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ENERJİ TABANLI YAKLAŞIM İLE SAÇILMA-KATLAMA DİNAMİĞİNİN 

OLUŞTURULMASI VE KAOS ÜRETECİNİN TASARLANMASI 

ÖZET 

Tezin amacı bir elektrik devresinde enerji kavramı yardımıyla kaosu açıklamak ya da 

bir elektrik devresindeki kaotik dinamiği başlatan enerji alış verişini inceleyerek 

kaotik devre tasarlamak için etkin bir yöntem önermektir. 

Saçılma ve katlama, kayıplı kaotik sistemlerin iyi bilinen bir mekanizmasıdır. Enerji 

bakış açısı ile bakıldığında saçılma ve katlama mekanizmasının oluşturulabilmesi için 

enerjinin değiştirilebilmesinin sağlanması bir zorunluluktur. Bu tezin konusu enerji 

şekillendirme yoluyla kaos yaratacak bir saçılma ve katlanma mekanizması 

oluşturmanın mümkün olup olmadığı veya gelecekte bu amaca hizmet edecek bir 

anlayışa varmanın mümkün olup olmadığıdır. 

Tezde bir LC tank devresinin kurulacak enerji alış verişi ile kaosa sokulmasının 

mümkün olup olmadığı incelenmiştir. Bu amaçla Chua devresi ele alınmıştır. 

Chua devresinin kaos tarihinde büyük bir önemi vardır. Süreki dinamik sistemlerde 

kaos eldesi için en az 3 boyutlu bir sistem gereklidir. Chua devresi de kaos elde 

edilebilecek 3 boyutlu en basit elektrik devresidir. Chua devresi ilk önerildiği haliyle 

5 eleman içermektedir: 1 endüktans, 2 kondansatör, 1 pasif direnç ve Chua diyodu 

olarak adlandırılan bir aktif direnç. Devrenin bu ilk haliyle zengin dinamikler 

üretmesine karşın literatürde 3 boyutlu bir dinamik sistemde karşılaşılabilecek bütün 

dinamikleri üretemediği fark edilince endüktansa seri bir direnç eklenmesiyle 6 

elemanlı hali de türetilmiştir. Chua devresinin Chua osilatörü olarak adlandırılan bu 

yeni haliyle literatürde 3 boyutlu bir sistemde karşılaşılabilecek bütün dinamikleri 

ürettiği gösterilmiştir. Tezde de gerek ele alınan probleme adım adım yaklaşma imkanı 

verdiği için gerekse de üzerinde çok çalışıldığı için elde edilen sonuçları genelleştirme 

potansiyeli açısından Chua devresi ile çalışılmıştır. 

Tarihsel akışa bakıldığında enerji temelli yöntemlerin klasik mekanikte daha etkin 

kullanıldığı görülür. Euler-Lagrange ve Hamilton denklemleri yazılırken önce 

genelleştirilmiş koordinatlar belirlenir. Ardından da problem genelleştirilmiş 

koordinatlardan bakarak ele alınır. Euler-Lagrange denklemleri için genelleştirilmiş 

konumları ve bu konumların türevleri olan genelleştirilmiş hızları içeren bir 

diferansiyel denklem takımı yazılır. Hamilton denklemleri için ise genelleştirilmiş 

konumlar ve genelleştirilmiş hızlar birbirleri cinsinden yazılarak bir diferansiyel 

denklem takımı elde edilir. 

Klasik mekanikte genelleştirilmiş konum ve genelleştirilmiş hız tanımları nettir. 

Dolayısıyla kinetik ve potansiyel enerji kavramları da nettir. Elektrik devrelerinde ise 

durum farklıdır. Genelleştirilmiş konum ve genelleştirilmiş hızın hangi büyüklük 

olarak alınacağına göre kinetik enerji ve potansiyel enerji değişir. 

Elektrik devrelerinin enerji formülasyonlarına bakıldığında literatürde iki yöntem öne 

çıkar. Bernstein-Lieberman denklemleri ve Chua-McPearson denklemleri. 
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Bernstein-Lieberman denklemleri sadece LC devreleri için kullanılabildiği için tezde 

Chua-McPearson denklemleri kullanılmıştır. 

Bir elektrik devresinde enerji kavramı ile iş yapılmak istendiğinde karşımıza ilk olarak 

enerjinin hangi büyüklük olarak ele alınacağı sorusu çıkar. İlk akla gelen enerji 

depolayabilen elemanların toplam enerjisinin enerji olarak kullanılmasıdır. Literatürde 

karşılaşılan bir başka yöntem ise elektrik devresine ait diferansiyel denklemlerin Port 

Kontrollü Hamilton teoride ele alınmış olan yapılardan birine benzetilmesi ve 

enerjinin de buna göre tanımlanmasıdır. Bu iki şekilde oluşturulan enerji fonksiyonu 

gerekenden daha karmaşık olabilir. Şöyle ki: 

Bir elektrik devresi en genel halde bir diferansiyel-cebrik denklem sistemi ile ifade 

edilebilir. Bir diferansiyel-cebrik denklem sisteminde diferansiyel denklemlerin bir 

kısmının ya da tamamının denklemlerden elenmesi durumunda daha basit diferansiyel 

denklemler ve daha basit bir enerji fonksiyonu ile çalışmak söz konusu olabilir. 

Port Kontrollü Hamilton teori genel olarak kararlılaştırma ve buna çok benzeyen 

senkronizasyon için kullanılmaktadır. Bu amaçlar için kullanıldığında sorun 

yaratmayacak olan Hamiltonyanın kaos eldesi için kullanılmasında endişeler söz 

konusu olmuştur. Bu belirsizlikler sebebiyle tezde iki yöntemle Hamiltonyan elde 

edilmiş ve doğru bir Hamiltonyan ile çalışıldığından emin olunmuştur. 

Chua devresinin enerji alış-verişine bakılacak olursa Chua diyotu devredeki enerji 

veren tek elemandır. Dolayısıyla Chua diyotu pasif direncin tükettiğinden fazlasını 

devreye verdiğinde dinamik elemanlarda enerji depolanır. Aksi halde ise dinamik 

elemanların mevcut enerjisi tüketilir. Tezde devrenin davranışını anlamak için 

devrenin Hamiltonyanındaki değişim incelenmiştir. Ortaya konan yaklaşım enerjinin 

yörüngeler boyunca izlenmesi ve enerjideki değişimin Chua devresinin farklı 

dinamikleri ile ilişkilendirilmesidir. 

Hamiltonyan elde edildikten sonra Hamiltonyanınn nasıl değiştiğine bakılmıştır. 

Elde edilen sonuç Hamiltonyan’ın türevinin z’ye bağlı olmayıp, sadece x ve y’ye bağlı 

olmasıdır. Bu durum enerjinin artış ve azalışını x-y izdüşümü kullanılarak 

değerlendirmeyi mümkün kılmıştır. 

Öncelikle bu sonucun neden oluştuğunu ele almak iyi olacaktır. Chua devresi bir LC 

tank devresi içermektedir ve bu LC tank devresinin diğer enerji depolayabilen 

elemanla direkt bir ilişkisi yoktur. Tek ilişki pasif direncin uç denklemi üzerinden 

oluşmaktadır. İşte Chua devresindeki bu topolojinin bir sonucu olarak Hamiltonyanın 

türevi sadece kondansatörler üzerindeki gerilime bağlıdır. 

Chua diyodu 3 parçalı, parça-parça doğrusal karakteristliğe sahiptir. Tezde amaç 

spiral tipi kaos oluşumunu gözlemek olduğu için basitlik açısından 2-parçalı 

karakteristliğe sahip Chua diyodu ile çalışılmıştır. 

Hamiltonyanın türevi sıfıra eşitlenmiş ve enerjinin arttığı ve azaldığı bölgeleri 

birbirinden ayıran alt-uzay denklemleri elde edilmiştir. Böylece sistemin hangi 

bölgelerde enerji aldığı, hangi bölgelerde de kaybettiği belirlenmiştir. 

Devre bir LC devresi olsaydı ilk koşullarına bağlı olarak periyodik çözüm üretecek ve 

kayıpsız davranış sergileyecekti. 

Paralel LCR devresi olsaydı R direnci pasif ise devre durmaksızın enerji kaybederdi, 

aktif ise de durmaksızın enerji kazanırdı. Bu durumda çözüm direncin aktif ya da pasif 

olmasına göre ya sıfıra ya da sonsuza gider. 
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Chua devresinde Chua diyodu doğrusal olduğunda gözlenecek dinamikler LCR 

devresi için yapılan bu yorumlara benzerdir. Devrede bu durum için inceleme yapılmış 

ve benzer sonuçlar elde edilmiştir. 

Chua devresinde özdeğerler her bölgede bir reel, bir kompleks çift şeklinde alınmıştır. 

Literatürde karşılaşılan Chua devresi parametreleri için istisnalar dışında daima orta 

ve dış bölgeler için bir reel özdeğer ve bir kompleks eşlenik özdeğer çifti hali söz 

konusudur. Shilnikov teoreminin koşullarından birinin homoklinik yörüngenin denge 

noktasında sistemin bir reel özdeğere ve bir kompleks eşlenik özdeğer çiftine sahip 

olması ve Chua devresi ile olan çalışmalarda yazarların amacının kaos elde etmek 

olduğu düşünülürse literatürde karşılaşılan bu durum anlamlı olacaktır. 

Chua diyodunun doğrusal olması için inceleme yapıldıktan sonra 2 kırıklı, parça parça 

doğrusal Chua diyodu için devrenin incelenmesine geçilmiştir. Bu analiz için geçici 

çözümler atılmıştır. Dallanma parametresi α’nın değeri sabitlenmiştir. Dallanma 

parametreleri a ve b’nin değerleri, üst ve alt bölgeler için sistemlerin bir reel özdeğeri 

ve bir kompleks eşlenik özdeğer çifti olacak şekilde seçilmiştir. Başlangıç noktaları 

çözümler kararsız özvektörün etkisi altında sonsuza gitmeyecek şekilde seçilmiştir. 

İncelemelerde β parametresi taranmıştır. 

İlk parametre takımı için kararsız limit çevrim davranışı gözlemlenmiştir. β 

parametresi arttırıldıkça sistemde önce ıraksak çözüm, ardından kararsız limit çevrim, 

ardından da yakınsak çözüm gözlemlenmiştir. 

İkinci parametre takımı olarak ilk parametre takımında a ve b parametrelerinin 

değerleri birbirleriyle değiştirilmiştir. Her ne kadar bu değişiklik ile kararlı limit 

çevrim eldesi ümit edilmiş olsa da bu gerçekleşmemiştir. Sebebini anlamak için 

sistemin Chua diyodunun kırıklarına göre her bir bölgedeki enerji alış verişi 

incelenmiştir. Yapılan gözlem alt ve üst bölgelerde doğru enerji alış verişinin 

sağlanmadığı olmuştur. Yapılan çıkarım aşağıdaki gibidir: 

Chua devresinde bir merkez çevresinde kararlı ya da kararsız limit çevrim 

oluşturulacaksa hem iç bölge ve dış bölgede; hem de üst ve alt bölgede doğru enerji 

ilişkileri kurulmalıdır 

Üçüncü parametre takımı seçilirken bu hususlar gözetilmiş ve kararlı bir limit çevrim 

eldesi başarılmıştır. 

Bu üç parametre takımında da β parametresi arttırılırken kararsız çözümden kararlı 

çözüme gidiş gözlenmiştir. Orta değerlerde ise limit çevrim davranışı gözlenmiştir. 

Bir başka parametre takımı ile inceleme yapıldığında peryot katlaması ile kaos 

dinamiği gözlenmiştir. Bu dinamik gözlendiğinde de benzer olarak β parametresi 

arttırılırken kararsız çözümden kararlı çözüme gidiş gözlenmiştir. Kararlı çözümle 

yola çıkılmış, ardından bir kararlı limit çevrim gözlenmiştir. Ardından kararlı limit 

çevim iç bölgesi ile dış bölgesi arasında bir girişim oluşmuş, enerji alan ve veren 

yörüngeler birbirlerini kesmeye başlamıştır. Bu peryot katlaması ile kaos dinemiğini 

getirmiştir. Ardından da ıraksak çözüm gözlenmiştir. 

Bir yan sonuç olarak garip çekicinin içinde kararlı ya da kararsız çözümlerin 

gözlendiği haller olmuştur. İç bölge sistem dinamiğine belirleyici bir etki yapmamıştır. 

Bu gözlemden de bir yan sonuç çıkarılmış ve yörüngenin iç-bölgeye girdiğinde daima 

bu bölgede kalmaması için iç-bölgenin enerji kazanan davranış göstermesinin daha 

dayanıklı kaos eldesi açısından önemli olduğu not edilmiştir. Bu da ana amacımız 

dışında elde edilen önemli bir ilave sonuç olmuştur. 
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ESTABLISHING STRETCHING AND FOLDING MECHANISM AND 

DESIGNING CHAOS GENERATOR WITH ENERGY-BASED APPROACH 

SUMMARY 

The aim of the thesis is to explain chaotic dynamics by using energy concept or to 

propose an effective method for designing chaotic circuits by examining enegy 

exchange of in an electrical circuit that initiates chaotic dynamics. 

There are two types of chaotic systems; first one is energy conservative Hamiltonian 

chaotic systems and the other one is systems that consist of strange attractors. Strange 

attractors continously gains and loses energy such that system variables keeps their 

magnitudes within some limit values. They differ from stable systems, these systems 

neither go to a stable equilibrium point nor go to a limit cycle. 

Stretching and folding is a well known mechanism of lossly chaotic systems. With the 

energy point of view to form stretching and folding mechanism it is a necessity to 

ensure that energy can be changed. The subject of this thesis, whether it is possible to 

form a stretching and folding mechanism via energy shaping to produce chaos or to 

reach an understanding that will serve this purpose in the future. 

In the thesis, it is examined whether it is possible to put an LC tank circuit into chaos 

with proper energy exchange. The first chaotic circuits that come to mind for this idea 

are Van der Pol oscillator and Chua circuits. Examining the Van de Pol oscillator 

would be more complex beause it contains source. For this reason Chua circuit was 

taken. 

The Chua circuit has a great importance in the history of chaos. In continuous dynamic 

systems, a system with at least 3 dimensions is required to obtain chaos. The Chua 

circuit is the simplest electrical circuit where chaos can be obtained. The Chua circuit, 

as first proposed, consists of 5 elements: 1 inductance, 2 capacitors, 1 passive resistor 

and an active resistor called the Chua diode. Although the circuit produced rich 

dynamics in its first proposed form, it was realized that it could not produce all the 

dynamics that can be encountered in a 3-dimensional dynamic system in the literature, 

and thus, a 6-element version was also derived by adding a series resistance to the 

inductance. This new form of the Chua circuit, called the Chua oscillator, has been 

shown in the literature to produce all the dynamics that can be encountered in a 3D 

system. In this thesis, since it has been worked on extensively the Chua circuit was 

used for its potential to generalize the results obtained. 

In dynamic systems, energy representations can be used to understand the system 

dynamics. Lyapunov theory can be given as an example. Euler-Lagrange equations 

and Hamilton equations used to write differential equations in classical mechanical 

systems are other examples that can be given. In these methods, the concepts of 

potential and kinetic energy are used. When similar equations are wanted to be written 

for electric circuits, the question of how kinetic energy or potential energy should be 
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defined in electric circuits is faced. Since the thesis also aims to examine dynamic 

systems with the help of the concept of energy, this subject is addressed first. 

When we look at the history, we see that energy-based methods are used more 

effectively in classical mechanics. When writing the Euler-Lagrange and Hamilton 

equations, first the generalized coordinates are determined. Then first the problem is 

considered from the generalized coordinates. For the Euler-Lagrange equations, a 

differential equation set is written that includes the generalized coordinates and the 

generalized velocities that are the derivatives of these coordinates. For Hamilton's 

equations, the generalized coordinates and generalized velocities are written in terms 

of each other to obtain a differential equation set. If the generalized coordinate number 

of the system is n, the Euler-Lagrange equations contain n second-order differential 

equations; and the Hamilton equations contain 2n first-order differential equations. 

If the Euler-Lagrange equations are to be written for an electric circuit, first a group of 

variables are determined as generalized coordinates, then these generalized 

coordinates and their derivatives, the generalized velocities, must form a set of 

differential equations that include all of them. When it is desired to write Hamilton 

equations for an electric circuit, one group of variables must be determined as the 

generalized coordinates and another group of variables as the generalized velocities. 

Then, a differential equation set in which these variables are written in terms of each 

other must be obtained. The two formulations are not unique. Also, the number of 

generalized coordinates and generalized velocities may not be equal. While in classical 

mechanics, velocity is always a derivative of position, in an electric circuit, a 

relationship is formed between generalized position and generalized velocity through 

the way the circuit elements are connected. 

In classical mechanics, the definitions of generalized position and generalized velocity 

are clear. Therefore, the concepts of kinetic and potential energy are also clear. In 

electric circuits, the situation is different. Kinetic energy and potential energy changes 

depending on which concept the generalized position and generalized velocity will be 

taken as. 

When looking at the energy formulations of electric circuits, two methods stand out in 

the literature. Bernstein-Lieberman equations and Chua-McPearson equations. Since 

Bernstein Lieberman equations can only be used for LC circuits, Chua McPearson 

equations are used in the thesis. 

When we want to do work with the concept of energy in an electric circuit, the first 

question we encounter is which magnitude of energy will be considered. The first thing 

that comes to mind is to use the total energy of the elements that can store energy as 

energy. Another method encountered in the literature is to liken the differential 

equations of the electric circuit to one of the structures considered in the Port 

Controlled Hamilton theory and to define the energy accordingly. The energy function 

created in these two ways may be more complicated than necessary. As explained 

below: 

An electric circuit can be expressed in the most general form by a differential-algebraic 

equation system. In a differential-algebraic equation system, if some or all of the 

differential equations are eliminated from the equations, it may be possible to work 

with simpler differential equations and a simpler energy function. 

Port Controlled Hamiltonian theory is generally used for stabilization and similar 

synchronization. There have been concerns about using the Hamiltonian to obtain 



xxi 

chaos, although it would not cause problems when used for these purposes. Due to 

these uncertainties, the Hamiltonian was obtained with two methods in the thesis and 

it was ensured that the correct Hamiltonian was used. 

Since the Hamiltonian for the Chua circuit has been obtained, it can now be considered 

with the concept of energy. If we look at the energy exchange of the Chua circuit, the 

Chua diode is the only element in the circuit that gives energy. Therefore, when the 

Chua diode gives more energy to the circuit than the passive resistance consumes, 

energy is stored in the dynamic elements. Otherwise, the existing energy in the 

dynamic elements is consumed. 

In this thesis, the change in the Hamiltonian of the circuit is investigated to understand 

the behavior of the circuit. The approach put forward is to track the energy along the 

orbits and relate the change in energy to the different dynamics of the Chua circuit. 

Chua diode has 3-piece, piecewise linear characteristic. Since the aim of the thesis is 

to obtain the spiral type chaos, Chua diode with 2-piece characteristic is studied. 

After obtaining the Hamiltonian, it was examined how the Hamiltonian changed. The 

result obtained was that the derivative of the Hamiltonian does not depend on z, but 

only on x and y. This made it possible to evaluate the increase and decrease of the 

energy using the x-y projection. 

First, it would be good to consider why this result occurs. The Chua circuit contains 

an LC tank circuit, and this LC tank circuit has no direct relationship with the other 

energy-storing element. The only relationship is through the terminal equation of the 

passive resistor. As a result of this topology in the Chua circuit, the derivative of the 

Hamiltonian depends only on the voltage across the capacitors. 

Chua diode has 3-piece, piecewise linear characteristic. Since the aim of the thesis is 

to observe the spiral type chaos formation, Chua diode with 2-piece characteristic is 

studied. 

The derivative of the Hamiltonian is set equal to zero and the subspace equations 

separating the regions where the energy increases and decreases are obtained. Thus, it 

is determined in which regions the system gains energy and in which regions it loses 

energy. 

If we were to consider an LC circuit, it would produce a periodic solution depending 

on its initial conditions and exhibit lossless behavior. If it were a parallel LCR circuit, 

if the R resistance was passive, the circuit would constantly lose energy, and if it was 

active, it would constantly gain energy. In this case, the solution would either go to 

zero or infinity depending on whether the resistance was active or passive. 

The dynamics to be observed when the Chua diode is linear in the Chua circuit are 

similar to these comments made for the LC and LCR circuits. An examination was 

made for this situation in the circuit and similar results were obtained. 

In the Chua circuit, the eigenvalues are taken as one real and one complex pair in each 

region. For the Chua circuit parameters encountered in the literature, except for some 

exceptions, there is always one real eigenvalue and one complex conjugate eigenvalue 

pair for the middle and outer regions. If we consider that one of the conditions of the 

Shilnikov theorem is that the system has one real eigenvalue and one complex 

conjugate eigenvalue pair at the equilibrium point of the homoclinic orbit and that the 

aim of the authors in the studies with the Chua circuit is to obtain chaos, this situation 

encountered in the literature will be meaningful. 
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Then, the circuit is examined for the case of a linear Chua diode with 2 pieces. For this 

analysis, temporary solutions are discarded. The value of the parameter α is fixed. The 

values of the branching parameters a and b are chosen such that the systems have a 

real eigenvalue and a complex conjugate eigenvalue pair for the upper and lower 

regions. The initial points are chosen in such a way that the solutions are not catched 

by the unstable eigenvector. Otherwise, the solutions will remain under the influence 

of the unstable eigenvector and goes to infinity. The β parameter was scanned in the 

analyses. 

For the first parameter set, unstable limit cycle behavior was observed. As the β 

parameter was increased, the system first showed a divergent solution, then an unstable 

limit cycle formed, and then a convergent solution observed. 

As the second parameter set, the values of the a and b parameters in the first parameter 

set were changed with each other. Although it was hoped that a stable limit cycle would 

be obtained with this change, this did not happen. To understand the reason, the energy 

exchange in each region of the system according to the parts of the Chua diode was 

examined. The observation was that the correct energy exchange was not provided in 

the lower and upper regions. The inference made is as follows: 

If a stable or unstable limit cycle is to be created around a center in the Chua circuit, 

correct energy relations must be established both in the inner and outer regions; and in 

the upper and lower regions. 

