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ABSTRACT

EFFECT OF UNCERTAINTY IN WIND ON WIND-HYDRO
HYBRID SYSTEM

Gilindogdu, Onur
Master of Science, Civil Engineering
Supervisor: Prof. Dr. Elgin Kentel Erdogan

April 2025, 164 pages

Energy management remains a critical challenge in today’s energy sector, where
efficient storage and utilization are essential. Historically, fossil fuels have
dominated energy production due to their ease of storage compared to renewable
sources. However, growing energy demand, heightened awareness of environmental
damage from fossil fuels, and the drive for energy independence in nations lacking
fossil resources have fueled interest in renewable alternatives. Despite their
advantages, renewables like wind and solar face difficulties due to their intermittent
and unpredictable nature, complicating storage and grid integration. For instance,
wind turbines rely on fluctuating wind speeds, making it hard to estimate energy
generation in advance. Pumped-storage hydropower plants have emerged as a
leading solution for large-scale renewable energy storage. This thesis extends a prior
optimization study that determined the daily operational schedule for a wind-hydro
hybrid system (Ercan, 2020). While the previous study neglected wind speed
uncertainty, this study integrates it into the optimization model to evaluate its impact

on energy storage efficiency and operational decisions. Wind speeds are simulated



using the autocorrelated Latin Hypercube Sampling (aLHS) method to reflect
variability and uncertainty accurately. These simulated hourly wind speeds,
combined with realized electricity prices, refine the model, deepening understanding
of how wind speed and price uncertainties shape system performance. The findings
of this thesis demonstrate that electricity price volatility has a greater impact on
revenue than wind speed variability; therefore, WHHS operators should explicitly
incorporate electricity price uncertainty and forecasting into their operational

planning.

Keywords: Renewable Energy, Uncertainty Analysis, Hourly Wind Speed

Simulation, Autocorrelated Latin Hypercube Sampling
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0z

RUZGARDAKI BELIRSIZLIGIN RUZGAR-HIDRO HiBRIT SISTEM
UZERINDEKI ETKISI

Gilindogdu, Onur
Yiiksek Lisans, insaat Miihendisligi
Tez Yoneticisi: Prof. Dr. El¢in Kentel Erdogan

Nisan 2025, 164 sayfa

Enerji yonetimi, gliniimiiz enerji sektoriinde kritik bir zorluk olarak 6ne ¢ikmakta
olup, enerjinin etkin depolanmasi ve kullanimi biiyiik 6nem tasimaktadir. Tarihsel
olarak, fosil yakitlar, yenilenebilir kaynaklara kiyasla daha kolay depolanabilir
olmalart nedeniyle enerji iiretiminde baskin rol oynamistir. Ancak, artan enerji
talebi, fosil yakitlarin ¢evreye verdigi zarara dair artan farkindalik ve fosil yakit
kaynaklarina sahip olmayan {ilkelerin enerji bagimsizligina yonelik c¢abalari,
yenilenebilir enerji alternatiflerine ilgiyi artirmistir. Avantajlarina ragmen, riizgar ve
giines gibi yenilenebilir kaynaklar, kesintili ve dngoriilemez dogalar1 nedeniyle
depolama ve sebeke entegrasyonunda zorluklarla karsilasmaktadir. Ornegin, riizgar
tiirbinleri, dalgalanan riizgar hizlarina baghdir ve bu durum iiretilecek enerjinin
onceden tahminini zorlastirmaktadir. Pompali depolamali hidroelektrik santraller,
yenilenebilir enerji sistemlerinde biiyiik 6lcekli enerji depolama i¢in 6nde gelen bir
¢Oziim olarak ortaya ¢ikmistir. Bu tez, bir riizgar-hidro hibrit sisteminin giinliik

isletim programini belirleyen 6nceki bir optimizasyon ¢aligmasini (Ercan, 2020)
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temel almaktadir. Onceki calisma riizgar hiz1 belirsizligini géz ardi etmisken, bu
calisma, riizgar hiz1 belirsizligini bir optimizasyon modeline entegre ederek enerji
depolama verimliligi ve isletim kararlar iizerindeki etkisini degerlendirmektedir.
Riizgar hizlari, degiskenlik ve belirsizligi dogru bir sekilde yansitmak icin oto-
korelasyonlu Latin Hiperkiip Ornekleme (aLHS) ydntemiyle simiile edilmistir. Bu
simiile edilmis saatlik riizgar hizlari, ger¢eklesmis elektrik fiyatlariyla birlestirilerek
model gelistirilmis; boylece riizgar hizi ve fiyat belirsizliklerinin sistem
performansini nasil etkiledigine dair daha derin bir anlayis saglanmistir. Bu tezin
bulgulari, geliri iizerinde riizgar hizi degiskenligine kiyasla elektrik fiyati
oynakliginin daha belirleyici oldugunu ortaya koymaktadir; bu nedenle
isletmecilerin, operasyonel planlamalarina elektrik fiyati belirsizligini ve elektrik

fiyat tahminlerini agikc¢a dahil etmelidir.

Anahtar Kelimeler: Yenilenebilir Enerji, Belirsizlik Analizi, Saatlik Riizgar Hizi

Simiilasyonu, Otokorelasyonlu Latin Hiperkiip Ornekleme
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CHAPTER 1

INTRODUCTION

Human development and population growth have led to a significant increase in
energy consumption over time. This rising population is driven by factors such as
urbanization, industrial development, and technological have contributed to the
steady rise in energy demand. According to the International Energy Agency (IEA),
the world’s total annual energy consumption increased by 90% between 1980 and
2022 calculated using data given by IEA (2024). Notably, electricity's share of total
energy consumption grew from 9% in 1980 to 21% in 2022 according to IEA (2024)
data, highlighting the increasing electrification of human activities. Unfortunately,
this progress has come at a cost: a substantial increase in CO- emissions over the past
decades. Electricity and heat production account for the majority of these emissions,
making them a major contributor to climate change and global warming (Lamb et
al., 2021). COz emissions, primarily from the burning of fossil fuels such as coal, oil,
and natural gas, are a significant driver of environmental degradation. Ultimately,
urgent action is required to address these challenges and protect the planet. One key
international response to this crisis is the Paris Agreement, a legally binding treaty
on climate change adopted by 196 Parties at the UN Climate Change Conference
(COP21) in Paris on 12 December 2015. The agreement, which entered into force on
4 November 2016, aims to limit global warming to below 2°C, preferably 1.5°C,
compared to pre-industrial levels. A major component of this initiative is reducing
reliance on fossil fuels for electricity production and transitioning to renewable
energy sources. Renewable energy, such as wind, solar, and hydropower, is widely
regarded as a sustainable solution to combat climate change and reduce CO:
emissions. The Paris Agreement encourages nations to adopt clean energy

technologies and invest in renewable energy infrastructure to mitigate environmental



damage. By decreasing the use of fossil fuels and embracing renewable energy,

humanity can work towards a more sustainable and resilient future.

Uncertainties introduced into future energy revenue predictions of a wind-hydro
hybrid system due to future energy price and wind speed estimations are evaluated
simultaneously in this study. Although wind speed uncertainty impacts revenue
variability, its effect remains less significant than electricity price fluctuations. The
study also underscores that robust simulation methods, like the autocorrelated Latin
Hypercube Sampling (aLHS), enhance the understanding of wind speed variability’s
role in system performance. These insights highlight the importance of addressing
electricity price uncertainty to improve the operational reliability and financial

outcomes of wind-hydro hybrid systems.



CHAPTER 2

LITERATURE REVIEW

In this thesis, an uncertainty analysis is conducted based on a study that developed
an optimization model to determine the best daily operational strategy for a Wind-
Hydro Hybrid System (WHHS). In the base study by Ercan (2020), an LSTM model
was used to forecast hourly electricity prices for the next day, which serves as input
to the optimization model. However, for future hourly wind speed, they utilized
historic wind speed data from the NASA MERRA-2 database. This approach
neglects the uncertainty associated with wind speeds in their operational strategy. In
this thesis, wind speed uncertainty is integrated into the optimization model to
evaluate its impact on revenue estimation of the WHHS. Hourly wind speeds from
2014 to 2023 are sourced from the Turkish State Meteorological Service (TSMS), as
global datasets like NASA MERRA-2 and ERAS are found inadequate for
representing wind speeds in the case study area. Hourly wind speeds are used to
generate a set of future hourly wind speed time series using aLHS. This method
ensures that simulated data captures critical statistical characteristics such as
seasonality, diurnal variations, and autocorrelation. This chapter provides a
comprehensive overview of the relevant concepts and previous studies. In Section
2.1, the roles of pumped storage hydropower plants, wind power plants, and the
WHHS are explained. Section 2.2 presents an overview of the Turkish Electricity
Spot Markets, highlighting their significance in optimizing energy storage and
generation strategies. Section 2.3 describes the wind speed simulation process used
to incorporate uncertainty into the optimization model. Finally, Section 2.4 describes

uncertainty analysis in wind speeds and electricity prices on WHHS.



2.1 Pumped Storage Hydropower Plants, Wind Power Plants, WHHS

Pumped Storage Hydropower Plants (PSHP) are large-scale energy storage systems
that transfer water between two reservoirs at different elevations to store and
generate electricity. Wind power plants are facilities that produce electricity by
converting the kinetic energy of the wind into mechanical power using wind turbines.
WHHS are integrated energy systems that combine wind power plants with pumped
storage hydropower plants to enhance the reliability and efficiency of renewable
energy generation. These systems address the unpredictability of wind power by
using excess electricity generated from wind to pump water from a lower reservoir

to an upper reservoir. The following sections explain these systems in more detail.

2.1.1 Pumped Storage Hydropower Plants

PSHP are a type of hydroelectric energy storage system designed to help balance
electricity supply and demand. These systems work by using electricity to pump
water from a lower reservoir to an upper reservoir during times of low energy
demand and consequently low electricity price. Later, when demand is at its peak
and consequently electricity price is high, the stored water is released back to the
lower reservoir, passing through turbines to generate electricity. This process allows
PSHPs to serve as large-scale energy storage solutions, enhancing the reliability and

stability of the electricity grid.

In 1882, Switzerland established the world's first pumped storage hydropower plant,
marking nearly 140 years of development. Significant progress in pumped storage
technology began in the 1950s, particularly in Europe, the United States, and Japan
(Zhao et al., 2024).

PSHP in Figure 2.1 consists of an upper reservoir, a lower reservoir, a penstock, and

a powerhouse equipped with a reversible pump-turbine and motor-generator. Water



flows downward from the upper reservoir through the penstock to generate
electricity during peak demand periods (i.e., on peak). Conversely, during off-peak
hours, excess electricity is used to pump water back up to the upper reservoir, storing

energy for later use

Upper reservoir

Water flow up
when pumping

(off peak)

Water flow down
when generating
(on peak)

Penstock

Plant equipped with
reversible pump-turbine
and motor—generator

Lower reservoir ‘

Power house

Figure 2.1 Schematic Diagram of Main Building Composition of PSHP (Hino &
Lejeune, 2012).

PSHPs account for approximately 96% of the global storage power capacity and 99%
of the global storage energy volume (Blakers et al., 2021). Studies by Blakers et al.
(2021) and Yang & Jackson (2011) highlight the significance of PSHPs in balancing
electricity loads, reducing reliance on fossil fuels, and integrating renewable energy

sources like wind and solar into power grids.

There are several types of PSHPs, each designed for different geographical and
operational requirements. Open-loop PSHPs interact with natural water bodies such
as rivers and lakes, making them easier to construct but often subject to
environmental regulations. In contrast, closed-loop PSHPs operate independently of
natural water sources, using artificial reservoirs, which significantly reduces
environmental impact and water resource dependency (Hunt et al., 2020). Schematic
diagrams of open-loop and closed-loop PSHP are shown in Figure 2.2. Other

emerging variations include underground PSHPs, where water reservoirs are



constructed in abandoned mines or underground caverns, improving storage
efficiency and minimizing land-use concerns (Madlener & Specht, 2020). Seawater
PSHPs, demonstrated in Japan’s Yanbaru facility, present a promising alternative for
coastal regions, utilizing seawater instead of freshwater for energy storage (Luo et
al., 2015). These diverse configurations enable PSHPs to be implemented in various
landscapes and energy networks. This thesis investigates uncertainty in wind speeds

on the operation of a closed-loop PSHP due to its simplicity in modeling.
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Figure 2.2 Pure PSHP on left and pump back PSHP on right (Deane et al., 2010)

According to IRENA(2024), the global installed power capacity has shown
continuous growth from 2000 to 2023, exceeding 140,000 megawatt (MW) in total.
As seen in Figure 2.3, Asia has played a dominant role in this expansion, with a
significant increase after 2024. This rapid growth is primarily driven by the region’s
increasing investment in renewable energy sources and grid infrastructure. Europe
and North America have also experienced steady growth, though at a comparatively
slower rate. The Rest of the World (ROW) and Africa remain minor contributors to
the total capacity. With the rising demand for renewable energy integration, the need
for greater installed capacity continues to grow. Future projections indicate that as
more countries adopt renewable energy, the installed capacity is expected to further
increase, especially in regions with strong policy support and infrastructure

development.
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Figure 2.3 PSHP Installed Capacities Trend in the World (based on IRENA (2024)
data)

2.1.2 Wind Power Plants

The use of wind energy can be traced back thousands of years, with historical records
indicating that multiple ancient civilizations independently discovered and employed
it across different parts of the world. However, the first automatically operated wind
turbine was developed by Charles Brush in 1888 (Tong, 2010). A wind turbine is a
device that converts the kinetic energy of the wind into mechanical energy, which is
then transformed into electricity. They are primarily categorized based on their
installation location: onshore and offshore. Wind turbines are mainly classified as
onshore, which are installed on land and typically have lower installation and
maintenance costs, and offshore, which are located in bodies of water, benefiting

from stronger and more consistent winds, resulting in higher energy output.

Onshore wind turbines are installed on land and these turbines have seen significant

growth in capacity over the years. In the United States, the average capacity of newly



installed onshore wind turbines was 3.4 MW in 2023, reflecting advancements in
technology and efficiency (Wiser et al., 2024). Offshore wind turbines are in bodies
of water, usually at sea and they benefit from stronger and more consistent wind
patterns. These turbines are generally larger than their onshore counterparts.
According to the latest data, global installations in 2023 had a capacity-weighted
average turbine rating of 9.7 MW, representing a 26% year-over-year increase. The
average rotor diameter reached 183.4 meters (a 5% increase), and the average hub

height was 124 meters (a 6% increase) (McCoy et al., 2024).

Wind turbines generate electricity by using wind energy to spin their blades, which
drive a generator. They produce electricity immediately when wind speeds are
adequate. Despite this limitation, Figure 2.4 shows that the global onshore and
offshore wind energy installed capacity has been increasing steadily each year. From
2000 to 2023, the onshore wind energy installed capacity grew from 16,896.74 MW
to 944,205.12 MW, representing an increase of approximately 5,588%. In the same
period, offshore wind energy capacity expanded from 66.95 MW in 2000 to
73,185.40 MW in 2023, reflecting an impressive growth of 109,314% (IRENA,
2024).
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Figure 2.4 Onshore and Offshore Wind Energy Installed Capacities Trend in the
World (based on IRENA (2024) data)



the onshore wind energy installed capacity percentages by country in 2023 is given
in Figure 2.5 presents. According to IRENA (2024) data, China leads the market
with 43% of the total onshore capacity, reflecting its significant investment in
renewable energy. The United States follows with 16%, while Germany (6%) and
India (5%) are also key contributors. Additionally, Tiirkiye has achieved a significant
position with an onshore wind energy installed capacity of 11,697.16 MW in 2023,
marking a remarkable rise from just 19 MW in 2000.
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Figure 2.5 Onshore Wind Energy Installed Capacity Percentages of Countries in
2023 (based on IRENA (2024) data)

The offshore wind energy installed capacity percentages by country in 2023 is shown
in Figure 2.6. According to IRENA (2024), China holds 51% of the total capacity,
followed by the United Kingdom (20%) and Germany (11%). Other contributors
include the Netherlands (5%), Denmark (4%), and Belgium (3%), while Chinese

Taipei, Vietnam, and France account for smaller shares. The Rest of the World



(ROW) represents 1% of the total capacity. As of 2023, there is no installed offshore

wind energy capacity in Tiirkiye.

