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ENERJi TABANLI YAKLASIM iLE SACILMA-KATLAMA DINAMIiGIiNiN
OLUSTURULMASI VE KAOS URETECININ TASARLANMASI

OZET

Tezin amaci bir elektrik devresinde enerji kavrami yardimiyla kaosu agiklamak ya da
bir elektrik devresindeki kaotik dinamigi bagslatan enerji alis verisini inceleyerek
kaotik devre tasarlamak i¢in etkin bir yontem 6nermektir.

Sacilma ve katlama, kayipl kaotik sistemlerin iyi bilinen bir mekanizmasidir. Enerji
bakis agisi ile bakildiginda sagilma ve katlama mekanizmasinin olusturulabilmesi i¢in
enerjinin degistirilebilmesinin saglanmasi bir zorunluluktur. Bu tezin konusu enerji
sekillendirme yoluyla kaos yaratacak bir sacilma ve katlanma mekanizmasi
olusturmanin miimkiin olup olmadig1 veya gelecekte bu amaca hizmet edecek bir
anlayisa varmanin miimkiin olup olmadigidir.

Tezde bir LC tank devresinin kurulacak enerji alis verisi ile kaosa sokulmasinin
miimkiin olup olmadig1 incelenmistir. Bu amagla Chua devresi ele alinmustir.

Chua devresinin kaos tarihinde biiyiik bir 6nemi vardir. Siireki dinamik sistemlerde
kaos eldesi icin en az 3 boyutlu bir sistem gereklidir. Chua devresi de kaos elde
edilebilecek 3 boyutlu en basit elektrik devresidir. Chua devresi ilk onerildigi haliyle
5 eleman igermektedir: 1 endiiktans, 2 kondansator, 1 pasif direng ve Chua diyodu
olarak adlandirilan bir aktif diren¢. Devrenin bu ilk haliyle zengin dinamikler
tiretmesine karsin literatiirde 3 boyutlu bir dinamik sistemde karsilagilabilecek biitiin
dinamikleri tliretemedigi fark edilince endiiktansa seri bir diren¢ eklenmesiyle 6
elemanli hali de tiiretilmistir. Chua devresinin Chua osilatorii olarak adlandirilan bu
yeni haliyle literatiirde 3 boyutlu bir sistemde karsilasilabilecek biitiin dinamikleri
tirettigi gosterilmistir. Tezde de gerek ele alinan probleme adim adim yaklasma imkani
verdigi i¢in gerekse de iizerinde ¢ok calisildigi icin elde edilen sonuglari genellestirme
potansiyeli agisindan Chua devresi ile calisilmistir.

Tarihsel akigsa bakildiginda enerji temelli yontemlerin klasik mekanikte daha etkin
kullanildigi goriiliir. Euler-Lagrange ve Hamilton denklemleri yazilirken once
genellestirilmis  koordinatlar belirlenir. Ardindan da problem genellestirilmis
koordinatlardan bakarak ele alinir. Euler-Lagrange denklemleri i¢in genellestirilmis
konumlar1 ve bu konumlarin tiirevleri olan genellestirilmis hizlar1 igeren bir
diferansiyel denklem takimi yazilir. Hamilton denklemleri i¢in ise genellestirilmis
konumlar ve genellestirilmis hizlar birbirleri cinsinden yazilarak bir diferansiyel
denklem takimi elde edilir.

Klasik mekanikte genellestirilmis konum ve genellestirilmis hiz tanimlari nettir.
Dolayisiyla kinetik ve potansiyel enerji kavramlar1 da nettir. Elektrik devrelerinde ise
durum farklidir. Genellestirilmis konum ve genellestirilmis hizin hangi biytikliik
olarak alinacagina gore kinetik enerji ve potansiyel enerji degisir.

Elektrik devrelerinin enerji formiilasyonlarina bakildiginda literatiirde iki yontem 6ne
cikar. Bernstein-Lieberman denklemleri ve Chua-McPearson denklemleri.
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Bernstein-Lieberman denklemleri sadece LC devreleri igin kullanilabildigi i¢in tezde
Chua-McPearson denklemleri kullanilmistir.

Bir elektrik devresinde enerji kavramu ile is yapilmak istendiginde karsimiza ilk olarak
enerjinin hangi biiyiikliik olarak ele alinacagi sorusu cikar. ilk akla gelen enerji
depolayabilen elemanlarin toplam enerjisinin enerji olarak kullanilmasidir. Literatiirde
karsilagilan bir baska yontem ise elektrik devresine ait diferansiyel denklemlerin Port
Kontrollii Hamilton teoride ele alinmis olan yapilardan birine benzetilmesi ve
enerjinin de buna gore tanimlanmasidir. Bu iki sekilde olusturulan enerji fonksiyonu
gereckenden daha karmasik olabilir. S6yle ki:

Bir elektrik devresi en genel halde bir diferansiyel-cebrik denklem sistemi ile ifade
edilebilir. Bir diferansiyel-cebrik denklem sisteminde diferansiyel denklemlerin bir
kisminin ya da tamaminin denklemlerden elenmesi durumunda daha basit diferansiyel
denklemler ve daha basit bir enerji fonksiyonu ile ¢calismak s6z konusu olabilir.

Port Kontrollii Hamilton teori genel olarak kararlilastirma ve buna c¢ok benzeyen
senkronizasyon i¢in kullanilmaktadir. Bu amagclar icin kullanildi§inda sorun
yaratmayacak olan Hamiltonyanin kaos eldesi i¢in kullanilmasinda endiseler s6z
konusu olmustur. Bu belirsizlikler sebebiyle tezde iki yontemle Hamiltonyan elde
edilmis ve dogru bir Hamiltonyan ile ¢alisildigindan emin olunmustur.

Chua devresinin enerji alig-verisine bakilacak olursa Chua diyotu devredeki enerji
veren tek elemandir. Dolayistyla Chua diyotu pasif direncin tiikettiginden fazlasini
devreye verdiginde dinamik elemanlarda enerji depolanir. Aksi halde ise dinamik
elemanlarin mevcut enerjisi tiiketilir. Tezde devrenin davranisini anlamak igin
devrenin Hamiltonyanindaki degisim incelenmistir. Ortaya konan yaklasim enerjinin
yorlingeler boyunca izlenmesi ve enerjideki degisimin Chua devresinin farkli
dinamikleri ile iliskilendirilmesidir.

PR

Hamiltonyan elde edildikten sonra Hamiltonyaninn nasil degistigine bakilmustir.
Elde edilen sonu¢ Hamiltonyan’in tiirevinin z’ye bagli olmayip, sadece x ve y’ye bagh
olmasidir. Bu durum enerjinin artis ve azalisimi X-y izdiisiimii kullanilarak
degerlendirmeyi miimkiin kilmistir.

Oncelikle bu sonucun neden olustugunu ele almak iyi olacaktir. Chua devresi bir LC
tank devresi icermektedir ve bu LC tank devresinin diger enerji depolayabilen
elemanla direkt bir iliskisi yoktur. Tek iliski pasif direncin u¢ denklemi iizerinden
olusmaktadir. Iste Chua devresindeki bu topolojinin bir sonucu olarak Hamiltonyanin
tiirevi sadece kondansatorler lizerindeki gerilime baghdir.

Chua diyodu 3 parcali, parca-parga dogrusal karakteristlige sahiptir. Tezde amag
spiral tipi kaos olusumunu goézlemek oldugu i¢in basitlik agisindan 2-parcali
karakteristlige sahip Chua diyodu ile calisiimistir.

Hamiltonyanin tiirevi sifira esitlenmis ve enerjinin arttigt ve azaldigr bolgeleri
birbirinden ayiran alt-uzay denklemleri elde edilmistir. Boylece sistemin hangi
bolgelerde enerji aldigi, hangi bolgelerde de kaybettigi belirlenmistir.

Devre bir LC devresi olsaydi ilk kosullarina bagli olarak periyodik ¢6ziim iiretecek ve
kayipsiz davranis sergileyecekti.

Paralel LCR devresi olsaydi R direnci pasif ise devre durmaksizin enerji kaybederdi,
aktif ise de durmaksizin enerji kazanirdi. Bu durumda ¢6ziim direncin aktif ya da pasif
olmasina gore ya sifira ya da sonsuza gider.
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Chua devresinde Chua diyodu dogrusal oldugunda gozlenecek dinamikler LCR
devresi i¢in yapilan bu yorumlara benzerdir. Devrede bu durum i¢in inceleme yapilmis
ve benzer sonuclar elde edilmistir.

Chua devresinde 6zdegerler her bolgede bir reel, bir kompleks ¢ift seklinde alinmstir.
Literatiirde karsilagilan Chua devresi parametreleri i¢in istisnalar disinda daima orta
ve dis bolgeler i¢in bir reel 6zdeger ve bir kompleks eslenik 6zdeger cifti hali s6z
konusudur. Shilnikov teoreminin kosullarindan birinin homoklinik yoriingenin denge
noktasinda sistemin bir reel 6zdegere ve bir kompleks eslenik 6zdeger ciftine sahip
olmas1 ve Chua devresi ile olan ¢aligsmalarda yazarlarin amacinin kaos elde etmek
oldugu diisiiniiliirse literatiirde karsilasilan bu durum anlamli olacaktir.

Chua diyodunun dogrusal olmasi i¢in inceleme yapildiktan sonra 2 kirikli, parga parca
dogrusal Chua diyodu i¢in devrenin incelenmesine gecilmistir. Bu analiz i¢in gegici
¢oziimler atilmistir. Dallanma parametresi a’nin degeri sabitlenmistir. Dallanma
parametreleri a ve b’nin degerleri, ist ve alt bolgeler icin sistemlerin bir reel 6zdegeri
ve bir kompleks eslenik 6zdeger ¢ifti olacak sekilde secilmistir. Baslangi¢c noktalari
coziimler kararsiz 6zvektoriin etkisi altinda sonsuza gitmeyecek sekilde secilmistir.
Incelemelerde B parametresi taranmustir.

Ik parametre takimi igin kararsiz limit cevrim davranis1 gdzlemlenmistir. S
parametresi arttirildikca sistemde once 1raksak ¢6ziim, ardindan kararsiz limit ¢evrim,
ardindan da yakinsak ¢oziim gozlemlenmistir.

Ikinci parametre takimi olarak ilk parametre takiminda a ve b parametrelerinin
degerleri birbirleriyle degistirilmistir. Her ne kadar bu degisiklik ile kararlt limit
cevrim eldesi imit edilmis olsa da bu gerceklesmemistir. Sebebini anlamak ig¢in
sistemin Chua diyodunun kiriklarina gore her bir bolgedeki enerji alis verisi
incelenmistir. Yapilan gozlem alt ve iist bolgelerde dogru enerji alis verisinin
saglanmadig1 olmustur. Yapilan ¢ikarim asagidaki gibidir:

Chua devresinde bir merkez c¢evresinde kararli ya da kararsiz limit g¢evrim
olusturulacaksa hem i¢ bolge ve dis bolgede; hem de iist ve alt bolgede dogru enerji
iliskileri kurulmalidir

Ucgiincii parametre takimi segilirken bu hususlar gézetilmis ve kararli bir limit cevrim
eldesi basarilmistir.

Bu {i¢ parametre takiminda da f parametresi arttirilirken kararsiz ¢éziimden kararl
¢Ozlime gidis gdzlenmistir. Orta degerlerde ise limit ¢gevrim davranis1 gozlenmistir.

Bir bagka parametre takimi ile inceleme yapildiginda peryot katlamasi ile kaos
dinamigi gézlenmistir. Bu dinamik gozlendiginde de benzer olarak f parametresi
arttirthirken kararsiz ¢oziimden kararli ¢oziime gidis gézlenmistir. Kararli ¢oziimle
yola ¢ikilmis, ardindan bir kararli limit ¢evrim gozlenmistir. Ardindan kararli limit
¢evim i¢ bolgesi ile dis bolgesi arasinda bir girisim olusmus, enerji alan ve veren
yoriingeler birbirlerini kesmeye baslamistir. Bu peryot katlamasi ile kaos dinemigini
getirmistir. Ardindan da 1raksak ¢oziim gozlenmistir.

Bir yan sonug¢ olarak garip c¢ekicinin i¢inde kararli ya da kararsiz ¢oziimlerin
gdzlendigi haller olmustur. I¢ bolge sistem dinamigine belirleyici bir etki yapmamustir.

Bu gbézlemden de bir yan sonug ¢ikarilmis ve yoriingenin i¢-bolgeye girdiginde daima
bu bolgede kalmamasi i¢in ig-bélgenin enerji kazanan davranig gostermesinin daha

dayanikli kaos eldesi agisindan 6nemli oldugu not edilmistir. Bu da ana amacimiz
disinda elde edilen 6nemli bir ilave sonug¢ olmustur.
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ESTABLISHING STRETCHING AND FOLDING MECHANISM AND
DESIGNING CHAOS GENERATOR WITH ENERGY-BASED APPROACH

SUMMARY

The aim of the thesis is to explain chaotic dynamics by using energy concept or to
propose an effective method for designing chaotic circuits by examining enegy
exchange of in an electrical circuit that initiates chaotic dynamics.

There are two types of chaotic systems; first one is energy conservative Hamiltonian
chaotic systems and the other one is systems that consist of strange attractors. Strange
attractors continously gains and loses energy such that system variables keeps their
magnitudes within some limit values. They differ from stable systems, these systems
neither go to a stable equilibrium point nor go to a limit cycle.

Stretching and folding is a well known mechanism of lossly chaotic systems. With the
energy point of view to form stretching and folding mechanism it is a necessity to
ensure that energy can be changed. The subject of this thesis, whether it is possible to
form a stretching and folding mechanism via energy shaping to produce chaos or to
reach an understanding that will serve this purpose in the future.

In the thesis, it is examined whether it is possible to put an LC tank circuit into chaos
with proper energy exchange. The first chaotic circuits that come to mind for this idea
are Van der Pol oscillator and Chua circuits. Examining the Van de Pol oscillator
would be more complex beause it contains source. For this reason Chua circuit was
taken.

The Chua circuit has a great importance in the history of chaos. In continuous dynamic
systems, a system with at least 3 dimensions is required to obtain chaos. The Chua
circuit is the simplest electrical circuit where chaos can be obtained. The Chua circuit,
as first proposed, consists of 5 elements: 1 inductance, 2 capacitors, 1 passive resistor
and an active resistor called the Chua diode. Although the circuit produced rich
dynamics in its first proposed form, it was realized that it could not produce all the
dynamics that can be encountered in a 3-dimensional dynamic system in the literature,
and thus, a 6-element version was also derived by adding a series resistance to the
inductance. This new form of the Chua circuit, called the Chua oscillator, has been
shown in the literature to produce all the dynamics that can be encountered in a 3D
system. In this thesis, since it has been worked on extensively the Chua circuit was
used for its potential to generalize the results obtained.

In dynamic systems, energy representations can be used to understand the system
dynamics. Lyapunov theory can be given as an example. Euler-Lagrange equations
and Hamilton equations used to write differential equations in classical mechanical
systems are other examples that can be given. In these methods, the concepts of
potential and kinetic energy are used. When similar equations are wanted to be written
for electric circuits, the question of how Kinetic energy or potential energy should be
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defined in electric circuits is faced. Since the thesis also aims to examine dynamic
systems with the help of the concept of energy, this subject is addressed first.

When we look at the history, we see that energy-based methods are used more
effectively in classical mechanics. When writing the Euler-Lagrange and Hamilton
equations, first the generalized coordinates are determined. Then first the problem is
considered from the generalized coordinates. For the Euler-Lagrange equations, a
differential equation set is written that includes the generalized coordinates and the
generalized velocities that are the derivatives of these coordinates. For Hamilton's
equations, the generalized coordinates and generalized velocities are written in terms
of each other to obtain a differential equation set. If the generalized coordinate number
of the system is n, the Euler-Lagrange equations contain n second-order differential
equations; and the Hamilton equations contain 2n first-order differential equations.

If the Euler-Lagrange equations are to be written for an electric circuit, first a group of
variables are determined as generalized coordinates, then these generalized
coordinates and their derivatives, the generalized velocities, must form a set of
differential equations that include all of them. When it is desired to write Hamilton
equations for an electric circuit, one group of variables must be determined as the
generalized coordinates and another group of variables as the generalized velocities.
Then, a differential equation set in which these variables are written in terms of each
other must be obtained. The two formulations are not unique. Also, the number of
generalized coordinates and generalized velocities may not be equal. While in classical
mechanics, velocity is always a derivative of position, in an electric circuit, a
relationship is formed between generalized position and generalized velocity through
the way the circuit elements are connected.

In classical mechanics, the definitions of generalized position and generalized velocity
are clear. Therefore, the concepts of kinetic and potential energy are also clear. In
electric circuits, the situation is different. Kinetic energy and potential energy changes
depending on which concept the generalized position and generalized velocity will be
taken as.

When looking at the energy formulations of electric circuits, two methods stand out in
the literature. Bernstein-Lieberman equations and Chua-McPearson equations. Since
Bernstein Lieberman equations can only be used for LC circuits, Chua McPearson
equations are used in the thesis.

When we want to do work with the concept of energy in an electric circuit, the first
question we encounter is which magnitude of energy will be considered. The first thing
that comes to mind is to use the total energy of the elements that can store energy as
energy. Another method encountered in the literature is to liken the differential
equations of the electric circuit to one of the structures considered in the Port
Controlled Hamilton theory and to define the energy accordingly. The energy function
created in these two ways may be more complicated than necessary. As explained
below:

An electric circuit can be expressed in the most general form by a differential-algebraic
equation system. In a differential-algebraic equation system, if some or all of the
differential equations are eliminated from the equations, it may be possible to work
with simpler differential equations and a simpler energy function.

Port Controlled Hamiltonian theory is generally used for stabilization and similar
synchronization. There have been concerns about using the Hamiltonian to obtain
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chaos, although it would not cause problems when used for these purposes. Due to
these uncertainties, the Hamiltonian was obtained with two methods in the thesis and
it was ensured that the correct Hamiltonian was used.

Since the Hamiltonian for the Chua circuit has been obtained, it can now be considered
with the concept of energy. If we look at the energy exchange of the Chua circuit, the
Chua diode is the only element in the circuit that gives energy. Therefore, when the
Chua diode gives more energy to the circuit than the passive resistance consumes,
energy is stored in the dynamic elements. Otherwise, the existing energy in the
dynamic elements is consumed.

In this thesis, the change in the Hamiltonian of the circuit is investigated to understand
the behavior of the circuit. The approach put forward is to track the energy along the
orbits and relate the change in energy to the different dynamics of the Chua circuit.

Chua diode has 3-piece, piecewise linear characteristic. Since the aim of the thesis is
to obtain the spiral type chaos, Chua diode with 2-piece characteristic is studied.

After obtaining the Hamiltonian, it was examined how the Hamiltonian changed. The
result obtained was that the derivative of the Hamiltonian does not depend on z, but
only on x and y. This made it possible to evaluate the increase and decrease of the
energy using the x-y projection.

First, it would be good to consider why this result occurs. The Chua circuit contains
an LC tank circuit, and this LC tank circuit has no direct relationship with the other
energy-storing element. The only relationship is through the terminal equation of the
passive resistor. As a result of this topology in the Chua circuit, the derivative of the
Hamiltonian depends only on the voltage across the capacitors.

Chua diode has 3-piece, piecewise linear characteristic. Since the aim of the thesis is
to observe the spiral type chaos formation, Chua diode with 2-piece characteristic is
studied.

The derivative of the Hamiltonian is set equal to zero and the subspace equations
separating the regions where the energy increases and decreases are obtained. Thus, it
is determined in which regions the system gains energy and in which regions it loses
energy.

If we were to consider an LC circuit, it would produce a periodic solution depending
on its initial conditions and exhibit lossless behavior. If it were a parallel LCR circuit,
if the R resistance was passive, the circuit would constantly lose energy, and if it was
active, it would constantly gain energy. In this case, the solution would either go to
zero or infinity depending on whether the resistance was active or passive.

The dynamics to be observed when the Chua diode is linear in the Chua circuit are
similar to these comments made for the LC and LCR circuits. An examination was
made for this situation in the circuit and similar results were obtained.

In the Chua circuit, the eigenvalues are taken as one real and one complex pair in each
region. For the Chua circuit parameters encountered in the literature, except for some
exceptions, there is always one real eigenvalue and one complex conjugate eigenvalue
pair for the middle and outer regions. If we consider that one of the conditions of the
Shilnikov theorem is that the system has one real eigenvalue and one complex
conjugate eigenvalue pair at the equilibrium point of the homoclinic orbit and that the
aim of the authors in the studies with the Chua circuit is to obtain chaos, this situation
encountered in the literature will be meaningful.
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Then, the circuit is examined for the case of a linear Chua diode with 2 pieces. For this
analysis, temporary solutions are discarded. The value of the parameter « is fixed. The
values of the branching parameters a and b are chosen such that the systems have a
real eigenvalue and a complex conjugate eigenvalue pair for the upper and lower
regions. The initial points are chosen in such a way that the solutions are not catched
by the unstable eigenvector. Otherwise, the solutions will remain under the influence
of the unstable eigenvector and goes to infinity. The B parameter was scanned in the
analyses.

For the first parameter set, unstable limit cycle behavior was observed. As the
parameter was increased, the system first showed a divergent solution, then an unstable
limit cycle formed, and then a convergent solution observed.

As the second parameter set, the values of the a and b parameters in the first parameter
set were changed with each other. Although it was hoped that a stable limit cycle would
be obtained with this change, this did not happen. To understand the reason, the energy
exchange in each region of the system according to the parts of the Chua diode was
examined. The observation was that the correct energy exchange was not provided in
the lower and upper regions. The inference made is as follows:

If a stable or unstable limit cycle is to be created around a center in the Chua circuit,
correct energy relations must be established both in the inner and outer regions; and in
the upper and lower regions.

These issues were taken into consideration when selecting the third parameter set and
a stable limit cycle was achieved.

In all three parameter sets, a transition from an unstable solution to a stable solution
was observed as the B parameter was increased. At intermediate values, limit cycle
behavior was observed.

When another parameter set was examined, chaos dynamics were observed with period
doubling cascade route. When this dynamic was observed, a similar progression from
an unstable solution to a stable solution was observed as the f parameter was increased.
A stable solution was started, and then a stable limit cycle was observed. Then an
interference occurred between the inner and outer regions of the stable limit cycle, the
orbits that gains and loses energy started to intersect each other. This brought chaos
dynamics with period doubling. Then a divergent solution was observed.