These issues were taken into consideration when selecting the third parameter set and 

a stable limit cycle was achieved. 

In all three parameter sets, a transition from an unstable solution to a stable solution 

was observed as the β parameter was increased. At intermediate values, limit cycle 

behavior was observed. 

When another parameter set was examined, chaos dynamics were observed with period 

doubling cascade route. When this dynamic was observed, a similar progression from 

an unstable solution to a stable solution was observed as the β parameter was increased. 

A stable solution was started, and then a stable limit cycle was observed. Then an 

interference occurred between the inner and outer regions of the stable limit cycle, the 

orbits that gains and loses energy started to intersect each other. This brought chaos 

dynamics with period doubling. Then a divergent solution was observed. 

As a side result, there were cases where stable or unstable solutions were observed 

inside the strange attractor. The inner region did not have a decisive effect on the 

system dynamics. 

Obtained result from the thesis is that, after settled a stable limit cycle, creating an 

interference between energy gaining and losing trajectories starts period doubling 

mechanism. By increasing the interference, circuit enters the chaotic regime by period 

doubling cascade route. When it is continued to increase the interference chaos is 

observed. 

As a subsidiary result, while examining th effect of the energy Exchange in the inner 

region of chaotic attractor doesn’t affect the rising of the chaotic attractor. 

Addiotionally, the case in the inner region energy is increasing when chaotic behaviour 

occured this chaotic attractor becomes more robust. 
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1.  GİRİŞ 

Bu tezde doğrusal olmayan1 sistemlerin analizi için kullanılabilecek enerji temelli bir 

yaklaşım geliştirilmesi amaçlanmıştır. Genel olarak doğrusal olmayan sistemler 

analitik olarak çözülemezler. 3 cisim problemi buna örnek olarak gösterilebilir [1]. 

Klasik mekanikte noktasal iki cisim için başlangıç konumları ve hızları bilindiğinde 

bu cisimlerin yörüngeleri hesap edilebilir. Oysa aynı problem üç noktasal cisim için 

kaotik davranış gösterir. Dolayısıyla analitik olarak çözülemez. 

Doğrusal sistemlerde özdeğerler ve özvektörler hesap edilerek sistem davranışı 

kestirilebilmektedir. Ne yazık ki doğrusal olmayan sistemlerde bu yöntem işe 

yaramamaktadır. Genel yaklaşım sistemin bir noktada küçük değişimler için doğrusal 

eşdeğerinin bulunması ve bu nokta civarındaki davranışının kestirilmesidir. Kullanılan 

analiz yöntemine göre ele alınan çeşitli noktalardaki bu yerel davranışlardan sistemin 

davranışı yorumlanır. Sistemin ya da doğrusal eşdeğerinin varsa denge noktalarının 

bulunması; bu noktalardaki özdeğer ve özvektörlerinin analiz edilmesi buna güzel bir 

örnektir. Faz alanı çizimi bu yaklaşımın en genel uygulamasıdır. 

Bu yöntem kaotik olmayan sistemler için etkili olarak kullanılabilir. Şekil 1.1’deki 

van der Pol osilatörü faz alanı buna örnek olarak gösterilebilir. Bir faz portresi sadece 

faz alanı içermeyip özvektörler, özdüzlemler; denge noktaları, limit çevrimler; 

homoklinik, heteroklinik yörüngeler de içerecek şekilde daha kapsamlı çizilebilir. 

 

Şekil 1.1 : Van der Pol osilatörü faz portresi. 

                                                 

 
1 Doğrusal sistemler toplamsallık ve çarpımsallık özelliklerini sağlayan sistemlerdir. 



2 

İki boyutlu bir sistemde faz alanı yardımıyla yörünge kestirilebilir olsa da üç boyutlu 

bir sistemde bu yöntem çok karmaşık hale gelecektir. Şekil 1.2’deki bir sabit katsayılı 

doğrusal matris diferansiyel denkleminin faz portresi buna örnek olarak gösterilebilir. 

Bu iki sistemin diferansiyel denklemleri (1.1) ile verilmiştir. 

 
𝑥̇ = 𝑦

𝑥̇ = 𝜇(1 − 𝑥2)𝑦 − 𝑥
 [

𝑥̇
𝑦̇
𝑧̇

] = [
−1 −1 0

1 −1 0
0 0 −1

] [
𝑥
𝑦
𝑧

] ( 1.1 ) 

 (a) (b)    

(1.1)(a) denklemi ile verilen Van der Pol osilatörünün faz portresi Şekil 1.1’de; 

(1.1)(b) denklemi ile verilen sabit katsayılı, doğrusal matris diferansiyel denkleminin 

faz portresi ise Şekil 1.2’de verilmiştir. Faz portrelerinde oklar ile faz alanları 

gösterilmiştir. (1.1)(b) diferansiyel denkleminin analitik çözümü elde edilebilir 

olmasına rağmen Şekil 1.2’den görülebileceği gibi faz alanının yorumlanması oldukça 

zordur. Sistem davranışının daha karmaşık olduğu kaotik sistemlerde faz alanını 

yorumlamak çok daha zor olabilir. 

 

Şekil 1.2 : Negatif reel kök ve komples kök çifti içeren bir doğrusal matris denklem 

sisteminin faz portresi 
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Bu zorluğu aşmak için enerji kavramı kullanılabilir. Enerji temelli yöntemler sistem 

davranışına dair bilgi vermektedir. Doğrusal olmayan sistemler kararlı oldukları 

taktirde, bu sistemler için etkili olarak kullabilen bir yöntem Lyapunov teoridir. 

Lyapunov teori yerel ya da genel olarak sistemin bir denge noktasına gittiğini 

göstermek için kullanılır. Enerji temelli başka yöntemler de vardır: Euler-Lagrange ve 

Hamilton denklemleri. Bu denklemler sisteme dair diferansiyel denklemlerin elde 

edilmesinde kullanılmaktadır. Bu yöntemlerden Hamilton teori başlangıçta 

denklemlerin eldesi için kullanılmış olsa da daha sonra bu teori geliştirilmiş ve 

senkronizasyon, kararlaştırma gibi konularda Lyapunov teori gibi geniş bir uygulama 

alanı bulmuştur. 

Kaotik sistemlerin davranışlarını sınıflandırmak için kullanılan çeşitli yöntemler 

vardır. Bu yöntemlere örnek olarak Poincare kesitlemeleri, garip çekici için Lyapunov 

üsteli hesabı, dallanma diyagramı çizimi verilebilir. Ne yazık ki bu yöntemler sistemin 

sayısal analiz ile çözülmesini gerektirir. Aynı sorun faz portresi çizimi kullanımında 

da vardır. Sistemi çözüp yörüngeyi çizmeksizin iş yapmak sadece Hamilton kaotik 

sistemlerde mümkündür. Bu sistemlerde faz alanı çizimi ile yörünge hareketi 

kestirilebilmektedir. Aksi olarak sistem analiz edilmeksizin yapılabilecekler çok 

sınırlıdır. Sistemin parça parça doğrusal olması, doğrusal alt sistemler içermesi, ya da 

küçük işaret analizi ile uyumlu hareket etmesi halinde etkin olarak kullanılabilen 

özdeğer, özvektör analizi; diferansiyel denklemin denge noktası analizi buna örnek 

olarak verilebilir. 

Tezin amacı kaotik sistemlerin enerji bakış açısı ile incelenmesidir. Enerji bakış açısı 

ile bir sisteme yaklaşabilmek için önce enerji olarak hangi büyüklüğün izleneceğinin 

belirlenmesi gerekir. Literatür incelemesi sonucunda bu konuda Chua-McPearson 

tarafından geliştirilen yöntem belirlenmiş ve bu yöntemle elde edilen Hamiltonyan 

kullanılmıştır. 

Enerji bakış açısı ile kaotik sistemlerin incelenmesi hedef olarak konduğu taktirde 

hangi tip kaotik sistemlere bakılacağı önem arz eder. Hamilton sistemler genel olarak 

korunumlu sistemlerdir. Örneğin sürtünmesiz ortamda basit sarkaç periyodik davranış 

gösterirken ikili sarkaç ise kaotik davranış gösterir ve iki sistemde de enerji korunur. 

Enerjinin korunduğu Hamilton kaotik sistemler tezin kapsamı dışında olup, tezde diğer 

tip kaotik sistemler olan kayıplı kaotik sistemler ele alınmıştır. Kayıplı kaotik 

sistemlerde kaos garip çekicinin varlığı ile gözlenir. 
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Kayıplı kaotik sistemler incelenmek istendiğinde de literatürdeki öneminden dolayı 

Chua devresi doğal olarak öne çıkar. Chua devresi basitçe gerçeklenebilir olması, 

devrede gözlenen zengin dinamikler ve Shilnikov anlamında kaotik olduğu analitik 

olarak ispat edilen bir devre olması sebebiyle çok popüler olmuştur [2-5]. Özellikle bu 

devreden türetilen Chua osilatörünün bilinen bütün 3. dereceden otonom kayıplı kaotik 

sistem dinamiklerini gösterdiğinin anlaşılmasıyla Şekil 1.3’de gösterilen Chua devresi 

ve Chua osilatörü kaos üzerine çalışmak için çok önemli devreler haline gelmiştir [6]. 

 
(a)                                                                     (b) 

Şekil 1.3 : Chua devresi ve Chua osilatörü. 

Tezde enerji bakış açısıyla Chua devresi ele alınmıştır. Chua devresi farklı tip 

davranışlar için enerjinin değişimi açısından gözlenmiş ve sonuçlar yorumlanmıştır. 

Enerji değişimi iki farklı şekilde incelenmiştir. İlk olarak toplam enerjinin değişimi 

açısından dinamikler incelenmiştir. Bir diğer yöntem olarak Chua devresinin içerdiği 

LC tank devresinin devrenin geri kalanı ile yaptığı enerji alış-verişine bakılmıştır. 

Literatürde de benzer yaklaşımlar gözlenmektedir [7]. Örneğin Şekil 1.4’de görülen 

Chua devresinde LC alt devresi yerine bir transmisyon hattı konulmuştur. Bu hat da 

bir RLC devresi gibi modellenebildiği için devre bir RLC devresi ve ona paralel bağlı 

bir aktif devre şeklinde yorumlanabilir. 

 

Şekil 1.4 : Chua devresinde LC tank devresi yerine transmisyon hattı konarak elde 

edilen yeni kaotik devre. 

file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/Chua Devresi ve Chua Osilatoru/Chua Devresi ve Chua Osilatoru.png
file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/LC ayirma/Chaos from a Time-Delayed Chua's Circuit.png
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Tezde ortaya konan yaklaşım birçok açıdan geliştirilme potansiyeline sahiptir ve 

kendine birçok uygulama alanı bulabilir. Örneğin Şekil 1.5’da verilen [8] numaralı 

kaynakta yer alan devrede Chua osilatöründe LCR alt devresine bir akım geri 

beslemesi yapılarak devrenin kaotik davranışı zenginleştirilmiştir. Benzer düşünce ile 

tezde Chua devresi için edinilen anlayış Chua osilatörü için de tekrarlandığında elde 

edilecek bilgi ile amaca yönelik geri besleme yaparak daha kararlı kaos eldesi mümkün 

olabilir. Tezin son bölümünde tez konusunun geleceğe yönelik yaratabileceği başka 

potansiyellere de değinilecektir. 

 

Şekil 1.5 : Chua osilatöründe LCR alt devresine akım geri-beslemesi uygulanarak 

elde edilen yeni kaotik devre. 

Tez toplam altı bölümden oluşmaktadır. İkinci bölümde kaos teorisinde kullanılan 

enerji temelli yöntemlere değinilmiştir. Üçüncü bölümde Chua literatürü ele alınmıştır. 

Dördüncü bölümde Chua devresi için Euler-Lagrange denklemleri yazılarak 

Hamiltonyan elde edilmiştir. Beşinci bölümde tezde geliştirilen yöntem açıklanmıştır. 

Tezde enerjinin arttığı ve azaldığı yörüngelerin arasındaki girişimin kaotik dinamik 

yaratmak için kullanılabileceği gösterilmiştir. Son bölümde ise bu bakış yardımıyla 

ulaşılabilecek yeni sonuçlar ele alınmıştır. 
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2.  KAOS TEORİSİNDE KULLANILAN ENERJİ TEMELLİ YÖNTEMLER 

2.1 Dinamik Sistem Teorisinde Enerji Kavramının Kullanılması 

Dinamik sistem teorisinde bir sistemin zamana göre davranışı incelenir. Sistemde 

bilinmesi istenen büyüklükler değişkenler ile ifade edilir ve sistemin davranışı çeşitli 

yöntemlerle çözülür. Dinamik sistemlerde enerji kavramından dört şekilde istifade 

edilebilir: 

 Sistemin modellenmesi ve sisteme dair denklemlerin oluşturulması 

 Denklemlerin çözülmesi 

 Sistem davranışının kestirilmesi 

 Sistemin kontrol edilmesi 

Bu bölümde bu başlıklar örnekler ve literatür incelemesi ile ele alınacaktır. 

2.1.1 Sistemin Modellenmesi ve Sisteme Dair Denklemlerin Oluşturulması 

Sistem denklemleri enerji kavramı yardımıyla elde edilebilir. Klasik mekanikte etkin 

olarak kullanılan Euler-Lagrange ve Hamilton denklemleri bu kullanıma verilebilecek 

örneklerdir. Klasik mekaniğe dalga denklemi olarak yaklaşan Hamilton-Jacobi 

denklemi enerjinin bu kullanımına verilebilecek bir başka örnektir. Hamilton-Jacobi 

denklemi ile sistem denklemleri oluşturulduğunda varyasyonel hesap teknikleri 

kullanılır. 

Enerji kavramı ile sisteme dair bir özellik denklemlere katılabilir. Klasik mekanikteki 

Newton’un 3. yasası (etki-tepki prensibi), enerjinin korunumu, momentumun 

korunumu yasaları; elektrik devreleri ya da daha genel olarak ağ teorisinde kullanılan 

Tellegen ve renkli dal teoremleri; termoninamiğin ikinci yasası bu kullanıma örnek 

olarak verilebilir. 

Fiziksel karşılığı olan dinamik sistemler ele alındığında gerçek dünya problemi ile 

uyumlu enerji tanımları yapılması faydalı olabilir. Örneğin bir aracın zamanla hareketi 

incelendiğinde enerji kavramı aracın kinetik enerjisi olarak karşımıza çıkar. Bir başka 
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örnek olarak bilardo toplarının bir dış kuvvet uygulandığında nasıl hareket edecekleri 

incelendiğinde momentumun korunumu ilkesi enerji kavramının kullanıldığı yer olur. 

Ancak bu bakış enerji kavramının kullanılmasında sınırlayıcı olmamalıdır. Enerji 

kavramının kullanılabilmesi için enerjinin fiziksel anlamı olacak şekilde tanımlanması 

şart değildir. 

Enerji kavramı yerine fiziksel anlamı olmayan dual enerji kavramı da kullanılabilir. 

Elektrik devreleri için bu kavramlar EK B’de açıklanmıştır. Euler-Lagrange ve 

Hamilton gösterimlerinde enerji ve dual enerji kavramlarının alternatif kullanımlarına 

[9] numaralı kaynakta yer verilmiştir. Enerji tanımları yapılırken gerçek dünya 

problemi göz önüne alınmaksızın sadece denklemlerde enerji formülasyonuna uygun 

bir matematik düzenleme yapılması da yeterlidir [10]. 

Öte yandan sistemin çözümü neticesinde elde edilen sonuçlar ile gerçek dünya 

problemi arasında ilişki kurulacaksa sisteme dair fiziksel kısıtlara dikkat edilmelidir. 

Örnek 2.1 : Bir LC tank devresinde potansiyel enerji olarak kondansatörün enerjisi, 

kinetik enerji olarak da endüktansın enerjisi tanımlansın. Devre çalışırken bir anda 

açık devre yapılsın. Bu sistem için aşağıdaki yorumlar yapılabilir: 

a. V=0, T=0: Enerji verilmemiş bir LC devresi. 

b. V=0, T>0: LC devresinde kondansatörün tamamen boş, endüktansın tamamen 

dolu olduğu an. 

c. V>0, T=0: LC devresinde kondansatörün tamamen dolu, endüktansın tamamen 

boş olduğu an. 

d. V>0, T>0: LC devresinde kondansatör ve endüktansın tamamen boş olmadığı 

bir an. 

 Bir ilk koşula sahip LC devresi için anahtar açılana kadar b-d-c-d adımları 

durmaksızın gerçekleşir. Bu devinim boyunca enerji korunur. 

 Anahtar açıldığında kondansatör enerjisini korur, dolayısıyla potansiyel enerji 

korunur. Endüktans için ise durum farklıdır. Anahtar açıldığı için endüktanstan 

akım akmaz, bunun sonucu olarak manyetik alan oluşmaz ve dolayısıyla 

kinetik enerji korunmaz. 
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Örnek 2.2 : Örnek 2.1’deki sistemde devre çalışırken bir anda kondansatör açık, 

endüktans ta kısa devre yapılsın. Bu anahtarlama anında kondansatör ve endüktans 

için enerji, dolayısıyla potansiyel enerji ve kinetik enerji korunur. 

Buradaki yorumun benzeri [11] numaralı kaynakta yer almıştır. Bu çalışmada 

kondansatör ve endüktansın sırasıyla açık ve kısa devre yapılarak değerlerini 

korumasının mümkün olduğu; oysa direncin değerini koruma kabiliyetinin olmadığına 

değinilmiş; ardından da memristör ve memristör benzeri elemanların değerlerini 

koruma kabiliyetleri incelenmiştir. 

Sistem modelinin basitleştirilmesi söz konusu ise bu durumda enerjinin korunumu ile 

ilgili özelliklerden taviz vermeksizin bir basitleştirme yapılması gerekir [12]. 

2.1.2 Denklemlerin Çözülmesi 

Bu kullanıma örnek Hamilton sistemlerde enerjinin korunması özelliğinden istifade 

eden enerji korunumlu diferansiyel denklem analiz yöntemleridir. Diferansiyel 

denklemlerin sayısal entegrasyon yöntemleri ile çözümünde zamanda bir adım aralığı 

belirlenip bu adım aralığı için kullanılan türev yaklaşıklığı ile alan hesabı yapılır. Çok 

basit ifadeyle diferansiyel denklemin çözümünün bir noktadaki değeri ve o noktadaki 

diferansiyel denklemin türevi ya da çok boyutta çalışılıyorsa gradyeni kullanılarak bir 

sonraki nokta kestirilir. Elbette bu temel düşünce şeklidir; yüksek mertebeden türevler 

kullanmak, hatanın bir katsayı yardımıyla geriye doğru düzeltme terimi olarak 

kullanılması, polinomsal yaklaşıklık yöntemleri kulanmak, vb. birçok ilave teknik ile 

sayısal analizin doğruluğu arttırılır. 

Bu yöntemlerde türeve sayısal analiz ile nasıl yaklaşılacağı hatayı etkiler. Analiz 

anındaki değişken değerleri ile o andaki türev değeri kullanılabilir ya da o andaki 

değerler yardımıyla adım büyüklüğü kadar sonraki değişken değerleri bulunur ve adım 

büyüklüğü sonundaki türev değeri kullanılabilir. İlaveten zaman adımının ortasındaki 

türev değerini kullanan yöntemler de vardır. Sayısal hata türeve dair hangi 

yaklaşıklığın kullanıldığından etkilenir. 

Eğer sistem kanonik Hamiltonyan ise diferansiyel denklem, (C.58)(a) yapısındadır. Bu 

tip sistemler için kullanılan bir yöntem, denklemlerin (C.58)(a)’ya göre p ve q 

değişkenleri için iki parçaya ayrılması ve bir grup değişken için analiz anındaki, diğer 
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grup değişken için de adım büyüklüğü sonundaki türevin kullanılmasıdır. Bu 

yöntemler korunumlu enegratörler1 olarak adlandırılır [13, 14]. 

Denklemlerin çözümünde enerji korunumuna dikkat eden bir başka yaklaşım da 

diferansiyel denklem entegrasyonu kullanmak yerine; denklemlere enerji korunumuna 

dair denklemi de katıp elde edilen diferansiyel cebrik denklem takımı için özel 

diferansiyel cebrik entegratörler2 kullanmaktır [15].  

Kütle hareketi ile oluşan iş ya da kimyasal tepkime oluşumu, ısı alış verişi gibi 

enerjinin form değiştirdiği dinamik sistemlerin analizinde form değiştiren enerji 

çeşitlerinin eşitlenmesi de denklem çözümünde kullanılabilir. 

Bir sistemin sayısal analiz yöntemleri ile periyodik çözümleri arandığında sayısal 

entegrasyon yöntemleri küçük hataların birikerek sonuca etki edebilmesi sebebiyle 

etkili olmayabilir. Bu durumda sistemin doğrusal olmayan karakteri düşük ise 

pertürbasyon analizi işe yarayabilir. Doğrusal olmayan davranışın baskın olduğu 

durumda ise Harmonik Balans yöntemleri etkin olarak kullanılabilir. [16] numaralı 

kaynakta bu konuda kapsamlı bir literatür taraması yer almaktadır. 

2.1.3 Sistem Davranışının Kestirilmesi 

Dinamik sistemlerin analiz edilmeksizin davranışının kestirilmesi için enerji kavramı 

etkin olarak kullanılabilir. Bunun en görkemli örneği Lyapunov teoridir. Bu teoride 

sistem değişkenlerini giriş olarak alan özel bir fonksiyon bulunmaktadır. Öyle ki bu 

fonksiyonun değeri dinamik sistemin çözümü boyunca ya sabit kalır ya da git gide 

azalır. Lyapunov teori, dinamik sistemin çözümünün yerel ya da genel olarak sınırlı 

kaldığını ya da bir denge noktasına gittiğini söyleme imkanı verir. 100 yıldan eski bir 

teoridir ve bir çok açıdan geliştirilmiştir. Anahtarlamalı sistem kararlılığı da bu 

teorinin etkin olarak uygulama alanı bulduğu yerlerden biridir. Böyle bir sistem için 

bir Lyapunov fonksiyonu bulmak yerine uygun koşulları sağlayan Lyapunov 

fonksiyonları ile çalışmak mümkündür. Tezde 6.9. bölümde gelecekte tezin amacı 

doğrultusunda bu teorinin nasıl kullanılabileceğine değinilmiştir. 

