olgekleme, fotograflari 0.2 oraninda kiigiilterek ve biiyiilterek yeniden
boyutlandirir ve boylece yakindan veya uzaktan g¢ekilen fotograflarda burkulmanin
farkli biiyiikliiklerde olmasina karst model daha saglam hale gelir. %50 ihtimalle

uygulanir.

Dolgu ve kirpma islemleri ise fotograflarin boyutlarinin egitim siiresince
degistirilmesiyle olusabilecek bosluklarin veya dolgularin sirasiyla doldurulmasi ve
kirptilmasidir. Bu islem gereken her veri artirma adiminda kullanilarak modelin her
zaman sabit boyutlu fotograflar ile dgrenmeye devam etmesini saglar. onceden
egitilmis modellerdir ve baslangigta bu oOnceden egitilen modellerin agirliklari

kullanilir.

5.1.2 Hiperparametreler

Birgok hiperparametre modelin egitimi igin belirlenmistir. Y1gin biiyiikliigi (batch
size) yani egitim siirecinde her iterasyonda kullanilan fotograflarin sayisi, kullanilan
GPU (Graphics Processing Unit) bellegi de goz oniine alinarak 8 olarak belirlenmistir.
Ogrenme oran1 0.01-0.001 araliginda degistirilmistir ve 0.9 momentum degeri ile
modelin daha hizli ve kararli yakinsamasini desteklenmistir. Her devirde modelin
agirliklarmin  giincellenmesini  saglayan optimizatdr, Stokastik Gradyan Inisi
(Stochastic Gradient Descent, SGD) olarak belirlenmistir. Agirlik zayiflatma (weight

decay) degeri 6grenme oranina bagli olarak 0.001 ile 0.0001 arasinda degistirilmistir.
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Bu hiperparametre modelin asir1 uyum (overfitting) saglamasini engellemek adina

kullanilan bir diizenleme teknigidir.

5.2 YOLOvV8 Modelleri

Bu calismada kullanilan YOLOvVS varyantlar1 (n, s, m, 1, x), MS COCO veri seti
lizerinde dnceden egitilmis agirliklar1 barindirmaktadir. Ilk etapta bu 6n-egitimli
agirliklar yiikklenmis; daha sonra transfer 6grenme yaklasimi ile modeller, kolonlarda
boyuna donat1 burkulma hasarini igceren veri seti iizerinde ince ayara tabi tutularak
giincellenmistir. Onceden egitilmis modellerdir ve baslangicta bu &nceden egitilen

modellerin agirliklart kullantilir.

5.2.1 Veri artirma teknikleri
YOLOv8 modellerinin egitiminde bir¢ok veri artirma teknigi kullanilmigtir.

Mozaik birlestirme teknigi her yi1ginda kullanilmistir ve dort fotografin birlestirilerek
2x2 halinde egitilmesi saglanir. Bdylece model farkli 6lgekteki burkulma durumlarina
kars1 daha direngli hale gelerek kiigiik ve biiyiik burkulma bdlgelerine karst modelin

daha iyi performans gostermesini amaglamaktadir.

Karistirma artirrmi (MixUp) teknigi her fotograf igin %50 ihtimalle aktif olur. Iki
fotograf ve etiketleri i¢ ice gecirilerek model egitilir ve boylece modelin asir1 uyum

saglamasini engelleyerek daha saglam genelleme yapmasina yardimci olur.

Kullanilan bir diger veri artirma teknigi tiirii de yatay g¢evirmedir. Bu yontemde
fotograflar %50 ihtimalle yatay ¢evrilir ve bdylece simetri durumlarina yakalamak

tizere model daha 1yi egitilmistir.

Dikey cevirme teknigi ile birlikte gortintii dikey eksende gevrilir. Bu yontem %20

kullanilmigtir ¢iinkii dikey simetri durumlari bizim veri setimizde nadir bir durumdur.