As a side result, there were cases where stable or unstable solutions were observed
inside the strange attractor. The inner region did not have a decisive effect on the
system dynamics.

Obtained result from the thesis is that, after settled a stable limit cycle, creating an
interference between energy gaining and losing trajectories starts period doubling
mechanism. By increasing the interference, circuit enters the chaotic regime by period
doubling cascade route. When it is continued to increase the interference chaos is
observed.

As a subsidiary result, while examining th effect of the energy Exchange in the inner
region of chaotic attractor doesn’t affect the rising of the chaotic attractor.
Addiotionally, the case in the inner region energy is increasing when chaotic behaviour
occured this chaotic attractor becomes more robust.
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1. GIRIS

Bu tezde dogrusal olmayan® sistemlerin analizi igin kullanilabilecek enerji temelli bir
yaklagim gelistirilmesi amaglanmistir. Genel olarak dogrusal olmayan sistemler
analitik olarak ¢oziilemezler. 3 cisim problemi buna 6rnek olarak gdsterilebilir [1].
Klasik mekanikte noktasal iki cisim igin baslangi¢ konumlar1 ve hizlari bilindiginde
bu cisimlerin yoriingeleri hesap edilebilir. Oysa ayn1 problem {i¢ noktasal cisim i¢in

kaotik davranig gosterir. Dolayisiyla analitik olarak ¢oziilemez.

Dogrusal sistemlerde 6zdegerler ve Ozvektorler hesap edilerek sistem davranisi
kestirilebilmektedir. Ne yazik ki dogrusal olmayan sistemlerde bu yontem ise
yaramamaktadir. Genel yaklasim sistemin bir noktada kii¢iik degisimler i¢in dogrusal
esdegerinin bulunmasi ve bu nokta civarindaki davranisinin kestirilmesidir. Kullanilan
analiz yontemine gore ele alinan gesitli noktalardaki bu yerel davraniglardan sistemin
davranis1 yorumlanir. Sistemin ya da dogrusal esdegerinin varsa denge noktalarinin
bulunmasi; bu noktalardaki 6zdeger ve 6zvektorlerinin analiz edilmesi buna giizel bir

ornektir. Faz alani ¢izimi bu yaklasimin en genel uygulamasidir.

Bu yontem kaotik olmayan sistemler i¢in etkili olarak kullanilabilir. Sekil 1.1’deki
van der Pol osilatorii faz alan1 buna 6rnek olarak gosterilebilir. Bir faz portresi sadece
faz alani icermeyip Ozvektorler, 6zdiizlemler; denge noktalari, limit cevrimler;

homoklinik, heteroklinik yoriingeler de igerecek sekilde daha kapsamli ¢izilebilir.

Sekil 1.1 : Van der Pol osilatorii faz portresi.

! Dogrusal sistemler toplamsallik ve ¢arpimsallik 6zelliklerini saglayan sistemlerdir.



Iki boyutlu bir sistemde faz alan1 yardimiyla ydriinge kestirilebilir olsa da ii¢ boyutlu
bir sistemde bu yontem ¢ok karmasik hale gelecektir. Sekil 1.2°deki bir sabit katsayili
dogrusal matris diferansiyel denkleminin faz portresi buna 6rnek olarak gdsterilebilir.

Bu iki sistemin diferansiyel denklemleri (1.1) ile verilmistir.

xX=y x -1 -1 0]px
Shaeee Pl e
(a) (b)

(1.1)(a) denklemi ile verilen Van der Pol osilatoriiniin faz portresi Sekil 1.1’de;
(1.1)(b) denklemi ile verilen sabit katsayili, dogrusal matris diferansiyel denkleminin
faz portresi ise Sekil 1.2’de verilmistir. Faz portrelerinde oklar ile faz alanlart
gosterilmistir. (1.1)(b) diferansiyel denkleminin analitik ¢oziimii elde edilebilir
olmasina ragmen Sekil 1.2°den goriilebilecegi gibi faz alaninin yorumlanmasi oldukca
zordur. Sistem davraniginin daha karmasik oldugu kaotik sistemlerde faz alanini

yorumlamak ¢ok daha zor olabilir.

Sekil 1.2 : Negatif reel kok ve komples kok ¢ifti igeren bir dogrusal matris denklem
sisteminin faz portresi



Bu zorlugu asmak i¢in enerji kavrami kullanilabilir. Enerji temelli yontemler sistem
davranigina dair bilgi vermektedir. Dogrusal olmayan sistemler kararli olduklar
taktirde, bu sistemler i¢in etkili olarak kullabilen bir yontem Lyapunov teoridir.
Lyapunov teori yerel ya da genel olarak sistemin bir denge noktasina gittigini
gostermek icin kullanilir. Enerji temelli bagka yontemler de vardir: Euler-Lagrange ve
Hamilton denklemleri. Bu denklemler sisteme dair diferansiyel denklemlerin elde
edilmesinde kullanilmaktadir. Bu yoOntemlerden Hamilton teori baslangicta
denklemlerin eldesi i¢in kullanilmis olsa da daha sonra bu teori gelistirilmis ve
senkronizasyon, kararlastirma gibi konularda Lyapunov teori gibi genis bir uygulama

alan1 bulmustur.

Kaotik sistemlerin davraniglarini smiflandirmak icin kullanilan c¢esitli yontemler
vardir. Bu yontemlere 6rnek olarak Poincare kesitlemeleri, garip ¢ekici i¢in Lyapunov
iisteli hesabi, dallanma diyagrami ¢izimi verilebilir. Ne yazik ki bu yontemler sistemin
sayisal analiz ile ¢6ziilmesini gerektirir. Ayn1 sorun faz portresi ¢izimi kullaniminda
da vardir. Sistemi ¢ozilip yoriingeyi ¢izmeksizin i yapmak sadece Hamilton kaotik
sistemlerde miimkiindiir. Bu sistemlerde faz alami ¢izimi ile ydoriinge hareketi
kestirilebilmektedir. Aksi olarak sistem analiz edilmeksizin yapilabilecekler c¢ok
stnirhdir. Sistemin parca par¢a dogrusal olmasi, dogrusal alt sistemler igermesi, ya da
kiigiik isaret analizi ile uyumlu hareket etmesi halinde etkin olarak kullanilabilen
0zdeger, 6zvektor analizi; diferansiyel denklemin denge noktasi analizi buna 6rnek

olarak verilebilir.

Tezin amaci kaotik sistemlerin enerji bakis acis1 ile incelenmesidir. Enerji bakis agis1
ile bir sisteme yaklasabilmek i¢in dnce enerji olarak hangi biiyiikliigiin izleneceginin
belirlenmesi gerekir. Literatiir incelemesi sonucunda bu konuda Chua-McPearson
tarafindan gelistirilen yontem belirlenmis ve bu yontemle elde edilen Hamiltonyan

kullanilmustir.

Enerji bakis agisi ile kaotik sistemlerin incelenmesi hedef olarak kondugu taktirde
hangi tip kaotik sistemlere bakilacagi 6nem arz eder. Hamilton sistemler genel olarak
korunumlu sistemlerdir. Ornegin siirtinmesiz ortamda basit sarkag periyodik davranis
gosterirken ikili sarkag ise kaotik davranis gosterir ve iki sistemde de enerji korunur.
Enerjinin korundugu Hamilton kaotik sistemler tezin kapsami diginda olup, tezde diger
tip kaotik sistemler olan kayipli kaotik sistemler ele alinmustir. Kayipli kaotik

sistemlerde kaos garip ¢ekicinin varligi ile gozlenir.



Kayiph kaotik sistemler incelenmek istendiginde de literatiirdeki 6dneminden dolay1
Chua devresi dogal olarak one c¢ikar. Chua devresi basitge gerceklenebilir olmasi,
devrede gozlenen zengin dinamikler ve Shilnikov anlaminda kaotik oldugu analitik
olarak ispat edilen bir devre olmasi sebebiyle ¢ok popiiler olmustur [2-5]. Ozellikle bu
devreden tiiretilen Chua osilat6riiniin bilinen biitiin 3. dereceden otonom kayipli kaotik
sistem dinamiklerini gosterdiginin anlagilmasiyla Sekil 1.3’de gdsterilen Chua devresi

ve Chua osilatorii kaos iizerine ¢alismak i¢in ¢ok 6nemli devreler haline gelmistir [6].

MW
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Sekil 1.3 : Chua devresi ve Chua osilatorii.

Tezde enerji bakis agistyla Chua devresi ele alinmistir. Chua devresi farkli tip

davranislar i¢in enerjinin degisimi acisindan gozlenmis ve sonuglar yorumlanmistir.

Enerji degisimi iki farkli sekilde incelenmistir. Tlk olarak toplam enerjinin degisimi
acisindan dinamikler incelenmistir. Bir diger yontem olarak Chua devresinin icerdigi

LC tank devresinin devrenin geri kalani ile yaptigi enerji alis-verisine bakilmistir.

Literatiirde de benzer yaklasimlar gézlenmektedir [7]. Ornegin Sekil 1.4°de goriilen
Chua devresinde LC alt devresi yerine bir transmisyon hatti konulmustur. Bu hat da
bir RLC devresi gibi modellenebildigi icin devre bir RLC devresi ve ona paralel baglh

bir aktif devre seklinde yorumlanabilir.

R R

My i —AW

L% Cy —— C, == Vr C, == Wr

Sekil 1.4 : Chua devresinde LC tank devresi yerine transmisyon hatt1 konarak elde
edilen yeni kaotik devre.
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Tezde ortaya konan yaklasim bir¢ok agidan gelistirilme potansiyeline sahiptir ve
kendine birgok uygulama alani bulabilir. Ornegin Sekil 1.5°da verilen [8] numarali
kaynakta yer alan devrede Chua osilatériinde LCR alt devresine bir akim geri
beslemesi yapilarak devrenin kaotik davranisi zenginlestirilmistir. Benzer diisiince ile
tezde Chua devresi i¢in edinilen anlayis Chua osilatorii i¢in de tekrarlandiginda elde
edilecek bilgi ile amaca yonelik geri besleme yaparak daha kararli kaos eldesi miimkiin
olabilir. Tezin son bdliimiinde tez konusunun gelecege yonelik yaratabilecegi baska

potansiyellere de deginilecektir.
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Sekil 1.5 : Chua osilatoriinde LCR alt devresine akim geri-beslemesi uygulanarak
elde edilen yeni kaotik devre.

Tez toplam alt1 boliimden olusmaktadir. ikinci béliimde kaos teorisinde kullanilan
enerji temelli yontemlere deginilmistir. Uciincii bliimde Chua literatiirii ele alinmustir.
Dordiincii  bolimde Chua devresi i¢in Euler-Lagrange denklemleri yazilarak
Hamiltonyan elde edilmistir. Besinci boliimde tezde gelistirilen yontem agiklanmustir.
Tezde enerjinin arttig1 ve azaldig1 yoriingelerin arasindaki girisimin kaotik dinamik
yaratmak i¢in kullanilabilecegi gosterilmistir. Son bdliimde ise bu bakis yardimiyla

ulagilabilecek yeni sonuglar ele alinmstir.






2. KAOS TEORISINDE KULLANILAN ENERJi TEMELLi YONTEMLER

2.1 Dinamik Sistem Teorisinde Enerji Kavraminin Kullanilmasi

Dinamik sistem teorisinde bir sistemin zamana gore davranisi incelenir. Sistemde
bilinmesi istenen biiyiikliikler degiskenler ile ifade edilir ve sistemin davranisi ¢esitli

yontemlerle ¢oziiliir. Dinamik sistemlerde enerji kavramindan dort sekilde istifade

edilebilir:
e Sistemin modellenmesi ve sisteme dair denklemlerin olusturulmasi
e Denklemlerin ¢oziilmesi
e Sistem davraniginin kestirilmesi
e Sistemin kontrol edilmesi

Bu béliimde bu basliklar 6rnekler ve literatiir incelemesi ile ele alinacaktir.

2.1.1 Sistemin Modellenmesi ve Sisteme Dair Denklemlerin Olusturulmasi

Sistem denklemleri enerji kavrami yardimiyla elde edilebilir. Klasik mekanikte etkin
olarak kullanilan Euler-Lagrange ve Hamilton denklemleri bu kullanima verilebilecek
orneklerdir. Klasik mekanige dalga denklemi olarak yaklagan Hamilton-Jacobi
denklemi enerjinin bu kullanimina verilebilecek bir baska 6rnektir. Hamilton-Jacobi
denklemi ile sistem denklemleri olusturuldugunda varyasyonel hesap teknikleri

kullanilir.

Enerji kavramu ile sisteme dair bir 6zellik denklemlere katilabilir. Klasik mekanikteki
Newton’un 3. yasasi (etki-tepki prensibi), enerjinin korunumu, momentumun
korunumu yasalari; elektrik devreleri ya da daha genel olarak ag teorisinde kullanilan
Tellegen ve renkli dal teoremleri; termoninamigin ikinci yasasi bu kullanima 6rnek

olarak verilebilir.

Fiziksel karsilig1 olan dinamik sistemler ele alindiginda ger¢ek diinya problemi ile
uyumlu enerji tanimlar1 yapilmasi faydali olabilir. Ornegin bir aracin zamanla hareketi

incelendiginde enerji kavrami aracin kinetik enerjisi olarak karsimiza cikar. Bir bagka



ornek olarak bilardo toplarinin bir dis kuvvet uygulandiginda nasil hareket edecekleri
incelendiginde momentumun korunumu ilkesi enerji kavraminin kullanildig1 yer olur.
Ancak bu bakis enerji kavramimin kullanilmasinda surlayict olmamalidir. Enerji
kavraminin kullanilabilmesi i¢in enerjinin fiziksel anlami olacak sekilde tanimlanmasi

sart degildir.

Enerji kavrami yerine fiziksel anlam1 olmayan dual enerji kavrami da kullanilabilir.
Elektrik devreleri i¢in bu kavramlar EK B’de agiklanmustir. Euler-Lagrange ve
Hamilton gdsterimlerinde enerji ve dual enerji kavramlarinin alternatif kullanimlarina
[9] numarali kaynakta yer verilmistir. Enerji tanmimlar1 yapilirken gergek diinya
problemi g6z oniine alinmaksizin sadece denklemlerde enerji formiilasyonuna uygun

bir matematik diizenleme yapilmasi da yeterlidir [10].

Ote yandan sistemin ¢dziimii neticesinde elde edilen sonuglar ile ger¢ek diinya

problemi arasinda iliski kurulacaksa sisteme dair fiziksel kisitlara dikkat edilmelidir.

Ornek 2.1 : Bir LC tank devresinde potansiyel enerji olarak kondansatoriin enerjisi,
kinetik enerji olarak da endiiktansin enerjisi tanimlansin. Devre ¢alisirken bir anda

acik devre yapilsin. Bu sistem i¢in asagidaki yorumlar yapilabilir:

a. V=0, T=0: Enerji verilmemis bir LC devresi.

b. V=0, T>0: LC devresinde kondansatoriin tamamen bos, endiiktansin tamamen

dolu oldugu an.

c. V>0, T=0: LC devresinde kondansatoriin tamamen dolu, endiiktansin tamamen

bos oldugu an.

d. V>0, T>0: LC devresinde kondansator ve endiiktansin tamamen bos olmadigi

bir an.

e Bir ilk kosula sahip LC devresi icin anahtar agilana kadar b-d-c-d adimlar1

durmaksizin gerceklesir. Bu devinim boyunca enerji korunur.

e Anahtar acildiginda kondansatdr enerjisini korur, dolayisiyla potansiyel enerji
korunur. Endiiktans i¢in ise durum farklidir. Anahtar agildigi i¢in endiiktanstan
akim akmaz, bunun sonucu olarak manyetik alan olusmaz ve dolayisiyla

kinetik enerji korunmaz.



Ornek 2.2 : Ornek 2.1°deki sistemde devre calisirken bir anda kondansator acik,
endiiktans ta kisa devre yapilsin. Bu anahtarlama aninda kondansator ve endiiktans

icin enerji, dolayisiyla potansiyel enerji ve kinetik enerji korunur.

Buradaki yorumun benzeri [11] numarali kaynakta yer almistir. Bu g¢alismada
kondansatér ve endiiktansin sirasiyla acik ve kisa devre yapilarak degerlerini
korumasinin miimkiin oldugu; oysa direncin degerini koruma kabiliyetinin olmadigina
deginilmis; ardindan da memristdr ve memristor benzeri elemanlarin degerlerini

koruma kabiliyetleri incelenmistir.

Sistem modelinin basitlestirilmesi s6z konusu ise bu durumda enerjinin korunumu ile

ilgili 6zelliklerden taviz vermeksizin bir basitlestirme yapilmasi gerekir [12].

2.1.2 Denklemlerin Coziilmesi

Bu kullanima 6rnek Hamilton sistemlerde enerjinin korunmasi 6zelliginden istifade
eden enerji korunumlu diferansiyel denklem analiz yontemleridir. Diferansiyel
denklemlerin sayisal entegrasyon yontemleri ile ¢oziimiinde zamanda bir adim aralig1
belirlenip bu adim aralig i¢in kullanilan tiirev yaklasikligi ile alan hesabi yapilir. Cok
basit ifadeyle diferansiyel denklemin ¢oziimiiniin bir noktadaki degeri ve o noktadaki
diferansiyel denklemin tiirevi ya da ¢ok boyutta ¢aligiliyorsa gradyeni kullanilarak bir
sonraki nokta kestirilir. Elbette bu temel diistince seklidir; yiiksek mertebeden tiirevler
kullanmak, hatanin bir katsayr yardimiyla geriye dogru diizeltme terimi olarak
kullanilmasi, polinomsal yaklasiklik yontemleri kulanmak, vb. bir¢ok ilave teknik ile

sayisal analizin dogrulugu arttirilir.

Bu yontemlerde tiireve sayisal analiz ile nasil yaklasilacagi hatayr etkiler. Analiz
anindaki degisken degerleri ile o andaki tiirev degeri kullanilabilir ya da o andaki
degerler yardimiyla adim biiyiikligii kadar sonraki degisken degerleri bulunur ve adim
biiyiikliigii sonundaki tiirev degeri kullamilabilir. Ilaveten zaman adiminin ortasindaki
tirev degerini kullanan yontemler de vardir. Sayisal hata tiireve dair hangi

yaklasikligin kullanildigindan etkilenir.

Eger sistem kanonik Hamiltonyan ise diferansiyel denklem, (C.58)(a) yapisindadir. Bu
tip sistemler i¢in kullanilan bir yontem, denklemlerin (C.58)(a)’ya gore p ve

degiskenleri i¢in iki parcaya ayrilmasi ve bir grup degisken i¢in analiz anindaki, diger



grup degisken i¢in de adim biyiikliigli sonundaki tirevin kullanilmasidir. Bu

yontemler korunumlu enegratdrler! olarak adlandirilir [13, 14].

Denklemlerin ¢oziimiinde enerji korunumuna dikkat eden bir baska yaklasim da
diferansiyel denklem entegrasyonu kullanmak yerine; denklemlere enerji korunumuna
dair denklemi de katip elde edilen diferansiyel cebrik denklem takimi i¢in 6zel

diferansiyel cebrik entegratorler? kullanmaktir [15].

Kiitle hareketi ile olusan is ya da kimyasal tepkime olusumu, 1s1 alis verisi gibi
enerjinin form degistirdigi dinamik sistemlerin analizinde form degistiren enerji

¢esitlerinin esitlenmesi de denklem ¢oziimiinde kullanilabilir.

Bir sistemin sayisal analiz yontemleri ile periyodik ¢ozlimleri arandiginda sayisal
entegrasyon yontemleri kiigiik hatalarin birikerek sonuca etki edebilmesi sebebiyle
etkili olmayabilir. Bu durumda sistemin dogrusal olmayan karakteri diisiik ise
pertiirbasyon analizi ige yarayabilir. Dogrusal olmayan davranmisin baskin oldugu
durumda ise Harmonik Balans yontemleri etkin olarak kullanilabilir. [16] numarali

kaynakta bu konuda kapsamli bir literatiir taramasi yer almaktadir.

2.1.3 Sistem Davranmisinin Kestirilmesi

Dinamik sistemlerin analiz edilmeksizin davranisinin kestirilmesi igin enerji kavrami
etkin olarak kullanilabilir. Bunun en gérkemli 6rnegi Lyapunov teoridir. Bu teoride
sistem degiskenlerini giris olarak alan &zel bir fonksiyon bulunmaktadir. Oyle ki bu
fonksiyonun degeri dinamik sistemin ¢6ziimii boyunca ya sabit kalir ya da git gide
azalir. Lyapunov teori, dinamik sistemin ¢dziimiiniin yerel ya da genel olarak sinirl
kaldigini ya da bir denge noktasina gittigini séyleme imkani1 verir. 100 yildan eski bir
teoridir ve bir ¢ok agidan gelistirilmistir. Anahtarlamali sistem kararliligi da bu
teorinin etkin olarak uygulama alani buldugu yerlerden biridir. Boyle bir sistem igin
bir Lyapunov fonksiyonu bulmak yerine uygun kosullar1 saglayan Lyapunov
fonksiyonlar ile ¢alismak miimkiindiir. Tezde 6.9. boliimde gelecekte tezin amaci

dogrultusunda bu teorinin nasil kullanilabilecegine deginilmistir.

Iki tip sistemde daha enerji kavrami yardimiyla sistem davranisi etkin olarak

kestirilebilmektedir. Hamiltonyan sistemlerde ve Gradyen sistemlerde.

! Symplectic integrators
2 Diferantial algebraic equation integrators
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(C.58)(a) ile verilebilen sistemler kanonik Hamiltonyan sistemler olarak adlandirilir.
Bu sistemlerde Hamiltonyan korunumlu biiytikliiktiir. Yoriingeler boyunca degeri
korunur. Gradyen sistemlerde ise sistem degiskenlerinin fonksiyonu olan bir
potansiyel fonksiyonunun degeri yoriinge hareketi boyunca daima azalir. Boylece

hareket bir denge noktasinda sonlanir.