İki tip sistemde daha enerji kavramı yardımıyla sistem davranışı etkin olarak 

kestirilebilmektedir. Hamiltonyan sistemlerde ve Gradyen sistemlerde. 

                                                 

 
1 Symplectic integrators 
2 Diferantial algebraic equation integrators  
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(C.58)(a) ile verilebilen sistemler kanonik Hamiltonyan sistemler olarak adlandırılır. 

Bu sistemlerde Hamiltonyan korunumlu büyüklüktür. Yörüngeler boyunca değeri 

korunur. Gradyen sistemlerde ise sistem değişkenlerinin fonksiyonu olan bir 

potansiyel fonksiyonunun değeri yörünge hareketi boyunca daima azalır. Böylece 

hareket bir denge noktasında sonlanır. 

2.1.4 Sistemin Kontrol Edilmesi 

Örneğin Şekil 2.1’deki devrede iki Chua devresi kapasite (ya da endüktans) ile elektrik 

alanı (ya da manyetik alan) kuplajı oluşturarak bir birine bağlanmıştır. Devreler arası 

kuplaj kapasitif, endüktif ya da iki kuplajın birden kullanılması şeklinde olabilir. Chua 

devrelerinde birer termistör kullanılmıştır. Termistör kullanımı ile devreler ısı 

değişimine duyarlı hale getirilmiştir. 

Sayısal analiz, simülasyon ve devre gerçeklemesi ile ile termistörlerin koşulları çok 

farklı olduğunda senkronizasyonun başarılamadığı gösterilmiştir. Devrede kuplajın 

olduğu yere termistörlerin konabileceği; böylelikle sekronizasyonun gerçekleşmesinin 

kontrol edilebildiği bir temel yapıya varmanın mümkün olabileceği önerilmiştir [17]. 

 

Şekil 2.1 : Elektrik ya da manyetik alan kuplajı yapılmış iki Chua devresinn 

termistörlerdeki değişim yardımıyla senkronizasyonu için önerilen devre. 

2.2 Kaos Teorisinde Kullanılan Bazı Enerji Temelli Yöntemler 

Bu bölümde kaos teorisinde kullanılan enerji temelli bazı yöntemler ele alınacaktır. İlk 

olarak Euler-Lagrange ve Hamilton denklemleri, ardından da Port Kontrollü Hamilton 

formülasyonları verilecektir. Burada gösterilecek olan Euler-Lagrange ve Hamilton 

denklemlerinin çıkarımları için EK C’ye bakınız. 
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2.2.1 Euler-Lagrange Denklemleri 

Sistemin holonomik olmayan kısıt denklemi içermesi yani sadece konuma bağlı 

olmayan kısıt içermesi durumunda Euler-Lagrange denklemleri aşağıdaki gibidir: 

 0 , 1, ,
j j

d L L
j n

dt q q

  
      

 ( C.39 ) 

Sistemin korunumsuz kuvvetler de içermesi halinde yani en genel halde                    

Euler- Lagrange denklemleri aşağıdaki gibidir: 

 , 1, ,j

j j j

d L L R
Q j n

dt q q q

   
        

 ( C.48 ) 

2.2.2 Hamilton Denklemleri 

Sistem kanonik yapıda ise yani kinetik enerji zamana bağlı değil ise (C.58)(a) kanonik 

Hamilton denklemleri kullanılır. Sistem kanonik yapıda olmadığında yani kinetik 

enerji zamana bağlı olduğunda (C.58)(b) de denklemlere katılır. Bu durumda (C.58) 

Hamilton denklemleri kullanılır. 
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Sistemin korunumsuz kuvvetler de içermesi halinde yani en genel halde ise Hamilton 

denklemleri aşağıdaki gibidir: 
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2.2.3 Port Kontrollü Hamilton Sistemler 

Tanım 2.1 Kapı Kontrollü Hamilton Sistem: Kanonik Hamilton yapıda bir sistem ele 

alınsın. Bu sistemin uyarılması durumunda sisteme ait denklemler aşağıdaki gibi 

olacaktır. 
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p

p

H
q

i

i
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



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


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 ( 2.1 ) 

Bu denklemler, genelleştirilmiş koordinatlardaki konumlar, momentumlar ve 

kuvvetlere dair  T1,..., nqqq  ,  T1,..., nppp   ve  T1,..., nFFu   şeklinde tanımlanan 

q , p  ve u  vektörleri yardımıyla aşağıdaki gibi gösterilebilir. 

 

u
q

H
p

p

H
q
















 ( 2.2 ) 

(2.2) ile verilen bu sistemde H ’nin zamana göre türevi alınırsa, 

 qupqqupp
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  ( 2.3 ) 

ifadesi elde edilir. Bu da genelleştirilmiş kuvvetler ile sisteme verilen enerjinin 

sistemin toplam enerjisindeki yani Hamiltonyanındaki değişime eşit olduğu anlamına 

gelir. Yani bu denklem enerjinin korunumunu gösterir. 

(2.2) ile verilen bu sisteme bir y çıkışı ilave edilirse aşağıdaki sistem elde edilir. 
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Kapı yaklaşımı ile düşünülecek olursa (2.4) denklemine göre u giriş ve y çıkış 

kapılarından verilen enerji kayıpsız olarak sisteme aktarılır. Bu denklemde giriş 

fonksiyonuna çarpan olarak gelen ilgili matris parametresi genelleştirilirse aşağıdaki 

matris denklemi elde edilir. 
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Şimdi de bu denklemdeki matris ve vektörler genelleştirilirse, 
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 ( 2.6 ) 

denklemi elde edilir. Bu denklemde  TTT ,qqx  ’dir ve J(x) de, 

 )()( T xJxJ   ( 2.7 ) 

koşulunu sağlayan eksi bakışımlı1 bir sabit matristir. (E.6) denklemleri Kapı Kontrollü 

Hamilton sisteme dair gösterimdir. 

Tanım 2.2 Kayıplı Kapı Kontrollü Hamilton Sistem: Kapı Kontrollü Hamilton sisteme 

kayıplılık eklenmesi ile elde edilir. 
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(2.8) denklem sistemi Kayıplı Kapı Kontrollü Hamilton sisteme dair gösterimdir. Bu 

denklem sistemi kayıpsız değildir. 

                                                 

 
1 skew symmetric 
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Kapı Kontrolü Hamilton sistemlerde genel bir sakınca vardır. Denklemler elde 

edilirken klasik mekanikte çok işe yarayan Hamilton denklemleri ile yola çıkılmıştır. 

EK C’den görülebileceği gibi Hamilton denklemleri genelleştirilmiş koordinatlarda 

yazılır. Oysaki Kapı Kontrollü Hamilton denklemleri elde edilirken bu denklemler 

üzerinde genelleştirme işlemleri yapılmıştır. Dolayısıyla artık denklemlerin 

genelleştirilmiş koordinatlarda olduğu söylenemez. 

Bu teori ile çalışılırken sistemin bu şekilde yazılan enerji fonksiyonunun alışılageldik 

koordinatlarda olduğu, genelleştirilmiş koordinatlarda çalışılmamasının bir sakınca 

yaratıp yaratmayacağı sorgulanmalıdır. Kapı kontrollü Hamilton teori genellikle 

kararlılaştırma veya senkronizasyon için kullanıldığı için bu husus bir sorun 

oluşturmamaktadır. 
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3.  CHUA DEVRESİ İLE İLGİLİ LİTERATÜR İNCELEMESİ 

Tezin amacı Chua devresinin davranışını enerji alış verişi ile gözlemektir. Dolayısıyla 

literatürde Chua devresi ile ilgili yapılan analizler tez için önemli bir çıkış noktasıdır. 

Chua devresi kaos tarihinde büyük bir öneme sahiptir. Devrede gözlenen zengin 

dinamikler ve devrenin basitçe gerçekleştirilebilir olması sebebiyle Chua devresi kaos 

literatüründe çok popüler olmuştur. 

Chua devresi kaotik davranış gösteren en basit elektrik devresidir. Gözlenen zengin 

dinamiklere rağmen Chua devresinde gözlenemeyen dallanma davranışları benzer 

karmaşıklıkta yeni kaotik elektrik devreler önerilmesine sebep olmuştur. Chua devresi 

ve benzer olan bu devreler literatürde bir arada ‘Chua Devre Ailesi’ olarak anılmıştır. 

Bu bölümde Chua devresi ile ilgili literatür aşağıdaki açılardan incelenecektir: 

 Chua ve Chua devre ailesine ait devreler ve denklemler 

 Literatürde tezle ilgili ortaya konan katkılar 

İlk bölümde Chua devresi ile ilgili bilgi verilecektir. Bu bölümde Chua devresi için 

literatürde karşılaşılan farklı devre denklemleri gösterilecek olup ardından Chua devre 

ailesi tanıtılacak ve Chua devresi ile ilgili genelleştirmelere değinilecektir. Bir sonraki 

bölümde ise Chua devresi ile ilgili literatür verilecektir. 

3.1 Chua Devresi 

Şekil 3.1’de verilen Chua devresi 3 enerji depolayan eleman, bir direnç ve bir aktif 

dirençten oluşmaktadır. Aktif direnç 3 kırık içeren sürekli, parça parça doğrusal bir 

dirençtir ve literatürde ’Chua Diyotu’ olarak adlandırılmaktadır. 

 

Şekil 3.1 : Chua devresi. 

file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/Chua Devresi.tiff
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Chua devresine ait denklemler aşağıdaki gibi verilir: 
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 ( 3.1 ) 

(3.1) denklemindeki 𝐶1, 𝐶2, 𝐿 ve 𝐺 devre elemanlarının değerleridir. Denklemdeki 

𝑔(𝑣𝑅) fonksiyonu ise doğrusal olmayan 𝑁𝑅 direncinin tanım bağıntısıdır ve (3.2) 

denklemi ile verilmektedir. 
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( 3.2 ) 

Bu denklemlere göre Chua diyodunun gerilim-akım grafiği Şekil 3.2’deki gibidir. 

 

Şekil 3.2 : Chua diyodu gerilim-akım grafiği. 

Literatürdeki ilk çalışmalarda devrede 3 yerine 2 kırıklı Chua diyodu kullanıldığında 

da kaos elde edilebileceği gözlenmiştir. İki kırıklı Chua diyodu için eleman gerilim-

akım grafikleri Şekil 3.3’te verilmiştir. 

file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/NRCizim3parca.png
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                                     (a)                                                    (b) 

Şekil 3.3 : 2 kırıklı Chua diyodu için gerilim-akım grafikleri. 

Şekil 3.3(a) ve Şekil 3.3(b)’deki gerilim-akım grafiklerine dair denklemler (3.3) ve 

(3.4) denklemleri ile verilebilir. Literatürde daha sonra 3’ten fazla kırıklı Chua 

diyotları ile de çalışılmıştır. 
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 ( 3.3 ) 
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 ( 3.4 ) 

Chua diyotu tanım bağıntısı kırık yapısına göre (3.2), (3.3) ya da (3.4) denklemlerinden 

biri ile verilmektedir. Chua devresine ait diferansiyel denklem de (3.1) denklemi ile 

verilmektedir. Bu 2 denklemin oluşturduğu sistem dallanma incelemeleri için çok fazla 

parametre içermektedir. Bu sebeple denklemlerde uygun dönüşümler yapılarak 

boyutsuz yeni bir denklem takımı türetilmiştir. Boyutsuzlaştırma yapılmasının bir 

başka sebebi de (3.1) denklemindeki ölçek farkıdır. 

file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/NRCizim2parca1.png
file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/NRCizim2parca2.png


20 

Denklem parametrelerinden 𝐶1 ve 𝐶2’nin tipik değerleri pF boyutunda iken, 𝐿’nin tipik 

değeri mH boyutundadır. Durum değişkenlerinin çarpanları arasındaki bu boyut 

farkının sonucu olarak Chua devresinde tipik eleman akımları mA boyutunda iken 

eleman gerilimleri V boyutundadır. Endüktans akımı ile kondansatör gerilimleri 

arasındaki yaklaşık 1000 kat fark devrenin sayısal analizinde küçük de olsa bir zorluk 

yaratmaktadır. Bu sebeplerle yapılan boyutsuzlaştırmaya dair dönüşüm denklemleri 

aşağıdaki gibidir: 
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 ( 3.5 ) 

(3.5) dönüşüm denklemlerinin (3.1) devre denklemine uygulanması ile (3.6) boyutsuz 

devre denklemleri elde edilir. Bu denklemdeki x, y ve z boyutsuz durum değişkenleri; 

α ve β ise dallanma parametreleridir. 
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 ( 3.6 ) 

Bu denklemdeki f(x) boyutsuz Chua diyodu için eleman tanım bağıntısıdır ve aşağıdaki 

gibi verilmektedir: 
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( 3.7 ) 

Bu denklemlere göre elde edilen boyutsuz Chua diyodunun gerilim-akım grafiği    

Şekil 3.4’deki gibidir. Şekilden görülebileceği gibi boyutsuz koordinatlarda parça 

parça doğrusal Chua diyodunun anahtarlama anları ±1’dir. 
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Şekil 3.4 : Boyutsuz koordinatlarda Chua diyodu gerilim-akım grafiği. 

Alternatif bir gösterim olarak, (3.6) ve (3.7) denklemleri 

    xfxxh 


, 10 


am , 11 


bm  ( 3.8 ) 

tanımları kullanılarak aşağıdaki şekilde de yazılabilir. 
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 ( 3.9 ) 
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( 3.10 ) 

(3.10) denklemindeki m0 ve m1 parametreleri boyutsuz büyüklükler olup (3.2) – (3.5) 

denklemlerindeki Chua diyodu eğimi olan parametreler değildir. Literatürde bu 

şekilde geçtiği için farklı parametreler tanımlanarak yazılmamıştır. 

(3.2) denklemindeki 𝑚0 ve 𝑚1 Şekil 3.2’deki parça parça doğrusal gerilim-akım 

grafiğindeki eğimlerdir. Chua diyodu tanım denklemi gerilim kontrollü bir direnç 

olarak verildiği için, zamanla (3.2) denklemindeki 𝑚0, 𝑚1 ve 𝐵𝑃 yerine sırasıyla        

file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/NRCizim3parca boyutsuz.png
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𝐺𝑏, 𝐺𝑎 ve 𝐸 kullanımı tercih edilmiştir. Chua diyodu denklemi bu parametreler için 

(3.11) denkleminde tekrar verilmiştir. Günümüzde fiziksel parametreler kullanılacak 

ise genelde bu parametreler tercih edilmektedir. 
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( 3.11 ) 

(3.2) denklemi yerine (3.11) denkleminin kullanılması durumunda boyutsuz 

koordinatlardaki denklemler değişmeyecektir. Sadece bu durumda (3.5) dönüşüm 

denklemleri yerine yeni dönüşüm denklemleri kullanılması gerekir. 

(3.6) ve (3.7) ile verilen boyutsuz koordinatlardaki denklemler bir lineer matris 

denklem sistemi olarak da yazılabilir. Denklemler bu formda yazılmak istenirse x, 

boyutsuz koordinatlara ait durum değişkenlerini içeren vektör, b bir öteleme vektörü, 

A bir matris olmak üzere denklemler aşağıdaki gibi yazılabilir. 

 b xx A  ( 3.12 ) 
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Bu durumda (3.13) denklemindeki c ve d katsayıları boyutsuz koordinat x’in değerine 

göre aşağıdaki gibi değişir. 
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Chua denklemleri için bir başka gösterim olarak (3.12) – (3.14) denklemleri denge 

noktası analizi yapıldıktan sonra ötelenerek aşağıdaki şekilde yeniden yazılabilir. 
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Bu denklemdeki x ve k aşağıdaki gibi tanımlanmaktadır. 
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3.2 Chua Devresinden Türetilen Yeni Devreler ve Genelleştirmeler 

Chua devresi üzerinde çalışıldıkça 3 boyutta gözlenebilecek bütün kaotik dinamiklerin 

bu devre kullanılarak gözlenemediği görülmüştür. Bu sebeple gözlenemeyen bu 

dinamikleri görebilmek amacıyla yeni arayışlar söz konusu olmuştur. Bu arayışlar 4 

grupta ele alınabilir: 

 Devre parametrelerinin negatif olmasına müsade edilmesi 

 Alternatif devreler önerilmesi 

 Denklemlerde genelleştirmeler yapılması 

 Farklı Chua Diyotları Kullanılması 

3.2.1 Devre Parametrelerinin Negatif Olmasına Müsade Edilmesi 

İlk yaklaşıma örnek literatürde ’Double Hook’ olarak adlandırılan garip çekicidir. 

Chua devresinde orta ve dış bölgeler için geçerli olan parça parça doğrusal sistemlerin 

özdeğerleri reel olduğunda kaotik çekici gözlenip gözlenemeyeceğinin sorgulanması 

neticesinde 𝐶1 ve 𝐿’nin negatif olmasına müsade edildiğinde bir kaotik çekici 

bulunabilmiştir [18]. [19] numaralı kaynaklarda paramatere değerleri negatif 

olduğunda bunu sağlayan fiziksel devre gerçeklemelerinin nasıl yapılabileceğine dair 

yöntemler verilmiştir. Aynı çalışmada negatif parametre dünyasında devrenin 

dallanma davranışının da değiştiği not edilmiştir. 
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3.2.2 Alternatif Devreler Önerilmesi 

İkinci yaklaşıma verilebilecek bazı örnekler Şekil 3.5’te görülmektedir [20-24]. Bu ve 

benzeri devreler önerilirken Chua devresinin basitliğine benzer olarak devrede sadece 

3 adet enerji depolayabilen eleman olmasına dikkat edilmiştir. 

           
                                   (a)                        (b)                         (c) 

      
                                            (d)                                    (e) 

Şekil 3.5 : Chua devresi benzeri kaotik devreler1. 

Chua benzeri devreler türetildikten sonra yapılan çalışmalar neticesinde bu 

devrelerden biri öne çıkmıştır. Şekil 3.6’da verilen bu devre Chua Osilatörü2 olarak 

adlandırılmış ve Chua devresi ile beraber kaotik çalışmalar için bir prototip olmuştur 

[25-29]. [30] numaralı kaynakta Chua Osilatörünün 6 elemana kadar kanonik eşdeğer 

olduğu devreler verilmiştir. Bu yayında Şekil 3.5’teki devreler yer almıştır. 

 

Şekil 3.6 : Chua osilatörü. 

 

 

                                                 

 
1Şekil 2.5’teki devrelerin ilgili kaynaklardaki yerleri aşağıdaki gibidir: 

(a) (20, s. 241),       (b) (21, s. 276),       (c) (22, s. 738),       (d) (23, s. 887),       (e) (24, s. 510)  
2 Bu adlandırmada osilatör kelimesi bu devrenin Chua Devre Ailesi üyesi devrelere eşdeğer olduğuna 

vurgu yapmaktadır. 

file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/Chua Devresi benzerleri/Chua Devresi benzeri 1.png
file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/Chua Devresi benzerleri/Chua Devresi benzeri 2.png
file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/Chua Devresi benzerleri/Chua Devresi benzeri 3.png
file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/Chua Devresi benzerleri/Chua Devresi benzeri 4.png
file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/Chua Devresi benzerleri/Chua Devresi benzeri 5.png
file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/Chua Osilatoru.tif
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Chua osilatörüne dair denklemler aşağıdaki gibi verilir: 
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 ( 3.17 ) 

(3.17) denklemindeki 𝐶1, 𝐶2, 𝐿, 𝑅 ve 𝑅0 devre elemanlarına ait büyüklüklerdir. 

Denklemdeki 𝑔(𝑣𝑅) ise doğrusal olmayan 𝑁𝑅 direncinin tanım bağıntısı olup (3.18) 

denklemi ile verilmektedir. 
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( 3.18 ) 

Bu denklemler için boyutsuzlaştırmaya dair dönüşüm denklemleri aşağıdaki gibidir: 
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 ( 3.19 ) 

(3.19) dönüşüm denklemlerinin (3.17) devre denklemine uygulanması ile aşağıdaki 

boyutsuz devre denklemleri elde edilir. Bu denklemdeki x, y ve z boyutsuz durum 

değişkenleri; α, β, γ ve k ise dallanma parametreleridir. 
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Bu denklemdeki f(x) Chua diyodu için boyutsuz koordinatlardaki eleman tanım 

bağıntısıdır ve (3.19) dönüşüm denklemlerinin (3.18) Chua diyodu tanım bağıntısına 

uygulanması ile (3.20) denklemindeki gibi elde edilir. 

      11
2

1
 xxbaxbxf  ( 3.21 ) 

Şekil 3.6’daki devrenin Chua osilatörü olarak seçilmesinin bir avantajı olarak devre 

0R  için klasik Chua devresi’ne dönüşür. Böylece daha önce Chua devresi için 

üretilen bilginin bu yeni devrenin özel hali olması sağlanmıştır. 

3.2.3 Denklemlerde Genelleştirmeler Yapılması 

Chua denklemlerinin genelleştirilmesine yönelik üçüncü yaklaşımda ilk olarak (3.15) 

ve (3.16) ile verilen sisteme dair boyutsuz haldeki doğrusal matris diferansiyel 

denklem ailesi ele alınmıştır. Chua devresine dair denklemlerin üst ve alt bölge için 

simetrik yapısı gözetilerek bir genelleştirme yapıldığı takdirde bu denklemler 

aşağıdaki gibi b xx A  doğrusal matris denklemi ailesi şeklinde yazılabilir. 
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 ( 3.22 ) 

Bu 21 parametre içeren bir denklemdir. Ancak Chua devresinin simetrik yapısı ve 

Chua diyodu eleman tanım bağıntısının sürekliliği düşünülerek bu denklem ciddi 

şekilde basitleştirilebilir. 
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Böylece 12 parametre içeren (3.23) denklemi elde edilmiş oldu. Kaotik sistemleri 

incelerken koordinatlardaki değerlerin önemli olmadığı, topolojik özelliklerin önemli 

olduğu düşünülürse (3.23) denklemine kanonik bir dönüşüm uygulamak sistemin 
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doğasını değiştirmeyecektir. Bu düşünce ile A matrisi özdeğerler ile belirlenebilir. 