2% 1%

\X[o

= China

= United Kingdom of Great Britain
and Northern Ireland

= Germany
Netherlands

= Denmark

= Belgium

= Chinese Taipei

= Viet Nam

= France

= Rest of the World (ROW)

Figure 2.6 Offshore Wind Energy Installed Capacity Percentages of Countries in
2023 (based on IRENA (2024) data)

In this study, onshore wind turbines are considered, thus some of their important
characteristics are summarized here. A typical onshore wind turbine has several
essential components, as illustrated in Figure 2.7. The rotor includes the blades,
which capture the wind's kinetic energy, and the hub, which connects the blades to
the main shaft. The nacelle, located at the top of the tower, houses critical mechanical
and electrical components, including the gearbox, which adjusts rotational speed,
and the generator, which converts mechanical energy into electricity (Bhattacharya,
2019). Supporting these components, the tower provides structural stability,
elevating the nacelle to capture higher wind speeds efficiently. The foundation,

though not shown in the image, anchors the entire structure to the ground, ensuring

10



stability against varying wind forces. Energy systems where wind turbines and PSHP
are used together are called WHHS. Detailed information about these systems is

provided in the following section.
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Gearbox
Rotoi Hub — q Generator %Naeelle

Tower

i J

Figure 2.7 Main Components of an Onshore Wind Tower (Bhattacharya, 2019)

2.13 Wind-Hydro Hybrid Systems (WHHS)

WHHS combines wind power generation with hydroelectric storage, increasing
energy reliability, flexibility, grid stability, and profitability for -electricity-
generating companies. These systems effectively address the intermittent nature of
wind energy by using the storage capacities of hydroelectric power plants. The
collaboration between wind and hydro resources enables a continuous energy supply
and improves the integration of renewable energy into the power grid. Figure 2.8
shows a typical WHHS. The system includes wind turbines, a pump turbine,

penstocks, and both a higher and a lower reservoir.
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There are many studies on WHHS in the world while there are a few studies on
WHHS in Tiirkiye and a brief summary of these studies are given in the following
paragraphs. These studies highlight the challenges associated with and advantages
of WHHS.
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Figure 2.8 Schematic Representation of WHHS (Graga Gomes et al., 2021)

WHHS represents an innovative solution to the challenges posed by wind energy's
intermittency. According to Korpaas et al. (2003), integrating energy storage systems
with wind power plants increases operational flexibility, allowing producers to align
production with market demands. The dynamic programming approach discussed by
Korpaas et al. (2003) optimizes energy exchange in the market, emphasizing the role
of energy storage in smoothing wind power variations. Their conclusion suggests
that WHHS can enhance market participation by mitigating the impact of wind
power fluctuations. In this thesis, instead of dynamic programming, a Monte Carlo

simulation-based approach is employed to handle wind energy variability.
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Castronuovo and Lopes (2004) further explored the operational optimization of
WHHS. Their study introduced an hourly-discretized optimization algorithm that
balances economic profits with power output fluctuations. The stochastic nature of
wind energy was modeled using Monte Carlo simulations, highlighting the
importance of wind power forecasting for daily operational strategies. In their
conclusion, they emphasized the role of accurate forecasting in maximizing
profitability. Similarly, this thesis develops an hourly-resolution simulation
framework incorporating an aLHS method to capture the temporal variability of
wind power generation for the selected case study, aligning operational decisions

with local grid dynamics.

Chen et al. (2009) provided a comprehensive review of electrical energy storage
(EES) technologies, including pumped hydroelectric storage, which is central to
WHHS. Their work emphasized the importance of Electrical EES in stabilizing
power systems, especially with increasing renewable energy penetration. They
concluded that PSHP remains the most mature and reliable technology for large-
scale applications due to its high efficiency, long operational life, and ability to

provide ancillary services.

Diaz-Gonzalez et al. (2012) reviewed energy storage technologies for wind power
applications. They highlighted that WHHS not only addresses power quality issues
but also supports grid stability by providing ancillary services such as frequency
regulation and voltage control. Their conclusion emphasized that WHHS plays a
crucial role in ensuring the long-term operational reliability of power grids by
effectively integrating renewable sources. They noted that WHHS could
significantly reduce curtailment rates and improve grid responsiveness during peak

demand periods.

Ghadikolaei et al. (2012) examined the risk-constrained scheduling of hydro-wind
units in short-term electricity markets. Their stochastic programming model
accounted for market price and wind power uncertainties, demonstrating that WHHS

can enhance profitability while minimizing operational risks. Their conclusions
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indicated that risk management frameworks are essential for successful WHHS
operations. They also noted that incorporating probabilistic market price forecasts,
wind generation uncertainty modeling using autoregressive integrated moving
average (ARIMA) processes, and multiple risk tolerance scenarios significantly
improve scheduling efficiency. Despite methodological differences, this thesis also
shares the common goal of improving the operational efficiency of WHHS by
addressing uncertainties in wind power generation. Studies on WHHS in Tiirkiye are

included in the following paragraphs.

Dursun and Alboyaci (2010) investigated the contribution of wind-hydro pumped
storage systems in meeting Tirkiye's growing electricity demand. The study
examined the country’s wind and hydropower resources, emphasizing the necessity
of integrating these energy sources for a more stable and efficient electricity supply.
It highlighted that while Tiirkiye has substantial wind energy potential, its
intermittent nature poses grid stability challenges. Pumped storage hydroelectric
plants were proposed as a solution to store surplus wind energy and release it when

needed, thus enhancing the reliability of the power system.

Dursun, Alboyaci, and Gokcol (2011) explored an optimal wind-hydro hybrid
energy solution for the Marmara region of Tiirkiye. The study analyzed six different
sites with high wind potential and assessed their suitability for WHHS integration.
Using long-term wind speed measurements and energy demand data, the researchers
developed a model that optimized wind-hydro storage configurations to ensure
continuous electricity supply. Their results demonstrated that WHHS could reduce
dependency on fossil fuels while improving the efficiency of renewable energy

generation in the region.

Kose and Kaya (2013) analyzed the feasibility of using a wind-hydro hybrid system
to meet the energy demand of the Konya Water Treatment Plant. The study designed
a system that combined a hydroelectric power plant (HEPP) with wind power plants
(WPP), using local wind energy measurement data for optimization. The findings

showed that integrating wind energy into the existing hydro infrastructure could
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significantly reduce electricity costs and reliance on fossil fuels. Additionally, an
economic analysis was conducted, revealing a reasonable payback period for the

system.

Dinger and Bozkus (2016) studied the hydraulic challenges associated with WHHS,
particularly the occurrence of water hammer effects in pressurized pipelines. Their
study focused on the Yahyali Wind-Hydro Hybrid Plant and used numerical
simulations to analyze transient pressure fluctuations caused by sudden flow
changes. They found that without proper design considerations, these pressure
variations could lead to pipe failures, increasing maintenance costs. Their study
recommended installing surge tanks and other protective devices to mitigate these

risks, ensuring the safe and efficient operation of WHHS.

Ercan and Kentel (2022) developed an optimization model for the daily operation of
WHHS, integrating electricity price forecasting into the decision-making process.
Using an LSTM neural network, the study predicted electricity prices in Tiirkiye’s
day-ahead market and coupled this with a mixed-integer linear programming model
to maximize daily revenue. Their results show that forecasted electricity prices
improve the efficiency of the optimization model compared to relying on past prices,
leading to increased revenue. However, the LSTM network struggles with sudden
fluctuations in electricity prices, particularly during midday hours. As wind turbine
capacity increases, the system becomes less dependent on the grid, and revenue
growth is primarily driven by wind energy utilization. The results of their study
emphasize the importance of jointly optimizing the capacities of pumped storage
hydropower and wind turbines for maximum efficiency. While wind turbine capacity
does not significantly impact daily operation schedules within the studied range,
integrating wind power reduces errors in revenue estimation. However, their study
overlooked wind speed uncertainty. Therefore, this thesis aims to incorporate wind

speed uncertainty into Ercan and Kentel (2022).

These studies collectively demonstrate that WHHS offers a robust solution for

integrating renewable energy into power grids. By combining wind power with
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pumped storage, WHHS can mitigate energy supply fluctuations, enhance grid
stability, and optimize market operations. In light of these findings, WHHS is
utilized in this thesis to store energy generated from wind power and to optimally
generate electricity by using the advantages of a pumped-storage hydropower
system, with a particular focus on analyzing how wind power uncertainty impacts

WHHS's performance in Turkish electricity spot market.

2.2 Turkish Electricity Spot Market

The Turkish electricity spot market is a fundamental mechanism for balancing
supply and demand in the country's energy sector. It facilitates short-term electricity
trading through organized market platforms, ensuring transparent price formation
based on real-time market conditions. This market structure is critical in maintaining
grid stability, enhancing competition, and optimizing resource allocation within the

energy system.

Eroglu and Finger (2021) analyze the transformation of Turkey's wholesale
electricity market from a state-controlled system to a competitive market-driven
model, emphasizing the alignment of regulatory frameworks with European Union
(EU) standards. Electricity Market Law No. 4628, enacted in 2001, was a pivotal
step in this transition, leading to the establishment of the Energy Market Regulatory
Authority (EMRA), which oversees licensing, market transparency, and pricing
regulations. The liberalization process was further refined by the Electricity Market
Law No. 6446 in 2013, which strengthened competition and ensured third-party
access to the grid (Eroglu & Finger, 2021).

The Turkish electricity spot market consists of several interconnected markets, each
serving a distinct role in the country's electricity trade. These markets are Day-Ahead
Market (DAM), Intraday Market (IDM), Balancing Power Market (BPM), Power
Futures Market (PFM), Renewable Energy Resources Support Mechanism
(YEKDEM), Bilateral Contracts Market, and Environmental Markets. However, the
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optimization model used in this study is designed solely based on DAM market
participation, meaning that real-time adjustments, imbalance corrections, or intraday
trading mechanisms are not included in the scope of this work. The study focuses
exclusively on bidding in the DAM, where offers are submitted one day in advance,
and scheduling decisions are made based on historic hourly electricity price and wind
power availability, without incorporating the operational dynamics of other market
structures. Other types of electricity markets in Tiirkiye, such as PFM and
YEKDEM, are not considered in this study. However, the details of these markets
can be found in the Electricity Market Sector Report (EMRA, 2024).

The DAM was established on December 1, 2011, marking a crucial step toward
market liberalization in Tiirkiye. This platform allows electricity trading one day in
advance, where market participants submit bids, and the Market Clearing Price
(MCP) is determined based on supply and demand conditions. The introduction of
DAM replaced the earlier bilateral contract model, significantly improving price
transparency and trading efficiency (EMRA, 2024). In this market, energy sellers
submit offers for each hour of the next day, while energy buyers submit their
demand, ensuring that generation and consumption are balanced before real-time
operations. The market operator sorts these bids and determines the MCP at the
intersection of supply and demand curves. The offer period covers 24 hours of the
next day, from 00:00 to 24:00, with a submission deadline of 12:30 on the current
day. The initial results are announced at 13:30, followed by a 30-minute objection

period, after which the final results are declared at 14:00 (Yarici, 2018).

The IDM was launched on July 1, 2015, as part of efforts to enhance market
flexibility. IDM enables participants to adjust their electricity positions closer to real-
time, reducing imbalances between expected and actual electricity generation or
consumption. By allowing market participants to fine-tune their trading strategies
within the same operational day, IDM has played a crucial role in balancing Tiirkiye's

power grid and ensuring a more responsive market (EMRA, 2024).
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The BPM has been operational since 2009 and is managed by TEIAS (Turkish
Electricity Transmission Corporation). BPM is designed to ensure real-time system
balance by managing upward and downward balancing orders to maintain grid
frequency stability. Before the introduction of BPM, Tiirkiye relied on a centrally
controlled dispatch system, but the market-based approach has allowed a more

efficient and cost-effective allocation of balancing resources (EMRA, 2024).

An example timeline for the Turkish electricity spot markets is shown in Figure 2.9.

This timeline shows the market operation schedule for 02.01.2020.

01.01.2020 02.01.2020
I I I
00:00 12:30 13:30  14:00 18:00 00:00 12:00 23:00 00:00
| I I | ||
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for Each Hour of
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from 00:00 to 24:00
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| | | Balancing Market |
Day Ahead Market Intraday Market

Figure 2.9 Scheduling of Market for 02.01.2020 (Ercan, 2020)

In this thesis, while conducting the optimization study to determine the best
operation schedule for WHHS to maximize daily revenue, historic hourly electricity
prices and simulated hourly wind speeds (or corresponding wind power generations)

are utilized as input data.

23 Hourly Wind Speed Simulation

In this study, uncertainty in wind speed on WHHS revenue is quantified by
simulating hourly wind speeds. Hourly wind speeds exhibit short-term temporal

dependencies. These dependencies arise from local wind generation mechanisms and
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long-term trends. Adding temporal dependency to wind speed models is necessary

to ensure accurate and reliable results (Brett & Tuller, 1991).

According to Brown et al. (1984), Monte Carlo methods can simplify wind speed
simulations by using parameters such as the mean and variance of the distribution.
However, this approach underestimates the variance of time-averaged wind speeds
by ignoring positive correlations between successive observations. They concluded
that long periods of high or low wind speeds, which are common in real data, are
often underrepresented when wind speeds are assumed to be temporally

uncorrelated.

In this study, hourly wind speeds are sampled from the empirical distribution of the
available hourly observed wind speeds. The empirical distribution refers to a
distribution constructed from a given sample of data. It is defined as a discrete
distribution where each observed data point in the sample is assigned an equal
probability of 1/n, where n is the total number of observations (Borovkov, 1999).
Typically, such procedures are carried out using Monte Carlo methods. However, in
cases where the data to be sampled is limited, a variant of the Monte Carlo method,
known as Latin Hypercube Sampling (LHS), can be preferred. Dutta and Gandomi
(2020) describe LHS as "a stratified sampling technique designed to minimize the
number of simulations required while effectively quantifying response uncertainty".
LHS requires fewer samples to effectively capture the observed data distribution,
making it a computationally efficient alternative for scenarios with constrained

resources or limited data availability (Janssen, 2013).

Li (2018) used an approach to include autocorrelation when inputting distributions.
In his study, the Weibull distribution parameters are estimated from the observed
wind speeds, and the generated samples follow the same probability distribution.
However, while the generated wind speeds are independent, the actual wind speed
time series are often correlated. To address this, the correlation in the simulated

samples must match the observed data. Li (2018) iteratively adjusts the power
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spectrum density (PSD) of the simulated wind speeds until they match the target
PSD.

In a more recent study, Le and Vargas (2024) introduced the autocorrelated
conditioned Latin Hypercube Sampling (acLHS) method as an enhancement of the
traditional conditioned Latin Hypercube Sampling (cLHS) (Minasny & McBratney,
2006). The acLHS incorporates temporal or spatial autocorrelation into the sampling
process by integrating semivariograms as an optimization criterion. This ensures that
the sampled data not only preserves the univariate distributions and dependency
relationships of the original data but also retains the temporal or spatial
autocorrelation structure. They applied acLHS to two case studies: temporal
sampling of soil CO; efflux data and spatial sampling across the conterminous
United States. Their results demonstrated that acLHS provides a more accurate
representation of the temporal and spatial variability of the original datasets
compared to fixed sampling and traditional cLHS methods. By maintaining the
temporal or spatial dependencies, acLHS improves the quality of predictions and

reduces uncertainty in geostatistical simulations.