Fotograflarin renk, parlaklik ve kontrast 6zelliklerine de yiginlarda rastgele sekilde
diizenlemeler yapilarak veri setinin ¢esitliligi artirilmistir. Fotograflarin tonu £1.5%
araliginda, doygunlugu +70% araliginda ve parlaklik +40% araliginda degistirerek
modelin fotograflarin farkli varyasyonlarina karsi daha iyi performans saglamasi

amaclanmustir.
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Fotograflar geometrik acidan da bazi veri artirma teknikleri ile gesitlendirilmistir.
Fotograflar +%10 oraninda yatay/dikey kaydirilmakta ve %50-150% arasinda

rastgele dlgeklenmektedir.

5.2.2 Hiperparametreler

Birgok hiperparametre modelin egitimi i¢in belirlenmistir. Yigin biiyiikliigi kullanilan
GPU bellegi de goz oniinde bulundurularak 16 ve 32 birim olarak kullanilmistir ve
kullanilan modellerde performansa etkileri dikkate almmistir. Ogrenme oran1 0.01
olarak belirlenmis ve 0.9 momentum degeri ile modelin optimizasyonu
desteklenmistir. Her devirde modelin agirliklariin  gilincellenmesini  saglayan
optimizatdr, Stokastik Gradyan Inisi (Stochastic Gradient Descent, SGD) olarak

belirlenmistir. Agirlik zayiflatma (weight decay) degeri 0.0005 olarak kullanilmustir.
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6. MODELLERIN DEGERLENDIRILMESI

Modellerin degerlendirilmesi, test veri setindeki performanslarinin karsilagtirilmasi
amaciyla cesitli metrikler kullanilarak gerceklestirilmistir. Bu metrikler, egitim veri
setinde egitilen modellerin test veri setindeki goriintiiler tizerinde gerceklestirdikleri

tahminlerin sayisal verilere doniistiiriilmesi yoluyla elde edilmistir.

Modellerin test veri setindeki fotograflarda bulunan boyuna donati burkulma hasarini
iceren kutularin bazilarin1 dogru tahmin etmis, bazilarini yanlis tespit etmis ve bazi
donat1 burkulmalarini ise bulamamigtir. Modelin tahmin ettigi kutu, boyuna donati
burkulmasi igeren bir kutuysa dogru pozitif (true positive, TP), tahmin edilen kutu bir
burkulma donatisi igermiyorsa yanlis pozitif (false positive, FP), bulamadig1 burkulma
hasar1 kutular1 ise yanlis negatif (false negative, FN) olarak degerlendirilmistir. Bu
degerlendirme Cizelge 6.1°de gosterilmistir ve bu ¢izelge karisiklik matrisini de temsil

etmektedir.

Cizelge 6.1 : Karisiklik matriksi.

Gergek burkulma durumu  Burkulma olmama durumu

Burkulma tahmini

TP FP
yapilmasi
Burkulma tahmini
FN -
yapilmamasi

Model, burkulma bdolgelerini tahmin ederken her bir bolge i¢in bir giiven skoru belirler
ve boylece tahmin edilen kutunun dogruluk olasiligini nicelendirir. Bu giiven skoru
0.5 ile smirlandirilip modelin giiven skoru degerine 0.5 ve lizeri degerleri verdigi
kutular dikkate alinmigtir. Ayrica modelin tahmin ettigi burkulma kutularinin gergek
burkulma kutular1 ile kesisim orani (Intersection over Union, loU) da 0.5 ile
siirlandirilmistir. Modelin tahmininin TP sayilabilmesi yani burkulma bdlgesinin
dogru tahmin edilebilmesi i¢in giiven skoru degerinin 0.5’ten biiyiik olmas1 ve loU

degerinin 0.5’ten biiyiik olmasi gerekmektedir.
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Modelin dogru tahminlerinin toplam pozitif tahminlere orani kesinlik (precision)
degerini ifade eder. Tahmin edilen kutularin gergekten dogru olma oranini ifade eden

kesinlik degeri denklem 6.1°de verildigi gibi hesaplanmaktadir.