Reel katsayılı tekil olmayan bir A matrisi 3 özdeğer ile belirlenebilir. O halde dış ve 

iç bölgeler için olan A matrisleri 3’er parametre ile belirlenebilir. Ayrıca (3.20) 

denkleminde  xf  sadece bir boyutta gözüktüğü için b matrisi de 1 parametre ile 

belirlenebilir. Böylece 7 parametre içeren (3.24) denklemi yazılabilir. 
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Son olarak Chua diyodu sürekli olduğundan, (3.24) parça parça doğrusal matris 

denklemi için de sürekliliğin sağlanacağı düşünülerek bu denklemi sağlayan b matrisi 

bulunabilir. Dolayısıyla Şekil 3.1’deki klasik Chua devresi  000 ,,   ve  111 ,,   

parametreleri kullanılarak sadece 6 parametre ile belirlenebilir. 

Bu denklem Chua devre ailesi için yazılmıştır. Aslında α, β ve  parametrelerinin 

alabileceği bütün değerler düşünüldüğünde (3.24) denkleminin bir alt kümesi Chua 

devre ailesini vermektedir. Chua devre ailesi için yazılan doğrusal matris diferansiyel 

denklemi için aşağıdaki kısıtlar geçerlidir: 

 Vektör alanı orta bölgede doğrusaldır. 

 Durum uzayı, bir boyutta simetrik iki değer ile üst bölge ve alt bölgeye ayrılır. 

 Üst ve alt bölgeler merkeze göre simetriktir. 

 Vektör alanı süreklidir. 

Chua devre ailesi üzerine bir çok yayın yapılınca bu sonuçlardan istifade etmek için 

denklemlerde genelleştirmeler de önerilmiştir. Bu kısımda bu bakışa dair 2 örnek 

verilecektir. 
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Örnek 3.1 : 

   3
f  xxx ,  ( 3.25 ) 

 

  .f  sürekli, 

    xx -ff   şeklinde tek simektrik, 

 3 , 1U  ve 1U  paralel düzlemleri ile; iç bölge 0D  ve dış bölgeler 1D  ile 1D  

şeklinde 3 bölgeye ayrılsın ve  .f  bu bölgelerde parça parça doğrusal olsun. 

Bu dinamik sistem aşağıdaki gibi yazılabilir [31]: 

Böylece bir boyutta ±E değerini geçince üst bölge, orta bölge, alt bölge şeklinde bölge 

geçişleri yapılması yerine; birbirine paralel 2 düzlem için bu düzlemleri geçince bölge 

geçişleri yapılmıştır. Bu da önerilen bu denklemlerle sağlanan genelleştirmedir. 
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Örnek 3.2 : 

      n
FA  xxxxx ,  ( 3.27 ) 

 Bu vektör diferansiyel denkleminin çözümü tek ve sınırlı olsun. 

  .A , x  vektörü için bir nxn matris fonksiyonu olsun. 

  .F , x  vektörü için nn   şeklinde bir dönüşüm olsun. 

  .F  fonksiyonu sonlu sayıda sigmoid, mutlak değer ya da parça parça 

doğrusal fonksiyonun kombinasyonu olsun. 

Bu genelleştirilmiş Chua dönüşümleri, diğer kaotik sistemlerin incelenmesi için 

kullanılabilir [32]. 
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3.2.4 Farklı Chua Diyotları Kullanılması 

Chua devresi ya da Chua osilatörü ile çalışılırken farklı Chua diyotlarının etkisi de bir 

araştırma alanı olmuştur. Bu düşünce ile farklı Chua diyodu denklemleri incelenmiştir. 

[32-37] numaralı kaynaklar buna örnek olarak verilebilir. Bu kaynaklarda kullanılan 

Chua diyodu denklemleri (3.28) denkleminde gösterilmiştir. 
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(a) ve (b) denklemleri kübik polinom örnekleridir [33-35]. (c) denkleminde sigmoid 

fonksiyonu kullanılmıştır [32]. (d) denkleminde  xl  parça parça doğrusal,  xm  ise 

sonlu sayıda süreksizlik içeren bir fonksiyondur [36]. (e) denklemi ise x ’in değerine 

göre saçılma ve katlama özellikleri gösteren bir fonksiyondur [37]. 

Bu alt bölümde Chua devresi, Chua devre ailesi ve denklemleri tanıtılmıştır. Bu 

bölümden görülebileceği gibi sonuçların genelleştirilme potansiyeli düşünüldüğünde 

kaos üzerine çalışılırken Chua devresinin ele alınması bir gereklilik haline gelmiştir. 

Tezde de bu düşünce ile Chua devresi üzerinde çalışılmıştır. Bir sonraki bölümde Chua 

devresi ve Chua osilatörünün ait literatür bu devrelerin geliştirilmesi ve tez konusuna 

verebilecekleri katkılar açısından ele alınacaktır. 

3.3 Chua Literatüründe Tezle İlgili Ortaya Konan Katkılar 

Bu bölümde çok kapsamlı olan Chua literatürü tezde ele alınan ya da gelecekte tezle 

ilgili olabilecek çalışmalar kapsamında izah edilecektir. Bölümde literatürün konu 

açısından gruplandırılması, krolonojik akıştan öncelikli olarak değerlendirilecektir. 

Chua devresi, literatürde ilk olarak çift çeker1 davranışından bahsedilen [2] numaralı 

kaynakta yer almıştır. Matsumoto tarafından yapılan bu yayında devre ’Chua Devresi’ 

olarak anılmıştır. Chua devresinin fiziksel olarak gerçeklenmesi ilk olarak [38] 

numaralı kaynakta başarılmıştır. Bu devrede çift çeker ve peryot katlaması ile kaos 

                                                 

 
1 ‘Çift çeker’ ifadesi ‘Double scroll’ terimi için bir karşılık olarak kullanılacaktır. 
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davranışları gözlenmiştir. [2] numaralı kaynakta devrede birçok başka davranışın da 

gözlendiği, bu davranışların devam eden yayınlar ile verileceği not düşülmüştür. 

Bu yayınlardan ilki olan [3] numaralı kaynakta devre denklemleri kapsamlı olarak ele 

alınmış ve boyutsuz koordinatlar tanımlanarak tekrar yazılmıştır. Chua devresinin 

tipik özelliği devre denklemlerinin 3 parçalı parça parça doğrusal, otonom lineer 

diferansiyel matris denklemi şeklinde yazılabilmesidir. Denklemler bu şekilde yeniden 

düzenlenmiş ve her bir bölge için denge noktaları ile bölgelere ait özdeğer ve 

özvektörlerin yardımıyla çift çeker davranışı izah edilmiştir. Sayısal analiz ile kaotik 

çekicinin lyapunov sabiti bulunmuştur. Bu yayın Matsumoto, Komuro ve Chua 

tarafından yapılmıştır. 

Chua devresi çok popüler olunca Chua tarafından devrenin ortaya çıkışı da bir yayın 

ile anlatılmıştır [39]. Chua Tokyo, Japonya seyehati sırasında Matsumoto’nun 

laboratuvarında bir Lorenz devresi gerçeklemesi görmüştür. Devrenin çalışmaması 

neticesinde yeni devre arayışları olmuştur. 3 aktif eleman içeren devre 

kombinasyonları üzerinde çalışılmıştır. Bu çalışma neticesinde de devre bulunmuştur. 

Chua, Matsumoto ve Komuro’nun bir sonraki yayını kaos teorisi açısından çok 

önemlidir. Bu yayında Chua devresinin Shilnikov anlamında kaotik olduğu analitik 

olarak ispat edilmiş ve Chua devresi için kapsamlı dallanma analizi verilmiştir [4, 5]. 

Bu ispatta lineer matris denklemi formunda yazılan Chua denklemlerine kanonik 

matris dönüşümleri uygulanmıştır. Böylece devre denklemlerinde bir genelleştirme 

yapılmıştır. İspat çift çeker için verildiği için ve devre denklemlerinde de genelleştirme 

yapıldığı için makale ’The Double Scroll Family’ olarak adlandırılmıştır. Bu 

genelleştirme yapılırken Chua devresi için kanonik dönüşümler ile varılabilen katsayı 

matrisi kümesi adreslenmiştir. Shilnikov anlamında kaos gösterilirken homoklinik 

yörüngenin varlığı gösterildiği için bu yayının ardından çift çekerin ortaya çıkışı ve 

yok oluşu üzerine çalışmalar yapılmıştır [40, 41]. 

Chua devresinde parça parça doğrusal diyodun kırıkları üzerinde oynamalar yapılan 

çalışmalar mevcuttur [39, 41-44]. Lineer devre analiz yöntemlerini derinlemesine 

kullanarak Chua devresinin ele alındığı çalışmalar vardır [43, 45]. Bazı çalışmalarda 

LC devresinden adım adım Chua devresine varılması üzerine bir bakış sergilenmiştir 

[39, 43, 44, 46]. Bu çalışmalar tez için çok önemli olmuştur. 
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Chua devresinin Shilnikov anlamında kaos olduğu gösterilirken kanonik matris 

dönüşümleri kullanılması üzerine Chua denklemlerinin genelleştirilmesi üzerine 

çalışmalar başlamıştır. İlk olarak Wu tarafından 21 bilinmeyen içeren (3.22) denklemi 

yerine 12 bilinmeyen içeren (3.23) denklemi önerilmiştir [47]. Ardından dış 

bölgelerdeki ve iç bölgedeki özdeğerlerin kanonik bir devre1 ile gerçeklenmesi fikrine 

varılmış ve yalnızca 6 eleman içeren yeni bir devre önerilmiştir [23]. Kanonik Chua 

Devresi olarak adlandırılan bu devre Şekil 3.5(e)’de verilen devredir. Yayında Chua 

diyodu 2 parametre ile tanımlandığı için devrenin sentezi için gereken 7 parametrenin 

bulunmasını sağlayan bir algoritma da verilmiştir. Ardından bir başka kanonik devre 

önerilmiştir ki bu daha sonra öne çıkacak olan Chua Osilatörü devresidir [27]. Chua 

osilatöründe LC devresi içindeki endüktansa seri bağlı bir direnç vardır. Gerçek 

dünyada iç direnci olmayan endüktans bulunmadığı düşünüldüğünde bu devrenin 

gerçek dünyaya daha uygun olduğu düşünülebilir. Bu çalışmada ayrıca devrenin 

ürettiği dönüşümün kendi üzerine açılır2 olmaması için 3 kırıklı Chua diyotunun 

sağlaması gereken özellikler bulunmuştur. Şekil 3.7’de önerilen Chua diyotları için bu 

sakınca yoktur. Kısa bir zaman için literatürde faklı kanonik devreler için eş zamanlı 

olarak üretim yapılmaya devam edilmiştir. 

           
           (a) Ga<0, Gb>0                    (b) Ga>Gb>0,                      (c) Ga>0, Gb<0 

      
                                 (d) Gb< Ga<0                         (e) Gb> Ga>0 

Şekil 3.7 : Kanonik Chua devresinin kendi üzerine açılır olmaması için 

kullanılabilecek Chua diyodu alternatifleri. 

 

 

                                                 

 
1 Önerilen devrenin kanonik bir matris dönüşümü ile bir başka devreye eşdeğer olmasıdır. 
2 ‘Kendi üzerine açılır’ ifadesi ‘Folding’ terimi için bir karşılık olarak kullanılacaktır. 
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Ortak bir dil oluşturulması için 1993 yılında Chua devresi için yapılan bir özel dergi 

sayısında editör Madan tarafından aşağıdaki terminoloji tavsiye edilmiştir [48]. 

Suggested Terminologies and Notations for Chua’s Circuit: 

1. The 5-element circuit will continue to be called Chua’s circuit. However, the v-i 

characteristic of Chua’s diode may assume any single-valued, (not necessarily symmetric 

or piecewise-linear) piecewise smooth function. The recently augmented Chua’s circuit 

obtained by connecting one linear resistor in series wirh the inductor will be called the 

Chua’s oscillator, except in the context of topological conjugacy when it may also be called 

a canonical Chua’s circuit. Since there exist several distinct circuits which are also 

topologically conjugate to Chua’s circuit, their circuit diagram must always be specified 

to avoid being confused with the canonical Chua’s circuit as defined above. 

2. The state equations associated with Chua’s circuit will be called Chua’s equation in both 

the physical and he dimensionless forms. The two dimensionless parameters associated 

with the linear elements will be denoted by α and β respectively. The equations associated 

with the Chua’s oscillator will be called the canonical Chua’s equation. The three 

dimensionless parameters associated with the linear elements will be denoted by α, β, and 

γ respectively. 

3. The original 1-D map associated with Chua’s circuit will be called Chua’s 1-D map. 

4. Two strange attarctors observed in the Chua’s circuit have been the spiral attractor and 

the double scroll attractor. Many more have now been observed in the Chua’s oscillator. 

All these will be called a family of Chua’s attractors. 

Tarihi önemi açısından yukarıda tekrar verilen terminoloji aşağıdaki kuralları tavsiye 

etmiştir: 

 Chua devresi devrenin Şekil 3.1’de verilen 5 elemanlı halidir. Doğrusal 

olmayan direnç Chua diyodu olarak adlandırılacaktır. Chua diyodunun v-i 

karakteristliği tek değerli parça parça smooth1 olmak şartıyla herhangi bir 

fonksiyon olabilir. Şekil 3.6’da verilen, endüktansa seri direnç içeren 6 

elemanlı devre Chua osilatörü olarak adlandırılacaktır. Chua devresine 

topolojik eşdeğer diğer devreler kanonik Chua devresi olarak adlandırılacaktır. 

Eğer kanonik Chua devresi ile çalışılıyorsa kanonik eşdeğer devreler tek 

olmadığı için devre çizimi kesinlikle verilmelidir. 

                                                 

 
1 sürekli, sınırlı ve sınırlı sayıda parça içeren 
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 Hem fiziksel haldeki hem de boyutsuz haldeki denklemler Chua denklemleri 

olarak adlandırılacaktır. Bu denklemlerde boyutsuz koordinatlardaki lineer 

devre elemanları ile ilişkili olan parametreler için  ve   kullanılacaktır. Chua 

osilatörü denklemleri kanonik Chua denklemleri1 olarak adlandırılacaktır. Bu 

denklemlerde boyutsuz koordinatlardaki lineer devre elemanları ile ilişkili olan 

parametreler için , ,   kullanılacaktır. 

 Chua devresi ile ilişkili olarak oluşturulan 1 boyutlu dönüşümler Chua’nın 1 

boyutlu dönüşümleri olarak adlandırılacaktır. 

 Chua devresinde gözüken asıl garip çekiciler spiral çeker ve çift çeker olarak 

adlandırılacaktır. Chua devresinde görülebilen bütün çekiciler, bir arada    

Chua çekici ailesi olarak adlandırılacaktır. 

Bu terminoloji benimsenmiştir ve Chua Osilatörü diğer kanonik Chua devrelerine göre 

literatürde öne çıkmıştır [6, 26]. Chua Osilatörünün kanonik devre olarak 

benimsenmesi Chua Devresi için üretilen bilgiyi de anlamlı kılmıştır. Çünkü devre 

R0=0 için Chua devresine dönüşmektedir. [49] numaralı kaynakta Chua Osilatörü 

dinamikleri özdeğerler ve özvektörler yardımı ile izah edilmiştir 

Chua osilatörü basitliğinin yanısıra kanonik olma özelliği sayesinde 3 boyutlu kaotik 

sistemler içinde en genel sonuçları üreten devredir [29]. Chua osilatöründen 

üretilebilen dinamikler aşağıdaki gibidir: 

 Birçok farklı osilatörü gözleme imkanı verir [6, 23, 25, 26, 28-30, 49-51]. 

 Peryot 3 davranış gösterir [22]. 

 Şerit dinamiği2 gösterir [52]. 

 İç içe girmiş garip çekici varlığı barındırır [53-55]. 

 Farklı yollarla kaotik davranış oluşumu gözlenir: 

o Ardışıl dallanmalar ile peryot katlaması ile kaos davranışı gösterir [6]. 

o Peryot ekleme davranışı gösterir [22]. 

                                                 

 
1 Harhangi bir kanonik Chua devresi için bu devreye topolojik olarak eşdeğer olan bir Chua osilatör 

devresi parametre takımı bulunabilir. 
2 Çözümün 2 boyutlu bir alt uzayda değil, noktalar arasında sürekliliğin sağlandığı bir sürekli alt 

uzayda olması hali. 
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o Aralıklılık ile kaos davranışı gösterir [24]. 

o Ardışıl dallanmalar ile önce Torus, ardından da Torus kırılması ile kaos 

davranışı gösterir [20].  

Chua Osilatörü kaos teorisinde bir paradigma haline gelmiştir. Kaos üzerine çalışmalar 

için bu devreye odaklanmak sonuçların genelleştirilmesini de sağlamaktadır. Chua 

Osilatörü 3. dereceden kayıplı kaotik devrelerde gözlenebilen bütün kaotik dinamikleri 

sergilemektedir [6, 56]. 
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4.  CHUA DEVRESİ İÇİN HAMİLTONYANIN ELDESİ 

Chua devresi’nin denklemleri 3 durum değişkeni içerdiği ve devrede de 3 adet enerji 

depolayan eleman olduğu için devrenin Hamiltonyan’ı bu enerji depolayan 

elemanların enerjileri toplamına eşittir. Oysaki genel olarak bir devredeki dinamik 

elemanların enerjileri toplamı devre dinamiğini belirleyen Hamiltonyan’a eşit 

olmayabilir. Bu durum göz ardı edildiğinde gereğinden karmaşık bir enerji fonksiyonu 

ile çalışma olasılığı vardır. Devreye ait Hamiltonyan’ın elde edilmesinin pratik bir yolu 

devre denklemlerinin Kapı Kontollü Hamilton (KKH) gösterimi şeklinde yazılmasıdır. 

[10] numaralı kaynakta Chua devresi için bu gösterim yazılmış ve Hamiltonyan 

aşağıdaki gibi elde edilmiştir: 

 ℋ  2

3

2

22

2

11
2

1
iLxCxC   ( 4.1 ) 

Yanlış bir enerji fonksiyonu ile çalışmak kaygımız olduğu için enerji bir başka yöntem 

ile de elde edilecektir. Burada Chua ve McPearson tarafından [57] numaralı kaynakta 

önerilen yöntem kullanılacaktır. Bu yöntemde kullanılan genelleştirilmiş koordinatlar 

x  ve genelleştirilmiş hızlar x  aşağıdaki gibi tanımlanmaktadır: 

 𝑥 ≜ [𝜙2 𝜙1] (a) 

( 4.2 ) 

 𝑥̇ ≜ [𝑣2 𝑣1] (b) 

(4.2)(a) denkleminde 𝜙1 ve 𝜙2 kondansatörlerin akılarıdır. Lagranjyan'ın elde 

edilmesine dair ayrıntılar basitlik açısından verilmemiştir. Sonuç olarak Lagranjyan 

aşağıdaki gibi elde edilir. 

 ℒ =
1

2
𝐶1𝑣1

2 +
1

2
𝐶2𝑣2

2 −
1

2𝐿
[−𝜙2 + 𝜙2(0) + 𝜙3(0)]2 ( 4.3 ) 

Bu denklemde, 

 𝜙3(0) = 𝐿 𝑖3(0) ( 4.4 ) 
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şeklinde verilen ilişki endüktansın ilk koşul bağıntısından elde edilmiştir. 

EK C’de detayları verildiği gibi Lagranjyan yardımıyla Hamiltonyan elde edilebilir. Ara 

işlemler yapıldığında aşağıdaki sonuç elde edilir: 

 ℋ =
1

2
𝐶1𝑣1

2 +
1

2
𝐶2𝑣2

2 +
1

2𝐿
[−𝜙2 + 𝜙2(0) + 𝜙3(0)]2 ( 4.5 ) 

Bu büyüklük Chua devresinin Hamiltonyan’ıdır. H’nin gerçekten dinamik elemanların 

enerjileri toplamına eşit olduğu Şekil 3.1’deki Chua devresi için yazılan L–C2 çevre 

denkleminin bu denkleme uygulanması ile görülebilir. Böylece (4.5) denkleminden de 

(4.1) denklemi elde edilmiş oldu. 
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5.  KAOTİK OSİLATÖR TASARIMI İÇİN ENERJİ TEMELLİ BİR YÖNTEM 

Bu bölümde Chua devresinde spiral tipi kaosun ortaya çıkışı enerji bakış açısı ile 

ele alınmıştır. Şekil 5.1’de tekrar verilen Chua devresi L, C1 ve C2 dinamik 

elemanları, pasif R direnci ve aktif NR direncinden oluşmaktadır. Devrenin enerji 

alış-verişine bakılacak olursa NR devredeki enerji veren tek elemandır. Dolayısıyla 

NR, R direncinin tükettiğinden fazlasını verdiğinde dinamik elemanlarda enerji 

depolanır. Aksi halde ise dinamik elemanların mevcut enerjisi tüketilir. Bu bölümde 

devrenin davranışını anlamak için dinamik elemanların enerjileri toplamındaki 

değişim incelenmiştir. Ortaya konan yaklaşım bu toplam enerjinin yörüngeler 

boyunca izlenmesi ve enerjideki değişimin Chua devresinin farklı dinamikleri ile 

ilişkilendirilmesidir. 

 

Şekil 5.1 : Chua devresi. 

Chua devresinin denklemleri aşağıdaki gibidir: 

 

   

 

2
3

312
2

2

112
1

1

v
dt

di
L

ivvG
dt

dv
C

vgvvG
dt

dv
C







 ( 5.1 ) 
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Bu denklemde Chua diyodu 𝑁𝑅’nin tanım bağıntısı aşağıdaki gibidir. 𝑁𝑅, 3 parçalı 

parça-parça doğrusal karakteristliğe sahiptir. 

 

 
   

 
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R
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




















 
( 5.2 ) 

Bu bölümde amaç spiral tipi kaos oluşumunu gözlemek olduğu için devrede (5.3) 

denkleminde verilen 2-parçalı karakteristliğe sahip Chua diyodu ile çalışılmıştır. 