As explained above, one of the most important parameters in autoregressive models
is the autocorrelation in the time series. Understanding and representing
autocorrelation correctly is crucial for ensuring the effectiveness of the model.
Autocorrelation can change for each time series data, and even when examining the
same time series data in different regions, different autocorrelation patterns may be
observed. Therefore, the autocorrelation of specific time series data in a particular
region must be analyzed before building the model. Hence, in this study, while
simulating wind speeds using LHS, an optimization procedure is integrated so that
autocorrelation of simulated wind speeds can represent the observed wind speeds’

autocorrelation.

Building on the concept introduced in Le and Vargas (2024), the Autocorrelated
Latin Hypercube Sampling (aLHS) method, focusing solely on simulating a single

time series while preserving its autocorrelation structure, is used in the current study.
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Unlike the original acLHS method, which emphasizes conditioned sampling to
ensure joint representation of multiple variables, this study simplifies acLHS by
concentrating solely on the temporal autocorrelation of hourly wind speed data. The
semivariance model is used to maintain the autocorrelation structure during
simulation, enabling the generation of hourly wind speeds that reflect the temporal
variability observed in the original dataset. This approach provides a tailored solution
for addressing wind speed uncertainty in the optimization of Wind-Hydro Hybrid
Systems. By accurately simulating wind speed time series with preserved
autocorrelation, the method enhances the robustness of the operational strategies

derived from the optimization model.

Unlike the study by Le and Vargas (2024), which utilized the differential evolution
method for optimization, the optimization procedure in this study is conducted using
the Powell optimization method. The Powell method has found extensive
applications across diverse scientific fields, proving to be a robust optimization tool.
For example, Nakanishi et al. (2020) utilized it to enhance quantum-classical hybrid
algorithms by optimizing parameterized quantum circuits, achieving efficient cost
function minimization. Similarly, Romero et al. (2018) applied the method in the
Variational Quantum Eigensolver (VQE) for molecular energy calculations,
leveraging the unitary coupled-cluster ansatz. Additionally, Fulton et al. (2018)
employed the Powell method in the RadVel toolkit to model radial velocity data,

effectively estimating orbital parameters in multi-planet systems.

There are numerous studies on wind speed simulations. In these studies, the first step
has generally been to find the distribution of the data. Ramirez and Carta (2005)
noted that one of the basic assumptions in statistics, whether wind speeds are
dependent or independent, was rarely tested in the studies reviewed. They
commented that since wind speeds recorded over short time intervals are usually
dependent, using such samples violates the assumptions of estimation methods based
on fitted distributions. This means that if the assumption of randomness is not met:
(a) common statistical tests will not be valid, (b) uncertainties for commonly used

statistics will not be significant, and (c) parameter estimates may not be reliable
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(Ramirez & Carta, 2005). However, they concluded that the findings show that using
autocorrelated hourly wind speeds does not significantly change the shape of the
probability density distribution, although it does invalidate standard tests. In light of
this information, in this study, when assigning an empirical distribution to the data
for sampling purposes, the distribution is directly assigned without removing

autocorrelation.

24 Uncertainty Analysis

The uncertainty in annual revenue from wind power generation primarily arises from
variability in hourly electricity prices and hourly wind speeds. Consequently, most
studies investigating uncertainty in wind power generation or WHHS concentrate
their analyses on these two factors. The following paragraphs provide and explain
studies that address uncertainty analysis in wind power generation and electricity

prices in electricity markets.

The article by Pinson et al. (2009) presents a novel methodology for generating
statistical scenarios of short-term wind power production, addressing the critical
need for enhanced uncertainty representation in wind energy forecasting. Building
on the limitations of traditional point forecasts, which offer only a single expected
value, and probabilistic forecasts, which provide uncertainty information on a per-
horizon basis but lack insight into temporal interdependence, the authors propose a
framework that integrates both predictive distributions and the interdependence
structure of forecast errors. This approach transforms non-parametric probabilistic
forecasts into a multivariate Gaussian random variable, utilizing a recursively
estimated covariance matrix to capture the evolving relationships among prediction
errors across forecast horizons. Applied to a multi-MW wind farm in Denmark over
a two-year period, the method demonstrates its ability to produce reliable scenarios
that respect input predictive distributions while reflecting time-varying error
structures, as evidenced by empirical evaluations including Gaussianity tests and

Probability Integral Transform (PIT) histograms. This advancement holds significant
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potential for optimizing decision-making in applications such as wind-storage
system operations and multi-market trading, offering a robust tool for integrating

stochastic wind generation into power systems (Pinson et al., 2009).

Pinson et al. (2007) develop a methodology for trading wind power in electricity
markets by using short-term probabilistic forecasts to design optimal bidding
strategies. They model wind generation as a random variable with predictive
distributions and define a piecewise linear loss function that reflects the producer’s
sensitivity to regulation costs, based on imbalance penalties. Two strategies are
proposed: Probabilistic Choice (PC), which minimizes expected regulation costs
using quantiles of the wind generation distribution, and Risk Averse (RA), which
minimizes worst-case losses through numerical optimization. Applied to a 15-MW
wind farm in the Dutch APX market for 2002, PC strategies leveraging annual (PC1)
and quarterly (PC2) cost trends achieved performance ratios of 89.14% and 92.1%,
respectively, compared to 86.99% for point forecasts. The authors conclude that
integrating uncertainty into decision-making significantly enhances forecast value
and reduces regulation costs, and that their flexible approach can adapt to producer

needs, although it relies on estimating cost trends.

Morales et al. (2010) developed a methodology to optimize bidding strategies for
wind power producers across multiple markets, including day-ahead, adjustment,
and balancing markets, using a multistage stochastic programming approach. They
modeled uncertainties in wind availability and market prices using seasonal ARIMA
and autoregressive models, which allowed them to generate simplified scenarios for
better tractability. Their linear programming framework aims to maximize expected
profit while incorporating risk management through conditional value-at-risk
(CVaR), using a weighting factor (B) to balance profit and variability. When applied
to a 100-MW wind farm in the Iberian Peninsula, their method demonstrated that
including the adjustment market resulted in improved outcomes, reducing profit
variability with only a minimal loss in expected profit. They emphasized that the
strategy's success depends on the accuracy of scenario generation. In this thesis, a

similar study is conducted; however, instead of using the ARIMA model, the aLHS
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method is employed to generate different wind speed simulations, and historical
electricity prices from the Turkish Electricity Spot Market are utilized to account for

uncertainties in electricity prices.

Ma et al. (2013) developed a methodology for generating short-term wind power
scenarios to address the uncertainty and variability inherent in wind power forecasts.
They proposed using empirical cumulative distribution functions (ECDFs) derived
from historical forecast data, offering a nonparametric approach that avoids
assumptions of normality. Their approach also incorporated inverse transform
sampling with multivariate normal distributions and an exponential covariance
structure, dynamically estimating the covariance parameter to match historical
fluctuations. Validation with data from the Irish power system demonstrated that
their method effectively captures forecast uncertainty and actual variability,
significantly improving inputs for stochastic power system operations and decision-
making processes. They concluded that accurately modeling wind power
uncertainties enhances operational decisions and system reliability in renewable

energy integration.

Hosseini-Firouz (2013) proposed an optimal offering strategy for wind power
producers in electricity markets, emphasizing risk management. They focused on
addressing the uncertainties associated with wind availability, market prices, and
balancing energy requirements through stochastic programming methods. Their
approach utilized ARIMA techniques to forecast wind speed and electricity market
prices, enhancing prediction accuracy. Furthermore, scenario generation was
conducted by employing probability distribution functions of forecast errors, which
improved the reliability of these scenarios. The method incorporated CVaR to
explicitly manage risk aversion, allowing producers to balance profit maximization
with financial risk mitigation effectively. Numerical studies demonstrated the
effectiveness of this approach in reducing financial risks due to forecasting
inaccuracies and improving profitability. Hosseini-Firouz (2013) highlighted the
advantage of their strategy, particularly in terms of reducing imbalance costs through

optimized risk-aversion levels and improved reserve planning, leading to a
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significant enhancement in the economic outcomes for wind power producers

operating in competitive electricity markets.

The studies mentioned above emphasize the impact of uncertainties in wind power
generation and WHHS operations and underline the importance of understanding
these uncertainties. This study aims to investigate the uncertainty in wind power
using Monte Carlo simulation, and uncertainty in electricity prices through scenario-

based evaluations of historically realized electricity prices for different years.
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CHAPTER 3

METHODOLOGY

This study aims to understand and quantify the effect of uncertainty in wind speed
on the uncertainty in the annual revenue of WHHS calculated through an
optimization model. Figure 3.1 shows the flowchart of the methodology. The two
important inputs of the optimization model are hourly wind speed (used in the
calculation of hourly wind energy) and hourly electricity prices. In this study, hourly
wind speeds for a year are simulated using aLHS. Observed hourly wind speed data
at Niliifer meteorological station (MS18386) between 2014 and 2023 obtained from
the Turkish State Meteorological Service are used as inputs to simulate hourly wind
speed projections for a year. Then, simulated hourly wind speeds are converted to
simulated hourly wind energy and used as input for the optimization model. The
second input, hourly electricity prices are obtained from EPIAS Transparency
Platform (n.d.) between 2012 and 2024. Simulating hourly wind speed time series is
described in Section 3.1. Converting hourly wind speeds to hourly wind energy is
explained in Section 3.2. The optimization model is summarized in Section 3.3.

Finally, the uncertainty analysis is explained in detail in Section 3.4.
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3.1 Hourly Wind Speed Simulation

To understand the effect of uncertainty in wind on the annual revenue of the WHHS,
a set of hourly wind speed time series for a year is generated using aLHS. The
simulated hourly wind speeds are generated using the methodology explained below,
which retains the statistical and temporal characteristics of the observed hourly wind
speeds. This process captures diurnal, monthly, and autocorrelation patterns,
ensuring the simulated hourly wind speeds reflect the dynamics of observed hourly
wind speeds. The algorithm is applied systematically for each month of the year to

account diurnal variability in the related month.

The process begins with the preparation of observed hourly wind speeds obtained
from MS18386 between 2014 and 2023. There are missing values in MS18386’s
observations. Hence, missing values are filled using the means of the corresponding
hour across the same month in the available years. This imputation method preserves
the hourly variability of wind speeds and ensures the dataset is complete for

statistical modeling.

3.1.1 Removing Diurnal Variation from Observed Hourly Wind Speeds by
Standardization for Each Month

Before applying the aLHS simulation procedure, observed hourly wind speed data
needs to be standardized to remove diurnal variations. If these variations are not
removed, the aLHS method fails to simulate the data accurately, and the resulting

simulated values will not reflect the original diurnal characteristics.

An analysis of diurnal variation of hourly wind speeds at MS18386 over the period
from 2014 to 2023, as well as for each month individually, reveals distinct variation
patterns (see Section 4.3.1). Consequently, it was determined to remove the diurnal

variations for each month separately.
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Brown et al. (1984) suggested that diurnal variation in hourly wind speeds should be
removed by subtracting the hourly expected values of the data. To remove diurnal
variation of hourly wind speeds in each month, observed hourly wind speeds for each
month are standardized using Equation (3-1). Hourly statistics, namely mean and
standard deviation, are calculated separately for each hour of the day and each month
to account for diurnal patterns and monthly variability. This standardization ensures
that all subsequent operations are performed on observed hourly wind speeds with

uniform statistical properties.

U t) —
Zyp(t) = e AL (034 Bt (3-1)
,t

where Uy, p(t) is the observed wind speed at hour t in D™ day of month M, Zy, , (t)
is the standardized value of Uy, p(t), pp ¢ is the mean of the observed hourly wind

speeds in month M for the t™®

hour, oy ¢ is the standard deviation of the observed
hourly wind speeds in month M for the t™ hour. Thus, M = January, February,...,
December, D = 1,2, ...,30 (or 31), and t = 1, 2,..., 24. For example, l;anuary,4 1S
the mean of the observed hourly wind speeds at the 4™ hour of each day in all

Januarys during observation period (i.e., in this study from 2014 to 2023).

3.1.2 Autocorrelated Latin Hypercube Sampling (aLHS)

After standardizing the observed hourly wind speeds LHS is used to sample hourly
wind speeds from the empirical cumulative distribution function of the standardized
wind speeds for the corresponding month. Next, the sampled hourly wind speeds are
reordered using the Powell optimization method to align their autocorrelation
structure with that of the observed standardized hourly wind speeds. This procedure
is referred to as aLHS. Finally, the reordered hourly wind speeds are de-standardized
to reintroduce the original diurnal and monthly variations present in the observed

data.
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All standardized hourly wind speeds in the same month of the whole observation
duration are gathered into 12 batches. For example, hourly wind speeds in all
Januarys in the observation period are grouped together into the January batch. The
procedure followed to generate simulated hourly wind speed time series for month
which is carried out using all the data in batch M as summarized in Figure 3.2. The

details of the procedure are explained in the following sections.

This process is repeated for each month of the year, generating monthly simulated
datasets that retain the unique statistical and temporal characteristics of each period.
The monthly datasets are then combined into a single dataset, representing simulated

hourly wind speeds for a year.

Apply LHS to standardized hourly wind
speeds formonth M = 1,2, ...,12

v

alLHS: Reorder sampled hourly wind speeds

of month M by Powell optimization method

v

De-standardize reordered hourly wind speeds

for month M

Figure 3.2 Autocorrelated Latin Hypercube Sampling Steps

aLHS process is repeated 1,000 times, resulting in 1,000 simulated hourly wind
speed time series for a year. This methodology guarantees that the simulated wind
speeds not only represent the statistical distribution of the observed hourly wind
speeds but also capture its temporal dependencies and diurnal variations. This
approach enables the dataset to be suitable for applications requiring accurate
representations of hourly wind speed behavior, particularly for time-sensitive energy

storage and generation scheduling in hybrid systems.
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3.1.2.1 Latin Hypercube Sampling

In the first step of aLHS, LHS is applied to generate N simulated hourly wind speed
time series for month M. For instance, for January, a total number of N (31 X 24 =
744) hourly wind speeds are sampled from the empirical distributions of January’s

standardized hourly wind speeds.

LHS is a stratified sampling scheme used to reduce the number of simulations in

quantifying response uncertainty (Dutta & Gandomi, 2020).

The following steps are used in one dimensional LHS to generate random samples
from standardized hourly wind speeds of month M, Zy, p(t) (Dutta & Gandomi,
2020):

e Sort the Zy, p(t) for all D in ascending order, call it the sample space
e Partition the sample space into N ranges of equal probability =1/N.

e Select one random sample from each N ranges and generate N samples for a

month

After LHS is completed, there are N standardized sampled hourly wind speeds for
month M, but these standardized sampled hourly wind speeds do not have any
correlation between consecutive hours because they are randomly sampled. In order
to capture the autocorrelation structure of the standardized observed hourly wind

speed, they should be reordered, as explained in the following subsection.

3.1.2.2 Reordering Sampled Hourly Wind Speeds

The second step is a semivariogram-matching optimization procedure to align the
semivariogram of sampled hourly wind speeds (SSV) for month M with the reference
semivariogram (RSV) by reordering sampled hourly wind speeds. This is achieved

by reordering the sampled hourly values such that the semivariance of the simulated
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data approximates the semivariance of the observed wind speeds. The optimization
continues until either (i) the change between successive iterations drops below 10¢
or (ii) the algorithm reaches the preset maximum of 1,000,000 iterations. Generation
of the RSV and SSV is explained in the following section. This reordering process
is executed using the optimize.minimize function of the Python Scipy library

(Virtanen et al., 2020), employing the Powell optimization method.