Kesinlik =TP / (TP + FP) (6.1)

Modelin dogru pozitif tahminlerinin toplam gercek pozitif tahminlere orani ise
duyarlilik (recall) degerini ifade eder. Boylece modelin tiim burkulma kutularindan
kagini bulabildigi tespit edilmis olur. Duyarlilik degerinin hesaplanmasi denklem

6.2’de verilmistir.

Duyarlilik =TP / (TP + FN) (6.2)

Kesinlik ve duyarlilik metrikleri kendi baslarina modelin farkli acilardan
performansini incelese de bu iki metrigin beraber degerlendirilmesi F1 skoru ile
miimkiindiir. Bu iki metrigin harmonik ortalamasini veren F1 skoru denklem 6.3°de

verildigi gibi hesaplanmaktadir. verilmistir.

Kesinlik x Duyarlilik
x Kesinlik + Duyarlilik (6.3)

F1 skoru =2

Kesinlik ve duyarlilik degerleri test veri setinde yapilan tahmin degerlerine gore
hesaplanir. Bu degerler hesaplandiktan sonra modelin genel performansini incelemek
adina ortalama kesinlik (average precision, AP) degeri hesaplanir. Bu deger test veri
setinde yapilan tahminlerin giiven skorlarina gore siralanmasinin ardindan en yiiksek
skorlu tahminden en diisiikk skorlu tahmine kadar her giliven skoru esiginde yeni
kesinlik ve duyarlilik degerleri hesaplanir. Bu her esikte hesaplanan kesinlik-duyarlilik
degerleri diisey eksen kesinlik yatay eksen ise duyarlilik olacak sekilde bir egri olarak
cizilir ve bu egrinin altinda kalan alan ortalama kesinlik degerini verir. En iyi
performans gosteren modelin se¢iminde genel performansi iyi bir sekilde ifade etmesi
acisindan ortalama keskinlik ilk dikkat edilen metrik olmustur. Ortalama kesinlik

degeri denklem 6.4°te verildigi gibi hesaplanmstir.
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Ortalama Kesinlik = Z(Duyarllllki — Duyarlilik;_;)Kesinlik; (6.4)

=1

6.1 Faster R-CNN Modellerinin Degerlendirilmesi

ResNet-50/101/152 omurgalarindan olusan Faster R-CNN modelleri egitim veri seti
tizerinde egitildikten sonra test veri setinde kesinlik, duyarlilik, F1 skoru ve ortalama
kesinlik metrikleri agisindan incelenmistir. Bu 3 modelin test veri setindeki
performansinin incelenmesinin ardindan en yiiksek ortalama kesinlik degerine gore
modeller belirlenmis ve bu modeller kullanilmistir. Bu modellerde kullanilan

hiperparametreler Cizelge 6.2’de verilmistir.

Cizelge 6.2 : ResNet modellerinin hiperparametreleri.

Model Ogrenme orani Momentum Agirlik zayiflatma
ResNet-50 0.01 0.9 0.001
ResNet-101 0.005 0.9 0.0005
ResNet-152 0.01 0.9 0.001

Bu 3 modelin test veri seti lizerinde gostermis oldugu performans; bulunan, yanlis
bulunan veya bulunamayan kutular1 ifade eden TP, FP ve FN degerleri ile

degerlendirilebilir. Bu deger Cizelge 6.3’te verilmistir.

Cizelge 6.3 : ResNet modellerinin kutu tahmin performansi.

Model TP FP FN
ResNet-50 137 103 23
ResNet-101 137 94 23
ResNet-152 135 106 25

Modellerin yaptig1 kutu tahminlerinin ardindan, bu degerlerin kullanilmasiyla elde
edilen performans metrikleri Cizelge 6.4’te verilmistir. Ortalama keskinlik degerinin
hesaplandigi  Kesinlik-Duyarlilik ~ (Precision-Recall)  egrileri  Sekil ~ 6.1°de
gosterilmistir. Egriler grafigin listiine ve sagina ne kadar yakinsiyorsa yani egri altinda

kalan alani ne kadar biiyiitiiyorsa model o kadar fazla performans verir denebilir.