 
 









için,

için,

EvEGGvG

EvvG
i

RabRb

RRa

R  ( 5.3 ) 

Bir önceki bölümde Chua devresi için Hamiltonyan aşağıdaki gibi elde edilmişti: 

 ℋ  2

3

2

22

2

11
2

1
iLxCxC   ( 5.4 ) 

Bu noktadan itibaren daha az parametre içeren boyutsuz haldeki denklemler ile 

çalışılacaktır. Chua devresi için boyutsuz koordinatlara geçiş için ölçeklendirme 

denklemleri aşağıdaki gibidir. 

 

)(

)(

2
2

1

201

2

321

GL

C
C

C
G

m
b

G
m

a

C
Gt

GE
i

z
E

v
y

E
v

x













 ( 5.5 ) 

Bu denklemlerin kullanılmasıyla devre denklemleri aşağıdaki şekilde elde edilir: 

 

  

y
d

dz

zyx
d

dy

xfxy
d

dx















 ( 5.6 ) 
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Aslında (5.6) denklemi a ve b yerine 𝑚𝑜 = 𝑎 + 1 ve 𝑚1 = 𝑏 + 1 ilişkileri kullanılarak 

𝑚𝑜 ve 𝑚1 ilişkileri cinsinden yazılırsa hafifçe basitleştirilebilir [4]. Ancak ileride elde 

edilecek olan (5.11) denklemlerini daha basit kıldığı için burada a ve b değişkenleri 

tercih edilmiştir. (5.5) ölçeklendirme denklemlerinin Chua diyodu tanım bağıntısı olan 

(5.3) denkleminde kullanılmasıyla Chua diyodu denklemleri boyutsuz koordinatlar 

için aşağıdaki şekilde elde edilir. 

  









için1,

için1,

xbaxb

xxa
xf  ( 5.7 ) 

Boyutsuz koordinatlarda Hamiltonyan ise (5.5) denklemlerinin (5.4)’e uygulanmasıyla 

aşağıdaki gibi yazılabilir. 

 ℋ 







 222 11

2

1
zyx


 ( 5.8 ) 

5.1 Durum Uzayında Enerjinin Arttığı ve Azaldığı Bölgeler 

Şekil 5.2 durum uzayında Hamiltonyan’ın değişimine dair bir fikir vermektedir. 

Şekilde taralı alanlar enerjinin arttığı bölgeleri göstermektedir. Yani bu bölgelerde 

Chua diyodu devreye enerji vermektedir.  

 

Şekil 5.2 : Durum uzayında enerjinin arttığı bölgeler. 

Bu çizim için kullanılan analiz parametreleri )75,78,7100,9(),,,( ba  

şeklindedir. Bu şekildeki enerjinin arttığı ve azaldığı bölgeleri birbirinden ayıran 

düzlemleri bulmak için 0
d

dH  denklemi çözülmelidir. (5.8) denkleminin türevi 

file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/NOLTA2010/Glimpse.tiff
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alınır ve bu denklemde (5.6) devre denklemleri yerine konup elde edilen ifade sıfıra 

eşitlenirse aşağıdaki denklem elde edilir. 

  xfxyx
d

dH
 2)(


 ( 5.9 ) 

(5.9) denklemi Hamiltonyanın zamana göre değişimini vermektedir. Görülebileceği 

bu denklem durum değişkeni z’den bağımsızdır. O halde enerjinin artış ve azalışını    

x-y izdüşümü kullanılarak değerlendirmek mümkündür. Bu sonuç öemli bir imkan 

sağlamıştır. Yörüngeler çizilip x-y izdüşümden bakılırsa sistemin enerji alış verişi ile 

ilgili yorumlar mümkün olacaktır. 

Öncelikle bu sonucun neden oluştuğunu ele almak iyi olacaktır. Chua devresi bir LC 

tank devresi içermektedir ve bu LC tank devresinin diğer enerji depolayabilen 

elemanla direkt bir ilişkisi yoktur. İlişki pasif direncin uç denklemi üzerinden 

oluşmaktadır. İşte bu topolojinin bir sonucu olarak (5.9) denklemi elde oluşmaktadır. 

Tezde kaotik elektrik devrelerine bir sistem dahilinde kolaydan zora doğru bakmak 

arzulanmıştır. Bu düşünce ile de Chua devresi ile yola çıkılmıştır. Bu seçimin biraz da 

şans içeren bir sonucu olarak şimdi 3 boyutlu bir sistemin enerji alış verişine 2 boyut 

üzerinden bakma imkanı oluşmuştur. 

Bu yorumu fiziksel devre parametreleri üzerinden yapacak olursak Chua devresinde 

C1 kondansatörünün LC tank devresi ile olan enerji alış verişi sistem dinamiğini 

belirlemektedir. Buna ilaveten LC tank devresinde kondansatör gerilimi ile endüktans 

akımı arasında bir diferansiyel denklem ilişkisi varır ve biri diğerini belirlemektedir. 

İşte bunun bir sonucu olarak paragrafın ilk cümlesindeki italik metin aşağıdaki gibi 

yeniden yazılabilir: 

Chua devresinde C1 kondansatörünün C2 kondansatörü ile olan enerji alış verişi 

sistem dinamiğini belirlemektedir. 

Şekil 5.3’te enerjinin arttığı bölgelerin diyot karakteristliği ile değişimi gösterilmiştir. 

Şeklin üst yarısında ele alınan durumlar için diyot karakteristlikleri, alt yarısında ise 

bu Chua diyotları için enerjinin arttığı bölgeler gösterilmiştir. Grafikte enerjinin arttığı 

bölgeler mavi renk ile gösterilmiştir.  
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                                 (a)                                                          (b) 

Şekil 5.3 : Farklı Chua diyotları için durum uzayında enerjinin arttığı bölgeler. 

Şekil 5.3’ün üst yarısında gösterilen Chua diyotları için eleman tanım bağıntıları 

aşağıdaki gibidir. 

   xaxf   (a) 

( 5.10 ) 

  







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için1,

xbaxb

xxa
xf  (b) 

(5.9) denklemi sıfıra eşitlenir, (5.10) denklemleri bu ifadede yerine konur ve elde 

edilen denklemler çözülürse, enerjinin arttığı ve azaldığı bölgeleri birbirinden ayıran 

alt-uzay denklemleri elde edilir. (5.10)(b) denklemi, (5.10)(a)’yı özel bir hal olarak 

içerdiği için çözüm sadece (5.10)(b) denklemi için verilmiştir. Çözüm sonucu elde 

edilen (5.11) denklemindeki bu eşitlikler enerjinin arttığı ve azaldığı alt uzayları 

birbirinden ayıran sınır bölgesi denklemleridir. 
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5.2 Chua Diyodunun Enerji Değişimine Etkisi 

Chua diyodunun karakteristliği ile devredeki enerji alış-verişi arasındaki ilişkiyi 

incelemek için Chua diyodu adım adım oluşturulacak ve bu esnada devrenin enerji  

alış-verişi incelenmiştir. İncelemeye doğrusal Chua diyodu ile başlanmış ve ardından 

2-parçalı karakteristlik için inceleme yapılmıştır. (5.10) denklemlerinde (a) tek kırık 

hali, (b) ise çift kırık halidir. 

Benzer bakış Kennedy tarafından [43, 46] numaralı kaynaklarda uygulanmış ve Chua 

devresi dinamikleri devre adım adım oluşturularak izah edilmiştir. Bu kaynaklarda 

Chua diyodu farklı kırık sayısı içeren halleri ile ele alınmamış olsa da Chua devresinde 

önce orta bölge ve dış bölge için, ardından da bir bölgeden diğerine geçiş yapılan anlar 

için yorumlar yapılmış ve nihayetinde de Chua devresi dinamiğine adım adım bir 

izahat getirilmiştir. 

LC devresi kayıpsız bir devredir. Devre ilk koşullarına bağlı olarak periyodik çözüm 

üretir. Bu devre bir çıkış noktası olarak ele alınsın ve adım adım Chua devresi 

oluşturulsun. LCR devresinde kayıpsız LC devresine paralel bir R direnci 

bağlanmıştır. R direnci pasif ise devre durmaksızın enerji kaybedecektir, aktif ise de 

durmaksızın enerji kazanacaktır. Bu durumda çözüm özdeğerlerin değerlerine göre ya 

sıfıra ya da sonsuza gider. 

Tezde Chua devresi tek kırık (Chua diyodunun pasif ya da aktif direnç olma hali) ve  

2 kırıklı haliyle incelenmiştir. 2 kırıklı hal için anahtarlanan iki sistem söz konusudur. 

Anahtarlanan bu iki sistemin birbirleriyle olan etkileşimine göre devre davranışı 

şekillenir. 

5.2.1 NR’nin doğrusal olması hali 

Chua devresinde Chua diyodu NR pasif bir direnç ile değiştirilirse, çözümler zamanla 

azalarak devre denge noktası olan sıfıra gidecektir [43]. Devrede Şekil 5.3(a)’da 

karakteristliği verilen aktif NR direnci kullanıldığında ise, Chua diyodunun pasif direnç 

R’nin tükettiğinden daha fazla enerji verip vermediğine bağlı olarak devre ya sonsuza 

ya da sıfıra gider. Iraksamanın da adeta değeri sonsuz olan özel bir noktaya gidiş 

olduğu düşünülürse davranış yine denge noktası davranışı gibidir. Şekil 5.4’de 

dallanma parametreleri  ve ’nın çeşitli değerleri için yörüngeler görülmektedir. 

Şekillerde 3-boyutlu durum uzayı iç-şekil olarak verilmiştir. Analizler dallanma 
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parametresi α’nın 9 değeri için yapılmış ve başlangıç koşulları olarak                                 

(x0, y0, z0)=(0, 0.2, 0) alınmıştır. 3. dereceden bir sistem olan Chua devresinde ya 

özdeğerlerin 3’ü de reel olabilir ya da bir reel özdeğer ve bir kompleks eşlenik özdeğer 

çifti hali söz konusu olabilir. 

      
                 (a) 0713,7100  b                     (b) 75,7100  b  

      
                 (c) 78,7100  b                           (d) 78,23  b  

Şekil 5.4 : Doğrusal Chua diyodu kullanılması halinde yörüngeler. 

Literatürde karşılaşılan Chua devresi parametrelerinde daima orta ve dış bölgeler için 

bir reel özdeğer ve bir kompleks eşlenik özdeğer çifti hali söz konusudur. Sadece [18] 

numaralı kaynakta devre parametrelerinin negatif olmasına müsaade edilmiş ve 3 reel 

özdeğer ile çalışılmıştır. Shilnikov teoreminin koşullarından birinin homoklinik 

yörüngenin denge noktasında sistemin bir reel özdeğere ve bir kompleks eşlenik 

özdeğer çiftine sahip olması ve Chua devresi ile olan çalışmalarda yazarların amacının 

kaos elde etmek olduğu düşünülürse literatürde karşılaşılan bu  durum anlamlı 

olacaktır. 

NR’nin bu durumunda adeta bir RLC devresi söz konusudur. Bu devre de direncin pasif 

ya da aktif olmasına bağlı olarak ya denge noktasına ya da sonsuza gitmiştir. Yani 

kayıpsız LC tank devresinin enerjisi direncin pasif ya da aktif olmasına göre ya 

durmaksızın azalmış ya da durmaksızın artmıştır. 

file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/NOLTA2010/CaseIa.tiff
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Bir sonraki bölümde NR 2-kırıklı yapıda ele alınacaktır. 

5.2.2 NR’nin parça parça doğrusal olması hali 

Çalışmanın bu noktadan sonrasında analizler aşağıdaki koşullar altında yapılmıştır: 

 Çözümlere geçici dinamikler dahil edilmemiştir. 

 Dallanma parametresi α’nın değeri 9 olarak sabitlenmiştir. 

 Dallanma parametreleri a ve b’nin değerleri, üst ve alt bölgeler için sistemlerin 

bir reel özdeğeri ve bir kompleks eşlenik özdeğer çifti olacak şekilde 

seçilmiştir. 

 Başlangıç noktaları çözümler kararsız özvektörün etkisi altında kalmayacak 

şekilde seçilmiştir. Şekil 5.4(c-d)’de örnekleri gösterilen bu durum 

oluştuğunda çözüm özvektörün etkisi altında kalarak sonsuza gider. 

Grafikler elde edilirken kompleks özdeğer çiftinin gerdiği düzlem üzerinde (5.11) 

denklemi ile belirlenen eğriyi sağlayan bir grup nokta alınıp bu noktalar yine bu 

düzlemi kesene kadar diferansiyel denklem çözülmüştür. Ardından eğer enerji 

artmışsa bu yörünge kırmızı ile, azalmışsa da mavi ile gösterilmiştir. 

Bu bölümde Chua devresinde Chua diyodu olarak Şekil 5.3(b)’de karakteristliği 

verilen NR direnci kullanıldığında oluşacak dinamikler incelenecektir. Bu durumda NR 

direnci 2 parçalı doğrusal, sürekli aktif bir dirençtir. Farklı durumlar için analiz 

sonuçları ve bu sonuçlara dair çıkarımlar aşağıdaki gibidir. 

5.2.2.1 a=-13/70, b=-  5/7     için kararsız limit çevrim davranışı 

Şekil 3.5’te bu parametre değerleri için devrenin davranışı verilmiştir. Durum 

uzayında yörüngelerin (5.11)’i sağladığı anlarda sistemin enerjisi hesaplanmış ve eğer 

enerji azalıyor ise bu yörünge mavi renk ile, artıyor ise kırmızı renk ile gösterilmiştir. 

β ’nın küçük değerleri için Şekil 5.5(a)’da görüldüğü gibi devre daima enerji kazanır, 

bütün yörüngeler ıraksar. Şekil 5.5(b)’deki β = 14 değerinde kararsız bir limit çevrim 

oluşur Bu durumda sistem iç-bölgede enerji kaybeder iken dış-bölgede enerji kazanır. 

β arttırılmaya devam ettiğinde kararsız limit çevrim büyür. Bu dinamik β = 23 değerine 

kadar devam eder Şekil 5.5(c). β parametresinin daha fazla arttırılması kararsız limit 

çevrimin yok olmasına sebep olur. β’nın daha büyük değerleri için Şekil 5.5(d)’de 
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görülebileceği gibi sistem daima enerji kaybeder, bütün yörüngeler bir denge 

noktasında sonlanır. 

                
         (a) 13                   (b) 14                   (c) 23                  (d) 24  

Şekil 5.5 : a = -13/70, b = -5/7 için β’nın değişimine göre enerjinin değişimi.  

5.2.2.2 a=-  5/7  , b=-13/70   için kararsız limit çevrim davranışı 

Bir önceki durumda iç-bölgenin enerji vermesi, dış-bölgenin ise enerji alması 

durumunda kararsız bir limit çevrimin oluşacağı gözlendi. Bu sonuç ışığında a ve b 

parametrelerinin değerlerini karşılıklı olarak değiştirmenin kararlı limit çevrim 

oluşturmak için yeterli olacağı düşünülebilir. İlginç bir sonuç olarak,                            

Şekil 5.6(a-c)’deki devreye ait yörüngelerden görülebileceği gibi bu yeterli 

olmamaktadır. a ve b parametrelerinin bu yeni değerleri için sonuç bir önceki durumla 

aynı olmakta ve kararsız limit çevrim oluşmaktadır. Şekilde (a-c) için Şekil 5.5’teki 

renk kodları kullanılmıştır. Kararlı limit çevrimin neden oluşturulamadığını anlamak 

için sistemin enerji alış-verişini daha detaylı olarak incelemek gerekir. Şekil 5.6(d)’de 

β = 21 değeri için doğrusal olmayan direncin farklı bölgelerine ait enerji değişimi 

görülmektedir. Bu şekilde yörüngelerin x = −1 doğrusunu kestiği anlarda sistemin 

enerjisi hesaplanmış ve eğer enerji artıyor ise bu yörünge kırmızı renk ile, azalıyor ise 

mavi renk ile gösterilmiştir. Sistem, β = 21 değeri için ıraksak davranış gösterir. Oysaki 

Şekil 5.6(d)’den sistemin dış bölgede, x = −1 doğrusunun altında enerji kaybettiği 

gözlenebilir.  

                
         (a) 22                   (b) 23                  (c) 24                  (d) 21  

Şekil 5.6 : a =-5/7, b =-13/70 için β’nın değişimine göre enerjinin değişimi. 

Ancak sistem, kaybettiği enerjiden daha fazlasını bu doğrunun üstünde kazandığı için 

davranış ıraksaktır. Eğer tam tersi olsaydı, sistem dış bölgede enerji kaybediyor 

(yakınsak davranış gösteriyor) olacaktı. Bu da bir kararlı limit çevrimin oluşmasına 
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sebep olur. Bir sonraki alt-bölümde bunu sağlayan parametre değerleri için sistem 

incelenecektir. 

5.2.2.3 a=-  3/7  , b=-13/70   için kararlı limit çevrim davranışı 

Bu durumda sistem β = 21 değeri için, dış bölgede kazandığından fazlasını kaybeder 

ve kararlı bir limit çevrim oluşur. Şekil 5.7’de bu parametre değerleri için sisteme ait 

davranışlar verilmiştir. Şekilde, Şekil 5.5’teki renk kodları kullanılmıştır. 

                
         (a) 20                   (b) 21                  (c) 23                   (d) 24  

Şekil 5.7 : a = -3/7, b = -13/70 için β’nın değişimine göre enerjinin değişimi. 

5.2.2.4 a=-13/70, b=-  8/7     için peryot katlaması ile kaos davranışı 

Şekil 5.8’de bu parametre değerleri için sistemin davranışı verilmiştir. Şekilde, yine 

Şekil 5.5’teki renk kodları kullanılmıştır. Şekildeki parametre değerleri için Ek E’de 

verilen Şekil 5.9’a bakınız. 

Şekil 5.8’de her bir durum için üst şekil durum uzayında enerjinin arttığı ve azaldığı 

bölgeleri, alt şekil ise oluşan yörüngeyi gösterir. β’nın büyük değerleri için Şekil 

5.8(a)’da görüldüğü gibi sistem daima enerji kaybeder, bütün yörüngeler yakınsaktır. 

β’nın değeri azaltıldığında sistemde 3 enerji bölgesi oluşur. Bu 3 bölgeden orta 

bölgede sistem enerji kazanır iken diğerlerinde kaybeder. Bu dinamiğin gözlendiği 

β=19 değerinde kararlı bir limit çevrim oluşur (Şekil 5.8(b)). β’nın azaltılmaya devam 

edilmesiyle orta ve dış bölge arasında bir girişim oluşmaya başlar. β’nın daha küçük 

değerleri için bu girişimin miktarı da artar. Girişimin artmasının sonucu olarak peryot 

katlama dinamiği gözlenir (Şekil 5.8(c-e)). Bu dinamik sonucunda peryot katlaması 

ile kaos oluşur (Şekil 5.8(f)). Başlangıçta saçılma ve katlama dinamiği sıralı iken 

(saçılma-katlama-saçılma-katlama-... şeklinde) girişimin arttırılmaya devam edilmesi 

ile bu düzen bozulmakta, ancak kaotik dinamik korunmaktadır. (Şekil 5.8(g)). β ’nın 

daha fazla azaltılması durumunda bu dinamik yok olur ve sistem ıraksak davranış 

gösterir (Şekil 5.8(h)). 

Sistemde 3 farklı enerji bölgesinin oluştuğu durumlar incelendiğinde (Şekil 5.8(b-c)) 

durumları için iç-bölge enerji kaybeder iken; (Şekil 5.8(d-g)) durumları için iç-bölge 

file:///C:/Users/mustafakosem.MALTEPE/Desktop/Tez 2024.09.25/Sekiller/NOLTA2010/CaseIIcdallanma2.tiff


47 

enerji kazanmaktadır. Analizlerde bu gözlemin üzerine gidilmiş ve iç-bölgenin sistem 

dinamiğine etkisini anlamak için farklı a ve b parametreleri için sistem analiz 

edilmiştir. Bu analizler sonucunda (Şekil 5.8(b-c)) durumları iç-bölge enerji kazanır 

iken ve (Şekil 5.8(d-g)) durumları iç-bölge enerji kaybeder iken de gözlenmiştir. 

Böylece iç-bölgenin sistemin davranışına direkt etkisi olmadığı sonucuna ulaşılmıştır. 

Öte yandan yörüngenin iç-bölgeye girdiğinde daima bu bölgede kalmaması için iç-

bölgenin enerji kazanan davranış göstermesi daha dayanıklı kaos eldesi açısından 

önemlidir. Bu da ana amacımız dışında elde edilen önemli bir ilave sonuçtur. 

                
 

                
             (a)                               (b)                              (c)                              (d) 

 

                
 

                
             (e)                               (f)                              (g)                              (h) 

Şekil 5.8 : a = -13/70, b = -8/7 için β’nın değişimine göre enerjinin değişimi.  

Ele alınan durumlar için Hamiltonyan ve Hamiltonyanın türevinin değişimi Ek E’de 

Şekil 5.9’da verilmiştir. Şekillerde dH için dH-x-z ve dH-y-z izdüşüm grafiklerinin 

olması rahatsızlık yaratmamalıdır. Bu grafiklerde z boyutunda değer değişimi olması 

ile (5.9) denkleminin z içermemesi çelişmez. Çünkü bu grafikler çizilirken çözümler 

boyunca H ve dH’nin değişimi incelenmiştir; x, y ve z’ye değer verilip H ve dH 

çizilmemiştir. 
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Şekiller incelendiğinde peryot katlaması ile kaos oluşumunu tetikleyen kısmın durum 

uzayında sınırlı bir bölge olduğu kolayca görülebilir. Bu gözlem önemlidir ve kaosu 

anlamak ya da kaos oluşturan bir mekanizma önermek için kullanılabilir. 

Bu bölümde Chua devresinde spiral tipi kaos için peryod katlaması mekanizması enerji 

fonksiyonları kullanılarak incelenmiştir. İlk olarak sistemin Hamiltonyan’ı elde 

edilmiş; ardından farklı Chua diyodları için enerji fonksiyonunun değişimi ile sistemin 

dinamiği arasındaki ilgi gözlenmiştir. 