2.1.4 Sistemin Kontrol Edilmesi

Ornegin Sekil 2.1°deki devrede iki Chua devresi kapasite (ya da endiiktans) ile elektrik
alan1 (ya da manyetik alan) kuplaji olusturarak bir birine baglanmigtir. Devreler arasi
kuplaj kapasitif, endiiktif ya da iki kuplajin birden kullanilmas1 seklinde olabilir. Chua
devrelerinde birer termistor kullanilmustir. Termistor kullanimui ile devreler 1s1

degisimine duyarli hale getirilmistir.

Sayisal analiz, simiilasyon ve devre gerceklemesi ile ile termistorlerin kosullart ¢ok
farkli oldugunda senkronizasyonun basarilamadigir gosterilmistir. Devrede kuplajin
oldugu yere termistorlerin konabilecegi; boylelikle sekronizasyonun gerceklesmesinin
kontrol edilebildigi bir temel yapiya varmanin miimkiin olabilecegi onerilmistir [17].

—_—_ — — Y .

R

Sekil 2.1 : Elektrik ya da manyetik alan kuplaji yapilmis iki Chua devresinn
termistorlerdeki degisim yardimiyla senkronizasyonu i¢in dnerilen devre.

2.2 Kaos Teorisinde Kullamlan Bazi Enerji Temelli Yontemler

Bu béliimde kaos teorisinde kullanilan enerji temelli baz1 yontemler ele alinacaktir. Tlk
olarak Euler-Lagrange ve Hamilton denklemleri, ardindan da Port Kontrollii Hamilton
formiilasyonlar1 verilecektir. Burada gosterilecek olan Euler-Lagrange ve Hamilton

denklemlerinin ¢ikarimlari igin EK C’ye bakiniz.

11



2.2.1 Euler-Lagrange Denklemleri

Sistemin holonomik olmayan kisit denklemi icermesi yani sadece konuma bagl

olmayan kisit icermesi durumunda Euler-Lagrange denklemleri asagidaki gibidir:

d| oL oL .
—|—|-—=0 , j=1...,n ,
dt{@dj oq; : (C.39)

Sistemin korunumsuz kuvvetler de icermesi halinde yani en genel halde

Euler- Lagrange denklemleri asagidaki gibidir:

d( oL oL OR .
—| — |-—+—=0Q, , =1...,n C.
dt(ﬁqj'] aq; oq; J : (4

2.2.2 Hamilton Denklemleri

Sistem kanonik yapida ise yani kinetik enerji zamana bagl degil ise (C.58)(a) kanonik
Hamilton denklemleri kullanilir. Sistem kanonik yapida olmadiginda yani kinetik
enerji zamana bagli oldugunda (C.58)(b) de denklemlere katilir. Bu durumda (C.58)

Hamilton denklemleri kullanilir.

§ M
i_a.
. __%'H @)
Pi = 5_(1. (A1)
oL oH
_ b
ot ot (k)

Sistemin korunumsuz kuvvetler de icermesi halinde yani en genel halde ise Hamilton

denklemleri asagidaki gibidir:

_oH
I_8p|
M R @
' eq ag (C.73)
a__oH .
ot ot
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2.2.3 Port Kontrollii Hamilton Sistemler

Tanim 2.1 Kap1 Kontrolli Hamilton Sistem: Kanonik Hamilton yapida bir sistem ele

alimsi. Bu sistemin uyarilmasit durumunda sisteme ait denklemler asagidaki gibi

olacaktir.

]
i oD

e (21)
pi=——+F

o,

Bu denklemler, genellestirilmis koordinatlardaki konumlar, momentumlar ve
kuvvetlere dair g = (ql,..., qn)T, p= (pl,..., P, )T ve U= (Fl,..., F, )T seklinde tanimlanan

q, p ve u vektorleri yardimiyla asagidaki gibi gosterilebilir.

oM
0
o (2:2)
=—+U
p o
(2.2) ile verilen bu sistemde H ’nin zamana gore tiirevi alinirsa,
dH 6'™H . 0'H T Ty AT e T
—= + =(—p +u)qg+ =u 2.3
at 6qq6pp(p )a+qg p q (23)

ifadesi elde edilir. Bu da genellestirilmis kuvvetler ile sisteme verilen enerjinin
sistemin toplam enerjisindeki yani Hamiltonyanindaki degisime esit oldugu anlamina

gelir. Yani bu denklem enerjinin korunumunu gdosterir.

(2.2) ile verilen bu sisteme bir y ¢ikisi ilave edilirse asagidaki sistem elde edilir.

oH
R L
p| |-1 of|oH | |1
2 (2.4)
oH
Y—% (=9)
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Kap1 yaklagimi ile diisiiniilecek olursa (2.4) denklemine gore u giris ve y ¢ikis
kapilarindan verilen enerji kayipsiz olarak sisteme aktarilir. Bu denklemde giris
fonksiyonuna carpan olarak gelen ilgili matris parametresi genellestirilirse agsagidaki

matris denklemi elde edilir.

oH

N EAE A
p| |-1 0]|oH | |B(a)
P (2.5)
., oH
y=B (Q)g

Simdi de bu denklemdeki matris ve vektorler genellestirilirse,

x=J(x)aa—';'<x)+g(x)u

. oH (26)
y=9"(x) —(x)
OX
denklemi elde edilir. Bu denklemde X =(q",q")" "dir ve J(x) de,
J(x)=-3"(x) (2.7)

kosulunu saglayan eksi bakisimli® bir sabit matristir. (E.6) denklemleri Kap: Kontrollii

Hamilton sisteme dair gosterimdir.

Tanim 2.2 Kayipli Kap1 Kontrollii Hamilton Sistem: Kap1 Kontrollii Hamilton sisteme

kayiplilik eklenmesi ile elde edilir.

k=[300-ROOI 09+ (0

(2.8)
y=g7(x) —68“ x)
X

(2.8) denklem sistemi Kayipli Kap: Kontrollii Hamilton sisteme dair gosterimdir. Bu

denklem sistemi kayipsiz degildir.

1 skew symmetric
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Kap1 Kontrolii Hamilton sistemlerde genel bir sakinca vardir. Denklemler elde
edilirken klasik mekanikte ¢ok ise yarayan Hamilton denklemleri ile yola ¢ikilmistir.
EK C’den goriilebilecegi gibi Hamilton denklemleri genellestirilmis koordinatlarda
yazilir. Oysaki Kapr Kontrollii Hamilton denklemleri elde edilirken bu denklemler
tizerinde genellestirme islemleri yapilmistir. Dolayisiyla artik denklemlerin

genellestirilmis koordinatlarda oldugu sdylenemez.

Bu teori ile ¢alisilirken sistemin bu sekilde yazilan enerji fonksiyonunun alisilageldik
koordinatlarda oldugu, genellestirilmis koordinatlarda ¢alisilmamasinin bir sakinca
yaratip yaratmayacagi sorgulanmalidir. Kapi kontrollii Hamilton teori genellikle
kararlilastirma veya senkronizasyon ig¢in kullanildigi i¢in bu husus bir sorun

olusturmamaktadir.
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3. CHUA DEVRESI iLE iLGIiLI LITERATUR INCELEMESI

Tezin amaci Chua devresinin davranigini enerji alis verisi ile gézlemektir. Dolayisiyla
literatiirde Chua devresi ile ilgili yapilan analizler tez i¢in énemli bir ¢ikis noktasidir.
Chua devresi kaos tarihinde biiyiik bir 6neme sahiptir. Devrede gozlenen zengin
dinamikler ve devrenin basitce gerceklestirilebilir olmasi sebebiyle Chua devresi kaos

literatiiriinde ¢ok popiiler olmustur.

Chua devresi kaotik davranig gosteren en basit elektrik devresidir. Gézlenen zengin
dinamiklere ragmen Chua devresinde gozlenemeyen dallanma davranislart benzer
karmasiklikta yeni kaotik elektrik devreler 6nerilmesine sebep olmustur. Chua devresi

ve benzer olan bu devreler literatiirde bir arada ‘Chua Devre Ailesi’ olarak anilmustir.
Bu béliimde Chua devresi ile ilgili literatiir asagidaki agilardan incelenecektir:

e Chua ve Chua devre ailesine ait devreler ve denklemler

o Literatiirde tezle ilgili ortaya konan katkilar
Ik boliimde Chua devresi ile ilgili bilgi verilecektir. Bu boliimde Chua devresi igin
literatiirde karsilasilan farkli devre denklemleri gosterilecek olup ardindan Chua devre
ailesi tanitilacak ve Chua devresi ile ilgili genellestirmelere deginilecektir. Bir sonraki

boliimde ise Chua devresi ile ilgili literatiir verilecektir.

3.1 Chua Devresi

Sekil 3.1°de verilen Chua devresi 3 enerji depolayan eleman, bir direng ve bir aktif
direngten olusmaktadir. Aktif direng 3 kirik i¢eren siirekli, parca par¢a dogrusal bir

direngtir ve literatiirde "Chua Diyotu’ olarak adlandirilmaktadir.

R .
AAAY -
+ o+ +
Ly o, ——vw v __—_c Ve
I3 N
R

Sekil 3.1 : Chua devresi.
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Chua devresine ait denklemler asagidaki gibi verilir:

dv
Cld_tl =G (Vz _Vl)_ g (Vl)
dv .
Czd_tzz_G (V2—V1)+I3 (3.1)
L%_—v2

(3.1) denklemindeki C;, C,, L ve G devre elemanlarinin degerleridir. Denklemdeki
g(vg) fonksiyonu ise dogrusal olmayan Ny direncinin tanim bagintisidir ve (3.2)

denklemi ile verilmektedir.

iR :g(VR):mO VR+M[|VR+BP|_|VR_BP|]

M, Vg +Be (M, —m,), Vg =B, igin (3.2)
=Im, Vg, [Ve| < B icin
M, Vg —Bp (M, —m,), Vv, <—B, icin

Bu denklemlere gore Chua diyodunun gerilim-akim grafigi Sekil 3.2’deki gibidir.

\/R=0 (VR)

mg

Sekil 3.2 : Chua diyodu gerilim-akim grafigi.

Literatiirdeki ilk ¢alismalarda devrede 3 yerine 2 kirikli Chua diyodu kullanildiginda
da kaos elde edilebilecegi gozlenmistir. Iki kirikli Chua diyodu igin eleman gerilim-

akim grafikleri Sekil 3.3’te verilmistir.

18


file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/NRCizim3parca.png

A ir=9(vRr) | ir=9(vr)

Y
Y

(a) (b)
Sekil 3.3 : 2 kirikli Chua diyodu i¢in gerilim-akim grafikleri.

Sekil 3.3(a) ve Sekil 3.3(b)’deki gerilim-akim grafiklerine dair denklemler (3.3) ve
(3.4) denklemleri ile verilebilir. Literatiirde daha sonra 3’ten fazla kirikli Chua

diyotlar ile de ¢alisilmustir.
i (mo _d ml)
IR:g(VR):mOVR+ 5 [|VR_BP|_(VR+BP)]

:m1VR+@[|VR—BP|+(VR—BP)] (3.3)

m, Vg, Vg £B; icin

4 {mo Vg + B, (m —m,), v, <B, icin

ir = g(vy)=m, VR+@[|VR+BP|+ (vR—BP)]

m, —m
:mlvR+¥[|vR+BP|_(VR+BP)] (3.4)
m, Vg, Vg 2—-B; i¢in
M, Vg —Bo(m —m,), v, =—B, icin

Chua diyotu tanim bagintisi kirik yapisina gore (3.2), (3.3) ya da (3.4) denklemlerinden
biri ile verilmektedir. Chua devresine ait diferansiyel denklem de (3.1) denklemi ile
verilmektedir. Bu 2 denklemin olusturdugu sistem dallanma incelemeleri i¢in ¢ok fazla
parametre icermektedir. Bu sebeple denklemlerde uygun doniisiimler yapilarak
boyutsuz yeni bir denklem takimu tiiretilmistir. Boyutsuzlastirma yapilmasinin bir
baska sebebi de (3.1) denklemindeki dlgek farkidir.
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Denklem parametrelerinden C; ve C,’nin tipik degerleri pF boyutunda iken, L’ nin tipik
degeri mH boyutundadir. Durum degiskenlerinin carpanlari arasindaki bu boyut
farkinin sonucu olarak Chua devresinde tipik eleman akimlart mA boyutunda iken
eleman gerilimleri V boyutundadir. Endiiktans akimi ile kondansator gerilimleri
arasindaki yaklasik 1000 kat fark devrenin sayisal analizinde kiigiik de olsa bir zorluk
yaratmaktadir. Bu sebeplerle yapilan boyutsuzlastirmaya dair doniisiim denklemleri

asagidaki gibidir:

Ay Ay A “tG
e v e %,
‘m ‘m AC AC
a=Mg b= a=Cg p- /(LG?)

(3.5) doniisiim denklemlerinin (3.1) devre denklemine uygulanmasi ile (3.6) boyutsuz

(3.5)

devre denklemleri elde edilir. Bu denklemdeki X, y ve z boyutsuz durum degiskenleri;

a ve S ise dallanma parametreleridir.

dr

ﬂzx—y+z (3.6)
dr

dz

E__'B y

Bu denklemdeki f(x) boyutsuz Chua diyodu igin eleman tanim bagintisidir ve asagidaki

gibi verilmektedir:

f(x)=b x+%(a—b)[|x+1|—|x—1|]

bx+a-b, x=>licin (3.7)
=Jax, X <ligin
bx+b-a, x<-1ligin

Bu denklemlere gore elde edilen boyutsuz Chua diyodunun gerilim-akim grafigi
Sekil 3.4’deki gibidir. Sekilden goriilebilecegi gibi boyutsuz koordinatlarda parca

parc¢a dogrusal Chua diyodunun anahtarlama anlar1 +1°dir.
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f(x)

Y

b

Sekil 3.4 : Boyutsuz koordinatlarda Chua diyodu gerilim-akim grafigi.

Alternatif bir gosterim olarak, (3.6) ve (3.7) denklemleri

A

h()ex+ F(x),  mooa+l, m =b+l (38)

tanimlar1 kullanilarak asagidaki sekilde de yazilabilir.

d
ez ly-nx)
T
d—yzx—y+z (3.9)
dr
dz
E__ﬂ y

h(x)=m, x+%(m0—ml)[|x+1|—|x—1|]

m, X+m,—m,, x=>Licin (3.10)
=m, X, X <ligin
m, Xx+m,—m,, Xx<-1icin

(3.10) denklemindeki mo ve m1 parametreleri boyutsuz biiyiikliikler olup (3.2) — (3.5)
denklemlerindeki Chua diyodu egimi olan parametreler degildir. Literatiirde bu

sekilde gectigi i¢in farkli parametreler tanimlanarak yazilmamistir.

(3.2) denklemindeki m, ve m; Sekil 3.2’deki par¢a pargca dogrusal gerilim-akim
grafigindeki egimlerdir. Chua diyodu tanim denklemi gerilim kontrollii bir direng

olarak verildigi i¢in, zamanla (3.2) denklemindeki m,, m, ve Bp yerine sirasiyla
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Gy, G, ve E kullanimi tercih edilmistir. Chua diyodu denklemi bu parametreler igin
(3.11) denkleminde tekrar verilmistir. Gliniimiizde fiziksel parametreler kullanilacak

ise genelde bu parametreler tercih edilmektedir.
; (Ga _Gb)
k=9 (VR): G, Ve +T[|VR + E|_|VR N E| ]

G, Vg +(G, ~G,)E, v, >Eigin (3.11)
=1G, Vg, ve| <E igin
G, Vg +(G, -G, )E, v, <-Eigin

(3.2) denklemi yerine (3.11) denkleminin kullanilmasi durumunda boyutsuz
koordinatlardaki denklemler degismeyecektir. Sadece bu durumda (3.5) doniisim

denklemleri yerine yeni doniisiim denklemleri kullanilmasi gerekir.

(3.6) ve (3.7) ile verilen boyutsuz koordinatlardaki denklemler bir lineer matris
denklem sistemi olarak da yazilabilir. Denklemler bu formda yazilmak istenirse X,
boyutsuz koordinatlara ait durum degiskenlerini igeren vektor, b bir 6teleme vektorti,

A bir matris olmak iizere denklemler asagidaki gibi yazilabilir.

X'=AX+b (3.12)
R R ~afc+l) a O R ~ad(a-b)
X=|Y]|, A= 1 -1 1], b= 0 (3.13)
Z 0 -5 0

Bu durumda (3.13) denklemindeki ¢ ve d katsayilar1 boyutsuz koordinat X’in degerine

gore asagidaki gibi degisir.

1 X >1igin
0 X <ligin (3.14)
-1 x <-1icin

b, d
a, d
b, d

A

(c.d)

o o o
I

Chua denklemleri i¢in bir bagka gdsterim olarak (3.12) — (3.14) denklemleri denge

noktasi analizi yapildiktan sonra 6telenerek asagidaki sekilde yeniden yazilabilir.
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A(x-k)  x=>ligin
X'={A X |X| <ligin (3.15)
A(x+k)  x<-ligin

Bu denklemdeki x ve k asagidaki gibi tanimlanmaktadir.

X
A A b-a
X= : k=] 0], K=——— .
y b+1 (3.16)
z -k

3.2 Chua Devresinden Tiiretilen Yeni Devreler ve Genellestirmeler

Chua devresi iizerinde c¢alisildik¢a 3 boyutta gozlenebilecek biitiin kaotik dinamiklerin
bu devre kullanilarak gozlenemedigi goriilmiistiir. Bu sebeple gozlenemeyen bu
dinamikleri gorebilmek amaciyla yeni arayislar s6z konusu olmustur. Bu arayislar 4

grupta ele alinabilir:

e Devre parametrelerinin negatif olmasina miisade edilmesi
e Alternatif devreler 6nerilmesi
e Denklemlerde genellestirmeler yapilmasi

e Farkli Chua Diyotlar1 Kullanilmasi

3.2.1 Devre Parametrelerinin Negatif Olmasina Miisade Edilmesi

[k yaklasima &rnek literatiirde 'Double Hook’ olarak adlandirilan garip cekicidir.
Chua devresinde orta ve dis bolgeler i¢in gegerli olan parca parca dogrusal sistemlerin
0zdegerleri reel oldugunda kaotik c¢ekici gézlenip gozlenemeyeceginin sorgulanmasi
neticesinde C; ve L’nin negatif olmasina miisade edildiginde bir kaotik ¢ekici
bulunabilmistir [18]. [19] numarali kaynaklarda paramatere degerleri negatif
oldugunda bunu saglayan fiziksel devre ger¢eklemelerinin nasil yapilabilecegine dair
yontemler verilmistir. Ayni calismada negatif parametre diinyasinda devrenin

dallanma davranisinin da degistigi not edilmistir.

23



3.2.2 Alternatif Devreler Onerilmesi

Ikinci yaklasima verilebilecek bazi drnekler Sekil 3.5’te gériilmektedir [20-24]. Bu ve
benzeri devreler onerilirken Chua devresinin basitligine benzer olarak devrede sadece

3 adet enerji depolayabilen eleman olmasina dikkat edilmistir.

7 (0

(b) (©)

(d) :g ! (€) !

Sekil 3.5 : Chua devresi benzeri kaotik devreler?.

YL

Chua benzeri devreler tiiretildikten sonra yapilan calismalar neticesinde bu
devrelerden biri 6ne ¢ikmustir. Sekil 3.6°da verilen bu devre Chua Osilatéri? olarak
adlandirilmis ve Chua devresi ile beraber kaotik ¢alismalar i¢in bir prototip olmustur
[25-29]. [30] numarali kaynakta Chua Osilatoriiniin 6 elemana kadar kanonik esdeger

oldugu devreler verilmistir. Bu yayinda Sekil 3.5’teki devreler yer almistir.

Sekil 3.6 : Chua osilatorii.

1Sekil 2.5teki devrelerin ilgili kaynaklardaki yerleri asagidaki gibidir:

(@) (20,s.241), (b)(21,s.276), (c)(22,s.738), (d)(23,s.887), (e)(24,s.510)

2 Bu adlandirmada osilatdr kelimesi bu devrenin Chua Devre Ailesi iiyesi devrelere esdeger olduguna
vurgu yapmaktadir.
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Chua osilatoriine dair denklemler asagidaki gibi verilir:

dv

Cld_tl =G (Vz _Vl)_ g (Vl)

Cz%z—G (v, =V, )+, (3.17)
di .
d_t3: _(Vz +R, '3)

(3.17) denklemindeki C;, C,, L, R ve R, devre elemanlarina ait biyiikliklerdir.
Denklemdeki g(vg) ise dogrusal olmayan Ny direncinin tanim bagntist olup (3.18)
denklemi ile verilmektedir.
. G,-G
i = 9(vs)=G, Vg +¥[|VR + E|_|VR _E|]
G, Vg +(G,~G,)E, v, >Eigcin (3.18)
Ve, Ve| <E igin

G, vy +(G,-G,)E, v,<-Eicin

Bu denklemler i¢in boyutsuzlagtirmaya dair doniisiim denklemleri asagidaki gibidir:

iV/ ﬁV% iing 2t
SV e "~ ey

AC AR2C ARR,C
o ZCl B= % y="1"0 % (3.19)
A A 1, RC,>0icin
a=RG,  b=RG, - 2 > 16
-1, RC, <0igin

(3.19) doniistim denklemlerinin (3.17) devre denklemine uygulanmasi ile asagidaki
boyutsuz devre denklemleri elde edilir. Bu denklemdeki x, y ve z boyutsuz durum

degiskenleri; a, S, y ve k ise dallanma parametreleridir.

dr
ﬂ:k(x—y+z) (3.20)
dr
dz
d——k(—ﬂy—ﬂ)
T
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Bu denklemdeki f(x) Chua diyodu i¢in boyutsuz koordinatlardaki eleman tanim
bagintisidir ve (3.19) doniisiim denklemlerinin (3.18) Chua diyodu tanim bagintisina
uygulanmasi ile (3.20) denklemindeki gibi elde edilir.

f(x):bx+%(a—b)[|x+1|—|x—l|] (3.21)

Sekil 3.6’daki devrenin Chua osilatorii olarak segilmesinin bir avantaji olarak devre
R=0 i¢in klasik Chua devresi’ne doniisiir. Boylece daha 6nce Chua devresi igin

tiretilen bilginin bu yeni devrenin 6zel hali olmas1 saglanmustir.