29



Cizelge 6.4 : ResNet modellerinin performans metrikleri.
Model Kesinlik Duyarlilik F1 Skoru  Ortalama Kesinlik

ResNet-50 0.570 0.856 0.684 0.762
ResNet-101  0.590 0.856 0.700 0.756
ResNet-152 0.560 0.844 0.673 0.779

Precision-Recall Egrisi Precision-Recall Egrisi
1.0 1.0
E 0.6 E 0.6
03 0.3
0.0 02 0.‘4F§ecal\ 06 0.8 " oo 02 ﬂrdﬁe(au 0.6 0.8
(a) ResNet-50 (b) ResNet-101

Precision-Recall Eqgrisi
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o
w
L

=
o

T T T T T
0.0 0.2 0.4 0.6 0.8
Recall

(c) ResNet-152
Sekil 6.1 : ResNet modelleri kesinlik-duyarlilik egrileri.

Yapilan sayisal hesaplamalarin ardindan ve Sekil 6.1°de de agikca goriildiigi tizere
ResNet-152 modeli en iyi performansi sergilemistir. ResNet-152 modelinin test veri
setindeki fotograflarda bulunan donati burkulmalarina yaptigi bazi tahminler Sekil
6.2°de verilmistir. Fotograflarda mavi kutular 6nceden etiketlenen gergek burkulma
bolgelerinin kutularidir. Turuncu kesikli ¢izgiler ise egitilen modelin yaptig1 tahmin
kutusudur. Tahmin kutusunun istiindeki deger giiven skorunu belirtirken tahmin

kutusunun altindaki deger ise kesisim orani (IoU) degerini gostermektedir.
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loU: 0.69

loU: 0.87

bl v ik
4

: ResNet-152 modeli donati burkulmasi tahminleri.

Sekil 6.2
6.2 YOLOvV8 Modellerinin Degerlendirilmesi

YOLOV8n, YOLOVS8s, YOLOv8m, YOLOVS8I ve YOLOvV8x modelleri egitim veri seti
iizerinde egitildikten sonra test veri setinde kesinlik, duyarlilik, F1 skoru ve ortalama

kesinlik metrikleri acisindan incelenmistir. Bu 5 modelin test veri setindeki
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performansinin incelenmesinin ardindan en yiiksek ortalama kesinlik degerine gore
modeller belirlenmis ve bu modeller kullanilmistir. Modellerde kullanilan
parametreler Cizelge 6.5’te verilmistir. Bu parametreler, modellerin performansinin en

yuksek oldugu tespit edilen egitim modelindeki parametre degerleridir.

Cizelge 6.5 : YOLOV8 modellerinin parametreleri.

Model Ogrenme Momentum Agirlik Y1gin boyutu
orani zayiflatma
YOLOvV8n 0.01 0.9 0.0005 16
YOLOvVSs 0.01 0.9 0.0005 32
YOLOV8m 0.01 0.9 0.0005 16
YOLOvSI 0.01 0.9 0.0005 16
YOLOvV8x 0.01 0.9 0.0005 32

Kullanilan 5 YOLO modeli test veri setindeki fotograflar iizerinde tahminlerde
bulunmus ve bu tahminler sonucu elde edilen TP, FP ve FN degerleri Cizelge 6.6’da

verilmigtir.

Cizelge 6.6 : YOLO modellerinin kutu tahmin performansi.

Model TP FP FN
YOLOv8n 116 27 44
YOLOvSs 118 17 42
YOLOvV8m 131 27 29
YOLOvSI 125 26 35
YOLOvV8X 124 24 36

Modellerin yaptigt kutu tahminlerinin ardindan, bu degerlerin kullanimiyla

performans metrikleri hesaplanmistir ve Cizelge 6.7°de verilmistir.

Cizelge 6.7 : YOLO modellerinin performans metrikleri.