Görülebileceği gibi Chua devresinde Chua diyodunun uygun enerji alış-verişini 

sağlayacak şekilde seçilmesi halinde kaos eldesi mümkündür. Bu önemli bir sonuçtur 

ve genelleştirme potansiyeli çok yüksektir. Bir sonraki bölümde bu potansiyellere 

değinilecektir. 
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6.  SONUÇ VE ÖNERİLER 

Tezde kaotik devreleri incelemek için önemli bir bakış açısı yakalanmıştır. Cazip bir 

dünyanın kapısı aralanmıştır ancak bu kapının sunduğu imkanlar henüz net değildir. 

Kuvvetle muhtemel elde edilen sonuçlar sadece bir başlangıç olacaktır. Bu bölümde 

elde edilen sonuçlar yorumlanacak ve bu bakış ile gelecekte varılabilecek yeni ufuklar 

değerlendirilecektir. 

6.1 Farklı Enerji Fonksiyonları ile Çalışılması 

EK C’de genelleştirilmiş koordinatlar tanımlanmış ve Şekil C.1’de örneklenmiştir. 

Tezde kullanılan enerji fonksiyonu genelleştirilmiş koordinatlarda değildir. Çünkü 

Chua devresi bir LC tank devresi içerir ve bu devrenin enerji fonksiyonu olarak 3 aktif 

elemanın enerjileri toplamı kullanılmıştır. Başka bir enerji fonksiyonu ile çalışma 

olasılığı da vardır. Ayrıca Lagranjyan ile de çalışılabilir. Bir başka olasıılık da farklı 

enerji fonksiyonları üreten yöntemler kullanmaktır [58] 

Yapılan iş farklı enerji fonksiyonları için tekrar edilerek enerjinin arttığı ve azaldığı 

bölgelerde girişim oluşması fikrinin farklı enerji temelli yöntemler için nasıl 

uygulanabileceği üzerine çalışılabilir. Benzer sorun kararlılaştırma ve senkronizasyon 

için karşımıza çıkmamaktadır çünkü bu yöntemlerde hata sönümlenmektedir. Oysa 

burada amaç kaos oluşumu olduğu için farklı enerji fonksiyonları için tezde geliştirilen 

fikrin nasıl uygulanabileceği incelenmelidir. 

6.2 Farklı Saçılma ve Katlama Fonksiyonları ile Çalışılması 

Kaos için tipik bir mekanizma olan saçılma ve katlama dinamiği saçılma ve katlama 

esnasında enerjinin değişimi açısından incelenebilir. Literatürde saçılma ve katlama 

fonksiyonlarının kaos eldesi için kullanıldığı çalışmalar mevcuttur [37, 59]. 

Böylece özel olarak belirlenen saçılma ve katlama fonksiyonları yardımıyla daha 

dayanıklı kaos eldesi mümkün olabilir. Ayrıca bu çalışma teorik bir tabana 
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oturtulabilirse saçılma ve katlama fonksiyonlarının kaotik çekicinin lyapunov 

üstellerine nasıl etki ettiğine dair bir çıkarımda bulunma imkanı da olabilir. 

6.3 Histerisiz ya da Süreksizlik İçeren Sistemlerin İncelenmesi 

Histerisiz ya da süreksizlik içeren sistemler tezin kapsamı dışındadır. Çalışma bu 

sistemleri de içerecek şekilde genişletilebilir. [36] numaralı kaynakta süreksizlik 

durumunda diferansiyel denklemin çözümünün varlığı ve tekliği ele alınmıştır. 

Kennedy, [43, 46] numaralı kaynaklarda Chua devresini LC tank devresinden yola 

çıkarak adım adım oluşturmaktadır. Bu kaynaklarda Chua devresi için LC ve LCR 

devreleri incelendikten sonra NR Chua diyodu olmak üzere LCNR devresi incelenmiş 

ve farklı Chua diyotları için hangi durumlarda limit çevrim davranışın oluştuğu 

incelenmiştir. Bu inceleme esnasında NR’nin histerisiz içermesine müsade edilmiştir. 

Ardından Chua devresi dinamiğine geçmeden önce histerisiz davranışı küçük değerli 

bir kondansatörün hızlı değer değişimi ile ilişkilendirilmiş ve Chua devresi sistematik 

bir şekilde adım adım oluşturulurken devre dinamiklerinin değişimi yorumlanmıştır. 

Bu yapılan işin benzeri tezde ortaya konan enerjinin arttığı ve azaldığı yörüngeler 

arasında girişim oluşturarak kaos eldesi mekanizması için yapılabilir. Bu amaç için 

ödüllü bir yayın olan [60] numaralı kaynaktan da istifade edilebilir. 

6.4 Üç Reel Özdeğer İçeren Sistemlerin İncelenmesi 

Chua devresinde parça parça doğrusal alt sistemlerin anahtarlanması söz konusudur. 

Bu alt sistemlerin özdeğerleri reel olduğunda kaos gözlenip gözlenemeyeceğinin 

sorgulanması neticesinde 𝐶1 ve 𝐿’nin negatif olmasına müsade edildiğinde bir kaotik 

çekici bulunabilmiştir [18]. Bu halde Shilnikov teoreminin koşullarının 

sağlanmadığına dikkat edilmelidir. 

Tezde Hamiltonyan izlenirken iç ve dış bölgelerde bir reel özdeğer ve bir kompleks 

eşlenik özdeğer çifti ile çalışılmıştı. Analizlerde başlangıç noktaları komples eşlenik 

özdeğerlerin gerdiği düzlem üzerinde seçilmişti. Benzer işlem 2 reel özdeğerin gerdiği 

düzlem için de yapılabilir. Bu durumda iki reel özdeğerin gerdiği düzlemden başlangıç 

noktaları seçilebilir. Ancak 3. derece bir sistemde üç reel özdeğer için 2’şerli 

kombinasyonlar kullanıldığında 3 hal söz konusu olacaktır. Bu noktada özdeğerlerin 
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değerlerine göre sistem davranışına da bakılarak hangin çiftin gerdiği alt uzay ile yola 

çıkılacağı üzerine yorum yapılması gerekecektir. 

6.5 Mekanik Sistemlerin İncelenmesi 

Chua devre ailesinin mekanik modellerinin eldesi üzerine olan bir çalışmada Chua 

devresi ve Chua osilatörünün elektro-mekanik modelleri ile Chua devresinin mekanik 

modeli oluşturulmuştur [61]. Bu kaynak ve süreksizlik içeren Chua devresi 

denklemleri için mekanik gerçeklemeler içeren [36] numaralı kaynak önerilen  

yöntemi mekanik sistemlerde kullanmak için bir çıkış noktası olabilir. 

Tezde Hamiltoyan kullanılarak Chua devresindeki enerji değişimi incelenmiştir. 

Euler-Lagrange denklemleri ve Hamiltonyan denklemleri klasik mekanikte etkili bir 

şekilde kullanılan enerji temelli analiz yöntemleridir. Bu yöntemlerin elektrik devre 

analizinde etkili olarak kullanılamamasının sebebi elektrik devrelerinde kinetik enerji 

ve potansiyel enerjinin nasıl tanımlanacağı sorusunun cevabının net olarak 

verilememesidir. Bu konu EK D’de ayrıntılı olarak izah edilmiştir. Literatürdeki 

gelişmeler ışığında artık bu sorunun birden çok cevabı olduğu, farklı enerji tanımları 

yapılabileceği bilinmektedir [9]. Bu kaynakta potansiyel ve kinetik enerji ile dual 

potansiyel ve kinetik enerji1 tanımları yapılmıştır. 

Bu çalışmalar öncülüğünde klasik mekanik sistemler incelenebilir. Enerjinin 

korunduğu sistemlerde de kaos gözlenebilmektedir. Bu tip kotik davranışta bir garip 

çekici oluşmamakta, bütün faz uzayında kaotik davranış gözlenmektedir. Bu tip klasik 

mekanik sistemler elendikten sonra, geriye kalan enerjinin değiştiği sistemler 

incelenerek yeni sonuçlar elde edilebilir. 

6.6 Çok Çeker İçeren Sistemlerin İncelenmesi 

Chua diyotunda kırık sayısının arttırılmasıyla oluşturulan devreler literatürde önemli 

bir yer tutmaktadır. [62] numaralı çalışmada Chua diyodu için bir basamak tipi çok 

seviyeli rampa fonksiyonu kullanılarak n çeker oluşturulmuştur. [63] numaralı 

çalışmada aynı yaklaşım için testere dişi rampa fonksiyonu kullanılmıştır. Bir başka 

bakış çift sayıda sıçramalar içeren bir fonksiyon ile Chua diyodu karakteristliğine 

                                                 

 
1 coenergy yerine dual enerji karşılığu kullanılmıştır. 
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benzer karakteristliği olan bir fonksiyonun çarpılmasıyla elde edilen Chua diyodunun 

kullanılmasıdır [64]. Bu çalışmada bu çarpan fonksiyon çift sıçraması olan bir 

fonksiyon olarak seçildiği için n çift çeker kaotik sistemler üretilmiştir. 

Çok çeker yapılarda çekerler arası geçiş bölgeleri tüpler olarak belirlenir ise enerji 

temelli yaklaşımla bu tüpler incelenebilir. Tüpün giriş tarafında alınan bir disk benzeri 

bölgede seçilen başlangıç koşulları için tüp boyunca hareket ederken enerji 

değişimlerine bakılabilir. Böylece çekerler arası geçiş bölgelerinin etkinliği 

incelenebilir. 

6.7 Chua Osilatörüne Ait Dinamiklerin İncelenmesi  

Chua devresi bulunduktan sonra benzer karmaşıklıkta yeni devreler de önerilmiştir. 

Bu çaba Chua Osilatörünün bulunması ile sonlanmıştır. Çünkü Chua osilatörünün 3 

boyutlu, parça parça doğrusal, sürekli; bir boyutu simetrik dış bölgeler ve orta bölge 

olmak üzere 3 parçalı olan herhangi bir faz uzayına kanonik olarak eşdeğer olduğu 

ispatlanmıştır [27]. Chua osilatörü, orta bölge ve dış bölgeler için kanonik olarak 

eşdeğer kılınacağı sistemle aynı özdeğerlere sahip olabilmektedir. Hatta bu eşleşmenin 

başarılabilmesi için eleman değerlerinin nasıl bulunabileceğine dair algoritma da 

verilmiştir [28] ve [30] numaralı kaynaklar bu yöntemin uygulamalarını içermektedir. 

Chua devresi ürettiği zengin dinamiklere rağmen her tür kaotik davranışın 

gözlenebildiği bir sistem değildir. Dolayısıyla Chua osilatörününün incelenmesi daha 

önce ele alınamayan Aralıklılık1, Torus kırılması gibi kaotik dinamikleri inceleme 

fırsatı da verir [6, 20, 24]. Hatta asimetrik Chua diyotu için devre başka sistemlere de 

kanonik olarak eşdeğer olabilir. Örneğin [65] numaralı kaynakta Colpits osilatöründe 

transistörlerin küçük işaret eşdeğerleri kullanıldığı taktirde Chua osilatörünün 

asimetrik Chua diyotu için bu devreye kanonik olarak eşdeğer olduğu gösterilmiştir. 

Kennedy tarafından geliştirilen Chua Osilatörü için yazılan ABC programı, 

Kennedy’nin tez öğrencisi James Patrick McEvoy tarafından MATLAB’a uyarlanmış 

ve dosya paylaşımında MATLAB Adventures in Bifurcations & Chaos (ABC++) adıyla 

kullanıma sunulmuştur [51]. Bu kod çözümleri bölgeler arası geçiş düzlemlerini de 

                                                 

 
1 Aralıklılık ifadesi Intermittency terimi için Türkçe karşılık olarak öenerilmiştir. 
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göstererek çizerek çözümlerin yorumlanmasını kolaylaştırmaktadır. Ayrıca çözümleri 

davranışlarına göre sınıflandırmıştır. Bu programdan istifade edilebilir. 

Tezde LC tank devresi içeren Chua devresinin enerji alış verişine bakılmıştır. Benzer 

iş LCR alt devresi içeren Chua osilatörü için yapılabilir. Bu da zor bir hedef olarak 

görülmemektedir. 

6.8 Dallanma Davranışlarının İncelenmesi 

Chua devresi, ile ilgili ilk yayın olan [2] numaralı kaynakta çift çekeri kapsayan bir 

eğer tipi kararsız limit çevrim de gösterilmiştir. Bu kararsız limit çevrim [66] numaralı 

kaynakta durum geri beslemesi yapılmış Chua sisteminde kararlılık sağlanacak şekilde 

paremetre seçilmesi ile sayısal analiz ile de doğrulanmıştır. 

[40, 41] numaralı kaynaklarda spiral tipi iki çekicinin birbirine teması neticesinde çift 

çekerin ortaya çıktığı; çift çekerin dışında eğer tipi bir limit çevrim olduğu; çift çekerin 

dıştaki bu kararsız limit çevrime teması neticesinde de yok olduğu sonuçları  not 

edilmiştir. 

Yapılan işe benzer inceleme enerji değişimi gözetilerek yapılabilir. Böylece kaos için 

çok önemli bir konu olan dallanma toerisi enerjinin değişimi ile ele alınabilir. Bu 

amaçla Chua devresi ve Chua Osilatöründeki dallanma davranışları incelenebilir. 

6.9 Yarı Geçiş Dönüşümleri Üzerine Çalışılması 

Parça parça doğrusal bir sistem ile çalışıldığı için analitik çözümlerden yola çıkılarak 

yarı geçiş dönüşümleri oluşturululabilir. Luo analitik çözümleri kullanarak bu 

dönüşümleri aşağıdaki kombinasyonlar için oluşturmuştur [67]. 

 Üst bölgeye giriş – üst bölgeden çıkış 

 Alt bölgeye giriş – alt bölgeden çıkış 

 Üst bölgeden orta bölgeye giriş – orta bölgeden üst bölgeye dönüş 

 Alt bölgeden orta bölgeye giriş – orta bölgeden alt bölgeye dönüş 

 Üst bölgeden orta bölgeye giriş – orta bölgeden alt bölgeye giriş 

 Alt bölgeden orta bölgeye giriş – orta bölgeden üst bölgeye giriş 
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Bu dönüşümleri oluşturduktan sonra geçiş kombinasyonları için analiz yapmıştır. 

Aşağıdaki hedefler için bu dönüşümlerle çalışılabilir. 

 Yarı-geçiş dönüşümleri yardımıyla enerji ile ilgili sonuçlar elde edilmesi 

 Çekim kümesi belirlenmesi 

 Periyodik çözüme girişim ekleme fikri ile peryot katlama ile kaos geçisi 

dinamiği oluşturulması 

Bu bakış açısıyla çalışılırken anahtarlamalı sistemlere dair teoriler de kullanılabilir. 

Buna bir örnek Şekil 6.1’de gösterilmiştir. Şekillerdeki 3 sistem için Lyapunov 

fonksiyonları V1, V2 ve V3’tür. İlk örnekte 3 sistem için Lyapunov fonksiyonları sistem 

aktif olduğu anlarda azalmaktadır. Diğer zamanlarda azalması gerekli değildir. İkinci 

örnekte sistemlerin aktif olduğu anlarda Lypaunov fonkiyonları artabilmekte ancak 

anahtarlama anlarındaki değerler azalan dizi oluşturmaktadır. Üçüncü örnekte ise 

sistemlerin aktif olduğu anlardaki Lyapunov fonsiyonunun değeri azalmaktadır. Zayıf 

Lyapunov teorilere göre 3 örnek de kararlıdır. Kararlılık tezin kousu değildir ancak 

benzer bakışla enerjinin artış ve azalışına dair analitik sonuçlar elde edilebilir. 

6.10 Shilnikov Teoreminin Enerji Kavramları ile Ele Alınması 

Chua devresinin Shilnikov anlamında kaotik olduğu ispat edilmiştir. Eğer tezde 

geliştirilen bakış açısı bir teorik tabana oturtulabilirse Shilnikov teoremi Lagranjyan 

ya da Hamiltonyan kavramları kullanılarak farklı bir şekilde yeniden yazılabilir. Bir 

önceki bölümde geliştirilecek analitik yarı geçiş dönüşümleri burada da katkı 

sağlayabilir. 

6.11 Yeni Bir Dallanma Diyagramı Analiz Yöntemi Önerilmesi 

Dinamik sistemler bir alt uzaydan geçiş anlarında faz uzayı değişkenlerinin değerleri 

kaydedilerek incelenebilmektedir. Poincare kesitlemesi analizinde bir boyut dallanma 

analizi yapılacak parametre, diğer boyut da alt uzaydan geçiş anlarında kaydedilen faz 

uzayı değişkeni büyüklüğüdür. Bu analizde geçici hallerin sönümlenmesi için bir süre 

beklendikten sonra kesitleme bölgesinden geçen yörünge değerleri kaydedilmekte bu 

bilgi ile sisteme dair dallanma davranışı yorumlanmaktadır. Kesitleme bölgesi bir 

düzlem olabileceği gibi bir değişkenin türevinin sıfır olduğu yer gibi bir alt uzay da 
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olabilir. Etkin olarak kullanılan bu analiz yönteminde poincare kesitlemesinin doğru 

şekilde yapılması kritiktir, sonucu etkileyebilir. 

Tezde ortaya konan bakış genelleştirildiği taktirde alternatif bir kaotik sistem analiz 

yöntemi olarak kullanılabilir. Bir kaotik çekici kesişimleri çekerin iç bölgesinde olan 

birçok Poincare kesitlemesi ile incelenebilir. 

Bu bakışın sınanması için Chua devresi benzeri tek çeker sistemlerin incelendiği [68] 

numaralı kaynak faydalı olabilir. Ayrıca bu bakış açısı için Chua devresi için yazılan 

Hamiltonyan’ın türevinde neden z boyutunun gözükmediği güzel bir çıkış noktası 

olabilir. Chua devresinde karşılaşılan bu durum sayesinde 3 boyutlu bir sistemde 

enerjinin artış ve azalışını 2 boyuttan izlemek mümkün olmuştur. Tezde Bölüm 5.1’de 

bu konuya değinilmiştir. 

6.12 Kaos Üretimi İçin Bir Kontrol İşlevi Geliştirilmesi 

EK E.’de Şekil 5.9’da Peryot katlaması ile kaos oluşumu esnasında H ve dH’nin 

değişimi verilmiştir. Grafiklerden görülebileceği gibi enerjinin arttığı ve azaldığı 

yörüngeler arası girişimin oluştuğu sınırlı bir bölge vardır. Eğer girişimin oluştuğu bu 

bölge ile (5.11) denklemi ilişikilendirilebilirse kaos oluşumu için bir mekanizma 

önerilebilir, bu amaçla bir kontrol işlevi tasarlanabilir. 

Farklı Chua diyotları için (5.11)’in ve kaotik çekicinin lyapunov üstellerinin nasıl 

değiştiğine bakılarak daha dayanıklı kaos eldesine dair çıkarımlar yapılabilir. 

Bir diğer konu olarak bir kaotik devre uzun süre çalıştığında devre elemanlarının 

parametrelerinde ufak değişiklikler olacaktır. Bu değişiklikler de kaotik davranıştan 

çıkılmasına sebep olabilir. Eleman parametreleri ile girişim bölgesinin etkileşimi iyi 

anlaşılabilirse kaotik devrenin kendini devre parametrelerindeki sapmalara karşı 

koruyabilemsine imkan sağlayan kontrol işlevleri de önerilebilir. 
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(a) 

 
(b) 

 
(c) 

Şekil 6.1 : Anahtarlamalı sistemler için 3 farklı zayıf Lyapunov teori örneği. 
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EK A. Matematik Tanımlar 

Örnek A.1 : A tekil bir kare matris olsun. Aşağıdaki eşitlik sağlanır. 

    
1

1



T

TA A  ( A.1 ) 

Tanım A.1 Vektörel Çarpım: x ve y aynı boyutlu iki vektör olmaküzere, 

tekil bir kare matris olsun. Aşağıdaki eşitlik sağlanır.  

  T T, , . : ,     n nx y x y x y  ( A.2 ) 

Tanım A.2 Gradyen ve Jakobyen: x vektörünün tek değerli bir fonksiyonu , çok 

değerli bir fonksiyonu da f olsun. Bu fonksiyonların x vektörünün bileşenlerine göre 

kısmi türevleri,  

 
1 2

, (.) :
    

     

n

nx x xx
 ( A.3 ) 
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1 2

1 2
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   
   
 
   

     
 
 
 
   
    

n

m n

n

m m m

n

f f f

x x x

f f f
f

x x x f
x

f f f

x x x

 ( A.4 ) 

şeklinde tanımlanır. 


x
 “gradyen”, 





f

x
 de “jakobiyen” olarak adlandırılır.  

Özellik A.2: M tersi olan bir kare matris olmak üzere, 

 

1 2

1 1 2 2

1 1

1 2

 

    
           

    
        

n

n n

n

xx x

x Mx x Mx x MxMx

M M
x x x Mx

 ( A.5 ) 

eşitliği sağlanır. 
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EK B. Elektrik Devrelerine İlişkin Tanımlar 

Tanım B.1 Bir Kondansatörün Enerjisi: 

 
( )

( ) 0

( )
( ) ( ) ( ( )) ( ( )) ( )

( ) ( )

  




        



 

  

 
C Ck k

Ck

t t t

C
C C C C C C C C

q t q

C C

q

dq t
E v t i t dt v q t dt v q t dq t

dt

v u du v u du

 ( B.1 ) 

şeklinde tanımlanır. Nihai ifade elde edilirken ( ) Cu q t  değişken dönüşümü 

yapılmış; ( )
kCq t , 

kCq  ile gösterilmiş ve kondansatörün ilk yükü ( ) 0 
kCq  olarak 

kabul edilmiştir. 

Tanım B.2 Bir Endüktansın Enerjisi: Kondansatöre benzer şekilde aşağıdaki gibi 

tanımlanır. 