3.2.3 Denklemlerde Genellestirmeler Yapilmasi

Chua denklemlerinin genellestirilmesine yonelik tiglincii yaklasimda ilk olarak (3.15)
ve (3.16) ile verilen sisteme dair boyutsuz haldeki dogrusal matris diferansiyel
denklem ailesi ele alinmistir. Chua devresine dair denklemlerin iist ve alt bolge igin

simetrik yapis1 gozetilerek bir genellestirme yapildig1 takdirde bu denklemler

asagidaki gibi X'=A X+b dogrusal matris denklemi ailesi seklinde yazilabilir.

a‘O,ll a‘0,12 a'0,13 bl

X AP Y A A .
X=|Y[, A=, i, |0 Ag=|8m 2, |0 b=(b

z a1,31 a1,32 a1,33 a‘0,31 a‘0,32 a0,33 b3
(3.22)
A X+Db x>1igin

X' =4 A, X X <ligin
A x-b x<-1igin

Bu 21 parametre iceren bir denklemdir. Ancak Chua devresinin simetrik yapisi ve
Chua diyodu eleman tanim bagmtisinin siirekliligi diisiiniilerek bu denklem ciddi

sekilde basitlestirilebilir.

X] oy a, a, b,
V' |=lan a, ay |-[|x+1-|x-1]|b, (3.23)
Z, a31 a32 a33 bZ

Boylece 12 parametre iceren (3.23) denklemi elde edilmis oldu. Kaotik sistemleri
incelerken koordinatlardaki degerlerin 6nemli olmadigi, topolojik 6zelliklerin 6nemli

oldugu disiiniiliirse (3.23) denklemine kanonik bir donilisiim uygulamak sistemin
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dogasin1 degistirmeyecektir. Bu diislince ile A matrisi 6zdegerler ile belirlenebilir.
Reel katsayili tekil olmayan bir A matrisi 3 6zdeger ile belirlenebilir. O halde dis ve
i¢ bolgeler i¢in olan A matrisleri 3’er parametre ile belirlenebilir. Ayrica (3.20)

denkleminde f(x) sadece bir boyutta goziiktiigii i¢in b matrisi de 1 parametre ile

belirlenebilir. Boylece 7 parametre igeren (3.24) denklemi yazilabilir.

A X A A A b
X=1Y Alz(allﬂp?/l)’ Aoz(ao'ﬂo'?/o)’ b=0
z 0

(3.24)
A, x+b X 21igin

X'=4A, X X <Ligin
A x-Db x<-1igin

Son olarak Chua diyodu siirekli oldugundan, (3.24) parga parca dogrusal matris

denklemi i¢in de siirekliligin saglanacagi diistiniilerek bu denklemi saglayan b matrisi
bulunabilir. Dolayisiyla Sekil 3.1’deki klasik Chua devresi (050, B 70) ve (al, B 7/1)

parametreleri kullanilarak sadece 6 parametre ile belirlenebilir.

Bu denklem Chua devre ailesi i¢in yazilmistir. Aslinda a, f ve y parametrelerinin
alabilecegi biitiin degerler diistiniildiigiinde (3.24) denkleminin bir alt kiimesi Chua
devre ailesini vermektedir. Chua devre ailesi igin yazilan dogrusal matris diferansiyel

denklemi i¢in asagidaki kisitlar gecerlidir:

e Vektor alani orta bolgede dogrusaldir.
e Durum uzayi, bir boyutta simetrik iki deger ile iist bolge ve alt bolgeye ayrilir.
e Ust ve alt bdlgeler merkeze gore simetriktir.

e Vektor alani stireklidir.

Chua devre ailesi iizerine bir ¢ok yayin yapilinca bu sonuglardan istifade etmek i¢in
denklemlerde genellestirmeler de Onerilmistir. Bu kisimda bu bakisa dair 2 6rnek

verilecektir.
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Ornek 3.1 :

X' =f(x), xeR? (3.25)

. f() stirekli,
. f(X)z —f (- X) seklinde tek simektrik,
e R% U, ve U, paralel diizlemleri ile; i¢ bdlge D, ve dis bolgeler D, ile D,
seklinde 3 bolgeye ayrilsin ve f() bu bolgelerde parca parca dogrusal olsun.
Bu dinamik sistem asagidaki gibi yazilabilir [31]:

Boylece bir boyutta +E degerini gecince iist bolge, orta bolge, alt bolge seklinde bolge
gecisleri yapilmasi yerine; birbirine paralel 2 diizlem igin bu diizlemleri gecince bolge

gecisleri yapilmistir. Bu da 6nerilen bu denklemlerle saglanan genellestirmedir.

A X N all alZ a13 A Wl A bl

X=|y|, A=|la, a, ay|, W=[w,|, b=b,

z a31 a32 a33 W3 b3
4 (3.26)

h(wa)=§UWTX+1HWTX—1H
X'=AX+bh(WTX)
Ornek 3.2 :

X' =A(X)(x—F(x)), xeR" (3.27)

e Bu vektor diferansiyel denkleminin ¢oziimii tek ve siirlt olsun.

. A() x vektorii i¢in bir nxn matris fonksiyonu olsun.

. F() x vektorii igin R" — R" seklinde bir doniisiim olsun.

. F() fonksiyonu sonlu sayida sigmoid, mutlak deger ya da parca parca

dogrusal fonksiyonun kombinasyonu olsun.

Bu genellestirilmis Chua doniisiimleri, diger kaotik sistemlerin incelenmesi igin
kullanilabilir [32].
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3.2.4 Farkh Chua Diyotlar1 Kullanilmasi

Chua devresi ya da Chua osilatorii ile ¢alisilirken farkli Chua diyotlarinin etkisi de bir
arastirma alani olmustur. Bu diisiince ile farkli Chua diyodu denklemleri incelenmistir.
[32-37] numarali kaynaklar buna 6rnek olarak verilebilir. Bu kaynaklarda kullanilan
Chua diyodu denklemleri (3.28) denkleminde gosterilmistir.

h(x)=c, x+¢, x° (a)
h(X)=c, +C, X+C, X +C, X° (b)
h(x)=(exp(y x)-1)/(exp(r x)+1) (c) (3.28)
h(x)=1(x)+m(x) (d)
h(x)=ax+bxexp(cx2) (e)

(a) ve (b) denklemleri kiibik polinom ornekleridir [33-35]. (c) denkleminde sigmoid
fonksiyonu kullanilmustir [32]. (d) denkleminde |(X) parga parga dogrusal, m(x) ise

sonlu sayida siireksizlik i¢eren bir fonksiyondur [36]. (e) denklemi ise X ’in degerine

gore sagilma ve katlama 6zellikleri gosteren bir fonksiyondur [37].

Bu alt boliimde Chua devresi, Chua devre ailesi ve denklemleri tanitilmistir. Bu
boliimden goriilebilecegi gibi sonuclarin genellestirilme potansiyeli diisiiniildiiglinde
kaos tlizerine calisilirken Chua devresinin ele alinmasi bir gereklilik haline gelmistir.
Tezde de bu diisiince ile Chua devresi lizerinde ¢alisilmistir. Bir sonraki boliimde Chua
devresi ve Chua osilatoriiniin ait literatiir bu devrelerin gelistirilmesi ve tez konusuna

verebilecekleri katkilar a¢isindan ele alinacaktir.

3.3 Chua Literatiiriinde Tezle Tlgili Ortaya Konan Katkilar

Bu boliimde ¢ok kapsamli olan Chua literatiirii tezde ele alinan ya da gelecekte tezle
ilgili olabilecek caligmalar kapsaminda izah edilecektir. Boliimde literatiiriin konu

acisindan gruplandirilmasi, krolonojik akistan 6ncelikli olarak degerlendirilecektir.

Chua devresi, literatiirde ilk olarak ¢ift ¢eker! davranisindan bahsedilen [2] numarali
kaynakta yer almistir. Matsumoto tarafindan yapilan bu yayinda devre 'Chua Devresi’
olarak anilmistir. Chua devresinin fiziksel olarak ger¢eklenmesi ilk olarak [38]

numarali kaynakta basarilmistir. Bu devrede ¢ift ¢ceker ve peryot katlamasi ile kaos

L “Cift ceker’ ifadesi ‘Double scroll’ terimi igin bir karsilik olarak kullanilacaktir.
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davraniglar1 gézlenmistir. [2] numarali kaynakta devrede bir¢ok baska davranisin da

gbzlendigi, bu davranislarin devam eden yayinlar ile verilecegi not diisiilmiistiir.

Bu yayinlardan ilki olan [3] numarali kaynakta devre denklemleri kapsamli olarak ele
alimmis ve boyutsuz koordinatlar tanimlanarak tekrar yazilmistir. Chua devresinin
tipik Ozelligi devre denklemlerinin 3 pargali parga par¢a dogrusal, otonom lineer
diferansiyel matris denklemi seklinde yazilabilmesidir. Denklemler bu sekilde yeniden
diizenlenmis ve her bir bolge icin denge noktalar1 ile bolgelere ait 6zdeger ve
Ozvektorlerin yardimiyla ¢ift ceker davranisi izah edilmistir. Sayisal analiz ile kaotik
¢ekicinin lyapunov sabiti bulunmustur. Bu yaym Matsumoto, Komuro ve Chua

tarafindan yapilmstir.

Chua devresi ¢ok popiiler olunca Chua tarafindan devrenin ortaya ¢ikisi da bir yayin
ile anlatilmistir [39]. Chua Tokyo, Japonya seyehati sirasinda Matsumoto’nun
laboratuvarinda bir Lorenz devresi gergeklemesi gormiistiir. Devrenin ¢alismamasi
neticesinde yeni devre arayislari olmustur. 3 aktif eleman iceren devre

kombinasyonlari iizerinde ¢alisilmistir. Bu ¢calisma neticesinde de devre bulunmustur.

Chua, Matsumoto ve Komuro’nun bir sonraki yaymni kaos teorisi agisindan ¢ok
onemlidir. Bu yayinda Chua devresinin Shilnikov anlaminda kaotik oldugu analitik
olarak ispat edilmis ve Chua devresi i¢in kapsamli dallanma analizi verilmistir [4, 5].
Bu ispatta lineer matris denklemi formunda yazilan Chua denklemlerine kanonik
matris dontlisiimleri uygulanmistir. Boylece devre denklemlerinde bir genellestirme
yapilmistir. Ispat ¢ift geker icin verildigi i¢in ve devre denklemlerinde de genellestirme
yapildigir i¢in makale 'The Double Scroll Family’ olarak adlandirilmistir. Bu
genellestirme yapilirken Chua devresi i¢in kanonik doniisiimler ile varilabilen katsay1
matrisi kiimesi adreslenmistir. Shilnikov anlaminda kaos gosterilirken homoklinik
yoriingenin varlig1 gosterildigi i¢in bu yayimin ardindan ¢ift ¢ekerin ortaya cikisi ve

yok olusu tizerine ¢alismalar yapilmistir [40, 41].

Chua devresinde parga parca dogrusal diyodun kiriklari {izerinde oynamalar yapilan
calismalar mevcuttur [39, 41-44]. Lineer devre analiz yontemlerini derinlemesine
kullanarak Chua devresinin ele alindig1 ¢alismalar vardir [43, 45]. Baz1 ¢alismalarda
LC devresinden adim adim Chua devresine varilmasi tizerine bir bakis sergilenmistir

[39, 43, 44, 46]. Bu ¢aligsmalar tez i¢in ¢ok dnemli olmustur.
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Chua devresinin Shilnikov anlaminda kaos oldugu gosterilirken kanonik matris
dontigiimleri kullanilmasi {izerine Chua denklemlerinin genellestirilmesi {izerine
calismalar baglamustir. {1k olarak Wu tarafindan 21 bilinmeyen igeren (3.22) denklemi
yerine 12 bilinmeyen iceren (3.23) denklemi Onerilmistir [47]. Ardindan dis
bolgelerdeki ve i¢ bolgedeki 6zdegerlerin kanonik bir devre! ile ger¢eklenmesi fikrine
varilmis ve yalnizca 6 eleman igeren yeni bir devre onerilmistir [23]. Kanonik Chua
Devresi olarak adlandirilan bu devre Sekil 3.5(¢)’de verilen devredir. Yayinda Chua
diyodu 2 parametre ile tanimlandig1 i¢in devrenin sentezi i¢in gereken 7 parametrenin
bulunmasini saglayan bir algoritma da verilmistir. Ardindan bir basgka kanonik devre
onerilmistir ki bu daha sonra 6ne ¢ikacak olan Chua Osilatorii devresidir [27]. Chua
osilatoriinde LC devresi igindeki endiiktansa seri bagl bir direng vardir. Gergek
diinyada i¢ direnci olmayan endiiktans bulunmadig: diisiiniildiigiinde bu devrenin
gercek diinyaya daha uygun oldugu diistiniilebilir. Bu ¢alismada ayrica devrenin
iirettigi doniisiimiin kendi iizerine acilir? olmamasi igin 3 kirtkli Chua diyotunun
saglamasi gereken 6zellikler bulunmustur. Sekil 3.7°de 6nerilen Chua diyotlari i¢in bu

sakinca yoktur. Kisa bir zaman i¢in literatiirde fakli kanonik devreler i¢in es zamanl

P

olarak iiretim yapilmaya devam edilmistir.

(a) Ga<0, Gv>0 (b) Ga>Gb>0, (c) Ga>0, Gb<0

)
-

(d) Gb< Ga<0 (€) Gb> Ga>0

Sekil 3.7 : Kanonik Chua devresinin kendi iizerine agilir olmamasi igin
kullanilabilecek Chua diyodu alternatifleri.

! Onerilen devrenin kanonik bir matris doniisiimii ile bir baska devreye esdeger olmasidir.
2 ‘Kendi iizerine acilir’ ifadesi ‘Folding’ terimi i¢in bir karsilik olarak kullanilacaktir.
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Ortak bir dil olusturulmasi i¢in 1993 yilinda Chua devresi i¢in yapilan bir 6zel dergi

sayisinda editér Madan tarafindan asagidaki terminoloji tavsiye edilmistir [48].

Suggested Terminologies and Notations for Chua’s Circuit:

1. The 5-element circuit will continue to be called Chua’s circuit. However, the v-i

characteristic of Chua’s diode may assume any single-valued, (not necessarily symmetric
or piecewise-linear) piecewise smooth function. The recently augmented Chua’s circuit
obtained by connecting one linear resistor in series wirh the inductor will be called the
Chua’s oscillator, except in the context of topological conjugacy when it may also be called
a canonical Chua’s circuit. Since there exist several distinct circuits which are also
topologically conjugate to Chua’s circuit, their circuit diagram must always be specified

to avoid being confused with the canonical Chua’s circuit as defined above.

. The state equations associated with Chua’s circuit will be called Chua’s equation in both

the physical and he dimensionless forms. The two dimensionless parameters associated
with the linear elements will be denoted by o and [ respectively. The equations associated
with the Chua’s oscillator will be called the canonical Chua’s equation. The three
dimensionless parameters associated with the linear elements will be denoted by a, B, and

y respectively.

. The original 1-D map associated with Chua’s circuit will be called Chua’s 1-D map.

. Two strange attarctors observed in the Chua’s circuit have been the spiral attractor and

the double scroll attractor. Many more have now been observed in the Chua’s oscillator.

All these will be called a family of Chua’s attractors.

Tarihi 6nemi acisindan yukarida tekrar verilen terminoloji asagidaki kurallari tavsiye

etmistir:

Chua devresi devrenin Sekil 3.1’de verilen 5 elemanli halidir. Dogrusal
olmayan diren¢ Chua diyodu olarak adlandirilacaktir. Chua diyodunun v-i
karakteristligi tek degerli parca par¢a smooth! olmak sartiyla herhangi bir
fonksiyon olabilir. Sekil 3.6’da verilen, endiiktansa seri diren¢ iceren 6
elemanli devre Chua osilatorii olarak adlandirilacaktir. Chua devresine
topolojik esdeger diger devreler kanonik Chua devresi olarak adlandirilacaktir.
Eger kanonik Chua devresi ile ¢aligiliyorsa kanonik esdeger devreler tek

olmadigi i¢in devre ¢izimi Kesinlikle verilmelidir.

! siirekli, smirli ve smirl sayida parga igeren
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e Hem fiziksel haldeki hem de boyutsuz haldeki denklemler Chua denklemleri
olarak adlandirilacaktir. Bu denklemlerde boyutsuz koordinatlardaki lineer
devre elemanlari ile iligkili olan parametreler i¢in « ve £ kullanilacaktir. Chua
osilatorii denklemleri kanonik Chua denklemleri® olarak adlandirilacaktir. Bu
denklemlerde boyutsuz koordinatlardaki lineer devre elemanlart ile iliskili olan

parametreler i¢in «, S, ¥ kullanilacaktir.

e Chua devresi ile iliskili olarak olusturulan 1 boyutlu doniisiimler Chua’nin 1

boyutlu doniistimleri olarak adlandirilacaktir.

e Chua devresinde goziiken asil garip ¢ekiciler spiral ¢eker ve ¢ift ¢eker olarak
adlandirilacaktir. Chua devresinde goriilebilen biitiin ¢ekiciler, bir arada

Chua c¢ekici ailesi olarak adlandirilacaktir.

Bu terminoloji benimsenmistir ve Chua Osilatorii diger kanonik Chua devrelerine gore
literatiirde one ¢ikmustir [6, 26]. Chua Osilatoriiniin  kanonik devre olarak
benimsenmesi Chua Devresi i¢in iiretilen bilgiyi de anlamli kilmistir. Cilinkdi devre
Ro=0 i¢in Chua devresine doniismektedir. [49] numarali kaynakta Chua Osilatorii

dinamikleri 6zdegerler ve 6zvektorler yardimi ile izah edilmigtir

Chua osilatorii basitliginin yanisira kanonik olma 6zelligi sayesinde 3 boyutlu kaotik
sistemler i¢inde en genel sonuglari ireten devredir [29]. Chua osilatériinden

tiretilebilen dinamikler agagidaki gibidir:

e Birgok farkli osilatorii gézleme imkani verir [6, 23, 25, 26, 28-30, 49-51].

Peryot 3 davranig gosterir [22].

Serit dinamigi? gosterir [52].

e ¢ ige girmis garip ¢ekici varligi barmdirir [53-55].

Farkl1 yollarla kaotik davranis olusumu goézlenir:
o Ardisil dallanmalar ile peryot katlamasi ile kaos davranisi gosterir [6].

o Peryot ekleme davranist gosterir [22].

! Harhangi bir kanonik Chua devresi i¢in bu devreye topolojik olarak esdeger olan bir Chua osilator
devresi parametre takimi bulunabilir.

2 Coziimiin 2 boyutlu bir alt uzayda degil, noktalar arasinda siirekliligin saglandig1 bir siirekli alt
uzayda olmas1 hali.
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o Araliklilik ile kaos davranisi gosterir [24].

o Ardisil dallanmalar ile 6nce Torus, ardindan da Torus kirilmasi ile kaos

davranig1 gosterir [20].

Chua Osilatorii kaos teorisinde bir paradigma haline gelmistir. Kaos {izerine ¢aligmalar
icin bu devreye odaklanmak sonuglarin genellestirilmesini de saglamaktadir. Chua
Osilatorii 3. dereceden kayipli kaotik devrelerde gozlenebilen biittin kaotik dinamikleri
sergilemektedir [6, 56].
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4. CHUA DEVRESI iCIN HAMILTONYANIN ELDESI

Chua devresi’nin denklemleri 3 durum degiskeni igerdigi ve devrede de 3 adet enerji
depolayan eleman oldugu i¢in devrenin Hamiltonyan’t bu enerji depolayan
elemanlarin enerjileri toplamina esittir. Oysaki genel olarak bir devredeki dinamik
elemanlarin enerjileri toplami devre dinamigini belirleyen Hamiltonyan’a esit
olmayabilir. Bu durum goz ardi edildiginde gereginden karmasik bir enerji fonksiyonu
ile calisma olasilig1 vardir. Devreye ait Hamiltonyan’in elde edilmesinin pratik bir yolu
devre denklemlerinin Kap1 Kontollii Hamilton (KKH) gdsterimi seklinde yazilmasidir.
[10] numarali kaynakta Chua devresi i¢in bu goésterim yazilmis ve Hamiltonyan

asagidaki gibi elde edilmistir:
}[——1 [C X +C, X; + LiZ]
Tl T 3 (4.1)

Yanlis bir enerji fonksiyonu ile ¢alismak kaygimiz oldugu i¢in enerji bir bagka yontem
ile de elde edilecektir. Burada Chua ve McPearson tarafindan [57] numarali kaynakta
onerilen yontem kullanilacaktir. Bu yontemde kullanilan genellestirilmis koordinatlar

X ve genellestirilmis hizlar X asagidaki gibi tanimlanmaktadir:

X = [¢2 ¢1] (a)
(4.2)
x & [v2 V] (b)

(4.2)(a) denkleminde ¢, ve ¢, kondansatorlerin akilaridir. Lagranjyan'in elde
edilmesine dair ayrintilar basitlik agisindan verilmemistir. Sonug¢ olarak Lagranjyan

asagidaki gibi elde edilir.

1 1 1
L= Eclvlz + ECZUZZ Y [ + ¢, (0) + p3(0)]? (4.3)
Bu denklemde,

$3(0) = Liz(0) (4.4)
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seklinde verilen iligki endiiktansin ilk kosul bagintisindan elde edilmistir.

EK C’de detaylar1 verildigi gibi Lagranjyan yardimiyla Hamiltonyan elde edilebilir. Ara
islemler yapildiginda asagidaki sonug elde edilir:

1 1 1
H =5 Cvi +35Gvs + o7 [=¢2 + $2(0) + ¢5(0)]? (4.5)

Bu biiyiikliik Chua devresinin Hamiltonyan’idir. H’nin ger¢ekten dinamik elemanlarin
enerjileri toplamina esit oldugu Sekil 3.1°deki Chua devresi i¢in yazilan L-C2 ¢evre
denkleminin bu denkleme uygulanmasi ile gortilebilir. Boylece (4.5) denkleminden de
(4.1) denklemi elde edilmis oldu.