Model Kesinlik Duyarlilik F1 Skoru  Ortalama Kesinlik

YOLOv8n 0.843 0.706 0.763 0.791
YOLOvVSs 0.850 0.781 0.813 0.840
YOLOvV8m 0.854 0.806 0.824 0.852
YOLOvSI 0.827 0.806 0.816 0.848
YOLOvV8X 0.848 0.800 0.823 0.834

Cizelge 6.7°de hesaplanan veriler kullanilarak ¢izilen Kesinlik-Recall egrileri ise Sekil

6.3’te verilmistir.
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Sekil 6.3 : YOLO modellerinin Kesinlik-Duyarlilik egrileri.
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Cizelge 6.7°de verilen metrik degerlerine ve Sekil 6.3’te verilmis olan egrilerden de
goriilecegi gibi birgok modelin performansi birbirine yakindir ancak ortalama kesinlik
degeri en yiiksek olan ve kesinlik-duyarlilik egrisinde de daha diizgiin bir dagilim
gosteren YOLOv8m modeli kullanilmaya en uygun model secilmistir. YOLOV8m

modelinin test veri seti lizerinde yaptig1 bazi tahminler Sekil 6.4’te verilmistir.

loU: 0.92

Sekil 6.4 : YOLOv8m modeli donat1 burkulmasi tahminleri.
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6.3 Modellerin Performansimin Karsilastirilmasi

Egitim ve test siireglerinde ti¢ Faster R-CNN(ResNet-50, ResNet-101 ve ResNet-152)
ve bes YOLOV8 (n, s, m | ve X) modeli kullanilmistir. Test verisi {izerindeki
performans g6z oniine alindiginda Resnet-152 omurgali Faster R-CNN ve YOLOv8m
modeli donat1 burkulmasinin tespitinde en yiiksek performansi gostermistir. Bu iki

modelin degerlendirme metrikleri Cizelge 6.8’de verilmistir.

Cizelge 6.8 : Faster R-CNN(ResNet-152) ve YOLOv8m degerlendirme metrikleri

Model Kesinlik Duyarlilik  F1 skoru Ortalama

kesinlik
Faster R-CNN (ResNet-152)  0.560 0.844 0.673 0.779
YOLOvV8m 0.854 0.806 0.824 0.852

Cizelge 6.8°’de goriildiigii lizere, Faster R-CNN (ResNet-152) modeli, yiiksek
duyarhilik degeri (0.844) elde ederken, YOLOv8m modeli daha yiiksek kesinlik degeri
(0.854) gostermektedir. Bu durum, Faster R-CNN modelinin daha fazla pozitif 6rnegi
dogru sekilde yakalama egiliminde oldugunu gostermektedir ve YOLOv8m modeline
gore daha fazla burkulma tahmini yapmasia karsin oransal olarak bu tahminlerin
dogruluk orani daha diistiktiir. YOLOv8m modelinin ise tespit ettigi pozitif 6rneklerin
dogruluk oraninin daha yiiksek oldugu goriilmektedir ve Faster R-CNN modeline gore
toplam burkulan donati sayisin1 daha az sayida bulmustur. Kesinlik ve duyarlilik
metriklerinin arasindaki dengeyi ifade eden F1 skoru yoniinden ise YOLOv8m modeli
daha iyi performans gostermistir. Ortalama kesinlik degerleri (AP), YOLOv8m’ nin
genel olarak tahmin kutularinin ger¢ek burkulma kutulariyla daha iyi ortiistiiglinii ve

daha hassas sonugclar tirettigini ortaya koymaktadir.

Sonug olarak, YOLOv8m modeli donati burkulmasinin tespitinde yiliksek dogruluk
orani ve dengeli kesinlik-duyarlilik performansi ile avantajli goriinmektedir. Bununla
birlikte, Faster R-CNN (ResNet-152) modeli daha yiiksek duyarlilik oraniyla eksik
tespitleri en aza indirerek, daha kapsamli taramalar yapabilmektedir. Uygulama
alanmma bagl olarak, olabilecek bir yanlis alarmin kritik oldugu durumlarda
YOLOv8m modeli; tiim burkulmalarin olabildigince tespit edilmesinin 6nemli oldugu

durumlarda ise Faster R-CNN (ResNet-152) modeli tercih edilebilir.