Semivariogram Calculations

To do semivariogram-matching optimization, first, an RSV of the standardized
observed hourly wind speeds of the observation duration to quantify its
autocorrelation at different time lags is generated using Equation (3-2). The
semivariogram captures the variance between pairs of data separated by specific time
intervals and serves as a key metric for modeling temporal dependencies in data. For
the sake of simplicity, the indices in Zy; p (t) is dropped since the RSV is fitted to all

the data in the observation period.

N(h)

1 3-2
T O, B~ 2@ G-

=1

y(h) =

where y(h) is the semivariogram value for lag h, N(h) is the total number of data
governed by the lag h, Z(t;) is the value of the variable Z at time t; and Z(t; + h) is
the value of the variable Z at the time t; + h. When h = ¢;, N(h) = Ny —2 X ¢;
where ¢; = 1, 2,3, ..., k; k is the maximum lag and Ny is the total number of data.

For example, for lag 4, h = 4 and N(4) = Ny —8.

After RSV is generated, SSV of standardized sampled hourly wind speeds for month
M is generated using Equation (3-2). In each iteration of aLHS (M = 1,2, ...,12),
the SSV is generated for the respective month to ensure that the variability in each

month is individually treated. When reordering sampled hourly wind speeds of
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month M, the error between the RSV and the SSV for that month is minimized using

the Powell optimization method.

Powell Optimization Method to Match RSV and SSV

The Powell optimization method minimizes the absolute error between the RSV and
SSV using Equation (3-3), ensuring that the autocorrelation structure is preserved in
the simulated dataset. This step is critical for capturing the temporal dynamics of
wind speed variations over short-term intervals.

mAt

OF = > Iys(h) = ys(h)| (3-3)
h=At

where OF is the objective function value for comparing the semivariograms of the
sampled and the observed data, At is the time lag (one hour), mAt is the maximum
time lag considered, represented as a multiple of At, ys(h) is the empirical
semivariogram value at lag h for the sampled data and yg(h) is empirical

semivariogram value at lag h for the observed data.

Maximum Time Lag (mAt) Selection for the Objective Function

In aLHS, the maximum time lag is a key parameter. During the simulation process,
the goal is to preserve dependency within the maximum time lag, ensuring a realistic
generation of wind speed data by minimizing the total semivariance error for lags up

to the maximum time lag (mAt).

The maximum time lag (mAt) is determined by analyzing the partial-autocorrelation
function (PACF) of the standardized hourly wind speed observations, to identify the
lag at which correlations become small. Autocorrelation analysis is essential for the

time series of wind speeds, as hourly wind speeds are dependent on time, similar to
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most meteorological data. This implies that a value in the time series can affect future

values.

The PACEF is based on the relationship between the current observation and past
observations, removing the effects of the intermediate lags. It is derived from the

Yule-Walker equations (Yule, 1927). The PACF at lag k is the correlation between
the original time series, represented with U; vector and time series lagged k hours,

U;_y vector, adjusted for the linear effects of all the intermediate lags 1,2, ...,k — 1.

For a time series U_{, the PACEF at lag k, denoted as ¢y, is computed as follows:

¢y = corr (ﬁt) - P(_U_t)lUt—p ey Ut—k+1): Utk
(3-4)

— P(Ut—k|Ut—1' ey Ut—k+1))

where P(T]_t)| +) represent the best linear predictor of Z/: based on lag k.

The PACF graph of the standardized hourly wind speed observations is plotted to
examine the structure of temporal dependence. Based on the visual inspection of the

PACEF plot, a maximum time lag mAt is selected at this stage.

In addition to PACF analysis, a sensitivity analysis is performed by generating
simulated hourly wind speed time series using various maximum time lags (1 to 24
hours) to determine the optimal maximum time lag (mAt). For each simulation, the
autocorrelation function (ACF) is calculated and compared with the ACF of the
observed hourly wind speeds. The absolute differences between the observed and
simulated ACFs are plotted across all lags to evaluate how well each simulation
preserves the autocorrelation structure. Based on these visual comparisons, the
maximum time lag that best aligns with the observed ACF pattern is selected as the

optimal mAt.

The ACF of observed and simulated hourly wind speeds for a lag of k is calculated

as follows:
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where p(k) is autocorrelation at lag k, U, is value at time ¢, U is the mean of the time

series, S is the total number of data points, and k is the lag (time shift).

3.1.2.3 De-standardization of Reordered Hourly Wind Speeds

Once the optimization is completed, de-standardization is performed using Equation
(3-6) ensuring the final data reflects the diurnal and seasonal variability of observed

hourly wind speeds.

Ump(t) = Zyp(t) X one + e (3-6)

where Uy p(t) is the simulated wind speed at hour t in D™ day of month M, Zj,; ,,(¢)
is the standardized, sampled and reordered wind speed at hour t in D" day of month

t™ hour,

M, py ¢ 1s the mean of the observed hourly wind speeds in month M for the
o ¢ 1s the standard deviation of the observed hourly wind speeds in month M for the
t™ hour. Thus, M = January, February,..., December, D = 1,2, ..., 30 (or 31), and

t=1,2,.,24

3.2 Calculation of Hourly Wind Energy

In generating simulated hourly wind speeds, station-based observed hourly wind
speeds at 10 meters are used. However, since the wind turbines are located at higher
elevations, the simulated hourly wind speeds have to be extrapolated to the hub
height. This is achieved by the power-law expression in this study. The power law is

defined by the following equation (Manwell et al., 2009):
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where U(e) is hourly wind speed at height e, U(e,) is the reference hourly wind
speed at the reference height e,, a is the power-law exponent. Here, U(e,) is the
simulated hourly wind speeds obtained at 10 meters. The power-law exponent
changes with many parameters, and these parameters affect the power-law exponent
in a complicated manner, so Justus & Mikhail (1976) reduce the simplicity and
applicability of the power-law (Manwell et al., 2009). Therefore, an empirical
expression proposed by Justus & Mikhail (1976) is used in this study:

~0.37 —0.0881n(U(e,))

T T 1 0088m (35) (3-8)

where the unit of U(e,.) is m/s, and the unit of e, is m.

Equation (3-8) is derived from the power law for wind profiles, considering the
consistency between the wind speed height variation and Weibull wind speed
probability distributions. The constants 0.37 and -0.088 used in Equation (3-8) are
specific to a reference height of 10 meters (Justus & Mikhail, 1976). It can be seen
from Equation (3-8) that o is a function of the hourly wind speed at the reference

height.

Once the simulated hourly wind speeds are adjusted to hub height, they can be used
for wind energy calculations. The power generated by a wind turbine varies with
wind speed, and each turbine has a unique power curve based on its technical
specifications. Using this power curve allows for the assessment of a wind turbine's
energy production without the need for detailed technical calculations for each
component. In this study, the power curve of the selected General Electric (GE) 2.5
MW wind turbine is sourced from the catalog of wind turbine manufacturers and is
employed to calculate wind energy (GE, 2010). Wind energy is determined by

multiplying power output by the time interval. The calculated wind energy is
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integrated into the optimization model, which seeks to identify the optimal daily

operation schedule for the WHHS.

33 Daily Revenue Optimization Model

In this study, the daily revenue optimization model used in Ercan (2020) is used. The
original optimization model was developed by Cruz et al. (2014) to maximize the
daily revenue of the WHHS while operating as a closed-loop system (i.e., all external
inflows and outflows to the reservoirs are excluded). Then, it was modified by Ercan
(2020), and these modifications are mentioned in Appendix A. The mathematical
formulation of the optimization model and associated explanations are given in

Appendix A.

The optimization model has eight parameters (Ercan, 2020), which are the maximum
energy that can be generated by wind turbines in an hour, the maximum energy that
can be generated by the hydro turbine in an hour, the maximum energy that can be
bought from the grid in an hour, the maximum energy that can be consumed by the
pump in an hour, the minimum energy level in the upper reservoir, the maximum
energy level that can be stored in the upper reservoir, the efficiency for the turbine
mode and the efficiency for the pump mode (Ercan, 2020). Details of parameters of

the daily revenue optimization model are given in Appendix B.

The inputs for the daily revenue optimization model are hourly wind energy
generation and hourly electricity price. The optimization model operates on a daily
basis, meaning that for each day, it optimizes revenue using hourly wind energy
values from 00:00 to 23:00 and the corresponding hourly electricity prices for the
same period. Since the optimization model operates on a daily basis, it runs
separately for each of the 365 days in a year to determine the optimal revenue for
each day. The final annual revenue is obtained by aggregating the results of these

365 daily optimizations. This means that while the optimization model runs for 365
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days, it retrieves the required data for each day from the available hourly wind energy

and hourly electricity price data for the entire year.

Ercan (2020) estimated hourly electricity prices using an LSTM model and used
hourly wind speed data from the NASA MERRA-2 database and did not include
uncertainties in wind speed into his study. Here, since the main goal is to analyze the
effect of uncertainties in wind speed on annual energy revenue of the WHHS, 1,000

simulated hourly wind speed series for a year are used.

In this study, the optimization model takes hourly wind energy and day-ahead market
electricity prices as input variables. Hourly wind energy is derived from simulated
hourly wind speeds, which are generated using the aLHS method. Hourly electricity
prices of 13 years from 2012 to 2024 are obtained from the EPIAS Transparency
Platform (n.d.) and are used directly as inputs for the daily revenue optimization

model.

34 Uncertainty Analysis

Uncertainty in annual revenue is primarily due to uncertainties in hourly electricity
prices and uncertainties in hourly wind speeds. In this study, the effect of electricity
price uncertainty on the annual revenue is incorporated into the analysis through a
scenario-based approach. Each scenario consists of the realized hourly electricity
prices (historic and realized are used interchangeably in this study) of the scenario
year which are directly obtained from EPIAS Transparency Platform (n.d.). In this
study, thirteen different scenarios are used to represent electricity prices for each
year from 2012 to 2024. On the other hand, uncertainties in wind speed are integrated
into the analysis through a Monte Carlo simulation based on aLHS approach.
Consequently, the optimization model is run for each of the 1,000 simulated hourly
wind speed time series and for each scenario. This approach allows for a
comprehensive analysis of the system's performance under various simulated

scenarios, capturing the variability in wind speed and electricity prices.
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To model the uncertainty in wind speed, hourly wind speed data from 2014 to 2023,
obtained from the Turkish State Meteorological Service, are used as the basis for
generating simulated wind speeds. aLHS method is applied to capture the statistical
properties and temporal dependencies (autocorrelations) of the observed wind

speeds, and 1,000 simulated hourly wind speed series for a year are generated.

In this study, the daily revenue optimization model aims to maximize the operating
revenue by utilizing hourly electricity prices and simulated hourly wind speed data
for each day of a year. For every day, the model determines the optimal operational
strategy based on 24-hour data, and the daily revenues are subsequently aggregated

to compute the annual optimized revenue.

The model assesses the impact of variations in electricity prices on system
performance by employing realized electricity prices for each scenario from 2012 to
2024. For each scenario, the same set of 1,000 simulated hourly wind speed series is
used as input. This approach facilitates a detailed examination of how fluctuations
in electricity price conditions affect the revenue performance of the system, enabling

comprehensive analyses based on the results obtained.

Furthermore, two wind farms with different installed capacities, one being
significantly larger than the other, are evaluated in order to quantify the effect of
capacity expansion. This methodology elucidates how the outcomes derived from
both electricity price scenarios and wind speed simulations vary with different

capacity setups, thereby making a significant contribution to literature.

Consequently, within the framework of uncertainty analysis, a total of 26,000
optimized annual WHHS revenue outcomes are obtained by considering 13 different
scenarios (i.e., realized electricity prices in years from 2012 to 2024), 1,000
simulated hourly wind speed series per year, and 2 different wind farm installed
capacities (i.e., 13 x 1,000 x 2 = 26,000). This approach provides a deeper
understanding of how variability in wind conditions and electricity prices affects the
operational strategies and financial performance of the hybrid system, thereby

enhancing decision-making under uncertainty.
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CHAPTER 4

CASE STUDY AND DATA

A hypothetical WHHS is used as a case study to demonstrate the application of the
models developed in this study. The hypothetical WHHS is a wind farm integrated
with the existing Uluabat Hydropower Plant, which operates as a closed-loop system.
The main goal of this study is to analyze the impact of wind speed uncertainty on
energy revenue by simulating hourly wind speeds and incorporating them into an
optimization model. Using the simulated hourly wind speeds and historic hourly
electricity prices from EPIAS for the years 2012 to 2024 (referred to as the scenario
years), the optimization model generates an optimum daily schedule for the WHHS

to maximize daily revenue for each day of the scenario year.

In this chapter, the details of the case study site (Section 4.1) and the data that serve
as inputs for the models are explained. Hourly wind speed data source selection is
explained in Section 4.2. Observed hourly wind speeds at MS18386 are analyzed in
Section 4.3. Calculation of hourly wind energy from simulated hourly wind speeds
is explained in Section 4.4. Finaly, Historic hourly electricity prices are described

and analyzed in Section 4.5.

4.1 Location of the WHHS

The Uluabat Hydropower Plant, with its 100 MW installed capacity, is located in the
Susurluk Basin on the Orhaneli River in the Marmara Region of Turkey. Water from
the Cinarcik Dam reservoir is released to Lake Uluabat to generate electricity. In this
study, a hypothetical scenario is considered. The Cinarcik Dam and Lake Uluabat
are conceptualized as the upper and lower reservoirs of a pumped storage
hydropower plant, respectively. Additionally, it is assumed that wind turbines are

located near the hydropower plant site, owned and operated by the same company.
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The pumped storage hydropower plant and the wind turbines collectively represent
the hypothetical WHHS. Although the Cinarcik Dam and Uluabat Hydropower Plant
are located on ariver, it is assumed that the hypothetical WHHS operates as a closed-
loop system. This means that all natural inflows and outflows to and from the
Cinarcik Dam are neglected. The location of the Uluabat Hydropower Plant is shown

in Figure 4.1.
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Figure 4.1 Location of the Case Study Site
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4.2 Selection of Hourly Wind Speed Data Source

This study is based on a hypothetical scenario, as there is no existing wind farm in
the study area. However, the goal is to analyze how the operation of a hydroelectric
power plant changes with the addition of a wind farm, particularly considering the
uncertainty in hourly wind speeds. To achieve this, a hypothetical wind farm is

assumed and placed close to the hydroelectric power plant at a reasonable location.

There is not any meteorological station at or in the close vicinity of the hydroelectric
power plant, meaning that no direct wind speed measurements are available for this
specific location. However, global meteorological models provide hourly wind speed
data for specific locations at various spatial resolutions. One of the most widely used
datasets is ERAS, the fifth-generation reanalysis dataset from the European Centre
for Medium-Range Weather Forecasts (ECMWF). ERAS provides global climate
and weather data spanning the past eight decades, with records available from 1940
onward. It replaces the previous ER A-Interim reanalysis and offers improved spatial

and temporal resolution.

Among reanalysis datasets, ERAS5 demonstrates strong performance compared to
others, as shown by Olauson (2018). This study highlights that ERAS outperforms
datasets like MERRA-2 in wind energy modeling, though its performance varies
depending on the region. Thus, first the performance of ERAS5 data in this region is
evaluated through comparison of hourly wind speeds from ERAS with observed

hourly wind speeds from three nearby meteorological stations. The results given in

Table 4.1 indicate that ERAS data aligns well with MS17673, showing a relatively
high correlation (0.79) and a positive Nash-Sutcliffe Efficiency (0.52), suggesting
reasonable agreement with observed data. However, for MS17675 and MS18386,
the correlations are lower (0.58 and 0.62, respectively), and the NSE values are
negative (-1.38 and -0.18, respectively), indicating poor performance. In addition,

ERAS underestimates wind speed at all stations, as shown by the negative PBIAS
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values. These findings suggest that the ERAS model’s performance is poor in this

region, likely due to local geographical and meteorological influences.