36



5. KAOTIK OSILATOR TASARIMI iCIN ENERJi TEMELLI BiR YONTEM

Bu boliimde Chua devresinde spiral tipi kaosun ortaya ¢ikisi enerji bakis agisi ile
cle almmmustir. Sekil 5.1’de tekrar verilen Chua devresi L, C1 ve C2z dinamik
elemanlar1, pasif R direnci ve aktif Nr direncinden olusmaktadir. Devrenin enerji
alig-verisine bakilacak olursa Nr devredeki enerji veren tek elemandir. Dolayisiyla
Nr, R direncinin tiikettiginden fazlasin1 verdiginde dinamik elemanlarda enerji
depolanir. Aksi halde ise dinamik elemanlarin mevcut enerjisi tiiketilir. Bu boliimde
devrenin davranisint anlamak i¢in dinamik elemanlarin enerjileri toplamindaki
degisim incelenmistir. Ortaya konan yaklasim bu toplam enerjinin yoriingeler
boyunca izlenmesi ve enerjideki degisimin Chua devresinin farkli dinamikleri ile

iliskilendirilmesidir.

+
:: C1 VR
NR
Sekil 5.1 : Chua devresi.
Chua devresinin denklemleri asagidaki gibidir:
dv
Cld_tl =G (Vz _Vl)_ g (Vl)
CZ%Z_G (Vz_V1)+i3 (5.1)
di, _
dt
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Bu denklemde Chua diyodu Ni’nin tanim bagimntisi asagidaki gibidir. Ny, 3 parcali

parca-par¢a dogrusal karakteristlige sahiptir.

. G. -G
|R=g(vR)=GbvR+(aTb)[|vR+E|—|vR—E|]
G, Vx +(G,~G,)E, Vg >Eigin (5.2)
=1G, Vg, ve| <E icin

G, Vs +(G,-G,)E, v, <-Eigin

Bu boliimde amag spiral tipi kaos olusumunu gézlemek oldugu i¢in devrede (5.3)

denkleminde verilen 2-pargali karakteristlige sahip Chua diyodu ile ¢alisilmistir.

. G, Vi, v, >—E icin
_{ R i ¢ (5.3)

Ir = _ g
G, Vs +(G, —G,)E, v, <-Eicin
Bir onceki boliimde Chua devresi i¢in Hamiltonyan asagidaki gibi elde edilmisti:
r 1 [C 2 C 2 L '2]
}[—E 1% T X + L (5.4)

Bu noktadan itibaren daha az parametre iceren boyutsuz haldeki denklemler ile
calisilacaktir. Chua devresi i¢in boyutsuz koordinatlara gecis icin 6l¢geklendirme

denklemleri asagidaki gibidir.
Av v Ai 2tG
e % e Tk
ﬁm/ im/ e e

Bu denklemlerin kullanilmasiyla devre denklemleri asagidaki sekilde elde edilir:

(5.5)

d
o (y-x-1(x)
T
ﬂzx—y+z (5.6)
dr
dz
E__'B y
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Aslinda (5.6) denklemi a ve b yerinem, = a + 1 ve m; = b + 1 iliskileri kullanilarak
m, Ve m, iliskileri cinsinden yazilirsa hafifce basitlestirilebilir [4]. Ancak ileride elde
edilecek olan (5.11) denklemlerini daha basit kildig1 i¢in burada a ve b degiskenleri
tercih edilmistir. (5.5) 6l¢eklendirme denklemlerinin Chua diyodu tanim bagintis1 olan
(5.3) denkleminde kullanilmasiyla Chua diyodu denklemleri boyutsuz koordinatlar

icin asagidaki sekilde elde edilir.

ax, X>-1icin
f(x)=
(X) {bx—a+b, x <-1igin (5.7)

Boyutsuz koordinatlarda Hamiltonyan ise (5.5) denklemlerinin (5.4)’e uygulanmasiyla

asagidaki gibi yazilabilir.

}[—l lx2+y2+£z2 (5.8)
2| a B '

5.1 Durum Uzayinda Enerjinin Arttig1 ve Azaldig1 Bolgeler

Sekil 5.2 durum uzayinda Hamiltonyan’in degisimine dair bir fikir vermektedir.
Sekilde tarali alanlar enerjinin arttig1 bolgeleri gostermektedir. Yani bu bolgelerde

Chua diyodu devreye enerji vermektedir.

— 2
1 1 -

1
0.4 02 0.0 0.2 204
y

Sekil 5.2 : Durum uzayinda enerjinin arttig1 bolgeler.

Bu ¢izim igin kullanilan analiz parametreleri (e, £, a,b)=(9,100/7,-8/7,-5/7)
seklindedir. Bu sekildeki enerjinin arttigi ve azaldigi bolgeleri birbirinden ayiran

diizlemleri bulmak igin d%r =0 denklemi ¢6ziilmelidir. (5.8) denkleminin tiirevi
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alinir ve bu denklemde (5.6) devre denklemleri yerine konup elde edilen ifade sifira

esitlenirse asagidaki denklem elde edilir.

Z_j:_(x_y)z —x f(x) (5.9)
(5.9) denklemi Hamiltonyanin zamana goére degisimini vermektedir. Goriilebilecegi
bu denklem durum degiskeni z’den bagimsizdir. O halde enerjinin artis ve azalisini
X-y izdlisiimi kullanilarak degerlendirmek miimkiindiir. Bu sonu¢ demli bir imkan
saglamigtir. Yoriingeler ¢izilip x-y izdiislimden bakilirsa sistemin enerji alis verisi ile

ilgili yorumlar miimkiin olacaktir.

Oncelikle bu sonucun neden olustugunu ele almak iyi olacaktir. Chua devresi bir LC
tank devresi icermektedir ve bu LC tank devresinin diger enerji depolayabilen
elemanla direkt bir iliskisi yoktur. Iliski pasif direncin u¢ denklemi iizerinden

olusmaktadir. Iste bu topolojinin bir sonucu olarak (5.9) denklemi elde olusmaktadir.

Tezde kaotik elektrik devrelerine bir sistem dahilinde kolaydan zora dogru bakmak
arzulanmistir. Bu diisiince ile de Chua devresi ile yola ¢ikilmistir. Bu se¢imin biraz da
sans igeren bir sonucu olarak simdi 3 boyutlu bir sistemin enerji alig verisine 2 boyut

tizerinden bakma imkan1 olusmustur.

Bu yorumu fiziksel devre parametreleri tizerinden yapacak olursak Chua devresinde
C1 kondansatériiniin LC tank devresi ile olan enerji alig verigi sistem dinamigini
belirlemektedir. Buna ilaveten LC tank devresinde kondansator gerilimi ile endiiktans
akimi arasinda bir diferansiyel denklem iliskisi varir ve biri digerini belirlemektedir.
Iste bunun bir sonucu olarak paragrafin ilk ciimlesindeki italik metin asagidaki gibi

yeniden yazilabilir:

Chua devresinde Ci kondansatériiniin C2 kondansatorii ile olan enerji alis verisi

sistem dinamigini belirlemektedir.
Sekil 5.3’te enerjinin arttig1 bolgelerin diyot karakteristligi ile degisimi gosterilmistir.
Seklin iist yarisinda ele alinan durumlar igin diyot karakteristlikleri, alt yarisinda ise

bu Chua diyotlari i¢in enerjinin arttig1 bolgeler gosterilmistir. Grafikte enerjinin arttigi

bolgeler mavi renk ile gosterilmistir.
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1 T~ 1
X ' ' H
2 -1 1 R S 1 2
—_1t 1
ol _2
X x
2t 2
AV 1! 1
04 02 b 02 04 ° o4 —02 02 04 7
—1} ~1
TN 2
@) (b)

Sekil 5.3 : Farkli Chua diyotlar1 i¢in durum uzayinda enerjinin arttig1 bolgeler.

Sekil 5.3’lin iist yarisinda gosterilen Chua diyotlar1 i¢in eleman tanim bagintilari

asagidaki gibidir.
f(x)=ax (a)
ax, x>-1icgin (5.10)
F(x)= ) (b)
bx—a+bh, x<-ligin

(5.9) denklemi sifira esitlenir, (5.10) denklemleri bu ifadede yerine konur ve elde
edilen denklemler ¢oziiliirse, enerjinin arttig1 ve azaldig1 bolgeleri birbirinden ayiran
alt-uzay denklemleri elde edilir. (5.10)(b) denklemi, (5.10)(a)’y1 6zel bir hal olarak
igerdigi i¢in ¢oziim sadece (5.10)(b) denklemi i¢in verilmistir. Coziim sonucu elde
edilen (5.11) denklemindeki bu esitlikler enerjinin arttigi ve azaldigi alt uzaylari

birbirinden ayiran siir bolgesi denklemleridir.

X (11\/—_a), X >-1i¢in
y= (5.11)
xt4/(a-b)x—bx*, x<-1ligin
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5.2 Chua Diyodunun Enerji Degisimine Etkisi

Chua diyodunun karakteristligi ile devredeki enerji alig-verisi arasindaki iligkiyi
incelemek i¢in Chua diyodu adim adim olusturulacak ve bu esnada devrenin enerji
alis-verisi incelenmistir. Incelemeye dogrusal Chua diyodu ile baslanmis ve ardindan
2-parcali karakteristlik i¢in inceleme yapilmustir. (5.10) denklemlerinde (a) tek kirik
hali, (b) ise ¢ift kirik halidir.

Benzer bakis Kennedy tarafindan [43, 46] numarali kaynaklarda uygulanmis ve Chua
devresi dinamikleri devre adim adim olusturularak izah edilmistir. Bu kaynaklarda
Chua diyodu farkli kirik sayisi igeren halleri ile ele alinmamig olsa da Chua devresinde
once orta bolge ve dis bolge i¢in, ardindan da bir bolgeden digerine gegis yapilan anlar
icin yorumlar yapilmis ve nihayetinde de Chua devresi dinamigine adim adim bir

izahat getirilmistir.

LC devresi kayipsiz bir devredir. Devre ilk kosullarina bagli olarak periyodik ¢6ziim
tiretir. Bu devre bir ¢ikis noktasi olarak ele alinsin ve adim adim Chua devresi
olusturulsun. LCR devresinde kayipsiz LC devresine paralel bir R direnci
baglanmistir. R direnci pasif ise devre durmaksizin enerji kaybedecektir, aktif ise de
durmaksizin enerji kazanacaktir. Bu durumda ¢6ziim 6zdegerlerin degerlerine gore ya

sifira ya da sonsuza gider.

Tezde Chua devresi tek kirtk (Chua diyodunun pasif ya da aktif direng olma hali) ve
2 kirikl haliyle incelenmistir. 2 kirikli hal i¢in anahtarlanan iki sistem s6z konusudur.
Anahtarlanan bu iki sistemin birbirleriyle olan etkilesimine gore devre davranisi

sekillenir.

5.2.1 Nr’nin dogrusal olmasi hali

Chua devresinde Chua diyodu Nr pasif bir direng ile degistirilirse, ¢éziimler zamanla
azalarak devre denge noktasi olan sifira gidecektir [43]. Devrede Sekil 5.3(a)’da
karakteristligi verilen aktif Nr direnci kullanildiginda ise, Chua diyodunun pasif direng
R’nin tiikkettiginden daha fazla enerji verip vermedigine bagl olarak devre ya sonsuza
ya da sifira gider. Iraksamanin da adeta degeri sonsuz olan 6zel bir noktaya gidis
oldugu disiiniilirse davranis yine denge noktasi davramisi gibidir. Sekil 5.4’de
dallanma parametreleri o ve fnin gesitli degerleri igin yoriingeler goriilmektedir.

Sekillerde 3-boyutlu durum uzayi ig¢-sekil olarak verilmistir. Analizler dallanma
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parametresi o’nin 9 degeri igin yapilmis ve baslangic kosullart olarak
(x0, y0, z0)=(0, 0.2, 0) alinmustir. 3. dereceden bir sistem olan Chua devresinde ya
0zdegerlerin 3’1 de reel olabilir ya da bir reel 6zdeger ve bir kompleks eslenik 6zdeger

cifti hali s6z konusu olabilir.

03 o

0.3 0/15-"
[ —0.15
S 03 03
(@) #=100/7, b=-13/70 (b) f=100/7, b=—5/7
X X
-_2'5 20
Lo20 s
. 1.5 ‘& '
1078
S0 2y 05
— — N r P ———— — 7_,_.,_,_ — }.’
=02-01 | 01 02 ) =02=01 "] 01 02
(c) B=100/7, b=—-8/7 (d) f=23 b=-8/7

Sekil 5.4 : Dogrusal Chua diyodu kullanilmasi halinde yériingeler.

Literatiirde karsilasilan Chua devresi parametrelerinde daima orta ve dig bolgeler icin
bir reel 6zdeger ve bir kompleks eslenik 6zdeger ¢ifti hali s6z konusudur. Sadece [18]
numarali kaynakta devre parametrelerinin negatif olmasina miisaade edilmis ve 3 reel
Ozdeger ile g¢alisilmigtir. Shilnikov teoreminin kosullarindan birinin homoklinik
yoriingenin denge noktasinda sistemin bir reel 6zdegere ve bir kompleks eslenik
0zdeger ¢iftine sahip olmasi ve Chua devresi ile olan ¢alismalarda yazarlarin amacinin
kaos elde etmek oldugu disiiniiliirse literatiirde karsilagilan bu durum anlaml

olacaktir.

Nr’nin bu durumunda adeta bir RLC devresi s6z konusudur. Bu devre de direncin pasif
ya da aktif olmasina bagl olarak ya denge noktasina ya da sonsuza gitmistir. Yani
kayipsiz LC tank devresinin enerjisi direncin pasif ya da aktif olmasina gore ya

durmaksizin azalmis ya da durmaksizin artmistir.
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Bir sonraki boliimde Nr 2-kirikli yapida ele alinacaktir.

5.2.2 Nr’nin parca parca dogrusal olmasi hali

Calismanin bu noktadan sonrasinda analizler asagidaki kosullar altinda yapilmistir:
e (oziimlere gegici dinamikler dahil edilmemistir.
e Dallanma parametresi a’nin degeri 9 olarak sabitlenmistir.

e Dallanma parametreleri a ve b’nin degerleri, iist ve alt bolgeler i¢in sistemlerin
bir reel 6zdegeri ve bir kompleks eslenik 6zdeger ¢ifti olacak sekilde

secilmistir.

e Baslangi¢ noktalar1 ¢oziimler kararsiz 6zvektoriin etkisi altinda kalmayacak
sekilde segilmistir. Sekil 5.4(c-d)’de Ornekleri gosterilen bu durum

olustugunda ¢6zlim 6zvektoriin etkisi altinda kalarak sonsuza gider.

Grafikler elde edilirken kompleks 6zdeger ¢iftinin gerdigi diizlem {izerinde (5.11)
denklemi ile belirlenen egriyi saglayan bir grup nokta alinip bu noktalar yine bu
diizlemi kesene kadar diferansiyel denklem c¢oziilmiistiir. Ardindan eger enerji

artmigsa bu yoriinge kirmizi ile, azalmigsa da mavi ile gosterilmistir.

Bu bolimde Chua devresinde Chua diyodu olarak Sekil 5.3(b)’de karakteristligi
verilen Nr direnci kullanildiginda olusacak dinamikler incelenecektir. Bu durumda Nr
direnci 2 pargali dogrusal, siirekli aktif bir direnctir. Farkli durumlar i¢in analiz

sonuclar1 ve bu sonuglara dair ¢ikarimlar agagidaki gibidir.

5.2.2.1 a=-13/70, b=- 5/7 i¢in kararsiz limit ¢cevrim davramsi

Sekil 3.5’te bu parametre degerleri igin devrenin davranist verilmistir. Durum
uzayinda yoriingelerin (5.11)’1 sagladigi anlarda sistemin enerjisi hesaplanmis ve eger
enerji azaliyor ise bu yoriinge mavi renk ile, artiyor ise kirmizi renk ile gésterilmistir.
L ’nin kiigiik degerleri i¢cin Sekil 5.5(a)’da goriildiigii gibi devre daima enerji kazanir,
biitiin yoriingeler 1raksar. Sekil 5.5(b)’deki f = 14 degerinde kararsiz bir limit ¢cevrim
olusur Bu durumda sistem i¢-bdlgede enerji kaybeder iken dig-bdlgede enerji kazanir.
f arttirilmaya devam ettiginde kararsiz limit ¢evrim biiyiir. Bu dinamik £ =23 degerine
kadar devam eder Sekil 5.5(c). S parametresinin daha fazla arttirilmasi kararsiz limit

cevrimin yok olmasina sebep olur. f’nin daha biiyiik degerleri i¢in Sekil 5.5(d)’de
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goriilebilecegi gibi sistem daima enerji kaybeder, biitlin yoriingeler bir denge

- e N

4y 7 7 (é"'

1R.78 .
(@) f<13 (b) ﬂ 14 (©) ﬂ 23 (d) =24
Sekil 5.5 : a =-13/70, b = -5/7 i¢in f’nin degisimine gore enerjinin degisimi.

noktasinda sonlanir.

Q

SN

5.2.2.2 a=- 5/7 ,b=-13/70 igin kararsiz limit ¢cevrim davranisi

Bir onceki durumda ig¢-bolgenin enerji vermesi, dis-bdlgenin ise enerji almasi
durumunda kararsiz bir limit ¢evrimin olusacagi gozlendi. Bu sonug 1s1¢inda a ve b
parametrelerinin  degerlerini karsilikli olarak degistirmenin kararli limit ¢evrim
olusturmak igin yeterli olacagi diisiiniilebilir. Ilging bir sonu¢ olarak,
Sekil 5.6(a-c)’deki devreye ait yoriingelerden goriilebilecegi gibi bu yeterli
olmamaktadir. a ve b parametrelerinin bu yeni degerleri i¢in sonug bir dnceki durumla
ayni olmakta ve kararsiz limit ¢gevrim olusmaktadir. Sekilde (a-c) i¢in Sekil 5.5’teki
renk kodlar1 kullanilmistir. Kararli limit ¢evrimin neden olusturulamadigin1 anlamak
icin sistemin enerji alig-verigini daha detayli olarak incelemek gerekir. Sekil 5.6(d)’de
S = 21 degeri i¢cin dogrusal olmayan direncin farkli bolgelerine ait enerji degisimi
goriilmektedir. Bu sekilde yoriingelerin X = —1 dogrusunu kestigi anlarda sistemin
enerjisi hesaplanmis ve eger enerji artiyor ise bu yoriinge kirmizi renk ile, azaliyor ise
mavi renk ile gosterilmistir. Sistem, =21 degeri i¢in iraksak davranig gosterir. Oysaki

Sekil 5.6(d)’den sistemin dig bolgede, x = —1 dogrusunun altinda enerji kaybettigi

- /,, Y

gozlenebilir.

('\ H
Yy

iy V ‘
(a) /3 <22 (b) ,5' 23 () 224 (d) p=21
Sekil 5.6 : a =-5/7, b =-13/70 igin f’nin degisimine gore enerjinin degisimi.

Ancak sistem, kaybettigi enerjiden daha fazlasini bu dogrunun iistiinde kazandig1 igin
davranis 1raksaktir. Eger tam tersi olsaydi, sistem dis bolgede enerji kaybediyor

(yakinsak davranig gosteriyor) olacakti. Bu da bir kararli limit ¢evrimin olugsmasina
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sebep olur. Bir sonraki alt-boliimde bunu saglayan parametre degerleri igin sistem
incelenecektir.
5.2.2.3 a=- 3/7 ,b=-13/70 ic¢in kararh limit ¢evrim davramsi

Bu durumda sistem £ = 21 degeri i¢in, dis bolgede kazandigindan fazlasini kaybeder

ve kararl bir limit ¢evrim olusur. Sekil 5.7°de bu parametre degerleri icin sisteme ait

davranislar verilmistir. Sekilde, Sekil 5.5’teki renk kodlar1 kullanilmistir.
7

/,

i

(@) B<20 (b) f=21 ©) =23 d) B224
Sekil 5.7 : a = -3/7, b = -13/70 i¢in f’nin degisimine gore enerjinin degisimi.

5.2.2.4 a=-13/70, b=- 8/7 icin peryot katlamasi ile kaos davranisi

Sekil 5.8’de bu parametre degerleri igin sistemin davranisi verilmistir. Sekilde, yine
Sekil 5.5’teki renk kodlar1 kullanilmistir. Sekildeki parametre degerleri i¢in Ek E’de

verilen Sekil 5.9’a bakiniz.

Sekil 5.8’de her bir durum ig¢in iist sekil durum uzayinda enerjinin arttig1 ve azaldigi
bolgeleri, alt sekil ise olusan yorlingeyi gosterir. f’nin biiylik degerleri igin Sekil
5.8(a)’da goriildiigii gibi sistem daima enerji kaybeder, biitlin yoriingeler yakinsaktir.
p’nin degeri azaltildiginda sistemde 3 enerji bolgesi olusur. Bu 3 bolgeden orta
bolgede sistem enerji kazanir iken digerlerinde kaybeder. Bu dinamigin gézlendigi
[=19 degerinde kararli bir limit ¢evrim olusur (Sekil 5.8(b)). f’nin azaltilmaya devam
edilmesiyle orta ve dis bolge arasinda bir girisim olusmaya baslar. f’nin daha kiigiik
degerleri i¢in bu girisimin miktar1 da artar. Girisimin artmasinin sonucu olarak peryot
katlama dinamigi gozlenir (Sekil 5.8(c-e)). Bu dinamik sonucunda peryot katlamasi
ile kaos olusur (Sekil 5.8(f)). Baslangigta sagilma ve katlama dinamigi sirali iken
(sagilma-katlama-sagilma-katlama-... seklinde) girisimin arttirilmaya devam edilmesi
ile bu diizen bozulmakta, ancak kaotik dinamik korunmaktadir. (Sekil 5.8(g)). £ 'nin
daha fazla azaltilmasi durumunda bu dinamik yok olur ve sistem 1raksak davranis

gosterir (Sekil 5.8(h)).