Modellerin baz1 fotograf kosullarina karsi performanslart da incelenmistir. Test veri

setinde modellerin tahmin yapmasi i¢in kullanilan Sekil 6.5°te gdsterilen fotograf,
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goriintiilenen ac1 sebebiyle bir¢ok gercek donati burkulmasini igeren bir¢ok kutunun
bolgelerinin kesigmesini igerir. Sekil 6.5(a)’da Faster R-CNN (ResNet-152) modelinin
yapmis oldugu tahminler, Sekil 6.5(b)’de ise YOLOv8m modelinin yapmis oldugu
burkulma bolgesi tahminleri verilmistir. Gorildiigii tizere Faster R-CNN modeli
birgok tahmin yapmis fakat bu tahminlerin birgogu yanlhistir. YOLOvV8m modeli ise
yaptig1 tahminlerin hepsini dogru yapmasma ragmen bazi donati burkulmasi

bolgelerini yakalayamamistir. Bu durum fotograflarin ¢ekilme agisinin modellerin iyi

performans gostermesini zorlagtirdig1 goriilmektedir.

bt gy go052 8800

loU: 0%

Fands

(a) Faster R-CNN (ResNet-152) (b) YOLOV8m

Sekil 6.5 : Modellerin goriintii agisina karsin performansi.

Bir bagka agidan modelin bazi fotograf kosullarina sagladigi uyum Sekil 6.6’dan yola
cikarak agiklanmistir. Sekil 6.6(a)’da Faster R-CNN modelinin yaptigi tahmin kutular
yer almaktadir ve goriildiigii gibi sol altta bulunan burkulmus bir donat1 seklinde fakat
donat1 olmayan bir nesnenin tespit edildigi goriilmektedir. Sekil 6.6(b)’de YOLOv8m
modelinin tahminleri verilmistir ve goriildiigii izere ayn1 fotografin yine ayn1 sekilde
sol iistiinde bulunan nesnenin tespit edilmedigi goriilmektedir. Buradan yola ¢ikarak
YOLOv8m modelinin burkulma donatilarinin tespitinde modeli zorlayabilecek bu gibi

durumlara kars1 daha iyi performans gosterdigi goriilmektedir.
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(a) Faster R-CNN (ResNet-152) (b) YOLOV8m
Sekil 6.6 : Modellerin donat1 benzeri sekillere karsi performansi.

Ayrica iki modelin de donati burkulmalarinin tespitinde fotograf boyutlarinin ve
fotografta bulunan burkulma donatis1 bolgesini g¢evreleyen simirlayict kutularin
biiyiikliiklerinin bir 6nemi oldugu goriilmiistiir. Fotograf boyutlarinin ¢ok biiyiik
oldugu fotograflarda yani gorece donati burkulmasina uzak bir konumdan ¢ekilen
fotograflarda donat1 burkulmasini kapsayan sinirlayict kutunun resme gore ¢ok kiigiik
olmast modelin performansini diisiirmektedir. Bu sebeple biiyiik ¢oziiniirliige sahip
fotograflarin gereksiz kisimlarinin kirpilarak modelin egitimi i¢in kullanildiginda iki
modelin de performansinin arttigi gézlemlenmistir. Liu ve dig. (2022), yaptiklari
calismada hasarli bolgenin oraninin tim resme olan oraninin en az %30 olmasi

gerektigi ve performansin bu sekilde artigini gostermistir.
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7. SONUCLAR

Bu tez ¢alismasinda, 6 Subat 2023 Kahramanmaras depremleri sonrasinda deprem
bolgesinde hasar alan yapilardaki betonarme kolonlarda meydana gelen boyuna donati
burkulma hasarlarinin, makine 6grenmesi tabanli nesne algilama modelleri
kullanilarak otomatik olarak tespit edilmesi amaglanmistir. Bu kapsamda Faster R-
CNN ve YOLOv8 modelleri detayli bir sekilde egitilmis ve performanslari test

edilmistir.