The results show that ERAS model performance varies across stations and is
particularly poor for MS17675 and MS18386. Therefore, using ERAS reanalysis
data in this region is not reliable for this study. As a result, the wind farm is assumed
to be located near the closest meteorological station (MS18386), with available
hourly wind speed measurements. Thus, observed hourly wind speeds from

MS18386 are used in this study.

Table 4.1 Comparison of ERAS5 Hourly Wind Speeds with Three Nearby
Meteorological Stations' Observed Hourly Wind Speeds

Correlation RMSE PBIAS NSE
MS17673 0.79 1.45 -28.27 0.52
MS17675 0.58 1.89 -60.24 -1.38
MS18386 0.62 1.93 -40.83 -0.18

4.3 Analysis of the MS18386 Hourly Wind Speeds

The observed hourly wind speeds at MS18386 are obtained from the Turkish State
Meteorological Service for the years between 2014 and 2023. Within the simulation
duration (i.e., 2014-2023) there are 83521 hours with data and 4127 missing hours
of wind speed data (see Table 4.2). It is observed that missing values mostly result
from short-term measurement gaps (e.g., 2, 3, or 4 hours). However, in the measured
data between 2014 and 2023, there are two instances of long-term measurement
gaps: the first between June 5, 2018, and August 1, 2018, resulting in a 57-day
missing period, and the second between April 28, 2023, and June 22, 2023, lasting
55 days. Due to the presence of missing data, which hindered the correlation
analyses, and considering that the amount of missing data is small relative to the
overall dataset, it is decided to impute these missing values as explained in Section

3.1. While filling the missing values in the wind speed dataset, the time of day and
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month is taken into account. For each missing value, the average wind speed for the
same hour of the same month is calculated and used as a replacement. The dataset is
grouped by month and hour, and the mean wind speed for each group is determined.
Missing values are then substituted with the appropriate group means. Using this
approach, the dataset is preprocessed while preserving its daily and seasonal patterns,
making it more reliable for future analysis and simulations. The integrity of the data

is maintained throughout this process.

Table 4.2 Periods of Received Record and Numbers of Observations at MS18386

N f
SMS Station SMS Station Received Period umber' ©
Observations
Name Number of Record - —
Valid Missing
Nilafer MS18386 2014-2023 83521 4127

4.3.1 Stationarity Analysis of MS18386 Hourly Wind Speeds

The stationarity of hourly observed wind speed is evaluated using an R script that
applies the Augmented Dickey-Fuller (ADF) test introduced by Dickey & Fuller
(1979) across various frequencies (daily, weekly, monthly, yearly), lags (0, 1, 2, 3,
4, 5 and 6 hours), and test types. Four test types are utilized: one assuming
stationarity, and three others with distinct model specifications—no constant,
constant only, and constant with trend. The first type tests for stationarity directly,
while the second excludes a constant term, the third includes a constant to account
for a mean level, and the fourth incorporates both a constant and a trend to capture
potential linear growth. R script stationarity test is provided in Appendix C. The
results across all lags, frequencies (daily, weekly, monthly, yearly), and test types
consistently confirm stationarity. The results of the stationary test are provided in

Appendix D.
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4.3.2 Diurnal Variation and Seasonality Analysis of MS18386 Hourly
Wind Speeds

This study utilizes hourly wind speeds at station MS18386 from 2014 to 2023. Figure
4.2 displays the diurnal variation of hourly wind speeds from January 2014 to
December 2023 observed at MS18386. As seen in Figure 4.2, there are fluctuations
in the expected values of the observed hourly wind speeds. This phenomenon is

known as diurnal variation.
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Figure 4.2 Diurnal Variation of Hourly Wind Speeds at MS18386 from 2014 to 2023

Diurnal variation of hourly wind speeds observed in each month at MS18386
between 2014 and 2023 is investigated as well. Diurnal variation of hourly wind
speeds at MS18386 for each of the twelve months from 2014 to 2023 is given in
Figures 4.3 to 4.14. An examination of Figure 4.3 through Figure 4.14 reveals that
diurnal variation exhibits distinct characteristics across different months, providing

compelling evidence of seasonality within the data.
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Figure 4.4 Diurnal Variation of Hourly Wind Speeds at MS18386 for all February

Months from 2014 to 2023
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Figure 4.5 Diurnal Variation of Hourly Wind Speeds at MS18386 for all March
Months from 2014 to 2023
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Figure 4.6 Diurnal Variation of Hourly Wind Speeds at MS18386 for all April
Months from 2014 to 2023
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Figure 4.7 Diurnal Variation of Hourly Wind Speeds at MS18386 for all May
Months from 2014 to 2023
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Figure 4.8 Diurnal Variation of Hourly Wind Speeds at MS18386 for all June
Months from 2014 to 2023
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Figure 4.9 Diurnal Variation of Hourly Wind Speeds at MS18386 for all July Months
from 2014 to 2023
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Figure 4.10 Diurnal Variation of Hourly Wind Speeds at MS18386 for all August
Months from 2014 to 2023
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Figure 4.11 Diurnal Variation of Hourly Wind Speeds at MS 18386 for all September
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Figure 4.12 Diurnal Variation of Hourly Wind Speeds at MS18386 for all October
Months from 2014 to 2023
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Figure 4.13 Diurnal Variation of Hourly Wind Speeds at MS18386 for all November
Months from 2014 to 2023
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Figure 4.14 Diurnal Variation of Hourly Wind Speeds at MS18386 for all December
Months from 2014 to 2023
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Monthly average wind speeds are calculated using observed hourly wind speeds at
station MS18386 from 2014 to 2023 and are shown in Figure 4.15. As indicated by
these averages, there are noticeable differences between the monthly averages, some
months demonstrating higher similarity. For example, October, November and
December have similar values, as do April and May, while January, February and
March also show comparable averages. However, these patterns do not align with
the typical seasonal cycles of winter, spring, or summer, as the groupings do not
follow the traditional seasonal months. Given these variations, it is not appropriate
to divide the data into three-month periods based on conventional seasons. To
effectively treat seasonality and ensure a more accurate analysis, we decided to
remove diurnal variations for each month separately. This approach takes into

account the distinct characteristics of each month, leading to more reliable results.
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Figure 4.15 Monthly Average MS18386 Wind Speeds between 2014 and 2023

Another approach to analyze seasonal variations is the use of monthly cumulative
distribution functions (CDFs) which will help identifying periods of stable or highly
variable wind conditions. The shape and steepness of the CDF curves reveal

important characteristics such as the consistency of wind speeds and the presence of
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extreme values, which impact the efficiency and reliability of wind-based

applications. CDFs of hourly wind speeds for each month are given in Figure 4.16.

As shown in Figure 4.16, the CDFs display distinct patterns, reflecting seasonal
differences in wind behavior. The positioning and shape of the curves indicate that
some months experience higher or lower wind speeds more frequently than others.
June and August have CDFs that are positioned further to the right, indicating that
wind speeds are generally higher during these months. In contrast, months such as
October, November, and December have CDFs positioned further to the left and
increase more gradually, suggesting that wind speeds are lower on average. The
differences in the slopes of the curves further emphasize the distribution of wind
speeds, with some months having more concentrated wind speed values while others
exhibit a wider range. These results provide essential insights into seasonal wind

speed behavior.

Based on the previous analysis, diurnal variations are removed by subtracting the
hourly expected values of data for each month separately, as explained in Section
3.1.1. CDFs of hourly wind speeds for each month after standardization (removal of

diurnal variation) are given in Figure 4.17.

As can be seen from Figure 4.17, although these CDFs are in better agreement with
each other than those of non-standardized wind speeds but they do not exactly align.
Thus, examination of the CDFs indicates that sampling hourly wind speed data in
monthly blocks is preferable to better represent monthly variations. For this reason,
LHS is applied for each month to generate a simulated hourly wind speed time series
for that month, then they are combined to obtain a simulated hourly wind speed time

series for a year.
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4.4 Wind Turbine Used in the Hypothetical WHSS

Wind energy is one of two inputs for the daily revenue optimization model. Hourly
wind speeds are simulated using aLHS for a year, and they need to be converted to
hourly wind energy to be used as the input of the optimization model. Thus, first,
hourly wind speeds are simulated based on the historical data observed in MS18386
meteorological station between the years 2014 and 2023. MS18386 station records

wind speeds at 10 m above ground.

This study assumes a hypothetical WHSS. The wind turbines used in the WHSS are
assumed to be 2.5 MW wind turbines manufactured by General Electric. This wind
turbine has 85 meters hub height, 3 m/s cut-in speed and 25 m/s cut-out speeds (GE,
2010). Thus, simulated wind speeds are extrapolated to the 85 m hub height from the
10 m observation height using Equation (3-7). Then, to convert simulated hourly
wind energy at 85 m hub height to hourly wind energy power curve of the wind
turbine acquired from General Electric (2010) is used. The power curve of the 2.5

MW wind turbine is given in Figure 4.18.
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Figure 4.18 GE 2.5 MW Wind Turbine Power Curve (GE, 2010)

56



Since manually reading wind energy values corresponding to each of the 1,000
simulated hourly wind speeds for a year from the graph is time-consuming, a
polynomial function fitted to the power curve presented in Figure 4.18 by Ercan
(2020) is used. This function is given in Equation (4.1).

0 x<3

0.001x3 + 0.025x% — 0.182x + 0.291 3 < x < 8.859

fx) = 0.003x3 — 0.168x2 + 2.83x — 12.511 8859 < x < 12.791 (4.1)
2.5 x > 12.791

0 x > 25

\

4.5  Analysis of the Hourly Electricity Price Data

Hourly electricity prices for the years 2012 to 2024 are obtained from the EPIAS
Transparency Platform (n.d.). These realized electricity prices are used to generate
scenarios for the years 2012 to 2024 to assess the impact of electricity price
uncertainty on WHHS operations. Diurnal variation in hourly electricity prices for
each year from 2012 to 2024 are given in Figure 4.19 to Figure 4.31. Each year's
behavior is examined to better understand the data used. In 2012, electricity prices
were highly volatile with sharp spikes between 10:00 and 19:00, and extreme outliers
indicated serious imbalances. The year 2013 showed improved stability, with fewer
outliers and a more controlled diurnal pattern, while 2014 maintained this structure
with a clear increase in prices during the day and a decrease at night, though still
with some spread in midday hours. In 2015, the diurnal trend became more distinct,
but price volatility increased. The volatility peaked in 2016 with high price spikes
between 10:00 and 17:00, reflecting an unstable marked. In contrast, 2017 marked a
period of stability with tighter distributions and fewer outliers, and this stability

continued into 2018 and 2019, where the diurnal shape of the prices became well-
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defined and consistent. Starting in 2020, prices began to rise moderately, and though
the diurnal pattern remained, volatility increased, especially in peak hours. In 2021,
price levels rose significantly across all hours, and the difference between night and
day prices flattened, accompanied by greater uncertainty and price variability. The
year 2022 experienced a dramatic price surge, with medians exceeding 2000
TL/MWh and many hours hitting the price cap of 5000 TL/MWh. This trend of
extremely high prices continued into 2023, although a slight re-emergence of the
diurnal pattern was observed. In 2024, despite the continued high price environment,
the hourly structure of the market became more organized again, with daytime prices
increasing and nighttime prices decreasing, and fewer extreme outliers than previous

years.

To summarize, between 2012 and 2016, the Turkish electricity market experienced
significant volatility and instability, with frequent price spikes and irregular diurnal
trends. From 2017 to 2019, the system became more stable and predictable, with
clear daily cycles and fewer extreme fluctuations. However, starting in 2020, prices
began to rise, and by 2022, the market faced a severe shock. While 2023 and 2024
saw continued high prices, the hourly structure of the market started to normalize
again. Thus, the scenario years used in this study demonstrate a wide range of hourly
electricity price variations which will allow detailed analysis of the effect of variation

in electricity prices on energy revenue variation in addition to wind speed variation.
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Figure 4.19 Diurnal Variation of Hourly Electricity Prices in 2012

Electricity Price (TL/MWh)

600 -

500 A

400 +

300 A

200 A

100 A

oomt—-m—|

[eo]

ik

e

:

-

N Ry

w

U4 o

o - o

-

i1

T T T T T
9 10 11 12 13 14

-4 owm

Hours of the Day

T T T T T T T
15 16 17 18 19 20 21 22 23
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Figure 4.21 Diurnal Variation of Hourly Electricity Prices in 2014
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Figure 4.22 Diurnal Variation of Hourly Electricity Prices in 2015
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Figure 4.23 Diurnal Variation of Hourly Electricity Prices in 2016
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Figure 4.24 Diurnal Variation of Hourly Electricity Prices in 2017
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Figure 4.25 Diurnal Variation of Hourly Electricity Prices in 2018
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Figure 4.26 Diurnal Variation of Hourly Electricity Prices in 2019
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Figure 4.27 Diurnal Variation of Hourly Electricity Prices in 2020
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Figure 4.28 Diurnal Variation of Hourly Electricity Prices in 2021
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Figure 4.29 Diurnal Variation of Hourly Electricity Prices in 2022
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Figure 4.30 Diurnal Variation of Hourly Electricity Prices in 2023
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Figure 4.31 Diurnal Variation of Hourly Electricity Prices in 2024

To gain a clearer view of how electricity prices have changed over time, the monthly
average values in TL, USD and EUR are computed and illustrated in Figure 4.32.
From 2012 to around mid-2021, the electricity prices in TL remained relatively
stable, fluctuating between approximately 100 and 400 TL/MWh. During this same
period, the prices in USD and EUR also showed minor variation, remaining almost
flat and close to each other. Starting in late 2021, a sharp and sustained increase in
TL-based prices is observed, peaking in late 2022 to early 2023, where monthly
average prices exceeded 3500 TL/MWh. While TL prices surged drastically, the
corresponding USD and EUR prices rose only modestly, which confirms that much
of the increase in TL terms was driven by currency devaluation rather than just real
energy cost hikes. After reaching the peak, TL-based prices began to decrease but
remained significantly elevated compared to the pre-2021 period, stabilizing around
2000-2500 TL/MWh in 2023 and 2024. Meanwhile, prices in USD and EUR
declined and flattened again, returning closer to pre-crisis levels. Thus, it is decided
to carry out the energy revenue calculations in EUR rather than TL, to reflect

variations in energy costs rather than currency devaluation.
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CHAPTERS

RESULTS AND DISCUSSIONS

In this chapter, the results of hourly wind speed simulation, the optimization model,
and uncertainty analysis are presented and discussed. After developing an hourly
wind speed simulation method that best represents the original hourly wind speed
and obtaining the simulated hourly wind speeds for a year, they are used in the
optimization model to evaluate the effect of uncertainty in wind speed and electricity
prices on the uncertainty in energy revenue. Effect of uncertainties in hourly wind
speeds on energy revenue is quantified through generation of 1,000 hourly wind
speed time series using the LHS procedure, while uncertainties in hourly electricity
prices are analyzed through a scenario-based approach. Energy revenues are

obtained for 13 scenario years, from 2012 to 2024.