Sistemde 3 farkli enerji bolgesinin olustugu durumlar incelendiginde (Sekil 5.8(b-c))
durumlari igin i¢-bolge enerji kaybeder iken; (Sekil 5.8(d-g)) durumlari i¢in ig-bdlge
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enerji kazanmaktadir. Analizlerde bu gozlemin iizerine gidilmis ve i¢-bdlgenin sistem
dinamigine etkisini anlamak i¢in farkli a ve b parametreleri igin sistem analiz
edilmistir. Bu analizler sonucunda (Sekil 5.8(b-c)) durumlar i¢-bdlge enerji kazanir
iken ve (Sekil 5.8(d-g)) durumlari i¢-bolge enerji kaybeder iken de gdzlenmistir.
Boylece i¢-bdlgenin sistemin davranisina direkt etkisi olmadigi sonucuna ulasilmstir.
Ote yandan yériingenin i¢-bélgeye girdiginde daima bu bolgede kalmamas: igin ig-
bolgenin enerji kazanan davranig gostermesi daha dayanikli kaos eldesi agisindan

Oonemlidir. Bu da ana amacimiz disinda elde edilen 6nemli bir ilave sonugtur.

(e)
Sekil 5.8 : a =-13/70, b = -8/7 i¢in f’nin degisimine gore enerjinin degisimi.

Ele alinan durumlar i¢in Hamiltonyan ve Hamiltonyanin tiirevinin degisimi Ek E’de
Sekil 5.9°da verilmistir. Sekillerde dH igin dH-x-z ve dH-y-z izdiisiim grafiklerinin
olmasi rahatsizlik yaratmamalidir. Bu grafiklerde z boyutunda deger degisimi olmasi
ile (5.9) denkleminin z igermemesi ¢elismez. Ciinkii bu grafikler ¢izilirken ¢oziimler
boyunca H ve dH’nin degisimi incelenmistir; X, y ve z’ye deger verilip H ve dH

¢izilmemistir.
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Sekiller incelendiginde peryot katlamasi ile kaos olusumunu tetikleyen kismin durum
uzayinda sinirli bir bolge oldugu kolayca goriilebilir. Bu gozlem 6nemlidir ve kaosu

anlamak ya da kaos olusturan bir mekanizma 6nermek icin kullanilabilir.

Bu boliimde Chua devresinde spiral tipi kaos i¢in peryod katlamasi mekanizmasi enerji
fonksiyonlar1 kullanilarak incelenmistir. Ilk olarak sistemin Hamiltonyan’1 elde
edilmis; ardindan farkli1 Chua diyodlar1 i¢in enerji fonksiyonunun degisimi ile sistemin

dinamigi arasindaki ilgi gdzlenmistir.

Gortilebilecegi gibi Chua devresinde Chua diyodunun uygun enerji alig-verisini
saglayacak sekilde secilmesi halinde kaos eldesi miimkiindiir. Bu 6nemli bir sonugtur
ve genellestirme potansiyeli ¢ok yiiksektir. Bir sonraki boliimde bu potansiyellere

deginilecektir.
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6. SONUC VE ONERILER

Tezde kaotik devreleri incelemek i¢in dnemli bir bakis acis1 yakalanmistir. Cazip bir
diinyanin kapist aralanmistir ancak bu kapinin sundugu imkanlar heniiz net degildir.
Kuvvetle muhtemel elde edilen sonuclar sadece bir baslangic olacaktir. Bu boliimde
elde edilen sonuglar yorumlanacak ve bu bakis ile gelecekte varilabilecek yeni ufuklar

degerlendirilecektir.

6.1 Farkh Enerji Fonksiyonlari ile Calisilmasi

EK C’de genellestirilmis koordinatlar tanimlanmis ve Sekil C.1°de drneklenmistir.
Tezde kullanilan enerji fonksiyonu genellestirilmis koordinatlarda degildir. Ciinkii
Chua devresi bir LC tank devresi igerir ve bu devrenin enerji fonksiyonu olarak 3 aktif
elemanin enerjileri toplami kullanilmigtir. Baska bir enerji fonksiyonu ile ¢alisma
olasilig1 da vardir. Ayrica Lagranjyan ile de ¢aligilabilir. Bir bagka olasulik da farkli

enerji fonksiyonlari {ireten yontemler kullanmaktir [58]

Yapilan is farkli enerji fonksiyonlari i¢in tekrar edilerek enerjinin arttig1 ve azaldig
bolgelerde girisim olusmasi fikrinin farkli enerji temelli yontemler i¢in nasil
uygulanabilecegi lizerine ¢alisilabilir. Benzer sorun kararlilagtirma ve senkronizasyon
icin karsimiza ¢ikmamaktadir ¢ilinkii bu yontemlerde hata soniimlenmektedir. Oysa
burada amag kaos olusumu oldugu i¢in farkli enerji fonksiyonlari i¢in tezde gelistirilen

fikrin nasil uygulanabilecegi incelenmelidir.

6.2 Farkh Sa¢ilma ve Katlama Fonksiyonlari ile Calisilmasi

Kaos i¢in tipik bir mekanizma olan sacilma ve katlama dinamigi sag¢ilma ve katlama
esnasinda enerjinin degisimi agisindan incelenebilir. Literatiirde sagilma ve katlama

fonksiyonlarinin kaos eldesi i¢in kullanildig1 ¢alismalar mevcuttur [37, 59].

Boylece 6zel olarak belirlenen sagilma ve katlama fonksiyonlar1 yardimiyla daha

dayaniklt kaos eldesi miimkiin olabilir. Ayrica bu ¢alisma teorik bir tabana
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oturtulabilirse sacgilma ve katlama fonksiyonlarmin kaotik c¢ekicinin lyapunov

iistellerine nasil etki ettigine dair bir ¢ikarimda bulunma imkan1 da olabilir.

6.3 Histerisiz ya da Siireksizlik I¢eren Sistemlerin Incelenmesi

Histerisiz ya da siireksizlik iceren sistemler tezin kapsami disindadir. Calisma bu
sistemleri de icerecek sekilde genisletilebilir. [36] numarali kaynakta siireksizlik
durumunda diferansiyel denklemin ¢oziimiiniin varligi ve tekligi ele alimustir.
Kennedy, [43, 46] numarali kaynaklarda Chua devresini LC tank devresinden yola
¢ikarak adim adim olusturmaktadir. Bu kaynaklarda Chua devresi i¢in LC ve LCR
devreleri incelendikten sonra Nr Chua diyodu olmak iizere LCNr devresi incelenmis
ve farkli Chua diyotlar1 i¢in hangi durumlarda limit ¢evrim davranisin olustugu
incelenmistir. Bu inceleme esnasinda NRr’nin histerisiz icermesine miisade edilmistir.
Ardindan Chua devresi dinamigine gegmeden Once histerisiz davranisi kii¢iik degerli
bir kondansatoriin hizli deger degisimi ile iliskilendirilmis ve Chua devresi sistematik

bir sekilde adim adim olusturulurken devre dinamiklerinin degisimi yorumlanmustir.

Bu yapilan isin benzeri tezde ortaya konan enerjinin arttig1 ve azaldigi yoriingeler
arasinda girigsim olusturarak kaos eldesi mekanizmasi i¢in yapilabilir. Bu amag igin

odiilli bir yayin olan [60] numarali kaynaktan da istifade edilebilir.

6.4 Ug Reel Ozdeger Iceren Sistemlerin Incelenmesi

Chua devresinde parca par¢a dogrusal alt sistemlerin anahtarlanmasi s6z konusudur.
Bu alt sistemlerin 6zdegerleri reel oldugunda kaos gdzlenip gdzlenemeyeceginin
sorgulanmasi neticesinde C; ve L’nin negatif olmasina miisade edildiginde bir kaotik
¢ekici  bulunabilmistir [18]. Bu halde Shilnikov teoreminin kosullarinin

saglanmadigina dikkat edilmelidir.

Tezde Hamiltonyan izlenirken i¢ ve dis bolgelerde bir reel 6zdeger ve bir kompleks
eslenik 6zdeger cifti ile ¢alisilmisti. Analizlerde baslangic noktalari komples eslenik
0zdegerlerin gerdigi diizlem tizerinde sec¢ilmisti. Benzer islem 2 reel 6zdegerin gerdigi
diizlem i¢in de yapilabilir. Bu durumda iki reel 6zdegerin gerdigi diizlemden baslangic
noktalar1 segilebilir. Ancak 3. derece bir sistemde {li¢ reel 6zdeger i¢in 2’serli

kombinasyonlar kullanildiginda 3 hal s6z konusu olacaktir. Bu noktada 6zdegerlerin
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degerlerine gore sistem davranisina da bakilarak hangin ¢iftin gerdigi alt uzay ile yola

cikilacagi lizerine yorum yapilmasi gerekecektir.

6.5 Mekanik Sistemlerin incelenmesi

Chua devre ailesinin mekanik modellerinin eldesi {izerine olan bir ¢alismada Chua
devresi ve Chua osilatdriiniin elektro-mekanik modelleri ile Chua devresinin mekanik
modeli olusturulmustur [61]. Bu kaynak ve siireksizlik igeren Chua devresi
denklemleri i¢in mekanik gerceklemeler igeren [36] numarali kaynak Onerilen

yontemi mekanik sistemlerde kullanmak i¢in bir ¢ikis noktasi olabilir.

Tezde Hamiltoyan kullanilarak Chua devresindeki enerji degisimi incelenmistir.
Euler-Lagrange denklemleri ve Hamiltonyan denklemleri klasik mekanikte etkili bir
sekilde kullanilan enerji temelli analiz yontemleridir. Bu yontemlerin elektrik devre
analizinde etkili olarak kullanilamamasinin sebebi elektrik devrelerinde kinetik enerji
ve potansiyel enerjinin nasil tanimlanacagi sorusunun cevabmin net olarak
verilememesidir. Bu konu EK D’de ayrintili olarak izah edilmistir. Literatiirdeki
gelismeler 15181nda artik bu sorunun birden ¢ok cevabi oldugu, farkli enerji tanimlari
yapilabilecegi bilinmektedir [9]. Bu kaynakta potansiyel ve kinetik enerji ile dual

potansiyel ve kinetik enerji' tanimlar1 yapilmustir.

Bu c¢alismalar oOnciiliigiinde klasik mekanik sistemler incelenebilir. Enerjinin
korundugu sistemlerde de kaos gozlenebilmektedir. Bu tip kotik davranista bir garip
cekici olusmamakta, biitiin faz uzayinda kaotik davranis gézlenmektedir. Bu tip klasik

mekanik sistemler elendikten sonra, geriye kalan enerjinin degistigi sistemler

incelenerek yeni sonuglar elde edilebilir.

6.6 Cok Ceker Iceren Sistemlerin Incelenmesi

Chua diyotunda kirik sayisinin arttirilmasiyla olusturulan devreler literatiirde 6nemli
bir yer tutmaktadir. [62] numarali ¢alismada Chua diyodu i¢in bir basamak tipi ¢ok
seviyeli rampa fonksiyonu kullanilarak n ¢eker olusturulmustur. [63] numarali
calismada ayn1 yaklasim i¢in testere disi rampa fonksiyonu kullanilmistir. Bir baska

bakis ¢ift sayida sigramalar i¢eren bir fonksiyon ile Chua diyodu karakteristligine

! coenergy yerine dual enerji karsiligu kullanilmustir.
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benzer karakteristligi olan bir fonksiyonun ¢arpilmasiyla elde edilen Chua diyodunun
kullanilmasidir [64]. Bu c¢alismada bu carpan fonksiyon ¢ift sigramasi olan bir

fonksiyon olarak secildigi i¢in n ¢ift ¢ceker kaotik sistemler {iretilmistir.

Cok ¢eker yapilarda cekerler arasi gegis bolgeleri tiipler olarak belirlenir ise enerji
temelli yaklasimla bu tiipler incelenebilir. Tiipiin giris tarafinda alinan bir disk benzeri
bolgede secgilen baslangic kosullart icin tiip boyunca hareket ederken enerji
degisimlerine bakilabilir. Boylece c¢ekerler arasi gegis bdlgelerinin etkinligi

incelenebilir.

6.7 Chua Osilatoriine Ait Dinamiklerin incelenmesi

Chua devresi bulunduktan sonra benzer karmasiklikta yeni devreler de onerilmistir.
Bu ¢aba Chua Osilatoriiniin bulunmasi ile sonlanmistir. Clinkli Chua osilatoriiniin 3
boyutlu, parga parca dogrusal, siirekli; bir boyutu simetrik dis bolgeler ve orta bolge
olmak tizere 3 parcali olan herhangi bir faz uzayimna kanonik olarak esdeger oldugu
ispatlanmistir [27]. Chua osilatorii, orta bolge ve dis bolgeler i¢in kanonik olarak
esdeger kilinacagi sistemle ayn1 6zdegerlere sahip olabilmektedir. Hatta bu eslesmenin
basarilabilmesi i¢in eleman degerlerinin nasil bulunabilecegine dair algoritma da

verilmistir [28] ve [30] numarali kaynaklar bu yontemin uygulamalarini igermektedir.

Chua devresi iirettigi zengin dinamiklere ragmen her tir kaotik davranigin
gbzlenebildigi bir sistem degildir. Dolayistyla Chua osilatoriiniiniin incelenmesi daha
once ele almamayan Araliklilik*, Torus kirilmas: gibi kaotik dinamikleri inceleme
firsat1 da verir [6, 20, 24]. Hatta asimetrik Chua diyotu i¢in devre baska sistemlere de
kanonik olarak esdeger olabilir. Ornegin [65] numarali kaynakta Colpits osilatdriinde
transistorlerin  kiiclik isaret esdegerleri kullanildigi taktirde Chua osilatoriiniin

asimetrik Chua diyotu i¢in bu devreye kanonik olarak esdeger oldugu gosterilmistir.

Kennedy tarafindan gelistirilen Chua Osilatorii i¢in yazilan ABC programu,
Kennedy’nin tez 6grencisi James Patrick McEvoy tarafindan MATLAB’a uyarlanmis
ve dosya paylasiminda MATLAB Adventures in Bifurcations & Chaos (ABC++) adiyla

kullanima sunulmustur [51]. Bu kod ¢oziimleri bolgeler arasi gegis diizlemlerini de

! Araliklilik ifadesi Intermittency terimi igin Tiirkge karsilik olarak denerilmistir.
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gostererek cizerek ¢oziimlerin yorumlanmasini kolaylastirmaktadir. Ayrica ¢oziimleri

davranislarina gore siniflandirmistir. Bu programdan istifade edilebilir.

Tezde LC tank devresi i¢ceren Chua devresinin enerji alis verigine bakilmistir. Benzer
is LCR alt devresi igeren Chua osilatorii i¢in yapilabilir. Bu da zor bir hedef olarak

goriilmemektedir.

6.8 Dallanma Davramislarimin incelenmesi

Chua devresi, ile ilgili ilk yaym olan [2] numarali kaynakta ¢ift ¢cekeri kapsayan bir
eger tipi kararsiz limit gevrim de gosterilmistir. Bu kararsiz limit ¢evrim [66] numarali
kaynakta durum geri beslemesi yapilmisg Chua sisteminde kararlilik saglanacak sekilde

paremetre secilmesi ile sayisal analiz ile de dogrulanmustir.

[40, 41] numarali kaynaklarda spiral tipi iki ¢ekicinin birbirine temasi neticesinde ¢ift
¢ekerin ortaya ¢iktig1; cift cekerin disinda eger tipi bir limit ¢evrim oldugu; ¢ift cekerin
distaki bu kararsiz limit ¢evrime temasi neticesinde de yok oldugu sonuglari not

edilmistir.

Yapilan ise benzer inceleme enerji degisimi gozetilerek yapilabilir. Boylece kaos igin
¢ok dnemli bir konu olan dallanma toerisi enerjinin degisimi ile ele alinabilir. Bu

amacla Chua devresi ve Chua Osilatoriindeki dallanma davraniglar1 incelenebilir.

6.9 Yar1 Gegis Doniisiimleri Uzerine Cahsilmasi

Parca parca dogrusal bir sistem ile ¢alisildigi i¢in analitik ¢6ziimlerden yola ¢ikilarak
yart gecis doniislimleri olusturululabilir. Luo analitik ¢oziimleri kullanarak bu

doniistimleri asagidaki kombinasyonlar igin olusturmustur [67].
e Ust bolgeye giris — iist bolgeden ¢ikis
e Alt bolgeye giris — alt bolgeden ¢ikis
e Ust bolgeden orta bolgeye giris — orta bdlgeden iist bolgeye doniis
e Alt bolgeden orta bolgeye giris — orta bolgeden alt bolgeye doniis
e Ust bolgeden orta bdlgeye giris — orta bolgeden alt bolgeye giris

e Alt bolgeden orta bolgeye giris — orta bolgeden iist bolgeye giris
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Bu doniisiimleri olusturduktan sonra geg¢is kombinasyonlar1 i¢in analiz yapmustir.

Asagidaki hedefler i¢in bu doniisiimlerle ¢alisilabilir.
e Yari-ge¢is doniisiimleri yardimiyla enerji ile ilgili sonuglar elde edilmesi
e (Cckim kiimesi belirlenmesi

e Periyodik ¢oziime girisim ekleme fikri ile peryot katlama ile kaos gegisi

dinamigi olusturulmasi

Bu bakis agisiyla galigilirken anahtarlamali sistemlere dair teoriler de kullanilabilir.
Buna bir 6rnek Sekil 6.1°de gosterilmistir. Sekillerdeki 3 sistem i¢in Lyapunov
fonksiyonlar1 V1, V2 ve V3’tiir. i1k rnekte 3 sistem igin Lyapunov fonksiyonlari sistem
aktif oldugu anlarda azalmaktadir. Diger zamanlarda azalmas gerekli degildir. Ikinci
ornekte sistemlerin aktif oldugu anlarda Lypaunov fonkiyonlar1 artabilmekte ancak
anahtarlama anlarindaki degerler azalan dizi olusturmaktadir. Ugiincii &rnekte ise
sistemlerin aktif oldugu anlardaki Lyapunov fonsiyonunun degeri azalmaktadir. Zayif
Lyapunov teorilere gore 3 ornek de kararlidir. Kararlilik tezin kousu degildir ancak

benzer bakisla enerjinin artis ve azalisina dair analitik sonuglar elde edilebilir.

6.10 Shilnikov Teoreminin Enerji Kavramlari ile Ele Alinmasi

Chua devresinin Shilnikov anlaminda kaotik oldugu ispat edilmistir. Eger tezde
gelistirilen bakis agis1 bir teorik tabana oturtulabilirse Shilnikov teoremi Lagranjyan
ya da Hamiltonyan kavramlar1 kullanilarak farkli bir sekilde yeniden yazilabilir. Bir
onceki bolimde gelistirilecek analitik yar1 gecis doniisiimleri burada da katki

saglayabilir.

6.11 Yeni Bir Dallanma Diyagrami Analiz Yontemi Onerilmesi

Dinamik sistemler bir alt uzaydan ge¢is anlarinda faz uzay1 degiskenlerinin degerleri
kaydedilerek incelenebilmektedir. Poincare kesitlemesi analizinde bir boyut dallanma
analizi yapilacak parametre, diger boyut da alt uzaydan geg¢is anlarinda kaydedilen faz
uzay1 degiskeni biiyiikliigiidiir. Bu analizde gecici hallerin sonlimlenmesi i¢in bir siire
beklendikten sonra kesitleme bolgesinden gecen yoriinge degerleri kaydedilmekte bu
bilgi ile sisteme dair dallanma davranisi yorumlanmaktadir. Kesitleme bolgesi bir

diizlem olabilecegi gibi bir degiskenin tiirevinin sifir oldugu yer gibi bir alt uzay da
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olabilir. Etkin olarak kullanilan bu analiz yonteminde poincare kesitlemesinin dogru

sekilde yapilmasi kritiktir, sonucu etkileyebilir.

Tezde ortaya konan bakis genellestirildigi taktirde alternatif bir kaotik sistem analiz
yontemi olarak kullanilabilir. Bir kaotik ¢ekici kesisimleri ¢ekerin i¢ bolgesinde olan

bir¢ok Poincare kesitlemesi ile incelenebilir.

Bu bakigin sinanmasi i¢in Chua devresi benzeri tek ¢eker sistemlerin incelendigi [68]
numarali kaynak faydali olabilir. Ayrica bu bakis acis1 i¢in Chua devresi i¢in yazilan
Hamiltonyan’in tiirevinde neden z boyutunun goéziikmedigi giizel bir ¢ikis noktasi
olabilir. Chua devresinde karsilasilan bu durum sayesinde 3 boyutlu bir sistemde
enerjinin artig ve azalisini 2 boyuttan izlemek miimkiin olmustur. Tezde Boliim 5.1°de

bu konuya deginilmistir.

6.12 Kaos Uretimi Icin Bir Kontrol Islevi Gelistirilmesi

EK E.’de Sekil 5.9’da Peryot katlamasi ile kaos olusumu esnasinda H ve dH’nin
degisimi verilmistir. Grafiklerden goriilebilecegi gibi enerjinin arttifi ve azaldigi
yoriingeler aras1 girisimin olustugu siirl bir bolge vardir. Eger girisimin olustugu bu
bolge ile (5.11) denklemi ilisikilendirilebilirse kaos olusumu icin bir mekanizma

Onerilebilir, bu amagla bir kontrol islevi tasarlanabilir.

Farkli Chua diyotlar1 i¢in (5.11)’in ve kaotik ¢ekicinin lyapunov {istellerinin nasil

PR

degistigine bakilarak daha dayanikli kaos eldesine dair ¢ikarimlar yapilabilir.

Bir diger konu olarak bir kaotik devre uzun siire c¢alistifinda devre elemanlarinin
parametrelerinde ufak degisiklikler olacaktir. Bu degisiklikler de kaotik davranistan
c¢ikilmasina sebep olabilir. Eleman parametreleri ile girisim bolgesinin etkilesimi iyi
anlagilabilirse kaotik devrenin kendini devre parametrelerindeki sapmalara kars

koruyabilemsine imkan saglayan kontrol iglevleri de onerilebilir.
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EK A. Matematik Tanimlar

Ornek A.1: A tekil bir kare matris olsun. Asagidaki esitlik saglanir.
(A7) =(aY) (A1)

Tanim A.1 Vektorel Carpim: X ve y ayni boyutlu iki vektor olmakiizere,

tekil bir kare matris olsun. Asagidaki esitlik saglanir.
<x,y>AxTy=xyT | < >(R"R") >R (A.2)

Tanim A.2 Gradyen ve Jakobyen: x vektoriiniin tek degerli bir fonksiyonu ¢, ¢ok
degerli bir fonksiyonu da f olsun. Bu fonksiyonlarin X vektoriiniin bilesenlerine gore

kismi tiirevleri,

Op Al Op Op . O g

X_{ v axn} PR o (A3)
o o o]
X, OX, OX,
of, o of,

afA R p— “oe —_— m n

F ox, OX, OX, , f()R" >R (A4)
oAy My Ty
| OX OX, OX, |

seklinde tanimlanir. 88_40 “gradyen”, ;i de “jakobiyen” olarak adlandirilir.
X

Ozellik A.2: M tersi olan bir kare matris olmak iizere,

dp | X Op O O O
OMX | Ox, OMx, 8, OMX, X, OMX,
_ (A5)
B - IV VR
| 0% OX, OX, OMXx

esitligi saglanir.
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EK B. Elektrik Devrelerine iliskin Tanimlar

Tanim B.1 Bir Kondansatoriin Enerjisi:

Ee = [ve @it = [ ve (g ) 2 at - [ v (@ () doc 1)

dt
Oey (1) Llo% ( Bl)
= I Ve (u)du = jvc(u)du
A, () 0

seklinde tanimlanir. Nihai ifade elde edilirken u=0q.(t") degisken donisimi
yapilmis; dc (), dc, ile gosterilmis ve kondansatdriin ilk yiikii gc (—o0) =0 olarak
kabul edilmistir.