Test verisinde yapilan performans dlgiimlerine gére, ResNet-152 omurgali Faster R-
CNN modeli yiiksek duyarlilik orani (0.844) ile kolonlardaki burkulma bolgelerini
tespit etme konusunda giiglii bir performans sergilemistir. Buna karsin, YOLOv8m
modeli daha yiiksek kesinlik (0.85) ve ortalama kesinlik (0.852) degerleri ile dikkat
cekmis ve tespit edilen burkulma boélgelerinin dogruluk oranini artirmistir. YOLOv8m
modeli ayrica kesinlik ve duyarlilik dengesini ifade eden F1 skoru (0.82) acisindan da

en iyi sonuclar elde etmistir.

Her iki modelin de bazi avantajlar1 ve sinirlamalari oldugu gézlemlenmistir. Faster R-
CNN modeli, daha fazla sayida burkulma bdlgesini tespit ederek kapsamli bir tarama
saglamis; ancak yanlis pozitif tahmin sayis1 gorece yiiksek olmustur. Ote yandan,
YOLOvV8m modeli daha az yanlis pozitif tahmin yaparak giivenilirligini kanitlamas;
ancak bazi gergek burkulma bdlgelerini kagirabilmistir. Bu durum, farkli uygulama
ithtiyaclarima gore modellerin segiminde dikkate alinmasi gereken 6nemli bir parametre
olarak 6ne c¢ikmaktadir. Ornegin, deprem sonrasi hizli tarama ve riskli bolgelerin
oncelikli olarak belirlenmesi gereken durumlarda, daha yiiksek duyarlilik sunan Faster
R-CNN tercih edilebilirken; yanlis alarmin minimize edilmesinin 6nemli oldugu

alanlarda YOLOv8m daha uygun bir segenek olarak degerlendirilebilir.

Model performanslarinin incelenmesinde ayrica fotograf kalitesi, ¢cekim agis1, 151k
kosullar1 ve hasar bolgesinin fotograftaki biiytlikliigii gibi etkenlerin 6nemli rol
oynadig1 tespit edilmistir. Ozellikle donat1 burkulma bdlgesinin gériintiide yeterli

oranda temsil edilmesi model performansini dogrudan etkilemektedir. Bu gozlem,
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saha calismalarinda ¢ekilen goriintiilerin kalitesi ve ¢ekim noktalarinin nemini bir kez

daha ortaya koymaktadir.

Calisma sonucunda, hem Faster R-CNN hem de YOLOv8m modellerinin kolon
burkulma hasarlarinin otomatik tespiti icin gliclii araclar oldugu ve geleneksel

yontemlere kiyasla hizli ve objektif sonuglar sagladigi gosterilmistir.

Yapay zeka tabanli yaklagimlarin deprem sonrasi hizli hasar tespitlerinde aktif olarak
kullanilabilecegini ¢alisma ortaya koymaktadir. Boylece, afet sonrasi miidahale
siireclerinin hizlandirilmas1 ve riskli yapilarin 6ncelikli olarak degerlendirilmesi

miimkiin hale gelebilecektir.

Veri setinin ¢esitliligi ve zorluk seviyesinin model performansini etkiledigi
anlagilmustir. Ozellikle farkli 151k kosullar1 ve cekim acilarinda veri gesitliliginin

artirtlmasi, modellerin genelleme yetenegini gelistirmek i¢in dnemlidir.

Ayrica, veri setinin artirilmasi ve 6zellikle ti¢ boyutlu veri kiimelerinin kullanilmast,
modellerin kolon burkulma tespitinde daha kapsamli bir degerlendirme yapmasina
katki saglayacaktir. Ek olarak benzer veri setlerine farkli derin 6grenme modellerinin
uygulanmasi dahilinde daha yiiksek performans elde edilebilir ve mevcut modellerin

zayif yonleri giderilebilir.

Sonug olarak, bu tez ¢caligmasi, makine 6grenmesi tabanli hasar tespiti uygulamalarinin
yap1 mithendisligi alaninda 6nemli bir potansiyele sahip oldugunu goéstermektedir.
Gelistirilen ve test edilen modeller, deprem sonrasi hasar belirleme siireclerinde hizli
ve giivenilir bir alternatif sunmakta ve bu alanda yapilacak caligmalara katki

saglamaktadir.
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