5.1 Hourly Wind Speed Simulations

Initially, the need for normalization of observed hourly wind speeds is investigated.
In Monte Carlo or LHS simulations, normalization is not necessary since data can be
sampled from any distribution (Minasny & McBratney, 2006) while for
autoregressive models, data has to be normalized (Poggi et al., 2003). In this study,
the decision to normalize or not normalize the observed hourly wind speeds is made
by conducting simulations with both approaches and comparing their performances.
As seen in Figure 5.1, simulations performed with and without normalization with a
maximum time lag of 5 hours generated very similar results. Thus, it is found

unnecessary to carry out normalization in this study.
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5.1.1 Selection of the Maximum Time Lag

The maximum time lag is a key parameter in the hourly wind speed simulation
process. The objective function used in minimizing the difference between the
semivariograms of the sampled and the observed data (see Equation (3.3)) requires
a maximum time lag, which is determined using two approaches in this study. First,
the partial autocorrelation function, PACF of standardized observed hourly wind
speed is examined to determine the time lag at which the autocorrelation becomes
insignificant. Secondly, the aLHS-based hourly wind speed simulation is run with
different maximum time lags (e.g., 1, 2, 3, ..., 24 hours), and the ACFs of simulated
hourly wind speeds for each maximum time lag are compared with the ACF of

observed hourly wind speeds. The results are presented in the following subsections.
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5.1.1.1 PACF Analyses for Maximum Time Lag Selection

To select the maximum time lag to be used in the optimization step of aLHS, PACF
analysis is conducted. In order to examine the partial autocorrelation behavior of
observed hourly wind speeds without diurnal effect, hourly wind speed data is
standardized using Equation (3.1). This preprocessing step is crucial for analyzing

temporal dependencies, without the interference of repetitive daily patterns.

The maximum time lag for the optimization step of aLHS is determined by analyzing
the PACF of standardized hourly wind speed observations, as shown in Figure 5.2.
It shows higher than 0.8 partial autocorrelation at 1-hour lag, indicating a strong
correlation between wind speeds one hour apart. This suggests short-term persistence
in wind speed. Partial autocorrelations decay with increasing lag and around 6-hours

it diminishes. At this point the maximum time lag is selected as 5 hours.
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Figure 5.2 PACF of Standardized Hourly Wind Speed at MS18386 between 2014
and 2023
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5.1.1.2 Sensitivity Analysis for Maximum Time Lag Selection

Hourly wind speed simulations are conducted using different maximum time lag
values, and ACF is computed for each simulated dataset. Then, to compare ACF of
observed hourly wind speeds with ACF of simulated hourly wind speeds with
different maximum lag time, the absolute errors between them are calculated and
plotted in Figure 5.3 to Figure 5.7. The y-axis in Figure 5.3 to Figure 5.7 (ACF
Observed - ACF Simulated) represents the absolute difference between the observed
hourly wind speed ACF and the simulated hourly wind speed ACF for different
maximum time lags. Higher values indicate a greater discrepancy between the
simulated and observed ACF, while lower values signify a better alignment. As the
difference between the ACF of observed values and simulated values approach zero,
the simulation more accurately captures the autocorrelation structure of the observed
wind speed data. Large fluctuations and consistently high differences suggest
simulation struggles to replicate the observed data. The ACF errors are visualized to
analyze the impact of different maximum lag times on temporal dependence. This
analysis is done to identify the most suitable maximum time lag value that produces

results closest to the observed hourly wind speed autocorrelation values.

Analysis Figure 5.3 to Figure 5.7 reveals that when the maximum time lag is between
1 and 6 hours, the ACF differences are slightly higher in the first few hours.
However, as time progresses, the simulated ACF values gradually converge toward
the observed hourly wind speed ACF. Among these, a maximum time lag of 5 hours
yields the best results, as it demonstrates the lowest error at initial lag hours and the
most stable alignment with the observed ACF for late time lags. In contrast, when
the maximum time lag ranges from 7 to 24 hours, the simulated ACF values become
increasingly irregular and oscillatory. These fluctuations suggest that the simulations
struggle to capture the observed ACF structure effectively, particularly for longer
time lags. The deviation is especially pronounced beyond 15 hours, where the
simulated ACF significantly diverges from the observed ACF, failing to preserve its

temporal correlation.
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Figure 5.3 The error between ACF of Observed and Simulated Hourly Wind Speeds

with maximum time lags of 1, 2, 3, 4, and 5 hours
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Figure 5.4 The error between ACF of Observed and Simulated Hourly Wind Speeds

with maximum time lags of 5, 6, 7, 8, 9, and 10 hours
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Figure 5.5 The error between ACF of Observed and Simulated Hourly Wind Speeds
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Figure 5.7 The error between ACF of Observed and Simulated Hourly Wind Speeds
with maximum time lags of 20, 21, 22, 23, and 24 hours

Figure 5.3 and Figure 5.4 show that the autocorrelation values of the simulated
hourly wind speeds which have a maximum time lag between 1 hour to 6 hours
closely match the autocorrelation values of the observed hourly wind speeds,
especially in the early lags. To facilitate a more precise comparison between the
observed and simulated ACF values in the early lags, Table 5.1 presents the ACF
values of simulated hourly wind speeds generated with maximum time lags of 1, 2,
3, 4, 5, and 6 hours, alongside the observed data’s ACF values. ACF values are
shown for the first 24 hours lag since after 24 hours lag all simulated hourly wind
speeds (maximum time lags of 1, 2, 3, 4, 5, and 6 hours) ACF get close to each other

as can be seen from Figure 5.3 and Figure 5.4.
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Table 5.1 ACF of Simulated Hourly Wind Speeds for Maximum Time Lags up to 6

Hours
Max. Time
MS18386
Lag (Hours) | 2 3 4 5 6 Hourly Wind
ACF Speeds
Lag (Hours) pee
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 0.76 0.77 0.78 0.79 0.79 0.78 0.88
2 0.45 0.55 0.59 0.62 0.62 0.61 0.77
3 0.20 0.27 0.39 0.45 0.48 0.47 0.65
4 0.02 0.06 0.14 0.27 0.34 0.34 0.53
5 -0.07 | -0.11 | -0.04 0.03 0.16 0.21 0.41
6 -0.10 | -0.19 | -0.19 | -0.13 | -0.07 0.05 0.30
7 -0.12 | -0.23 | -0.29 | -0.25 | -0.21 -0.18 0.20
8 -0.15 | -0.23 | -0.34 | -0.35 | -0.30 | -0.29 0.11
9 -0.19 | -0.22 | -0.34 | -0.42 | -0.38 | -0.36 0.04
10 -0.23 | -0.21 -0.32 | -042 | -0.44 | -0.40 -0.01
11 -0.26 | -0.21 | -0.29 | -0.40 | -0.48 | -0.43 -0.05
12 -0.28 | -0.21 | -0.25 | -0.37 | -0.45 | -0.46 -0.07
13 -0.27 | -0.21 | -0.22 | -0.32 | -0.40 | -0.46 -0.07
14 -0.24 | -0.20 | -0.18 | -0.25 | -0.35 | -0.40 -0.05
15 -0.19 | -0.18 | -0.15 | -0.18 | -0.28 | -0.31 -0.02
16 -0.14 | -0.13 | -0.11 | -0.11 | -0.18 | -0.22 0.03
17 -0.08 | -0.07 | -0.06 | -0.02 | -0.06 | -0.13 0.10
18 0.00 0.01 0.01 0.06 0.05 -0.03 0.18
19 0.08 0.09 0.09 0.15 0.15 0.09 0.27
20 0.17 0.17 0.17 0.23 0.25 0.22 0.36
21 0.26 0.24 0.25 0.31 0.35 0.33 0.44
22 0.33 0.31 0.32 0.36 0.42 0.40 0.51
23 0.38 0.35 0.36 0.39 0.45 0.44 0.56
24 0.40 0.37 0.38 0.39 0.45 0.45 0.57

Based on Table 4.1, during the initial hours, the simulated hourly wind speeds using
a maximum time lag of 5 hours yield the most accurate results, closely matching the
observed hourly wind speeds. According to the findings from the sensitivity analysis,
setting the maximum time lag to 5 hours appears to be the most effective approach

for achieving an accurate representation of the observed wind speed ACF.

As aresult of the analyses conducted above, the most suitable maximum time lag for
this study has been determined as 5-hours. Hence, a maximum time lag of 5 hours is
used in the optimization step of aLHS. From here on the simulated hourly wind speed
generated using a 5-hour maximum time lag will be referred to as the simulated

hourly wind speeds.
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5.1.2 Autocorrelated Latin Hypercube Sampling (aLHS)

After determining the maximum lag time as 5 hours, the aLHS procedure is carried
out. Then to preserve the autocorrelation structure, a reordering process is applied to
the sampled data using the Powell optimization method where the semivariogram of
the reordered data is matched to that of the observed data, by minimizing the total
semivariance error across lags of 1 to 5 hours which is the maximum lag time.
Although a maximum of 1,000,000 iterations is allowed, convergence is typically
achieved within 20 to 40 iterations in this study. After the de-standardization step

simulated hourly wind speed time series for a year is obtained.

513 Hourly Wind Speed Simulation Results

Using the methodology outlined in Section 3.1, 1,000 simulated hourly wind speeds
for a year are generated. To evaluate the effectiveness of this approach, the statistical
properties of these simulated wind speeds are compared with those observed hourly
wind speeds recorded between 2014 and 2023. The following paragraphs present a
detailed comparison of their statistical characteristics, highlighting the performance

of the simulation methodology.

In Figure 5.8, the diurnal variation of the observed hourly wind speeds from 2014 to
2023 and the simulated hourly wind speeds are presented. The observed dataset
consists of 83,521 hourly wind speed data (10x365%24-missing data). On the other
hand, simulated data includes 1,000 separate one-year-long hourly wind speed series,
resulting in a total of approximately 8,760,000 simulated hourly wind speed data
(1,000%365%24). In Figure 5.9, out of 83,521 observed wind speed data points,
80,389 (96.25%) falls within the whisker range of the boxplot, while 3,132 values
(3.75%) are considered outliers. Similarly, in the simulated dataset containing
8,760,000 values, 8,454,470 (96.51%) are within the whiskers, and 305,530 (3.49%)

are outliers.
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As can be seen from Figure 5.8, both datasets exhibit a clear diurnal pattern, with
wind speeds increasing during the afternoon hours (approximately between 13:00
and 17:00). The median values and interquartile ranges of the simulated data are
similar to those of the observed data, indicating that the simulation method
effectively captures both the central tendency and variability. While the proportion
of outliers in both datasets is approximately the same (3.75% for observed and 3.49%
for simulated), the outlier values in the simulated dataset tend to be higher than those
in the observed dataset. This is due to the sampling of extreme events with longer
return periods, which are rarely or not observed in the historical dataset, but are

sampled during 1,000 simulation cycles.
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Figure 5.8 Diurnal Variation of Observed and Simulated Hourly Wind Speeds

In Figure 5.9, diurnal variation of standardized observed and simulated hourly wind
speeds are presented. The standardized observed and standardized simulated hourly
wind speeds do not exhibit a diurnal pattern, as the standardization removes the
diurnal behavior. The distributions of both datasets appear centered around zero with
similar interquartile ranges, indicating that the simulation method preserves the
relative variability in wind speed. In Figure 5.10, 80,180 out of 83,521 observed
values (95.98%) fall within the whisker range, leaving 3,341 values (4.02%) as
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outliers. In the simulated dataset, 8,437,765 out of 8,760,000 values (96.32%) lie
within the whiskers, with 322,235 (3.68%) classified as outliers.
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Figure 5.9 Diurnal Variation of Standardized Observed and Standardized Simulated

Hourly Wind Speeds

Figure 5.10 compares the monthly distribution of observed (blue) and simulated
(orange) hourly wind speeds. Overall, the simulated data successfully reproduces the
seasonal trend observed in the historical dataset. The median values of the simulated
wind speeds are generally close to those of the observed data, although some
deviations are present—particularly in July and August, where the simulated
medians are higher, and in November, where they are slightly lower. The observed
data tends to show wider whisker ranges, indicating greater variability within the
central distribution. Notably, although the proportion of outliers in both datasets
(%2.70 for observed and % 3.06 for simulated) are similar, the outlier values in the
simulated dataset are typically higher than those in the observed dataset. This may
again be due to the sampling of extreme events with longer return periods, which are
not or rarely observed in the historical dataset, but are sampled during 1,000

simulation cycles.
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Figure 5.10 Monthly Variation of Observed and Simulated Hourly Wind Speeds

In Figure 5.11, monthly variation of standardized observed and simulated hourly

wind speeds is presented. For both boxplots, the outliers are around 4%.
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Figure 5.12 displays the CDFs of both observed and simulated hourly wind speeds.
The black lines represent the CDFs of observed hourly wind speeds for each year
between 2014 and 2023, while the green lines correspond to the CDFs of 1,000
simulated hourly wind speed time series, each representing a simulation year. The
simulated CDFs closely follow the range and shape of the observed CDFs, indicating
that the simulation method effectively reproduces the overall statistical distribution
of the historical wind speed data. The agreement is particularly strong in the central
part of the distribution, while minor deviations can be observed in the tails, especially
at higher wind speed values. This suggests that the simulation model successfully
captures the general probabilistic behavior of wind speeds, with slight differences

likely due to the rare extreme events introduced during the sampling process.
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Figure 5.12 CDFs of Observed and Simulated Hourly Wind Speeds

Figure 5.13 presents the ACFs of observed and simulated hourly wind speeds up to
a lag of 72 hours. The blue line represents the ACF calculated from the observed
data spanning the years 2014 to 2023, while the orange line corresponds to the ACF
computed from the 1,000 simulated hourly wind speed time series. Both curves
exhibit a clear 24-hour periodicity, reflecting the diurnal nature of wind speed. The

simulated ACF closely follows the observed ACF, particularly at larger lags,
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indicating that the simulation method successfully captures the temporal dependency
structure of wind speed. However, slight underestimations are observed in the
simulated ACF at lower lags, suggesting a somewhat weaker short-term

autocorrelation in the simulated data compared to the observed data.
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Figure 5.13 ACF of both Observed and Simulated Hourly Wind Speeds
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5.2 Daily Revenue Optimization Model

The simulation outcomes of the WHHS annual revenue, reflecting uncertainties in
electricity prices and wind speeds, are presented in two sections: Section 5.2.1 details
the results for a WHHS with a wind farm of 50 MW installed capacity, while Section
5.2.2 outlines the outcomes for a WHHS with a wind farm of 250 MW installed

capacity.