Tanim B.2 Bir Endiiktansin Enerjisi: Kondansatére benzer sekilde asagidaki gibi
tanimlanir.

e = Jiv@d = Ji @) ABar = [i @ eydam
h, () h, (B2)
= [ i (udu=Ji (u)du
b (o) 0

Enerji ve Dual Enerji Tanimlari: Endiiktans ve kondansatoriin enerjisi yukarida (B.1)
ve (B.2) denklemleri ile tanimlanmistir. Bu tanimlara gore Sekil B.1°deki mavi alanlar
endiiktans ve kondansatdr i¢in enerji tanimlaridir. Benzer olark fiziksel anlami olmasa da
dual enerji tanimlar1 yapilabilir. Sekil B.1°deki sar1 alanlar dual enerji tanimlaridir. Bu
enerjiler elektrik devrelerinin Euler-Lagrange ve Hamilton gdsterimlerinin eldesinde
kullanilmaktadir.

v i

(a) (b)

Sekil B.1 : Kondansator ve endiiktans icin enerji ve dual enerji.

69






EK C. Euler-Lagrange ve Hamilton Denklemlerinin Olusturulmasi

Klasik mekanikte enerji temelli yontemler kullanilarak bir sisteme dair denklemler
yazilabilir. Euler-Lagrange ve Hamilton denklemleri, bu amaca hizmet eden
yontemlerdir. Bu bolimde klasik mekanikteki ¢ok onemli enerji temelli analiz
yontemleri, Hamilton denklemleri ve buna temel teskil eden Euler-Lagrange
denklemleri hakkinda bilgi verilmistir. Bolim yazilirken [69, 70] numaral
kaynaklardan istifade edilmistir.

C.1. Genellestirilmis Koordinatlar
Klasik mekanikte sabit kiitleli N adet parcacigin ti¢ boyutlu uzaydaki ilk hizsiz hareketi
ele alinsin. Bu sistemin hareketi,

2
quo=m%§ (C.1)

seklinde verilebilir. (C.1) denklemleri 3N boyutlu bir hareket tanimlar. Ancak
sistemdeki her pargacik 6zgiir olarak hareket etmiyor olabilir. Ornegin bir kiirenin
tizerinde hareket etmeye zorlanan bir parcacigin hareketi iki ac1 ile ya da boyu sabit
bir sarkacin ilk hizsiz salinim1 bir ag1 ile ifade edilebilir. Bu sebeple sistemin kisit
icermesi halinde (C.1) denklemlerine kisit denklemleri ilave edilmelidir.

N pargacigm olusturdugu bir sistemde parcaciklarin hareketlerini sinirlayan K adet
kisit denklemi oldugunu ve bu kisit denklemlerinin,

f,(X,...%;t)=0 , 1=1..K<3N (C.2)

seklinde konumun bir fonksiyonu olarak ifade edilebildikleri varsayilsin. Bu tip kisit
denklemleri holonomik kisitlar olarak adlandirilir. Kisitlar hizlara da bagl olabilir. Bu
durumda kisit denklemleri,

fL (O X X Xo 1) =0, 1=1...,K<3N (C.3)

seklinde konumun ve hizin bir fonksiyonu olur. Eger kisitlar sadece hizlara bagli ise
(C.3) denklemleri entegre edilip bu kisitlar (C.2) yapisindaki holonomik kisitlara
dontistiiriilebilir. Daha genel olarak kisitlar (C.3) tipindeki denklemlerle de
verilemiyor olabilir. Ornegin,

f (.. X )<0 , 1=1...,K<3N (C4)

denklemlerinde oldugu gibi. (C.2) denklemleri ile verilemeyen kisit denklemleri
holonomik olmayan kisitlar olarak adlandirilir.

Sistemin holonomik kisitlar i¢ermesi durumunu ele alinsin. Kisit denklemleri
sebebiyle bazi koordinatlar, digerlerine kesin bir iliski ile baglidir. Bu koordinatlar
bagimli koordinatlar olarak ele alabiliriz. (C.2) ile verilen kisit denklemlerinin 3N
boyutlu (C.1) denklemlerine uygulamasi ile K adet koordinat denklemlerden
elenebilir. Bu eleme yapilmadan onceki 3N adet koordinat alisilageldik koordinatlart
olarak, eleme yapildiktan sonra geriye kalan 3N-K adet koordinat ise genellestirilmis

! Alisilageldik koordinatlar, genellestirilmis koordinatlarin aksine literatiirde bulunmamaktadir. Terim
‘genellestirilmis koordinatlar olmayan’ kullanimi hos goriilmedigi i¢in tiiretilmistir.
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koordinatlar olarak adlandirilir. Kuvvetler agisindan da bir ayrim yapilarak bagimli
koordinatlar yoniindeki kuvvetler kisit kuvvetleri olarak adlandirilir.

Kisit iceren bir sistem iki sekilde ele alinabilir. Bir 6rnek iizerinden bu yontemler
gosterilecektir.

Ornek C.1: Sekil C.1°deki basit sarkac sistemi Newton denklemleri ile ¢oziilmek

istensin.

(a) (b)
Sekil C.1 : Basit sarkag i¢in (a) kartezyen, (b) kutupsal kooordinatlarda sisteme
etkiyen kuvvetler.

Sekil C.1°de kartezyen ve kutupsal koordinatlar i¢in basit sarkag ve etkiyen kuvvetler
gosterilmistir. Kartezyen ve kutupsal koordinatlarda konum, hiz ve ivme asagidaki
gibi tanimlanir.

Kartezyen koordinatlar Kutupsal koordinatlar

|

Konum : §=x€ +y€  Konum :S=r¢g,

= - - . _ C5
Hiz :V=x'€+Y'E Huz :V=r'g +rd's, (€5)
Ivme :d=x"€ +Yy"€, Ivme :a:(r"—re'z)é,+(r¢9”+2r'¢9')é9

Bu sistem igin kisit kuvveti ipteki gerilme olan 7"dir. Kisit denklemi ise kartezyen ve
kutupsal koordinatlar i¢in asagidaki gibidir:
2,212
X“+y =I ()
y (C.6)
r=I (b)

Kartezyen koordinatlarda x ve y koordinatlari aligilageldik koordinatlardir. (C.6)(a)
kisit denklemi sadece konumlar cinsinden yazilabildigi i¢in bir holonomik kisittir.

Kutupsal koordinatlarda ise r ve 8 koordinatlar alisilageldik koordinatlardir. (C.6)(b)
kisit denklemi de sadece konumlar cinsinden yazilabildigi i¢in bir holonomik kisittir.

Simdi Sekil C.1°deki sisteme ait denklemler kartezyen ve kutupsal koordinatlarda
asagidaki gibi elde edilebilir:
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Kartezyen koordinatlar icin ¢oziim:

Bu durumda sistem alisilageldik koordinatlar olan kartezyen koordinatlarda ele
alinmaktadir. Sekil 2.1(a)’daki kuvvetler i¢in (C.1) denklemleri yazilir ve bu
denklemlere (C.5) ile verilen ivme tanim1 uygulanirsa,

D F, =ma, :mx”:—TsinH:—le
(C.7)

D> F,=md, =my"=-T cosf+mg :—TTy+mg

denklemleri elde edilir. (C.7) denklemlerine kisit denklemi de ilave edilir ve bu deklem
sistemi diizenlenirse sistem dinamigini belirleyen asagidaki denklem sistemi elde
edilir. Bu bir diferansiyel-cebrik denklem sistemidir.

mﬂ+T?=0
y (@
my”+TT—mg=0 (C.8)
XX +y*=1? (b)

(C.8)(b) denkleminin (C.8)(a) denkleminde yerine konmasiyla denklemler x ve y
koordinatlar1 yerine bir baska koordinat cinsinden yazilarak basitlestirilebilir. (C.8)(b)
kisit denklemi iki koordinata birden bagli oldugu icin bu basitlestirmenin nasil
yapilacag asikar degildir.

Gergekten x =rsinf ve y =rcosf degisken doniisimleri yapilirsa (C.8)
diferansiyel denklemleri yerine 6 koordinati iceren tek bir diferansyel denklem
yazilabilir. Iste kisit denkleminin kullamlmasiyla basitlestirilen yeni diferansiyel
denkleme dair bu 6 koordinati genellestirilmis koordinattir.

Kutupsal koordinatlar icin ¢oziim:

Kartezyen koordinatlardan farkli olarak bu koordinat sisteminden bakildiginda kisit
denklemi sadece bir koordinati (r koordinatini) kisitlamaktadir. Oysa kartezyen
koordinatlar i¢in denklem yazildiginda kisit denklemi iki koordinati birden (x ve y
koordinatlarini) kisitlamaktaydi.

Bu durumda sistem genellestirilmis koordinatlarda ele alinabilir. Sisteme dair hareket
denklemleri yazilirken sadece genellestirilmis koordinat € i¢in Newton denklemi
yazilir. Bagiml koordinat r ise sisteme kisit denklemi iizerinden etki eder.

> F,=md,=m(ro"+2r'0')=-mgsind (a) (C.9)
r=I (b)

Kisit denklemi (C.9)(b) ve bu denklemin tiirevi olan r'=0 sisteme ait hareket
denklemi (C.9)(a)’da yerine konur ve elde edilen denklem diizenlenirse sisteme ait
dinamik denklem,

0”:-%sin9 (C.10)
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seklinde elde edilir. iki yontemle bulunan sonuglar &zdestir. Eger (C.8) denklem
sisteminde X=rsin@, X=rcosd degisken doniisiimleri yapilir ve elde edilen

denklemler diizenlenirse (C.10) ifadesi elde edilebilir.

Gortilebilecegi gibi kutupsal koordinatlardan bakmak isleri kolaylastirmistir. Bu
durumda kisit denkleminde yer alan r koordinat1 bagimli koordinat, 6 koordinati ise
genellestirilmis koordinattir.

Yani kutupsal koordinatlardan bakmak bagimli koordinat ve genelestirilmis
koordinatin ayrilabilmesini; bunun bir sonucu olarak denklemlerin kolayca
vazilabilmesini saglamistir.

Euler-Lagrange denklemlerinin 6nemli bir faydasi sistemin holonomik kisit igermesi
durumunda sisteme ait denklemlerin genellestirilmis koordinatlar kullanilarak kolayca
yazilabilmesini saglamasidir.

Bu 6rnek ile klasik mekanikte sisteme genellestirilmis koordinatlardan bakilmasinin
sistem denklemlerin elde edilmesinde sagladigi kolaylik gosterilmistir.

C.2. Euler-Lagrange Denklemleri

Ornek C.1°de klasik mekanik problemlerinde diferansiyel denklemleri elde ederken
dogru koordinatlar1 kullanmanin faydasi gosterilmistir. Boylece diferansiyel denklem
daha kolay elde edilmistir.

Euler-Lagrange denklemlerinin faydasi diferansiyel denklemlerin kolay bir sekilde
yazilmasi ile sinirl degildir. Yontem ¢ok daha 6nemli bir kolaylik saglamakta; sisteme
dair denklemlerin kinetik ve potansiyel enerji kavramlari yardimiyla nasil
yazilabilecegini de gostermektedir.

Bir mekanik sistemin dengede olmasini her parcaciga etkiyen toplam kuvvetin sifir
olmasi olarak tanimlansin. 3 boyutlu uzayda N pargaciktan olusan denge halindeki bir
mekanik sistemde, zaman degismeksizin sistemin koordinatlarinda sonsuz kiiciik

degisimler olsun. Sistemin koordinatlarindaki bu sonsuz kiigiik yer degistirmeler OF;

ile gosterilsin. Sisteme etkiyen kuvvetlerin ve zamanin degismediginin varsayildigi bu
yer degistirme i¢in yapilan is, sozde is (virtual work) olarak adlandirilir. Sistem denge
konumunda olduguna gore her pargaciga etkiyen hizlar toplami sifir olmalidir. O halde
parcacigin ve bunun sonucu olarak da sistemin sézde isi sifir olmalidir.

Simdi kuvvetler, kisit kuvvetleri (i¢ kuvvetler) ve dis kuvvetler olarak ikiye ayrildigi
takdirde (C.11) denklemi asagidaki gibi yeniden yazilablir:

ZFidls_(;ri +Zi:|:ik's“.5ri =0 (C.12)

Kisit kuvvetlerinin is yapmadigi sistemler i¢in incelemeye devam edilsin. Bu kabul
sistemin hareketinin miimkiin oldugu koordinatlar yoniinde kisit kuvveti olmamasi
anlamma gelir. Ornegin, bir yiizey iizerinde hareket edecek sekilde kisitlanmus bir
cisim ele alinsin. Siirtiinme yok ise kisit kuvveti hareket yoniine diktir, dolayisiyla
kosul saglanir ancak siirtlinme var ise bu kuvvet hareket yoniine dik degildir ve bu
nedenle kisit kuvveti ig yapan bir kuvvettir. Kisit kuvvetlerinin is yapmadigin1 kabul
ettigimiz sistemler i¢in (C.12) denklemi asagidaki sekli alir.
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ZF{’”.&i =0 (C13)

Mekanik sistemde her pargaciga etkiyen toplam kuvvetin sifir olmasi kabulii ile yola
cikilmisti. Bu statik haldir; incelemeyi dinamik hale genisletmek icin bu kabulden
vazgecilsin. Bu defa sistemdeki pargagiklar uygulanan dis kuvvetler altinda
hareketlidir. Yani her pargaciga etkiyen toplam kuvvetin sifir olmamasina miisaade
vardir. Bu durumda (C.1) Newton denklemi geregince asagidaki esitlikler yazilabilir.

Fidl§ =ma =my, =, (@)
o (C.14)
Fi § pi = 0 (b)

Kisit kuvvetlerinin is yapmadigi sistemler i¢in inceleme yapildigindan (C.14)(a)
yazilabildi. Bunun sonucu olan (C.14)(b), sistemdeki her parcaciga etki eden kuvvete
esit ve ters yonli bir kuvvet uygulanirsa sistemin dengede olacagini ifade eder. Burada
dengede olmak her pargaciga etkiyen toplam kuvvetin sifir olmasi anlamindadir.

Boylece dinamik hale ait denklem, statik hal goz Oniine alarak yazilabilir. Burada
yapilan dis kuvvetlerle ilgili bir esitlige dis kuvvetlerin esit oldugu bir baska
biytikliigiin dahil edilmesidir. Bu yontem ile (C.11), (C.12) ve (C.13) denklemleri
asagidaki sekilde tekrar yazilabilir:

Z(Edm— pi).éri =0 (C.15)
Z(Fidls_ ;). +ZFik‘5“.§ri =0 (C.16)
Z(Fid‘s— p).o% =0 (C.17)

(C.17) ifadesi D’Alembert prensibi olarak adlandirilir. Boylece kisit kuvveti
icermeyen bir denklem elde etmis olduk. Simdi kisit denklemleri de isin igine

katilabilir. Alilageldik koordinatlar [;’lerin, genellestirilmis koordinatlar q; ’ler

cinsinden asagidaki gibi yazilabildigi varsayilsin:
6 =(G GGt =13 ;3N >n (C.18)
Bu denklemden kismi tiiretme ile agsagidaki denklemler elde edilir.

or . or

V.=>» —q +—
. Z,.:aqjq' p (C.19)
or.
st =% s5q.
: Zj:aqj q, (C.20)

Sozde is hesaplanirken zamanin gegmedigi varsayildigi i¢in (C.20) ifadesi zamana ait
kismi tiirev barindirmaz. Simdi (C.19) ve (C.20) kullanilarak (C.17) asagidaki gibi
yeniden olusturulabilir:
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dis _ dis ﬂ — dl$ﬂ — dl$ﬂ
D E®.Sr=>"F .zaqﬁqj > F p” 59,=> F P 59,

i i j j i j i i

=2.Q,59;

Zpi.ari:Zmi‘r;.Z §qJ Zm 'cSqJ Zm 5q

Z{Zmr—— }5qj=o

(C.21) ve (C.23) denklemlerindeki Q;,

A as OF
A=t
< Z aq

i

(C.21)

i, (C.22)

(C.23)

(C.24)

seklinde tanimlanir ve genellestirilmis kuvvet olarak adlandirilir. Simdi asagidaki

bagint1 géz oniine alinsin:

Zm.ﬁ%—i{di aaqrj mr%%}}

Bu ifadedeki son terim (C.19) yardimiyla,
i ﬂ _Z azri q Z 52I‘i
dt\ ooy )~ oaca, aqét k 6qk6qj N Bt

0 o, . or)| ov
oq; 5\ g, ot ) oq;

seklinde yazilabilir. Ayrica (C.19) denkleminden,
N _O%

aq. aq.

J J

elde edilir. Bu sonuglarin (C.25)’e uygulanmasi ile de

c O o)A ] v d N
Zmina_zi:{dt[miviaq] miviaqj} dtz Vi 4 Z,m

i j

el (Z3m) e (Sime)

esitligi elde edilir. Bu denklemin (C.23)’e uygulanmasiyla
d a 1 2 a 1 2
— — -mV’ | |-— —mv: ||-Q,;0q =0
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ifadesi elde edilir. Simdi sistemin toplam kinetik enerjisi, parcaciklarin kinetik
enerjileri cinsinden

Al
TS my (C.30)

seklinde tanimlanirsa (C.29) denklemi,

dfor | oT
Z{[a[a—qja—q]]@}&h =0 (C.31)

seklini alir. Kisitlar holonom (sadece konuma bagli) ise bu esitligin saglanmasi ancak
00 ’lerin katsayilarinun sifir olmasi ile miimkiindiir. Bu sebeple (C.31)’un ¢6ziimii,

dfoT | orT .
— o =1...,n )
dt{&qJ aqj =Q; J (C.32)

seklinde elde edilir. Bu denklem sisteme dair kisitlarin holonom olmasi durumunda

Euler-Lagrange denklemlerine varmayi saglayan temel esitliktir.

Bu denklemdeki Q j ’ler, genellestirilmis koordinatlarda sisteme etkiyen kuvvetlerdir.

Eger (C.32) denklemi ile tanimlanan genellestirilmis kuvvet Qj ’ler, alisilageldik
koordinatlarin bir fonksiyonu olan skaler bir V potansiyel enerji fonksiyonundan,

F%=-VV (C.33)

seklinde konuma gore tiiretilebiliyor ise bu kuvetler korunumlu kuvvetler olarak
adlandirlir. Bu durumda genellestirilmis kuvvetler asagidaki sekilde yazilabilir.

Q, Z —L=->V, v (C.34)
i aqj
(C.34) denklemindeki skaler V potansiyel enerji fonksiyonu,
VAV L,...r) (C.35)
seklinde tanimlandig1 i¢in gradyen tanimi kullanilarak (C.34) denklemi,
N __N
o, 0q; aq;

]

Q=- (C.36)

seklinde yazilabilir. Bu da genellestirilmis koordinatlarin bir fonksiyonu olan skaler
bir V potansiyel enerji fonksiyonundan, genellestirilmis kuvvetler Q;’lerin elde

edilebilecegi anlamina gelir. Boylece (C.32) denklemi,

d(or) a(T-V) .
= -0, j=1...n ,
dt{aq j . j (C.37)

]
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halini alir. V konumun, T ise hizin bir fonksiyonu olmak {iizere oldugundan bu
denklem,

LAT_v (C.38)

seklinde tanimlanan bir L Lagrange fonksiyonu yardimiyla
d( oL oL .
— — |-——=0 =1...,n C.39
dt[aq,-] o, (e

seklinde yazilabilir. Bu denklemler Euler-Lagrange denklemleri olarak adlandirilir.

Ornek C.2 : Sekil C.1°deki basit sarkac sisteminini Euler-Lagrange denklemleri ile
¢Oziinliz.

Sekil C.1(b) sistemin genellestirilmis koordinatlardaki gosterimidir. € sisteme ait
genellestirilmis koordinattir. Bu sistem i¢in L Lagrange fonksiyonunu asagidaki gibi
hesaplanabilir:

L=T-V =%mv§ —mgh =%m(r6”)2 +mgrcosé = %mlze’2 +mglcosé (C.40)

Simdi (C.39) Euler-Lagrange denklemi, (C.40) Lagrange fonksiyonu igin ¢oziilebilir:

O NP lmlzé"2 +mgl cos@ |=ml*g’
00" 00'\ 2
oL o (1 (c41)
r —(— ml®6’% + mgl cos 9) =-mglsind
060 00\2
%(mlze’)erglsin@:mlze”+mglsin6’=0 (C.42)
Boylece sistemin ¢oziimii agagidaki gibi elde edilir.
"n_ g H
0" = Tsm@ (C.43)

C.3. Korunumsuz Kuvvetler Oldugunda Euler-Lagrange Denklemleri

Bir onceki boliimde (C.24) denklemi ile tanimlanan genellestirilmis kuvvetler
Q ; ’lerin, alisilageldik koordinatlarm bir fonksiyonu olan skaler bir V potansiyel enerji

fonksiyonundan tiiretilebildikleri varsayilmisti. Simdi bu varsayim kaldirilsin ve
genellestirilmis kuvvetler Q ; ’ler 3 gruba ayrilsin:

. QJV . Alisilageldik  koordinatlarin  bir  fonksiyonu olan skaler bir
V =V(r,r,,...,1ry) potansiyel enerji fonksiyonundan tiiretilebilen korunumlu
kuvvetler,

s Q J-R . Alisilageldik hizlarin bir fonksiyonu olan skaler bir R=R(f},1,,...,Ty)
fonksiyonundan tiiretilebilen korunumsuz kuvvetler,

. Qj : Diger korunumsuz kuvvetler.
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Bu durumda (C.32) denklemi asagidaki sekli alir.

d| oT .
E(a_q,j_a_qj Q +Q +Q; , Jj=Ll...,n (C.44)

Bu denklemden hareketle Euler-Lagrange denklemleri asagidaki sekilde tiiretilebilir.