 
( )

( ) 0

( )
( ) ( ) ( ( )) ( ( )) ( )

( ) ( )

 




  

  




        



 

  

 
L Lk k

Lk

t t t

L
L L L L L L L L

t

L L

d t
E i t v t dt i t dt i t d t

dt

i u du i u du

 ( B.2 ) 

Enerji ve Dual Enerji Tanımları: Endüktans ve kondansatörün enerjisi yukarıda (B.1) 

ve (B.2) denklemleri ile tanımlanmıştır. Bu tanımlara göre Şekil B.1’deki mavi alanlar 

endüktans ve kondansatör için enerji tanımlarıdır. Benzer olark fiziksel anlamı olmasa da 

dual enerji tanımları yapılabilir. Şekil B.1’deki sarı alanlar dual enerji tanımlarıdır. Bu 

enerjiler elektrik devrelerinin Euler-Lagrange ve Hamilton gösterimlerinin eldesinde 

kullanılmaktadır. 

     

(a)                                                                  (b) 

Şekil B.1 : Kondansatör ve endüktans için enerji ve dual enerji. 
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EK C. Euler-Lagrange ve Hamilton Denklemlerinin Oluşturulması 

Klasik mekanikte enerji temelli yöntemler kullanılarak bir sisteme dair denklemler 

yazılabilir. Euler-Lagrange ve Hamilton denklemleri, bu amaca hizmet eden 

yöntemlerdir. Bu bölümde klasik mekanikteki çok önemli enerji temelli analiz 

yöntemleri, Hamilton denklemleri ve buna temel teşkil eden Euler-Lagrange 

denklemleri hakkında bilgi verilmiştir. Bölüm yazılırken [69, 70] numaralı 

kaynaklardan istifade edilmiştir. 

C.1. Genelleştirilmiş Koordinatlar 

Klasik mekanikte sabit kütleli N adet parçacığın üç boyutlu uzaydaki ilk hızsız hareketi 

ele alınsın. Bu sistemin hareketi, 

 
2

2

),(
dt

xd
mtxF   ( C.1 ) 

şeklinde verilebilir. (C.1) denklemleri 3N boyutlu bir hareket tanımlar. Ancak 

sistemdeki her parçacık özgür olarak hareket etmiyor olabilir. Örneğin bir kürenin 

üzerinde hareket etmeye zorlanan bir parçacığın hareketi iki açı ile ya da boyu sabit 

bir sarkacın ilk hızsız salınımı bir açı ile ifade edilebilir. Bu sebeple sistemin kısıt 

içermesi halinde (C.1) denklemlerine kısıt denklemleri ilave edilmelidir. 

N parçacığın oluşturduğu bir sistemde parçacıkların hareketlerini sınırlayan K adet 

kısıt denklemi olduğunu ve bu kısıt denklemlerinin, 

 1( , , ; ) 0 , 1, , 3I Nf x x t I K N    ( C.2 ) 

şeklinde konumun bir fonksiyonu olarak ifade edilebildikleri varsayılsın. Bu tip kısıt 

denklemleri holonomik kısıtlar olarak adlandırılır. Kısıtlar hızlara da bağlı olabilir. Bu 

durumda kısıt denklemleri, 

 1 1( , , ; , , ; ) 0 , 1, , 3I N Nf x x x x t I K N    ( C.3 ) 

şeklinde konumun ve hızın bir fonksiyonu olur. Eğer kısıtlar sadece hızlara bağlı ise 

(C.3) denklemleri entegre edilip bu kısıtlar (C.2) yapısındaki holonomik kısıtlara 

dönüştürülebilir. Daha genel olarak kısıtlar (C.3) tipindeki denklemlerle de 

verilemiyor olabilir. Örneğin, 

 1( , , ; ) 0 , 1, , 3I Nf x x t I K N    ( C.4 ) 

denklemlerinde olduğu gibi. (C.2) denklemleri ile verilemeyen kısıt denklemleri 

holonomik olmayan kısıtlar olarak adlandırılır. 

Sistemin holonomik kısıtlar içermesi durumunu ele alınsın. Kısıt denklemleri 

sebebiyle bazı koordinatlar, diğerlerine kesin bir ilişki ile bağlıdır. Bu koordinatları 

bağımlı koordinatlar olarak ele alabiliriz. (C.2) ile verilen kısıt denklemlerinin 3N 

boyutlu (C.1) denklemlerine uygulaması ile K adet koordinat denklemlerden 

elenebilir. Bu eleme yapılmadan önceki 3N adet koordinat alışılageldik koordinatlar1 

olarak, eleme yapıldıktan sonra geriye kalan 3N-K adet koordinat ise genelleştirilmiş 

                                                 

 
1 Alışılageldik koordinatlar, genelleştirilmiş koordinatların aksine literatürde bulunmamaktadır. Terim 

‘genelleştirilmiş koordinatlar olmayan’ kullanımı hoş görülmediği için türetilmiştir. 
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koordinatlar olarak adlandırılır. Kuvvetler açısından da bir ayrım yapılarak bağımlı 

koordinatlar yönündeki kuvvetler kısıt kuvvetleri olarak adlandırılır. 

Kısıt içeren bir sistem iki şekilde ele alınabilir. Bir örnek üzerinden bu yöntemler 

gösterilecektir. 

Örnek C.1 : Şekil C.1’deki basit sarkaç sistemi Newton denklemleri ile çözülmek 

istensin. 

 

 (a) (b) 

Şekil C.1 : Basit sarkaç için (a) kartezyen, (b) kutupsal kooordinatlarda sisteme 

etkiyen kuvvetler. 

Şekil C.1’de kartezyen ve kutupsal koordinatlar için basit sarkaç ve etkiyen kuvvetler 

gösterilmiştir. Kartezyen ve kutupsal koordinatlarda konum, hız ve ivme aşağıdaki 

gibi tanımlanır. 

 Kartezyen koordinatlar Kutupsal koordinatlar 

( C.5 ) 

 Konum : x ys x e y e   Konum : 
rs r e  

 Hız : x yv x e y e    Hız : 
rv r e r e    

 İvme : x ya x e y e    İvme :    2 2ra r r e r r e           

Bu sistem için kısıt kuvveti ipteki gerilme olan T’dir. Kısıt denklemi ise kartezyen ve 

kutupsal koordinatlar için aşağıdaki gibidir: 

 
222 lyx   (a) 

( C.6 ) 
 lr   (b) 

Kartezyen koordinatlarda x ve y koordinatları alışılageldik koordinatlardır. (C.6)(a) 

kısıt denklemi sadece konumlar cinsinden yazılabildiği için bir holonomik kısıttır. 

Kutupsal koordinatlarda ise r ve 𝜃 koordinatları alışılageldik koordinatlardır. (C.6)(b) 

kısıt denklemi de sadece konumlar cinsinden yazılabildiği için bir holonomik kısıttır. 

Şimdi Şekil C.1’deki sisteme ait denklemler kartezyen ve kutupsal koordinatlarda 

aşağıdaki gibi elde edilebilir: 
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Kartezyen koordinatlar için çözüm: 

Bu durumda sistem alışılageldik koordinatlar olan kartezyen koordinatlarda ele 

alınmaktadır. Şekil 2.1(a)’daki kuvvetler için (C.1) denklemleri yazılır ve bu 

denklemlere (C.5) ile verilen ivme tanımı uygulanırsa, 

 

sin

cos

x x

y y

x
F ma mx T T

l

y
F ma my T mg T mg

l





     

       




 ( C.7 ) 

denklemleri elde edilir. (C.7) denklemlerine kısıt denklemi de ilave edilir ve bu deklem 

sistemi düzenlenirse sistem dinamiğini belirleyen aşağıdaki denklem sistemi elde 

edilir. Bu bir diferansiyel-cebrik denklem sistemidir. 

 

0

0

x
mx T

l

y
my T mg

l

  

   

 (a) 
( C.8 ) 

 
222 lyx   (b) 

(C.8)(b) denkleminin (C.8)(a) denkleminde yerine konmasıyla denklemler x ve y 

koordinatları yerine bir başka koordinat cinsinden yazılarak basitleştirilebilir. (C.8)(b) 

kısıt denklemi iki koordinata birden bağlı olduğu için bu basitleştirmenin nasıl 

yapılacağı aşikar değildir. 

Gerçekten 𝑥 = 𝑟 sin 𝜃 ve 𝑦 = 𝑟 cos 𝜃 değişken dönüşümleri yapılırsa (C.8) 

diferansiyel denklemleri yerine 𝜃 koordinatı içeren tek bir diferansyel denklem 

yazılabilir. İşte kısıt denkleminin kullanılmasıyla basitleştirilen yeni diferansiyel 

denkleme dair bu 𝜃 koordinatı genelleştirilmiş koordinattır. 

Kutupsal koordinatlar için çözüm: 

Kartezyen koordinatlardan farklı olarak bu koordinat sisteminden bakıldığında kısıt 

denklemi sadece bir koordinatı (r koordinatını) kısıtlamaktadır. Oysa kartezyen 

koordinatlar için denklem yazıldığında kısıt denklemi iki koordinatı birden (x ve y 

koordinatlarını) kısıtlamaktaydı. 

Bu durumda sistem genelleştirilmiş koordinatlarda ele alınabilir. Sisteme dair hareket 

denklemleri yazılırken sadece genelleştirilmiş koordinat 𝜃 için Newton denklemi 

yazılır. Bağımlı koordinat r ise sisteme kısıt denklemi üzerinden etki eder. 

  2 sinF ma m r r mg            (a) 
( C.9 ) 

 lr   (b) 

Kısıt denklemi (C.9)(b) ve bu denklemin türevi olan 0r  sisteme ait hareket 

denklemi (C.9)(a)’da yerine konur ve elde edilen denklem düzenlenirse sisteme ait 

dinamik denklem, 

 sin
g

l
     ( C.10 ) 
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şeklinde elde edilir. İki yöntemle bulunan sonuçlar özdeştir. Eğer (C.8) denklem 

sisteminde sinrx  , cosrx   değişken dönüşümleri yapılır ve elde edilen 

denklemler düzenlenirse (C.10) ifadesi elde edilebilir. 

Görülebileceği gibi kutupsal koordinatlardan bakmak işleri kolaylaştırmıştır. Bu 

durumda kısıt denkleminde yer alan r koordinatı bağımlı koordinat, 𝜃 koordinatı ise 

genelleştirilmiş koordinattır. 

Yani kutupsal koordinatlardan bakmak bağımlı koordinat ve geneleştirilmiş 

koordinatın ayrılabilmesini; bunun bir sonucu olarak denklemlerin kolayca 

yazılabilmesini sağlamıştır. 

Euler-Lagrange denklemlerinin önemli bir faydası sistemin holonomik kısıt içermesi 

durumunda sisteme ait denklemlerin genelleştirilmiş koordinatlar kullanılarak kolayca 

yazılabilmesini sağlamasıdır. 

Bu örnek ile klasik mekanikte sisteme genelleştirilmiş koordinatlardan bakılmasının 

sistem denklemlerin elde edilmesinde sağladığı kolaylık gösterilmiştir. 

C.2. Euler-Lagrange Denklemleri 

Örnek C.1’de klasik mekanik problemlerinde diferansiyel denklemleri elde ederken 

doğru koordinatları kullanmanın faydası gösterilmiştir. Böylece diferansiyel denklem 

daha kolay elde edilmiştir. 

Euler-Lagrange denklemlerinin faydası diferansiyel denklemlerin kolay bir şekilde 

yazılması ile sınırlı değildir. Yöntem çok daha önemli bir kolaylık sağlamakta; sisteme 

dair denklemlerin kinetik ve potansiyel enerji kavramları yardımıyla nasıl 

yazılabileceğini de göstermektedir. 

Bir mekanik sistemin dengede olmasını her parçacığa etkiyen toplam kuvvetin sıfır 

olması olarak tanımlansın. 3 boyutlu uzayda N parçacıktan oluşan denge halindeki bir 

mekanik sistemde, zaman değişmeksizin sistemin koordinatlarında sonsuz küçük 

değişimler olsun. Sistemin koordinatlarındaki bu sonsuz küçük yer değiştirmeler ir  

ile gösterilsin. Sisteme etkiyen kuvvetlerin ve zamanın değişmediğinin varsayıldığı bu 

yer değiştirme için yapılan iş, sözde iş (virtual work) olarak adlandırılır. Sistem denge 

konumunda olduğuna göre her parçacığa etkiyen hızlar toplamı sıfır olmalıdır. O halde 

parçacığın ve bunun sonucu olarak da sistemin sözde işi sıfır olmalıdır. 

 . 0i i

i

F r   ( C.11 ) 

Şimdi kuvvetler, kısıt kuvvetleri (iç kuvvetler) ve dış kuvvetler olarak ikiye ayrıldığı 

takdirde (C.11) denklemi aşağıdaki gibi yeniden yazılablir: 

 
dış kısıt. . 0i i i i

i i

F r F r     ( C.12 ) 

Kısıt kuvvetlerinin iş yapmadığı sistemler için incelemeye devam edilsin. Bu kabul 

sistemin hareketinin mümkün olduğu koordinatlar yönünde kısıt kuvveti olmaması 

anlamına gelir. Örneğin, bir yüzey üzerinde hareket edecek şekilde kısıtlanmış bir 

cisim ele alınsın. Sürtünme yok ise kısıt kuvveti hareket yönüne diktir, dolayısıyla 

koşul sağlanır ancak sürtünme var ise bu kuvvet hareket yönüne dik değildir ve bu 

nedenle kısıt kuvveti iş yapan bir kuvvettir. Kısıt kuvvetlerinin iş yapmadığını kabul 

ettiğimiz sistemler için (C.12) denklemi aşağıdaki şekli alır. 
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dış . 0i i

i

F r   ( C.13 ) 

Mekanik sistemde her parçacığa etkiyen toplam kuvvetin sıfır olması kabulü ile yola 

çıkılmıştı. Bu statik haldir; incelemeyi dinamik hale genişletmek için bu kabulden 

vazgeçilsin. Bu defa sistemdeki parçaçıklar uygulanan dış kuvvetler altında 

hareketlidir. Yani her parçacığa etkiyen toplam kuvvetin sıfır olmamasına müsaade 

vardır. Bu durumda (C.1) Newton denklemi gereğince aşağıdaki eşitlikler yazılabilir. 

 
dış

i i i i i iF m a m v p    (a) 
( C.14 ) 

 
dış 0i iF p   (b) 

Kısıt kuvvetlerinin iş yapmadığı sistemler için inceleme yapıldığından (C.14)(a) 

yazılabildi. Bunun sonucu olan (C.14)(b), sistemdeki her parçacığa etki eden kuvvete 

eşit ve ters yönlü bir kuvvet uygulanırsa sistemin dengede olacağını ifade eder. Burada 

dengede olmak her parçacığa etkiyen toplam kuvvetin sıfır olması anlamındadır. 

Böylece dinamik hale ait denklem, statik hal göz önüne alarak yazılabilir. Burada 

yapılan dış kuvvetlerle ilgili bir eşitliğe dış kuvvetlerin eşit olduğu bir başka 

büyüklüğün dahil edilmesidir. Bu yöntem ile (C.11), (C.12) ve (C.13) denklemleri 

aşağıdaki şekilde tekrar yazılabilir: 

  dış . 0i i i

i

F p r   ( C.15 ) 

  dış kısıt. . 0i i i i i

i i

F p r F r      ( C.16 ) 

  dış . 0i i i

i

F p r   ( C.17 ) 

(C.17) ifadesi D’Alembert prensibi olarak adlandırılır. Böylece kısıt kuvveti 

içermeyen bir denklem elde etmiş olduk. Şimdi kısıt denklemleri de işin içine 

katılabilir. Alışılageldik koordinatlar ir ’lerin, genelleştirilmiş koordinatlar jq ’ler 

cinsinden aşağıdaki gibi yazılabildiği varsayılsın: 

 1 2( , , , ; ) , 1, ,3 ; 3i i nr r q q q t i N N n    ( C.18 ) 

Bu denklemden kısmi türetme ile aşağıdaki denklemler elde edilir. 

 
i i

i j

j j

r r
v q

q t

 
 

 
  ( C.19 ) 

 
i

i j

j j

r
r q

q
 





  ( C.20 ) 

Sözde iş hesaplanırken zamanın geçmediği varsayıldığı için (C.20) ifadesi zamana ait 

kısmi türev barındırmaz. Şimdi (C.19) ve (C.20) kullanılarak (C.17) aşağıdaki gibi 

yeniden oluşturulabilir: 
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dış dış dış dış

, ,

. . i i i
i i i j i j i j

i i j i j j ij j j

j j

j

r r r
F r F q F q F q

q q q

Q q

   



  
  

  



    


 ( C.21 ) 

 
, ,

. . i i i
i i i i j i i j i i j

i i j i j j ij j j

r r r
p r m r q m r q m r q

q q q
   

  
  

  
      ( C.22 ) 

 0i
i i j j

j i j

r
m r Q q

q


 
    

   ( C.23 ) 

(C.21) ve (C.23) denklemlerindeki jQ , 

 
dış i

j i

i j

r
Q F

q




  ( C.24 ) 

şeklinde tanımlanır ve genelleştirilmiş kuvvet olarak adlandırılır. Şimdi aşağıdaki 

bağıntı göz önüne alınsın: 

 
i i i

i i i i i i

i ij j j

r r rd d
m r m r m r

q dt q dt q

       
               

   ( C.25 ) 

Bu ifadedeki son terim (C.19) yardımıyla, 

 

2 2 2 2

i i i i i
k j

k kj j k j k j j
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j

kj k j

r r r r rd
q q

dt q q q q t q q t q

r r v
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q q t q

       
                    

   
   
    

 



 ( C.26 ) 

şeklinde yazılabilir. Ayrıca (C.19) denkleminden, 

 
i i

j j

v r

q q

 


 
 ( C.27 ) 

elde edilir. Bu sonuçların (C.25)’e uygulanması ile de 
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       
             

     
           

   

 

 ( C.28 ) 

eşitliği elde edilir. Bu denklemin (C.23)’e uygulanmasıyla 

 
2 21 1

0
2 2

i i i i j j

j i ij j

d
m v m v Q q

dt q q


        
                  

    ( C.29 ) 

= 
 



77 

ifadesi elde edilir. Şimdi sistemin toplam kinetik enerjisi, parçacıkların kinetik 

enerjileri cinsinden 

 
2

2

1
ii

i

vmT   ( C.30 ) 

şeklinde tanımlanırsa (C.29) denklemi, 

 0j j

j j j

d T T
Q q

dt q q


     
            

  ( C.31 ) 

şeklini alır. Kısıtlar holonom (sadece konuma bağlı) ise bu eşitliğin sağlanması ancak 

jq ’lerin katsayılarınıın sıfır olması ile mümkündür. Bu sebeple (C.31)’un çözümü, 

 , 1, ,j

j j

d T T
Q j n

dt q q

  
      

 ( C.32 ) 

şeklinde elde edilir. Bu denklem sisteme dair kısıtların holonom olması durumunda 

Euler-Lagrange denklemlerine varmayı sağlayan temel eşitliktir. 

Bu denklemdeki jQ ’ler, genelleştirilmiş koordinatlarda sisteme etkiyen kuvvetlerdir. 

Eğer (C.32) denklemi ile tanımlanan genelleştirilmiş kuvvet jQ ’ler, alışılageldik 

koordinatların bir fonksiyonu olan skaler bir V potansiyel enerji fonksiyonundan, 

 
dış

i iF V   ( C.33 ) 

şeklinde konuma göre türetilebiliyor ise bu kuvetler korunumlu kuvvetler olarak 

adlandırlır. Bu durumda genelleştirilmiş kuvvetler aşağıdaki şekilde yazılabilir. 

 
dış i

j i i

i ij j

rr
Q F V

q q


   

 
 i  ( C.34 ) 

(C.34) denklemindeki skaler V potansiyel enerji fonksiyonu, 

 1 2( , , , )NV V r r r  ( C.35 ) 

şeklinde tanımlandığı için gradyen tanımı kullanılarak (C.34) denklemi, 

 
i

j

i i j j

rV V
Q

r q q

 
   

  
  ( C.36 ) 

şeklinde yazılabilir. Bu da genelleştirilmiş koordinatların bir fonksiyonu olan skaler 

bir V potansiyel enerji fonksiyonundan, genelleştirilmiş kuvvetler jQ ’lerin elde 

edilebileceği anlamına gelir. Böylece (C.32) denklemi, 

 
 

0 , 1, ,
j j

T Vd T
j n

dt q q

   
      

 ( C.37 ) 

 

= 
 

 
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halini alır. V konumun, T ise hızın bir fonksiyonu olmak üzere olduğundan bu 

denklem, 

 VTL   ( C.38 ) 

şeklinde tanımlanan bir L Lagrange fonksiyonu yardımıyla 

 0 , 1, ,
j j

d L L
j n

dt q q

  
      

 ( C.39 ) 

şeklinde yazılabilir. Bu denklemler Euler-Lagrange denklemleri olarak adlandırılır. 

Örnek C.2 : Şekil C.1’deki basit sarkaç sisteminini Euler-Lagrange denklemleri ile 

çözünüz. 

Şekil C.1(b) sistemin genelleştirilmiş koordinatlardaki gösterimidir.   sisteme ait 

genelleştirilmiş koordinattır. Bu sistem için L Lagrange fonksiyonunu aşağıdaki gibi 

hesaplanabilir: 

 
2 2 2 21 1 1

( ) cos cos
2 2 2

L T V mv mgh m r mgr ml mgl              ( C.40 ) 

Şimdi (C.39) Euler-Lagrange denklemi, (C.40) Lagrange fonksiyonu için çözülebilir: 

 

2 2 2
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1
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  
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 

   
    

    

   
    

   

 ( C.41 ) 

  2 2sin sin 0
d

ml mgl ml mgl
dt

         ( C.42 ) 

Böylece sistemin çözümü aşağıdaki gibi elde edilir. 

 sin
g

l
     ( C.43 ) 

C.3. Korunumsuz Kuvvetler Olduğunda Euler-Lagrange Denklemleri 

Bir önceki bölümde (C.24) denklemi ile tanımlanan genelleştirilmiş kuvvetler             

jQ ’lerin, alışılageldik koordinatların bir fonksiyonu olan skaler bir V potansiyel enerji 

fonksiyonundan türetilebildikleri varsayılmıştı. Şimdi bu varsayım kaldırılsın ve 

genelleştirilmiş kuvvetler jQ ’ler 3 gruba ayrılsın: 

 
V

jQ  : Alışılageldik koordinatların bir fonksiyonu olan skaler bir 

1 2( , , , )NV V r r r  potansiyel enerji fonksiyonundan türetilebilen korunumlu 

kuvvetler, 

 
R

jQ  : Alışılageldik hızların bir fonksiyonu olan skaler bir 
1 2( , , , )NR R r r r  

fonksiyonundan türetilebilen korunumsuz kuvvetler, 

 jQ  : Diğer korunumsuz kuvvetler. 