5.2.1 Daily Revenue Optimization Results of WHHS with a 50 MW
Installed Capacity

In Figure 5.14 to Figure 5.26, the daily revenues for each year from 2012 to 2024 are
presented, showcasing the optimized performance of a WHHS with a wind farm of
50 MW installed capacity under varying electricity price and wind speed conditions.
For the years between 2014 and 2023, observed hourly wind speed data is available.
Therefore, for these specific years, the daily revenues calculated using observed
hourly wind speeds and the corresponding realized electricity prices are also
included in Figures 5.16 to 5.25. These additional red lines represent the WHHS
revenue that would have been obtained based on actual wind and price conditions.
The average daily revenues (i.c., the average of 1,000 simulations) for each year from
2012 to 2024 are shown for a WHHS with a wind farm of 50 MW installed capacity
on Figure 5.27.
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Figure 5.14 Optimized Daily Revenues for Realized Electricity Price Year 2012. In
February 13, daily revenue reached approximately 0.62 million euros, which is not shown on the
figure to enhance the representation in the rest of the days.
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Figure 5.15 Optimized Daily Revenues for Realized Electricity Price Year 2013
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Figure 5.16 Optimized Daily Revenues for Realized Electricity Price Year 2014
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Figure 5.17 Optimized Daily Revenues for Realized Electricity Price Year 2015
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Figure 5.18 Optimized Daily Revenues for Realized Electricity Price Year 2016
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Figure 5.19 Optimized Daily Revenues for Realized Electricity Price Year 2017
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Figure 5.20 Optimized Daily Revenues for Realized Electricity Price Year 2018
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Figure 5.21 Optimized Daily Revenues for Realized Electricity Price Year 2019
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Figure 5.22 Optimized Daily Revenues for Realized Electricity Price Year 2020
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Figure 5.23 Optimized Daily Revenues for Realized Electricity Price Year 2021
91



zz0oz ui skeq@

09€ Ove 0¢& 00E 08C 09¢ Ovec 02 00C 08T 09T OvT 0OCT OOT 08 09 ov 0¢ 0
1 1 1 1 1 1 1 1 1 1 1 1 1

1 A .:1‘ <§ o 00

- T°0

- 0

- €0
2202 Ul spaads puipy AlINOH pazijeay Ylim paiejndjey) SSNUSADY A[IR(]
(suone|nWiS 000T) SPaadS puUIM AlINOH paieNWIS Yiim paie|ndje) ssnuanay Ajleq —

(dN3 uol||i) enuanay Ajleq

Figure 5.24 Optimized Daily Revenues for Realized Electricity Price Year 2022
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Figure 5.25 Optimized Daily Revenues for Realized Electricity Price Year 2023
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Figure 5.26 Optimized Daily Revenues for Realized Electricity Price Year 2024
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Figure 5.27 Optimized Average Daily Revenues for Realized Electricity Price Years.
In February 13, daily revenue reached approximately 0.62 million euros, which is not shown on the
figure to enhance the representation in the rest of the days.
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Monthly revenues from 2012 to 2024 are presented in Figure 5.28 to Figure 5.40.
For the years between 2014 and 2023, observed hourly wind speed data is available.
Therefore, for these specific years, the monthly revenues calculated using observed
hourly wind speeds and the corresponding realized electricity prices are also
included in Figures Figure 5.30 to Figure 5.39. These additional red lines represent
the WHHS revenue that would have been obtained based on actual wind and price
conditions. In most of these years, revenue in August is the highest with the highest
variability. Variability in revenue from November to April is usually smaller than

that of the rest of the year.
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Figure 5.28 Optimized Monthly Revenues for Realized Electricity Price Year 2012
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Figure 5.29 Optimized Monthly Revenues for Realized Electricity Price Year 2013
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2.5 1 —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2015
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Figure 5.31 Optimized Monthly Revenues for Realized Electricity Price Year 2015

2.5 1 —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2016
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Figure 5.32 Optimized Monthly Revenues for Realized Electricity Price Year 2016
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2.5 A —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2017
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Figure 5.33 Optimized Monthly Revenues for Realized Electricity Price Years 2017

2.5 A —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)

=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2018
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Figure 5.34 Optimized Monthly Revenues for Realized Electricity Price Year 2018
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2.5 1 —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2019
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Figure 5.35 Optimized Monthly Revenues for Realized Electricity Price Year 2019

2.5 1 —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2020
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Figure 5.36 Optimized Monthly Revenues for Realized Electricity Price Year 2020
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2.5 A —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)

=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2021
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Figure 5.37 Optimized Monthly Revenues for Realized Electricity Price Year 2021

2.5 A —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)

=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2022

= = N
o wv o
1 1 1

Monthly Revenue (Million EUR)
o
(6]

O-O T T T T T T T | T T
c - I~ c S o o + 9
© < © S > = El g a & 2 g
- w s < s - P=3 wn o = a

Months in 2022

Figure 5.38 Optimized Monthly Revenues for Realized Electricity Price Year 2022
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2.5 A —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2023
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Figure 5.39 Optimized Monthly Revenues for Realized Electricity Price Year 2023
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Figure 5.40 Optimized Monthly Revenues for Realized Electricity Price Year 2024

Figure 5.41, the average monthly revenues for each year from 2012 to 2024 are

shown for a WHHS with wind farm of a 50 MW installed capacity. Each line

102



represents one year, calculated by averaging 1,000 monthly revenue trajectories from

simulated wind speeds and optimized with that year’s electricity prices.
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Figure 5.41 Optimized Average Monthly Revenues for Realized Electricity Price

Years

In Figure 5.42, variation of annual revenues for each scenario year are plotted. In
Figure 5.43 and Figure 5.44, variations of monthly revenues for each scenario year

are plotted.
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Figure 5.44 Variation of Monthly Revenues for Realized Electricity Price Years from

2020 to 2024

Figure 5.45 presents the distribution of annual revenues for the WHHS with a wind
farm of 50 MW installed capacity for each scenario year (i.e., 2012-2024). For each
year, 1,000 annual revenue values are computed using the same set of 1,000
simulated hourly wind speed time series. This allows isolating the impact of
electricity price variability from that of wind speed uncertainty. Although the

simulated wind speed data includes some extreme outliers (see Figure 5.8), the width
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of the revenue distributions remains relatively narrow across all years. This suggests
that the uncertainty resulting from wind speed variability has a limited influence on
annual revenue. In contrast, the position of the PDFs shifts considerably along the x-
axis from year to year, reflecting changes in electricity prices result in relatively large
changes in annual revenues. These horizontal shifts demonstrate that electricity price
variability is the dominant driver of revenue variation. Although wind speed
simulations included some extreme outliers (see Figure 5.9and Figure 5.10), the
effect of wind-related uncertainty is relatively smaller compared to that of electricity

market fluctuations.
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Figure 5.45 PDF of Annual Revenue for Realized Electricity Price Years

Change in annual revenue interquartile range (IQR) with respect to hourly electricity
price IQR is given in Figure 5.46. Each data point represents one scenario year (i.e.,
2012 to 2024) in Figure 5.46. There is a positive relationship between electricity
price variability and revenue variability. In other words, as the hourly electricity
price variability increases within a year, the corresponding uncertainty in the annual

revenue, obtained through the optimization model with simulated wind data
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increases. Notably, a particular year exhibits significantly higher price variability
(~85 EUR) resulting in a substantial rise in revenue uncertainty (~0.27 million EUR),
emphasizing how extreme market fluctuations can considerably amplify financial

risk for WHHS.
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Figure 5.46 Change in Annual Revenue IQR with Hourly Electricity Price IQR

The change in annual revenue median with hourly electricity price median is given
in Figure 5.47. Again, each data point represents one scenario year (i.e., 2012 to
2024) in Figure 5.47. As the median hourly electricity price increases, the
corresponding median annual revenue increases as expected. A year with particularly
high electricity prices (~130 EUR median price) clearly yields significantly higher
median annual revenues (~14 million EUR), emphasizing the substantial influence

of electricity market price levels on annual profitability.
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5.2.2 Daily Revenue Optimization Results of WHHS with a 250 MW
Installed Capacity

In Figure 5.48 to Figure 5.60 the daily revenues for each year from 2012 to 2024 are
presented, showcasing the optimized performance of a WHHS with a wind farm of
250 MW installed capacity under varying electricity price and wind speed
conditions. For the years between 2014 and 2023, observed hourly wind speed data
is available. Therefore, for these specific years, the daily revenues calculated using
observed hourly wind speeds and the corresponding realized electricity prices are
also included in Figures 5.50 to 5.59. These additional red lines represent the WHHS
revenue that would have been obtained based on actual wind and price conditions.
The average daily revenues (i.e., the average or 1,000 simulations) for each year from
2012 to 2024 are shown for a WHHS with a wind farm of 250 MW installed capacity
on Figure 5.61.
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Figure 5.48 Optimized Daily Revenues for Realized Electricity Price Year 2012. In
February 13, daily revenue reached approximately 1.51 million euros, which is not shown on the
figure to enhance the representation in the rest of the days.
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Figure 5.50 Optimized Daily Revenues for Realized Electricity Price Year 2014



GT10Z ul shkeg
00¢ 081 091

09€ OveE 0CE 00€ 08C 09C OvcC
1

0c¢e ovL
1 1

0T
1

00T 08 09 ov 0¢ 0
1

7 rvTre

oY MY YTyYTy

GT0Z Ul Spaads puip AlINOH pazijeay YliM pa3ie|nd|e)) SSNUSADY A[IR(]
(suoneinwis 0OOT) spaads puiM AJINOH pajeNWIS Yiim paje|ndje) senuansy Alleq —

_ A —+ 00

0

- 0

- €0

- 0

- S0

- 90

- L0

(dN3 uol||i) enuanay Ajleq

114

Figure 5.51 Optimized Daily Revenues for Realized Electricity Price Year 2015
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Figure 5.52 Optimized Daily Revenues for Realized Electricity Price Year 2016
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Figure 5.53 Optimized Daily Revenues for Realized Electricity Price Year 2017
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Figure 5.54 Optimized Daily Revenues for Realized Electricity Price Year 2018
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Figure 5.55 Optimized Daily Revenues for Realized Electricity Price Year 2019
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Figure 5.56 Optimized Daily Revenues for Realized Electricity Price Year 2020
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Figure 5.57 Optimized Daily Revenues for Realized Electricity Price Year 2021
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Figure 5.58 Optimized Daily Revenues for Realized Electricity Price Year 2022
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Figure 5.59 Optimized Daily Revenues for Realized Electricity Price Year 2023
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Figure 5.60 Optimized Daily Revenues for Realized Electricity Price Year 2024
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Figure 5.61 Optimized Average Daily Revenues for Realized Electricity Price Years
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Monthly revenues from 2012 to 2024 are given in Figure 5.62 to Figure 5.74. For
the years between 2014 and 2023, observed hourly wind speed data is available.
Therefore, for these specific years, the monthly revenues calculated using observed
hourly wind speeds and the corresponding realized electricity prices are also
included in Figure 5.30 to Figure 5.73. These additional red lines represent the
WHHS revenue that would have been obtained based on actual wind and price
conditions. Similar to the 50 MW installed capacity case, under the 250 MW case,
August typically exhibits the highest monthly revenue along with the highest
variability. Variability in revenue from November to April is usually smaller than

that of the rest of the year.
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Figure 5.62 Optimized Monthly Revenues for Realized Electricity Price Year 2012

125



10 1
9 -
8

Monthly Revenue (Million EUR)
w

4-.
3
2
1 4
o7

Months in 2013

Figure 5.63 Optimized Monthly Revenues for Realized Electricity Price Year 2013

10 —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
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Figure 5.64 Optimized Monthly Revenues for Realized Electricity Price Year 2014
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10 + —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2015
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Figure 5.65 Optimized Monthly Revenues for Realized Electricity Price Year 2015

10 4 —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2016

Monthly Revenue (Million EUR)
w
1

4_.
3_
2_
1
oO——— 77— T T T T

Months in 2016

Figure 5.66 Optimized Monthly Revenues for Realized Electricity Price Year 2016
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10 4 —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2017
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Figure 5.67 Optimized Monthly Revenues for Realized Electricity Price Year 2017

10 4 —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
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Figure 5.68 Optimized Monthly Revenues for Realized Electricity Price Year 2018
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10 + —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2019
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Figure 5.69 Optimized Monthly Revenues for Realized Electricity Price Year 2019

10 4 —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2020

Monthly Revenue (Million EUR)
w
1

4_
3_
2_
1
o7 T

Months in 2020

Figure 5.70 Optimized Monthly Revenues for Realized Electricity Price Year 2020
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10 4 —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2021
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Figure 5.71 Optimized Monthly Revenues for Realized Electricity Price Year 2021

10 4 —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2022
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Figure 5.72 Optimized Monthly Revenues for Realized Electricity Price Year 2022
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10 + —— Monthly Revenues Calculated with Simulated Hourly Wind Speeds (1000 Simulations)
=== Monthly Revenues Calculated with Realized Hourly Wind Speeds in 2023
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Figure 5.73 Optimized Monthly Revenues for Realized Electricity Price Year 2023
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Figure 5.74 Optimized Monthly Revenues for Realized Electricity Price Year 2024

Figure 5.75, the average monthly revenues for each year from 2012 to 2024 are

shown for a WHHS with a wind farm of 250 MW installed capacity. Each line
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represents one year, calculated by averaging 1,000 monthly revenue trajectories from

simulated wind speeds and optimized with that year’s electricity prices.
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Figure 5.75 Optimized Average Monthly Revenues for Realized Electricity Price
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In Figure 5.76, variation of annual revenues for each scenario year are plotted. In
Figure 5.77 and Figure 5.78, variations of monthly revenues for each scenario year

are plotted.
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Figure 5.79 presents the distribution of annual revenues for the WHHS with a wind
farm of 250 MW installed capacity for each scenario year (i.e., 2012-2024). For each
year, 1,000 annual revenue values are computed using the same set of 1,000

simulated hourly wind speed time series. This allows isolating the impact of
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electricity price variability from that of wind speed uncertainty. Although the
simulated wind speed data includes some extreme outliers (see Figure 5.8), the width
of the revenue distributions remains relatively narrow across all years. This suggests
that the uncertainty resulting from wind speed variability has a limited influence on
annual revenue. In contrast, the position of the PDFs shifts considerably along the x-
axis from year to year, reflecting changes in electricity prices results in relatively
large changes in annual revenues. Similar to the 50 MW installed capacity case,
electricity price variability remains the dominant driver of revenue variation under
the 250 MW case as well. Although wind speed simulations included some extreme
outliers (see Figures 5.10 and 5.11), the effect of wind-related uncertainty is

relatively smaller compared to that of electricity market fluctuations.
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Figure 5.79 PDF of Annual Revenue for Realized Electricity Price Years

Change in annual revenue interquartile range (IQR) with respect to hourly electricity
price IQR is given in Figure 5.80. Each data point represents one scenario year (i.e.,
2012 to 2024) in Figure 5.80. There is a positive relationship between electricity

price variability and revenue variability. In other words, as the hourly electricity
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price variability increases within a year, the corresponding uncertainty in the annual
revenue, obtained through the optimization model with simulated wind data
increases. Notably, a particular year exhibits significantly higher price variability
(~85 EUR) resulting in a substantial rise in revenue uncertainty (~1.37 million EUR),
emphasizing how extreme market fluctuations can considerably amplify financial
risk for WHHS. Notably, while the 50 MW installed capacity case exhibited an
increase in revenue IQR of approximately 0.27 million EUR under a price IQR of
~85 EUR, the 250 MW case shows a much larger absolute increase of about 1.37
million EUR, illustrating how a higher installed capacity amplifies annual revenue

uncertainty from market fluctuations.
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Figure 5.80 Change in Annual Revenue IQR with Hourly Electricity Price IQR

The change in annual revenue median with hourly electricity price median is given
in Figure 5.81. Again, each data point represents one scenario year (i.e., 2012 to
2024) in Figure 5.81. As the median hourly electricity price increases, the
corresponding median annual revenue increases as expected. A year with particularly

high electricity prices (~130 EUR median price) clearly yields significantly higher
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median annual revenues (~40 million EUR), emphasizing the substantial influence
of electricity market price levels on annual profitability. By comparison, in the 50
MW case the same ~130 EUR median price corresponds to a median annual revenue
of only about 14 million EUR, underscoring how increasing installed capacity

amplifies revenue outcomes.
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Figure 5.81 Change in Annual Revenue Median with Hourly Electricity Price
Median
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CHAPTER 6

CONCLUSION

This thesis examines the effect of uncertainty in wind speed on the revenue of a
WHHS. To maximize yearly revenues, a daily revenue optimization model is
employed, accounting for wind speed variability and electricity price fluctuations.
Simulated wind speed time series are generated using the aLHS method to
realistically reflect uncertainty in wind. Realized electricity price data from 2012 to
2024 are obtained from the Turkish electricity spot market and are used as scenarios
to understand electricity price uncertainty, providing a robust representation of
market variability. These datasets offer practical insight into optimizing hybrid

systems under changing market conditions.
The significant findings of this thesis are given below:

e The analysis of PDFs of annual revenues for each scenario year from 2012
to 2024 (Figure 5.45) reveals that electricity price variability is the primary
driver of revenue uncertainty in the WHHS. The PDFs shift significantly
from year to year, reflecting substantial changes in annual revenue due to
fluctuating electricity prices, while the width of the distributions—indicative
of wind speed variability—remains relatively narrow. This suggests that,
despite the inclusion of extreme wind speed outliers in the 1,000 simulated
time series (Figure 5.8), wind speed uncertainty contributes less to revenue
variability compared to electricity price fluctuations. For operators, this
underscores the need to prioritize strategies that mitigate risks associated
with electricity market volatility over those addressing wind speed

unpredictability.
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A clear positive relationship between the IQR of hourly electricity prices and
the IQR of annual revenues across the scenario years are observed (Figure
5.46). As electricity price variability increases, so does the uncertainty in
annual revenue, with one year exhibiting exceptionally high price variability
(~80 EUR) leading to a significant revenue uncertainty of approximately 0.28
million EUR. This finding highlight that, years with volatile electricity prices
amplify financial risk, necessitating robust price forecasting and risk

management strategies to stabilize WHHS revenue.