Fdls,\/é_v_v
|£dl$»R é_va (C.45)
. oV or. 8V
Fd1§V | — VV _ _ 1 —_
Q Z Z aqj T or 0q; qu
(C.46)
Q z dlsR i ZV - _ G_Rﬂ:_ %ﬁ:—ﬁ
i aqj i ari aqj i ari aqj aqj
d{oT | (T-V) ©oR .
— — |- ( )+ =Q; , J=L...,n (C.47)
dt{ aq, aq; aq,

Simdi (C.38) denklemi ile tamimlanan L Lagrange fonksiyonu kullanilirsa
Euler-Lagrange denklemleri agsagidaki sekilde elde edilir.

d| oL oL ©R .
- - g =Q. , =1...,n .
dt(@qjj oq;  oq; : . (C.48)

C.4. Hamilton Denklemleri

Bir f(x,y,t) fonksiyonundan g(u,y,t) fonksiyonuna baz doniisiimii yapilmak
istensin. Bu islem Legendere doniisiimii yardimiyla asagidaki gibi yapilabilir:

f (x,y,t) fonksiyonunun diferansiyeli,
df =udx+vdy+zdt (C.49)

yapisindadir. Bu denklemdeki u, v ve z,

dir. g; u, y ve t’nin,
g=f—-ux (C.51)

seklinde bir fonksiyonu olsun. Simdi g(u, y,t) 'nin diferansiyeli yazilir ve bulunan
ifadede (C.49) denklemi yerine konursa,

dg =df —udx—xdu=-xdu+vdy+zdt (C.52)

denklemi elde edilir. Bu aradigimiz formda bir diferansiyeldir. Boylece, (C.51) ile
tanimlanan g(u, y,t) fonksiyonu igin,
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a9 ot _a
ou oy oy

esitliklerinin gecgerli oldugu sonucuna varilir.

(C.53)

o _a
’ ot ot

Bir 6nceki boliimde (C.30) ile tanimlanan T toplam kinetik enerji fonksiyonu, (C.35)
ile tamimlanan V potansiyel enerji fonksiyonu, (C.38) ile tanimlanan L Lagrange

fonksiyonu ve alisilageldik koordinatlar I; ’lerin, genellestirilmis koordinatlar q; ’ler

cinsinden ifadesini veren (C.18) denklemi asagida hatirlatma amaciyla tekrar
yazilmustir.

Tézémﬁ (C.30)

VAV r,.n) (C.35)

LAT-v (C.38)
r=r(q,d,....q,:t) , i=L...,3N ; 3N>n (C.18)

Bu denklemler yardimiyla L Lagrange fonksiyonunun; genellestirilmis konum,
genellestirilmis hiz ve zamanin bir fonksiyonu oldugu goriilebilir.

L(d;, . t) Lagrange fonksiyonu yardimiyla,

A oL(qg;,q;,1)
Ppi=—F"—
oq;

(C.54)

seklinde tanimlanan buytklikler genellestirilmis momentumlar olarak adlandirilir.
Simdi Legendere doniisiimii yardimiyla L(qi,qi,t) fonksiyonundan H(pi,qi,t)
fonksiyonuna doniisiim denklemleri elde edilebilir. (C.51) denklemi gbz Oniine
alinarak H (pi, i, t) fonksiyonu bir eksi isaret farkiyla,

Hézqn—L (C.55)

seklinde tanimlanir. Legendre doniisiimii yardimiyla tanimlanan H’ye Hamiltonyan
fonksiyonu denir. Bu tanimda Lagranjyan fonksiyonunun katsayisinin negatif
olmasina daha sonra deginilecektir. Legendre doniisimii igin yazilan (C.53)
denklemlerinin H icin saglanmasi gerektigi i¢in asagidaki esitlikler elde edilir:

oH oL oH oL oH

C]i—a—pi ) a—qi——a—qi ) 81:_ E (C.56)

(C.54) ile tamimlanan genellestirilmis momentumun tiirevi alinir ve elde edilen esitlige
(C.39) Euler-Lagrange denklemleri uygulanirsa,

b _df)_ o (C.57)
"dtlag ) o '

ifadesi elde edilir. (C.57)’nin (C.56) denklemlerinde yerine konmasiyla da asagidaki
denklemler elde edilir.

80



0 =——
on.
. __%H (@)
Pi = £ (C.58)
oL oH
= b
o ot (®)

Bu denklemler Hamilton denklemleri olarak adlandirilir.

Lagrange fonksiyonunun, dolayisiyla kinetik enerjinin zamana direkt olarak bagh
olmadig1 bir sistem g6z Oniine alalim. Boyle bir sistemde L ’nin zamana gore tiirevi,

dL oL dq; oL dg;
_ __+Z__

dt 4o, dt  4¢oq, dt (C59)
seklinde olacaktir. Bu denklemde Euler-Lagrange denklemleri kullanilirsa,
dL dfaL ), oL dg, df oL
) o Bl T Pt e g [ e C.60
dt Zj:dt(aqj ' qaq; dt Z,.:dt[ ’an (€.60)

ifadesi elde edilir. Boylece asagidaki sonuca ulagilir.
d oL
—|L=->»qg —|=0 C.61
dt( 295 J (C.61)

(C.61)’nin saglanmasi i¢in parantez i¢indeki ifade bir sabit olmalidir. Bu da (C.55) ile
tanimlanan Hamilton fonksiyonunun bir sabit oldugu anlamina gelir. Sonug olarak
kinetik enerjinin zamana bagli olmadigi sistemler igin H Hamilton fonksiyonu
korunumlu bir biiyiikliikktiir. Boyle bir sistemde Hamilton denklemleri sadece
(C.58)(a) denklemlerinden olusur. Bu yapidaki Hamilton denklemleri kanonik
Hamilton denklemleri olarak adlandirilir.

Hamilton fonksiyonunun tanimlandigi (C.55) denklemini yeniden ele alinsin. alim. V
konumun, T ise hizin bir fonksiyonu oldugundan bu denklem,

oT
H=q—-L
§i %54 (C.62)

seklinde yazilabilir. Ote yandan (C.30) ve (C.19) denklemleri yardimiyla da,
2
1 1 or, or,
T=ZmvV?*=3Im g+t C.63
2,mu =25 .[jaqjqj &J (C.63)

yazilabilir. Eger kinetik enerji zamana direkt olarak bagl degil ise % stfirdir. Bu da

sistemin kanonik Hamilton yapida olmasina kars1 diiser. Boylece (C.63) denklemi,
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T-yin [zaqj j{z%qj

o, or; o 0 (C64)
r, o, r, or,
—Z M2 0 7, ZZ— =0, 4
ik o0,
haline gelir. (C.64) denklemi a;,,
0 = 1m or, or,
k=24 iéq,- o, (C.65)
olmak tizere,
T =2 24,4, (C.66)

seklinde yazilabilir. Bu da kinetik enerjinin, genellestirilmis hizlar q; ve ¢, ’in
2. dereceden bir fonksiyonu oldugu anlamina gelir.

Euler’in homojen fonksiyonlara ait teoremi, f(X,X,,...,X,) bir X, degisken
takiminin n. dereceden homojen bir fonksiyonu ise,

Zxkiﬂlf (C.67)
o OX, '

oldugunu soyler. Simdi (C.62) denklemini ele alalim. Bu denklemdeki ilk terime
Euler’in teoremi uygulanirsa Hamiltonyan i¢in asagidaki sonug elde edilir:

H= z J._——L 2T—(T-V)=T+V (C.68)

Boylece H sistemin toplam enerjisi olarak elde edilmis oldu. Hamiltonyan’in kinetik
ve potansiyel enerjinin toplami olmasi istendigi igin (C.55) ifadesinde Lagranjyan
teriminin katsayis1 negatiftir. Boylece Hamiltonyan bir sistemin toplam enerjisi olarak
elde edilmis oldu.

Ornek C.3 : Sekil C.1’deki basit sarkag sisteminini Hamilton denklemleri ile ¢dziiniiz.

Sekil C.1(a)’daki alisilageldik koordinatlar X ve y’yi Sekil C.1(b)’deki genellestirilmis
koordinat @’ya baglayan, X=rsiné ve y=rcosé denklemleri zamana direkt bagl

olmadigindan bu sistemde kinetik enerji T de zamana direkt bagli degildir. Dolayisiyla
Hamilton denklemleri kanonik yapidadir.

Sekil C.1(b)’deki genellestirilmis koordinat € ig¢in genellestirilmis momentumu
hesaplayalim.

oL
q, =0, pf@:mlze’ (C.69)

Simdi (C.40) Lagrange fonksiyonu yardimiyla Hamilton fonksiyonunu hesaplanabilir.
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H=d,p,- L=%m|26"2 —mgl cos @ = Zrilz pz—mgl cosq, (C.70)

Ayni sonuca H =T +V ile de varilabilirdi. Simdi H’den hareketle (C.58)(a) kanonik
Hamilton denklemleri,

q =P
“ ml? (C.71)
p, =—mglsing,

seklinde elde edilir.

C.5. Korunumsuz Kuvvetler Oldugunda Hamilton Denklemleri

Bir 6nceki boliimde (C.39) Euler-Lagrange denklemleri ile yola ¢ikilmisti. (C.55) ile
tanimlanan Hamiltonyan i¢in (C.53) Legendre doniisiimii denklemleri kullanilarak
(C.56) denklemleri elde edilmisti. Ardindan da genellestirilmis konum ve (C.54) ile
tanimlanan genellestirilmis momentum i¢in (C.58) Hamilton denklemleri bulunmustu.

Korunumsuz kuvvetler oldugunda Euler-Lagrange denklemleri olarak (C.39) yerine
(C.48) denklemleri kullanilmalidir. Bu durumda genellestirilmis momentumun tiirevi
(C.57) yerine asagidaki denklem elde edilir:

. dfoL oL OR

== el —a s TN C.72

i dt(aqij o ()

Bu denklemlerin (C.56)’ya uygulanmasi ile de korunumsuz kuvvetler iceren sistemler
icin Hamilton denklemleri asagidaki gibi elde edilir.

Qi

' op,

oH @R @

by =-—————+Q, (C.73)
S '
oL oH
== b

a ®)
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EK D. Elektrik Devrelerinin Euler-Lagrange ve Hamilton Denklemleri

Klasik mekanikte potansiyel enerji ve kinetik enerjiyi birbirlerine ihtiya¢ olmaksizin
tanimlayabilmemiz zamanla enerji temelli etkin yontemler gelistirilmesini saglamistir.
Euler-Lagrange denklemleri ile Hamilton denklemleri potansiyel enerji ve kinetik
enerjiyi kullanarak yazilir. Ilki farkini, ikincisi de toplamini kullanir. Bu ydntemlerde
oncelikle kisit denklemlerinin devre disi birakildigi genellestirilmis koordinatlara
gecilir, ardindan denklemler olusturulur. Genellestirilmis koordinatlar EK C’de izah
edilmistir.

Klasik mekanikte potansiyel enerji harekete donlismemis statik enerjidir. Bir cismin
Diinya ile etkilesiminde yer¢ekimine kars1 ya da daha genel olarak noktasal yiikler
arasi etkilesimde kiitlesel ¢ekim kuvvetine karsi bir ig yaparak bir cismin bir noktaya
getirilmesi ile olusur. Kinetik enerji ise hareket ile saglanan enerjidir. Yergekimi
ivmesi ile ya da kiitlesel cekim kuvveti ile harekete gegen kiitlenin enerjisidir.

Bir yay i¢in, yay sikistirildiginda yayin itme giiciine karsit yapilan is potansiyel
enerjidir. Kinetik enerji ise yayin hareketi esnasinda ortaya ¢ikan enerjidir. Bir akigkan
icin potansiyel enerji akigkanin sikistirilmasi iken, kinetik enerji akiskanin bir boru
icinde hareketidir.

Elektrik devreleri i¢in durum ¢ok karmasiktir. Oncelikle iki farkl1 enerji tanimu ile yola
cikilmasi gerektigi icin ilk akla gelene gore tanimlar yapilabilir. Enerji depolayabilen
elemanlardan birinin, kondansatoriin enerjisi potansiyel enerji olarak; digerinin,
endiiktansin enerjisi de Kinetik enerji olarak ele alinsin. Elbette tam tersi de
miimkiindiir.

Boylece bir benzetim kurulabilmis olmasina karsin klasik mekanik ile elektrik
devreleri arasinda enerjinin olusumu ve diferansiyel denklemlerin yapist agisindan
farklar vardir.

Bu farklar1 géormek icin Diinya’nin ¢ekim kuvveti etkisindeki bir noktasal yiikiin
yergekimi etkisindeki dikey hareketi ile bir LC tank devresinin dinamigi kiyaslansin:

e Cismin potansiyel enerjisi sabit oldugunda konumu sabittir, dolayisiyla hiz
stfirdir. Bu cismin yerden belli bir yiikseklige konmasina karsi gelir. LC
devresinde kondansatoriin bir anahtar ile devreden ayrilmasi durumunda
potansiyel enerjisi sabit kalir.

e Cisim yiiksekten birakildiginda kinetik enerjisi sifirdan artmaya bagslar, bu
esnada potansiyel enerji azalir. Diinya’ya ¢arpana kadar bu devam eder. Dolu
bir kondansator bir endiiktansa baglanirsa kondansator bosalana kadar olusan
dinamik benzerdir. Kondansatdrdeki potansiyel enerji azalirken endiiktanstaki
Kinetik enerji artar.

e LC devresinde potansiyel ve kinetik enerji tanimlari tam tersi alinirsa
endiiktansin potansiyel enerjisini sabit tutabilmek i¢in endiiktansi kisa devre
yapmak gerekir. Bu teorik olarak miimkiindiir ancak fiziksel olarak yapilamaz!

e Cisim ¢ok uzak olmadik¢a Diinya’dan ne kadar uzakta olursa olsun potansiyel
enerjisi tanimhidir, sadece Diinya iizerinde potansiyel enerjisi sifirdir.
LC devresinde ise elemanlar paralel baglandig: takdirde benzer bir dinamik
sistem olusturur. Dolu bir kondansator bir endiiktansa seri baglandiginda ise
potansiyel enerji kinetik enerjiye doniismez. Yani elektrik devresi
baglantilarinin nasil oldugu da énemlidir.
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Bir grup noktasal yiikiin kiitle ¢ekimi ile hareketi ele alindiginda bu yiikler birbirlerine
temas etmedikge bir dinamik sistem tanimlar; oysa bir grup endiiktans ve kondansator
her durumda bir dinamik sistem tanimlamaz, elektrik devre baglantilar1 onemlidir.

Enerjinin ne olduguna bakildiginda ise akla su sorular gelir: Dogrusal olmayan bir
kondansator igin enerjisi en genel halde geriliminin ve yiikiiniin bir fonksiyonudur.
Gerilimler icin Kirchhoff’'un gerilimler yasasi saglanirken, yiikler icin ise
Kirchhoff’un akimlar yasasi saglanir. Bu durumda gerilime bagli kondansatorler i¢in
devre grafinda dallar ile ilgili denklemler kullanilir, yiike bagli kondansatdrler icin ise
kirisler ile ilgili denklemler kullanilir. Bu durumlarda genellestirilmis koordinatlar ve
genellestirilmis hizlarin se¢imi sorunlar1 karsimiza ¢ikar. Endiiktanslar i¢in de benzer
durum vardir. Elektrik devresi kiris olan kondansatorler ve dal olan endiiktanslar
icerdiginde de benzer sorun vardir.

Benzer olarak dogrusal olmayan bir endiiktans i¢in enerjisi en genel halde akiminin ve
akisinin bir fonksiyonu da olabilir. Bu durumda daha karmasik bir hal ortaya ¢ikar.

Euler-Lagrange denklemlerinde bir grup degisken ve bu degiskenlerin tiirevleri
cinsinden bir diferansiyel denklem yazilmasi gerekir. Hamilton denklemelrinde ise iki
ayr1 grup degiskenin birbirleri cinsinden yazilabilmesi gerekir.

Biitiin bu sorunlar hangi biiyiikliiklerin genellestirilmis koordinat olarak alindig1 ile ve
kinetik enerji ve potansiyel enerjinin nasil tanimlandigi ile asilmaya calisilir.

Elektrik devrelerinin Euler-Lagrange formiilasyonlarinda iki temel giiclik vardir:
Genellestirilmis koordinatlarin se¢iminin nasil yapilacagi ve enerjilerin -kinetik ve
potansiyel enerjinin- nasil tanimlanacagi. Genellestirilmis kooordinatlar olarak
kapasite ya da endiiktanslara ait yiik ya da aki biiyiikliikleri kullanilir. Gosterimde bu
biiytikliiklerinden sadece biri kullanilabilecegi gibi iki biiyiikliikk birarada da
kullanilabilir. Kinetik enerji olarak kondansatorlerin (ya da endiiktanslarin) toplam
enerjisi, potansiyel enerji olarak da endiiktanslarin (ya da kondansatorlerin) toplam
enerjisi alinir. Literatiirde kinetik ve potansiyel enerjinin ayri ayri tanimlanmayip
sisteme ait tek bir toplam enerjinin kullanildig1 ¢alismalar da mevcuttur. Bagimsiz
kaynaklarin denklemlere nasil katilacagi da bir diger sorundur. Bagimsiz kaynaklarin
enerjilerinin kinetik, potansiyel ya da toplam enerjiye katilmasi ya da bu elemanlarin
genellestirilmis kuvvet olarak denklemlere katilmasi miimkiindiir. Direncler ve
bagimhi kaynaklar denklemlere genellestirilmis kuvvet olarak katilir. Biitiin bu
cesitlilige ilaveten fiziksel anlami iizerinde durmaksizin elde edilen devre
denklemlerin uygun matris islemleri neticesinde istenen Euler-Lagrange ya da
Hamilton denklemleri formuna getirilmesi de miimkiindiir.

Bu konudaki belli bagh ¢alismalara asagida deginilmistir:

Wells 1938 tarihli ¢alismasinda endiiktanslarin  enerjisini  kinetik  enerji,
kondansatdrlerin ve kaynaklarin enerjilerinin toplamini da potansiyel enerji alarak bir
Euler-Lagrange formiilasyonu vermistir [71]. Bu c¢alismada genellestirilmis
koordinatlar olarak kondansator yiikleri ve endiiktans akilart alinmigtir. Calisma
kondansatorlerin ve endiiktanslarin tanim bagimtilarinin lineer olma kisitlamasin
icermektedir. Ayrica devre denklemlerinde Euler-Lagrange formiilasyonuna
ulasilmadan o©nce kondansatér yiikleri ve endiiktans akilarina iliskin cebrik
denklemlerin elenmesiyle lineer bagimsiz bir degisken takimi elde edilmesi gerektigi
not edilmis, ancak bu konuda bir sistematik verilmemistir. Calisma 6zellikle hareketli
pargalara sahip elektrik devrelerinin analizinde Euler-Lagrange denklemlerinin
kullanilabilecegine deginmesi agisindan énemlidir.
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Daha sonra Brayton ve Moser, dogrusal olmayan devrelerin analizine dair genel bir
yaklagim vermiglerdir. Caligsmalarinda bir Euler-Lagrange gdsterimi vermemis
olmalarina ragmen bu konudaki temel fikirlerin olugsmasinda katkilar1 biiyiiktiir. Bu
calismada devre denklemleri, bilesenleri devredeki kapasite, endiiktans ve direnglerin
enerjileri olan bir toplam enerji yardimi ile yazilmistir [72, 73].

Chua ve McPearson kondansator akilar1 ve endiiktans yiiklerini durum degiskenleri
olarak kullanan bir Euler-Lagrange go6sterimi vermislerdir. Calismalarinda
literatlirdeki daha onceki caligmalarda olmayan bagimli kaynaklar da denklemlere
katilmistir [57]. Bu ¢alismanin 6nemli bir sakincasi, durum degiskenleri olarak
alisilageldik biiyiikliiklikler olmayan kondansator akilart ve endiiktans yiiklerinin
kullanilmis olmasidir [74]. Kwatny ve digerlerinin ¢alismasinda durum degiskeni
olarak yeniden kondansator yiikii ve endiiktans akisina doniilmiistiir ancak bu defa
durum degiskenleri kondansator yiikleri ve kondansator akilarinin lineer bir
kombinasyonu olarak ele alinmistir. Bu da genellestirilmis koordinatlarin ve buna
bagl olarak genellestirilmis hizlarin fiziksel anlami olmayan degiskenler olmasi
sonucunu getirmistir [75]. Elektrik devrelerinin Hamilton gosteriminin eldesi
calismalarda genelde ikincil bir sonug olarak yer almis ve bu gosterim, Euler-Lagrange
gosteriminden Legendere doniisiimii yardimiyla elde edilmistir. Bu da bazi sorunlara
yol agmaktadir. Ornegin [57] numarali referansta Hamilton gosterimi igin kapasite ve
endiiktans tanim bagintilarinin birebir ve tizerine olmasi kisitlamasi vardir. Bu sikinti
Bernstein ve Lieberman’in ¢alismasi ile kisitl bir sekilde giderilmistir. Bu ¢alismada
Euler-Lagrange denklemleri elde edilmeksizin devre topolojisinden hareketle kanonik
Hamilton denklemleri elde edilmistir [76]. Ancak verilen yontem sadece LC devreleri
icin gegerli oldugu i¢in uygulanabilirligi diistiktiir.
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EK E. Sekil 5.9 a=-13/70, b=- 8/7 Parametreleri I¢cin H ve dH nin Degisimi

Bu boliimde Boliim 5.2.2.4°teki Sekil 5.9 verilmistir.
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(9) p=13.2

Sekil 5.9 Peryot katlamasi ile kaos olusumu esnasinda H ve dH’nin degisimi

X 0
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