 
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Bu durumda (C.32) denklemi aşağıdaki şekli alır. 

 , 1, ,V R

j j j

j j

d T T
Q Q Q j n

dt q q

  
        

 ( C.44 ) 

Bu denklemden hareketle Euler-Lagrange denklemleri aşağıdaki şekilde türetilebilir. 
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 ( C.45 ) 
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  

   
 ( C.46 ) 
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T Vd T R
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    
        

 ( C.47 ) 

Şimdi (C.38) denklemi ile tanımlanan L Lagrange fonksiyonu kullanılırsa               

Euler-Lagrange denklemleri aşağıdaki şekilde elde edilir. 

 , 1, ,j

j j j

d L L R
Q j n

dt q q q

   
        

 ( C.48 ) 

C.4. Hamilton Denklemleri 

Bir ( , , )f x y t  fonksiyonundan ( , , )g u y t  fonksiyonuna baz dönüşümü yapılmak 

istensin. Bu işlem Legendere dönüşümü yardımıyla aşağıdaki gibi yapılabilir: 

( , , )f x y t  fonksiyonunun diferansiyeli, 

 df udx vdy z dt    ( C.49 ) 

yapısındadır. Bu denklemdeki u, v ve z, 

 
f

u
x





   ,   
f

v
y





   ,   
f

z
t





 ( C.50 ) 

dir. g; u, y ve t’nin, 

 g f ux   ( C.51 ) 

şeklinde bir fonksiyonu olsun. Şimdi ( , , )g u y t ’nin diferansiyeli yazılır ve bulunan 

ifadede (C.49) denklemi yerine konursa, 

 dg df udx xdu xdu vdy z dt        ( C.52 ) 

denklemi elde edilir. Bu aradığımız formda bir diferansiyeldir. Böylece, (C.51) ile 

tanımlanan ( , , )g u y t  fonksiyonu için, 

 

 

 
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 
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   ,   
f g
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 
 
 

 ( C.53 ) 

eşitliklerinin geçerli olduğu sonucuna varılır. 

Bir önceki bölümde (C.30) ile tanımlanan T toplam kinetik enerji fonksiyonu, (C.35) 

ile tanımlanan V potansiyel enerji fonksiyonu, (C.38) ile tanımlanan L Lagrange 

fonksiyonu ve alışılageldik koordinatlar ir ’lerin, genelleştirilmiş koordinatlar jq ’ler 

cinsinden ifadesini veren (C.18) denklemi aşağıda hatırlatma amacıyla tekrar 

yazılmıştır. 
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ii

i

vmT   ( C.30 ) 

 1 2( , , , )NV V r r r  ( C.35 ) 

 VTL   ( C.38  ) 

 1 2( , , , ; ) , 1, ,3 ; 3i i nr r q q q t i N N n  
 ( C.18 ) 

Bu denklemler yardımıyla L Lagrange fonksiyonunun; genelleştirilmiş konum, 

genelleştirilmiş hız ve zamanın bir fonksiyonu olduğu görülebilir. 

 tqqL ii ,,  Lagrange fonksiyonu yardımıyla, 

 
( , , )i i

i

i

L q q t
p

q




 ( C.54 ) 

şeklinde tanımlanan büyüklükler genelleştirilmiş momentumlar olarak adlandırılır. 

Şimdi Legendere dönüşümü yardımıyla  tqqL ii ,,  fonksiyonundan  tqpH ii ,,  

fonksiyonuna dönüşüm denklemleri elde edilebilir. (C.51) denklemi göz önüne 

alınarak  tqpH ii ,,  fonksiyonu bir eksi işaret farkıyla, 

 LpqH
i

ii    ( C.55 ) 

şeklinde tanımlanır. Legendre dönüşümü yardımıyla tanımlanan H’ye Hamiltonyan 

fonksiyonu denir. Bu tanımda Lagranjyan fonksiyonunun katsayısının negatif 

olmasına daha sonra değinilecektir. Legendre dönüşümü için yazılan (C.53) 

denklemlerinin H için sağlanması gerektiği için aşağıdaki eşitlikler elde edilir: 
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 ( C.56 ) 

(C.54) ile tanımlanan genelleştirilmiş momentumun türevi alınır ve elde edilen eşitliğe 

(C.39) Euler-Lagrange denklemleri uygulanırsa, 

 i

i i

Ld L
p

qdt q

  
    

 ( C.57 ) 

ifadesi elde edilir. (C.57)’nin (C.56) denklemlerinde yerine konmasıyla da aşağıdaki 

denklemler elde edilir. 

= 
 

 

 

= 
 

 
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( C.58 ) 

 
t

H

t

L









 (b) 

Bu denklemler Hamilton denklemleri olarak adlandırılır. 

Lagrange fonksiyonunun, dolayısıyla kinetik enerjinin zamana direkt olarak bağlı 

olmadığı bir sistem göz önüne alalım. Böyle bir sistemde L ’nin zamana göre türevi, 
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dt q dt q dt
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   ( C.59 ) 

şeklinde olacaktır. Bu denklemde Euler-Lagrange denklemleri kullanılırsa, 
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    ( C.60 ) 

ifadesi elde edilir. Böylece aşağıdaki sonuca ulaşılır. 

 0j

j j

d L
L q

dt q

 
    
  ( C.61 ) 

(C.61)’nin sağlanması için parantez içindeki ifade bir sabit olmalıdır. Bu da (C.55) ile 

tanımlanan Hamilton fonksiyonunun bir sabit olduğu anlamına gelir. Sonuç olarak 

kinetik enerjinin zamana bağlı olmadığı sistemler için H Hamilton fonksiyonu 

korunumlu bir büyüklüktür. Böyle bir sistemde Hamilton denklemleri sadece       

(C.58)(a) denklemlerinden oluşur. Bu yapıdaki Hamilton denklemleri kanonik 

Hamilton denklemleri olarak adlandırılır. 

Hamilton fonksiyonunun tanımlandığı (C.55) denklemini yeniden ele alınsın. alım. V  

konumun, T  ise hızın bir fonksiyonu olduğundan bu denklem, 
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  ( C.62 ) 

şeklinde yazılabilir. Öte yandan (C.30) ve (C.19) denklemleri yardımıyla da, 
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yazılabilir. Eğer kinetik enerji zamana direkt olarak bağlı değil ise ir

t




 sıfırdır. Bu da 

sistemin kanonik Hamilton yapıda olmasına karşı düşer. Böylece (C.63) denklemi, 
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haline gelir. (C.64) denklemi kja , 
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olmak üzere, 

 
,

j k j k

j k

T a q q  
( C.66 ) 

şeklinde yazılabilir. Bu da kinetik enerjinin, genelleştirilmiş hızlar jq  ve kq ’in              

2. dereceden bir fonksiyonu olduğu anlamına gelir. 

Euler’in homojen fonksiyonlara ait teoremi, 
1 2( , , , )nf x x x  bir kx  değişken 

takımının n. dereceden homojen bir fonksiyonu ise, 

 k

k k

f
x n f

x





  ( C.67 ) 

olduğunu söyler. Şimdi (C.62) denklemini ele alalım. Bu denklemdeki ilk terime 

Euler’in teoremi uygulanırsa Hamiltonyan için aşağıdaki sonuç elde edilir: 

 VTVTTL
q

T
qH

j j

j 


 )(2


  ( C.68 ) 

Böylece H sistemin toplam enerjisi olarak elde edilmiş oldu. Hamiltonyan’ın kinetik 

ve potansiyel enerjinin toplamı olması istendiği için (C.55) ifadesinde Lagranjyan 

teriminin katsayısı negatiftir. Böylece Hamiltonyan bir sistemin toplam enerjisi olarak 

elde edilmiş oldu. 

Örnek C.3 : Şekil C.1’deki basit sarkaç sisteminini Hamilton denklemleri ile çözünüz. 

Şekil C.1(a)’daki alışılageldik koordinatlar x ve y’yi Şekil C.1(b)’deki genelleştirilmiş 

koordinat  ’ya bağlayan, sinx r   ve cosy r   denklemleri zamana direkt bağlı 

olmadığından bu sistemde kinetik enerji T de zamana direkt bağlı değildir. Dolayısıyla 

Hamilton denklemleri kanonik yapıdadır. 

Şekil C.1(b)’deki genelleştirilmiş koordinat   için genelleştirilmiş momentumu 

hesaplayalım. 

 
2,

L
q p ml  




  


 ( C.69 ) 

 

Şimdi (C.40) Lagrange fonksiyonu yardımıyla Hamilton fonksiyonunu hesaplanabilir. 
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Aynı sonuca H T V   ile de varılabilirdi. Şimdi H’den hareketle (C.58)(a) kanonik 

Hamilton denklemleri, 
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 ( C.71 ) 

şeklinde elde edilir. 

C.5. Korunumsuz Kuvvetler Olduğunda Hamilton Denklemleri 

Bir önceki bölümde (C.39) Euler-Lagrange denklemleri ile yola çıkılmıştı. (C.55) ile 

tanımlanan Hamiltonyan için (C.53) Legendre dönüşümü denklemleri kullanılarak 

(C.56) denklemleri elde edilmişti. Ardından da genelleştirilmiş konum ve (C.54) ile 

tanımlanan genelleştirilmiş momentum için (C.58) Hamilton denklemleri bulunmuştu. 

Korunumsuz kuvvetler olduğunda Euler-Lagrange denklemleri olarak (C.39) yerine 

(C.48) denklemleri kullanılmalıdır. Bu durumda genelleştirilmiş momentumun türevi 

(C.57) yerine aşağıdaki denklem elde edilir: 
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 ( C.72 ) 

Bu denklemlerin (C.56)’ya uygulanması ile de korunumsuz kuvvetler içeren sistemler 

için Hamilton denklemleri aşağıdaki gibi elde edilir. 
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EK D. Elektrik Devrelerinin Euler-Lagrange ve Hamilton Denklemleri 

Klasik mekanikte potansiyel enerji ve kinetik enerjiyi birbirlerine ihtiyaç olmaksızın 

tanımlayabilmemiz zamanla enerji temelli etkin yöntemler geliştirilmesini sağlamıştır. 

Euler-Lagrange denklemleri ile Hamilton denklemleri potansiyel enerji ve kinetik 

enerjiyi kullanarak yazılır. İlki farkını, ikincisi de toplamını kullanır. Bu yöntemlerde 

öncelikle kısıt denklemlerinin devre dışı bırakıldığı genelleştirilmiş koordinatlara 

geçilir, ardından denklemler oluşturulur. Genelleştirilmiş koordinatlar EK C’de izah 

edilmiştir. 

Klasik mekanikte potansiyel enerji harekete dönüşmemiş statik enerjidir. Bir cismin 

Dünya ile etkileşiminde yerçekimine karşı ya da daha genel olarak noktasal yükler 

arası etkileşimde kütlesel çekim kuvvetine karşı bir iş yaparak bir cismin bir noktaya 

getirilmesi ile oluşur. Kinetik enerji ise hareket ile sağlanan enerjidir. Yerçekimi 

ivmesi ile ya da kütlesel çekim kuvveti ile harekete geçen kütlenin enerjisidir. 

Bir yay için, yay sıkıştırıldığında yayın itme gücüne karşı yapılan iş potansiyel 

enerjidir. Kinetik enerji ise yayın hareketi esnasında ortaya çıkan enerjidir. Bir akışkan 

için potansiyel enerji akışkanın sıkıştırılması iken, kinetik enerji akışkanın bir boru 

içinde hareketidir. 

Elektrik devreleri için durum çok karmaşıktır. Öncelikle iki farklı enerji tanımı ile yola 

çıkılması gerektiği için ilk akla gelene göre tanımlar yapılabilir. Enerji depolayabilen 

elemanlardan birinin, kondansatörün enerjisi potansiyel enerji olarak; diğerinin, 

endüktansın enerjisi de kinetik enerji olarak ele alınsın. Elbette tam tersi de 

mümkündür. 

Böylece bir benzetim kurulabilmiş olmasına karşın klasik mekanik ile elektrik 

devreleri arasında enerjinin oluşumu ve diferansiyel denklemlerin yapısı açısından 

farklar vardır. 

Bu farkları görmek için Dünya’nın çekim kuvveti etkisindeki bir noktasal yükün 

yerçekimi etkisindeki dikey hareketi ile bir LC tank devresinin dinamiği kıyaslansın: 

 Cismin potansiyel enerjisi sabit olduğunda konumu sabittir, dolayısıyla hızı 

sıfırdır. Bu cismin yerden belli bir yüksekliğe konmasına karşı gelir. LC 

devresinde kondansatörün bir anahtar ile devreden ayrılması durumunda 

potansiyel enerjisi sabit kalır. 

 Cisim yüksekten bırakıldığında kinetik enerjisi sıfırdan artmaya başlar, bu 

esnada potansiyel enerji azalır. Dünya’ya çarpana kadar bu devam eder. Dolu 

bir kondansatör bir endüktansa bağlanırsa kondansatör boşalana kadar oluşan 

dinamik benzerdir. Kondansatördeki potansiyel enerji azalırken endüktanstaki 

kinetik enerji artar. 

 LC devresinde potansiyel ve kinetik enerji tanımları tam tersi alınırsa 

endüktansın potansiyel enerjisini sabit tutabilmek için endüktansı kısa devre 

yapmak gerekir. Bu teorik olarak mümkündür ancak fiziksel olarak yapılamaz! 

 Cisim çok uzak olmadıkça Dünya’dan ne kadar uzakta olursa olsun potansiyel 

enerjisi tanımlıdır, sadece Dünya üzerinde potansiyel enerjisi sıfırdır.               

LC devresinde ise elemanlar paralel bağlandığı takdirde benzer bir dinamik 

sistem oluşturur. Dolu bir kondansatör bir endüktansa seri bağlandığında ise 

potansiyel enerji kinetik enerjiye dönüşmez. Yani elektrik devresi 

bağlantılarının nasıl olduğu da önemlidir. 
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Bir grup noktasal yükün kütle çekimi ile hareketi ele alındığında bu yükler birbirlerine 

temas etmedikçe bir dinamik sistem tanımlar; oysa bir grup endüktans ve kondansatör 

her durumda bir dinamik sistem tanımlamaz, elektrik devre bağlantıları önemlidir. 

Enerjinin ne olduğuna bakıldığında ise akla şu sorular gelir: Doğrusal olmayan bir 

kondansatör için enerjisi en genel halde geriliminin ve yükünün bir fonksiyonudur. 

Gerilimler için Kirchhoff’un gerilimler yasası sağlanırken, yükler için ise 

Kirchhoff’un akımlar yasası sağlanır. Bu durumda gerilime bağlı kondansatörler için 

devre grafında dallar ile ilgili denklemler kullanılır, yüke bağlı kondansatörler için ise 

kirişler ile ilgili denklemler kullanılır. Bu durumlarda genelleştirilmiş koordinatlar ve 

genelleştirilmiş hızların seçimi sorunları karşımıza çıkar. Endüktanslar için de benzer 

durum vardır. Elektrik devresi kiriş olan kondansatörler ve dal olan endüktanslar 

içerdiğinde de benzer sorun vardır. 

Benzer olarak doğrusal olmayan bir endüktans için enerjisi en genel halde akımının ve 

akısının bir fonksiyonu da olabilir. Bu durumda daha karmaşık bir hal ortaya çıkar.  

Euler-Lagrange denklemlerinde bir grup değişken ve bu  değişkenlerin türevleri 

cinsinden bir diferansiyel denklem yazılması gerekir. Hamilton denklemelrinde ise iki 

ayrı grup değişkenin birbirleri cinsinden yazılabilmesi gerekir. 

Bütün bu sorunlar hangi büyüklüklerin genelleştirilmiş koordinat olarak alındığı ile ve 

kinetik enerji ve potansiyel enerjinin nasıl tanımlandığı ile aşılmaya çalışılır. 

Elektrik devrelerinin Euler-Lagrange formülasyonlarında iki temel güçlük vardır: 

Genelleştirilmiş koordinatların seçiminin nasıl yapılacağı ve enerjilerin -kinetik ve 

potansiyel enerjinin- nasıl tanımlanacağı. Genelleştirilmiş kooordinatlar olarak 

kapasite ya da endüktanslara ait yük ya da akı büyüklükleri kullanılır. Gösterimde bu 

büyüklüklerinden sadece biri kullanılabileceği gibi iki büyüklük birarada da 

kullanılabilir. Kinetik enerji olarak kondansatörlerin (ya da endüktansların) toplam 

enerjisi, potansiyel enerji olarak da endüktansların (ya da kondansatörlerin) toplam 

enerjisi alınır. Literatürde kinetik ve potansiyel enerjinin ayrı ayrı tanımlanmayıp 

sisteme ait tek bir toplam enerjinin kullanıldığı çalışmalar da mevcuttur. Bağımsız 

kaynakların denklemlere nasıl katılacağı da bir diğer sorundur. Bağımsız kaynakların 

enerjilerinin kinetik, potansiyel ya da toplam enerjiye katılması ya da bu elemanların 

genelleştirilmiş kuvvet olarak denklemlere katılması mümkündür. Dirençler ve 

bağımlı kaynaklar denklemlere genelleştirilmiş kuvvet olarak katılır. Bütün bu 

çeşitliliğe ilaveten fiziksel anlamı üzerinde durmaksızın elde edilen devre 

denklemlerin uygun matris işlemleri neticesinde istenen Euler-Lagrange ya da 

Hamilton denklemleri formuna getirilmesi de mümkündür. 

Bu konudaki belli başlı çalışmalara aşağıda değinilmiştir: 

Wells 1938 tarihli çalışmasında endüktansların enerjisini kinetik enerji, 

kondansatörlerin ve kaynakların enerjilerinin toplamını da potansiyel enerji alarak bir 

Euler-Lagrange formülasyonu vermiştir [71]. Bu çalışmada genelleştirilmiş 

koordinatlar olarak kondansatör yükleri ve endüktans akıları alınmıştır. Çalışma 

kondansatörlerin ve endüktansların tanım bağıntılarının lineer olma kısıtlamasını 

içermektedir. Ayrıca devre denklemlerinde Euler-Lagrange formülasyonuna 

ulaşılmadan önce kondansatör yükleri ve endüktans akılarına ilişkin cebrik 

denklemlerin elenmesiyle lineer bağımsız bir değişken takımı elde edilmesi gerektiği 

not edilmiş, ancak bu konuda bir sistematik verilmemiştir. Çalışma özellikle hareketli 

parçalara sahip elektrik devrelerinin analizinde Euler-Lagrange denklemlerinin 

kullanılabileceğine değinmesi açısından önemlidir. 



87 

Daha sonra Brayton ve Moser, doğrusal olmayan devrelerin analizine dair genel bir 

yaklaşım vermişlerdir. Çalışmalarında bir Euler-Lagrange gösterimi vermemiş 

olmalarına rağmen bu konudaki temel fikirlerin oluşmasında katkıları büyüktür. Bu 

çalışmada devre denklemleri, bileşenleri devredeki kapasite, endüktans ve dirençlerin 

enerjileri olan bir toplam enerji yardımı ile yazılmıştır [72, 73]. 

Chua ve McPearson kondansatör akıları ve endüktans yüklerini durum değişkenleri 

olarak kullanan bir Euler-Lagrange gösterimi vermişlerdir. Çalışmalarında 

literatürdeki daha önceki çalışmalarda olmayan bağımlı kaynaklar da denklemlere 

katılmıştır [57]. Bu çalışmanın önemli bir sakıncası, durum değişkenleri olarak 

alışılageldik büyüklüklükler olmayan kondansatör akıları ve endüktans yüklerinin 

kullanılmış olmasıdır [74]. Kwatny ve diğerlerinin çalışmasında durum değişkeni 

olarak yeniden kondansatör yükü ve endüktans akısına dönülmüştür ancak bu defa 

durum değişkenleri kondansatör yükleri ve kondansatör akılarının lineer bir 

kombinasyonu olarak ele alınmıştır. Bu da genelleştirilmiş koordinatların ve buna 

bağlı olarak genelleştirilmiş hızların fiziksel anlamı olmayan değişkenler olması 

sonucunu getirmiştir [75]. Elektrik devrelerinin Hamilton gösteriminin eldesi 

çalışmalarda genelde ikincil bir sonuç olarak yer almış ve bu gösterim, Euler-Lagrange 

gösteriminden Legendere dönüşümü yardımıyla elde edilmiştir. Bu da bazı sorunlara 

yol açmaktadır. Örneğin [57] numaralı referansta Hamilton gösterimi için kapasite ve 

endüktans tanım bağıntılarının birebir ve üzerine olması kısıtlaması vardır. Bu sıkıntı 

Bernstein ve Lieberman’ın çalışması ile kısıtlı bir şekilde giderilmiştir. Bu çalışmada 

Euler-Lagrange denklemleri elde edilmeksizin devre topolojisinden hareketle kanonik 

Hamilton denklemleri elde edilmiştir [76]. Ancak verilen yöntem sadece LC devreleri 

için geçerli olduğu için uygulanabilirliği düşüktür. 
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EK E. Şekil 5.9 a=-13/70, b=- 8/7 Parametreleri İçin H ve dH’nin Değişimi 

Bu bölümde Bölüm 5.2.2.4’teki Şekil 5.9 verilmiştir. 

 

(a) =20 

 

(b) =19 
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(c) =14.4 

 

(d) =13.8
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(e) =13.78 

 

(f) =13.761
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(g) =13.2 

 

(h) =12

Şekil 5.9 Peryot katlaması ile kaos oluşumu esnasında H ve dH’nin değişimi
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