A strong positive correlation between the median hourly electricity price and
the median annual revenue is observed (Figure 5.47). Higher median
electricity prices correspond to increased median revenues, with a notable
outlier year (~130 EUR median price) yielding an annual revenue of
approximately 15 million EUR. This indicates that the overall level of
electricity prices in a given year significantly influences the profitability of

the WHHS.

The monthly revenue plots (Figure 5.28 to Figure 5.40) and their averages
(Figure 5.41) reveal distinct seasonal patterns, with August consistently
exhibiting the highest revenue and variability across most years, while
November to April show lower variability. This aligns with seasonal wind
speed trends (e.g., higher speeds in summer months like August, as seen in
Figure 5.10). The variation of monthly revenues (Figure 5.43 and Figure
5.44) further supports this, showing broader spreads in the summer months.
Operationally, this suggests that the WHHS could benefit from tailored
strategies to capitalize on high revenue in summer months while managing

lower variability in winter periods.
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Some recommendations for future studies are listed below:

A detailed economic study can be conducted to compare the initial
investment, operational costs, and long-term returns of WHHS with other
renewable energy systems, such as solar-hydro or wind-solar hybrids. A life-
cycle assessment could also be included to evaluate which system offers the

best value and sustainability over time.

The model can be extended to include inflows (e.g., rainfall, river
contributions) and outflows (e.g., evaporation, irrigation needs), reflecting an
open-system approach. The WHHS simulation could be made more

representative of real-world conditions.

In this thesis, realized electricity prices serve to examine how fluctuations in
electricity prices affect WHHS revenue. Instead of relying solely on realized
electricity price data, future studies can use simulated electricity prices to
capture future price uncertainty. This approach enables researchers to explore
a broader range of scenarios, including extreme price spikes or potential
future market conditions not reflected in historical data. By incorporating
simulated electricity prices, researchers may gain a deeper understanding of

the risks and opportunities arising from price volatility.
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APPENDICES

A. Daily Revenue Optimization Model

In this study, the same optimization model used in Ercan (2020) is used. Thus, the

mathematical formulation and following explanations are taken from Ercan (2020).

Mathematical Formulation

The daily schedule of the WHHS that maximizes the net revenue of the day can be
obtained from the solution of the following optimization problem modified by Ercan

(2020) from the formulation developed by Cruz et al.(2014):

23
Max.Z = z )\tpt (6—1)

t=0

s.t.

D = pt\r/vdirect + p?ydro _ p{grid (6-2)
pzvdirect + p?ydro = (prvylax + pgg;o)yt VY (6-3)

fgrid fgrid
ptgrl < p‘n%l;llx(l —¥) Yy (6-4)
pgv — pgvdirect 4 p:VPUmp (6—5)
p;)ump - p;/vpump + p{grid (6—6)
0= pt‘tN < Pmax (6-7)
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Where the set is:
t €{0,1,2,...,23 the duration of each interval, hour;

where the variables are:

Pe the energy output injected into the grid minus energy bought from the grid
int;
A the electricity price in t;

pydirect the energy output of wind turbines that is sold directly to the grid in t;

hydro

2 the energy output of the hydro turbine that is sold directly to the grid in t;

pﬁg“d the energy bought from the grid in ¢;

pY the wind energy that is generated in t;

p;N PYMP " the energy that is generated by wind turbines and is used by the pump in t;

pf "M the energy that is used for pumping in t;

E; the energy stored in the upper reservoir at the end of ¢;

Vi the binary variable that represents the buying or selling mode of the system
in t where y; = 0 is the buying mode, and y, = 1 is the selling mode;

X the binary variable that represents the turbine or pump modes in t where

x; = 0 is the turbine mode, and y; = 1 is the pump mode;
and the corresponding parameters are:

Pmax  the maximum energy that can be generated by the wind turbines in an hour;

2’3;0 the maximum energy that can be generated by the hydro turbine in an hour;
,f,glflii the maximum energy that can be bought from the grid in an hour;
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proy  the maximum energy that can be used as pumping input in an hour;

Enin  the minimum energy level in the upper reservoir;
Enax  the maximum energy level that can be stored in the upper reservoir;

Nhydro  the efficiency for the turbine mode;
Npump  the efficiency for the pump mode;

Einitiar  the initial energy in the upper reservoir.

Equation (6-1) is the objective function of the optimization problem. It aims to

maximize the revenue of one day. Equation (6-2) defines the net energy sold to the

grid, which is the energy sold minus the energy bought. When p}'4iet and p? yare are

positive values, pggridcannot be a positive value. Because selling and buying energy

from the grid at the same time is illogical and not allowed. This is achieved by
Equations (6-3) and (6-4). If y; equals one, the system sells energy to the grid in ¢;
if it equals zero, the system buys energy from the grid in t. The wind energy that is
generated in t p}’ , can be sold directly to the grid or used to pump the water to the
upper reservoir. This is defined in Equation (6-5). The energy that is used for

pumping in ¢t pf Hmp

, can be supplied by wind turbines or can be bought from the
grid. Equation (6-6) presents this constraint. The wind energy that is generated in ¢t

pt’, has a minimum value of zero, and its upper bound cannot exceed py . as defined

ydro

in Equation (6-7). The energy output of the hydro turbine in ¢ p? , and the energy

used for pumping in t pp "

cannot be larger than their maximum installed
capacities. Also, they cannot be positive values at the same hour since it is not
possible to run the pump and the turbine at the same time. These limitations are

defined in Equations (6-8) and (6-9).

The energy output of the hydro turbine in ¢t p? ydro is limited by two components in

Equation (6-10). In the first component, E; — E,,,;,, represents the energy in the upper
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reservoir that can be used to generate energy by the hydro turbine. When it is

multiplied by Npyro, it becomes the energy output of the hydro turbine. The second

component is the maximum capacity of the hydro turbine. So, p? ydro i< restricted to

be at most the minimum of these two terms.

The energy that is used for pumping in ¢t pf “MP is limited by two components in
Equation (6-11). In the first component, E,,,, — E; represents the available empty
energy storage that can be filled by the water. When it is divided by Npymp, it becomes
the pumping energy input. The second component is the maximum energy input for

P

the pump. So, pf""" is restricted to be at most the minimum of these two terms.

The energy balance of the upper reservoir is defined in Equation (6-12). The energy
stored in the upper reservoir at the end of t + 1 is composed of three components.
The first component is the stored energy from the previous hour. The second
component is the energy used for pumping the water from the lower reservoir to the
upper reservoir in t + 1. The third component is the energy spend to run the hydro
turbine to generate electricity in t + 1. So, E;,4 equals the summation of the first
two components minus the third component. For the first hour, t = 0, the energy
stored in the upper reservoir is initialized based on the starting energy storage in the
upper reservoir E_;. Lastly, E; must be between E,,;;, and E,,,,,, and that is defined

in Equation (6-14).

wdirect ,,hydro

Except binary variables, y; and x;, units of all decision variables (p;, p{ De
pggrid, p‘tN pump pf WP pW  E.) are MWh. Units of all parameters (p,};fg;(’, p%im,

pump _pump _ w w fgrid
Pmax > Pmin > Pmax> Pmin> Pmax> Einitials Emax> Emin) are MWh, except a few ones.

The unit of A; is TL/MWh, and Np,y4, and npymp are unitless.

The optimization model involves three assumptions. First, head losses in the piping
system of WHHS are not included explicitly. They are assumed to be included in the
efficiency values of the turbine and pump modes. Second, there is no inflow to or

outflow from the reservoir. So, the system is assumed to be a closed-loop system.
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Third, the cost of pumping operation is assumed to be the same value as the

electricity price at that hour (Cruz et al., 2014).

The following modifications to the mathematical formulation suggested by Cruz et

al. (2014) are carried out in this study:

e The energy that is generated by the wind turbines is allowed to be used for
pumping and direct selling, and stored in two different variables (see
Equation (6-5)).

e The energy that is used for pumping is allowed to be obtained from wind
turbines and grid, and stored in two different variables (see Equation (6-6)).

e To prevent buying and selling at the same time in each hour, a binary variable
is defined (see Equations (6-3) and (6-4)).

¢ Considering the minimum and maximum water levels in the upper reservoir,
water can be pumped or released from the upper reservoir, and the energy
stored in the upper reservoir is updated (see Equations (6-10) and (6-11)).

e Equations (13) and (14) in Cruz et al. (2014) are not used since they are
satisfied by Equations (6-10) and (6-11).

e In Cruz et al. (2014), the final energy level of the upper reservoir is taken as
a fixed value. However, in our study, we used the reservoir level of the last

hour of the previous day.

The formulated optimization problem is a mixed-integer linear programming
problem since two of the decision variables (i.e., x; and y;) are restricted to binary
values. To solve the optimization problem, a code is written in Python. The code
uses Coinor branch and cut solver which is developed by Forrest, Ralphs, Vigerske,
LouHafer, Kristjansson, Jpfasano, EdwinStraver, Lubin, Santos, Rlougee and
Saltzman (2018). To apply this solver in Python, Google OR-Tools library is

included in the code.
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B. Daily Revenue Optimization Model Parameters

The optimization model has eight parameters, which are the maximum energy that
can be generated by wind turbines in an hour, the maximum energy that can be
generated by the hydro turbine in an hour, the maximum energy that can be bought
from the grid in an hour, the maximum energy that can be consumed by the pump in
an hour, the minimum energy level in the upper reservoir, the maximum energy level
that can be stored in the upper reservoir, the efficiency for the turbine mode and the
efficiency for the pump mode. The maximum energy that can be generated by the
wind turbines py,, in an hour equals to the available hourly wind energy. Its

calculation is explained in Section 4.4.

Currently, the installed capacity of the hydro turbine in the Uluabat Hydropower
Plant is 100 MW (Akenerji, 2005). Same installed capacity is sued by changing the
hydro turbine with a hydro pump-turbine. So, for this case study, the system can
work either as a hydro turbine or a pump. Thus, the maximum energy that can be
generated by the hydro turbine in an hour p%f;o and the maximum energy that can

be consumed by pumping in an hour p}, ;" equal to 100 MWh.

The maximum energy that can be bought from the grid in an hour is not limited.
Thus, this parameter equals positive infinity. The schematic view of Cinarcik Dam,
Uluabat Hydropower Plant, and Lake Uluabat are shown in Figure 6.1. The
minimum energy level in the upper reservoir and the maximum energy level that can
be stored in the upper reservoir is computed based on the elevation-area curve of the

dam by using the following expression:

E, = 2.778 x 10710 pghV (6.18)

where Ej, is the potential energy of the fluid in MWh, V' is the volume of the fluid in
m?, p is the density of the fluid in kg/m?, g is the acceleration due to gravity in

m/s?, h is the height of the fluid in m. The minimum energy level in the upper
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reservoir E,,;,, and the maximum energy level that can be stored in the upper
reservoir E,,,, are computed as 138233.8 MWh and 298624.1 MWHh, respectively.
The initial energy level Ejjyiq is fixed to Eip, 138233.8 MWh.

The efficiency of the turbine mode and the efficiency of the pump mode are assumed

as 0.88 and 0.85, respectively, based on the study by Cruz et al. (2014).

Maximum Water Elevation = 330.00 m

—_ Minimum Water Elevation = 304.75 m
Cmarcik Dam

Uluabat
Thalweg =210 m Hydropower | Taj| Water Elevation = 7.60 m

Plant
\\ Lake Uluabat /

Figure 6.1 The Schematic View of Cinarcik Dam, Uluabat Hydropower Plant and
Lake Uluabat (Ercan, 2020)
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C. R Script for Stationarity Test of Observed Hourly Wind Speeds

# Load required packages

library(tseries)

library(xts)

library(fUnitRoots)

library(writexl) # For writing results to Excel

# Load data from file

wind_data <- read.csv2(file = "path/MS18386_(2014_2023).csv",
sep = “;",
header = TRUE,
na.strings = ")

# Rename columns
colnames(wind_data) <- c("Date™, "Wind_Speed")

# Convert Date column to time series format
wind_data$Date <- as.POSIXct(wind_data$Date, format = "%d.%m.%Y #H:%M", tz = “UTC")

# Remove missing values from the entire data frame
wind_data <- na.omit(wind_data)

# Convert Wind_Speed column to numeric format
wind_data$Wind_Speed <- as.numeric(wind_data$Wind_Speed)

# Define frequency values (daily, weekly, monthly, yearly)
frequencies <- c(daily = 24, weekly = 24*7, monthly = 24*30, yearly = 24*365.25)
frequency_names <- names(frequencies)

# Define lag values (1 to 12)
lag_values <- 1:6

# Define test types (including tseries::adf.test as "stationary"”)
test_types <- c("tseries_stationary”, "funit_nc", "funit_c", "funit_ct")

# Create an empty data frame to store results
results_table <- data.frame(

Frequency = character(),

Lag = integer(),

Test_Type = character(),

ADF_Statistic = numeric(),

ADF_pvalue = numeric(),

stringsAsFactors = FALSE

)

# Loop through frequencies, lags, and test types to run ADF tests
for (freq_idx in seq_along(frequencies)) {

freq <- frequencies[freq_idx]

freq_name <- frequency_names[freq_idx]
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# Loop through frequencies, lags, and test types to run ADF tests
for (freq_idx in seq_along(frequencies)) {

freq <- frequencies[freq_idx]

freq_name <- frequency_names|[freq_idx]

# Create time series object
wind_ts <- ts(wind_data$Wind_Speed, frequency = freq)

for (lag in lag_values) {
for (type in test_types) {

# Run appropriate ADF test based on type

if (type == "tseries_stationary™) {
adf_result <- adf.test(wind_ts, alternative = “stationary™, k
test_label <- "tseries: Stationary”™

} else if (type == “funit_nc™) {
adf_result <- adfTest(wind_ts, lags = lag, type = "nc™)
test_label <- "fUnitRoots: No Constant™

} else if (type == “funit_c™) {
adf_result <- adfTest(wind_ts, lags = lag, type = “c")
test_label <- "fUnitRoots: Constant™

} else if (type == “"funit_ct™) {
adf_result <- adfTest(wind_ts, lags = lag, type = "ct™)
test_label <- "fUnitRoots: Constant+Trend"

}

# Extract statistic and p-value

if (type == "tseries_stationary™) {
statistic <- adf_result$statistic
p_value <- adf_result$p.value

} else {
statistic <- adf_result@test$statistic
p_value <- adf_result@test$p.value

}

# Add results to the table

results_table <- rbind(results_table, data.frame(
Frequency = freq_name,
Lag = lag,
Test_Type = test_label,
ADF_Statistic = statistic,
ADF_pvalue = p_value,
stringsAsFactors = FALSE

)

}
¥
}

# Display results in console (optional)
print(“ADF Test Results:™)
print(results_table)

# Save results to an Excel file
write_xlsx(results_table, "path/adf_test_results.xlsx™)

# Notification
cat("ADF test results have been saved to ‘adf_test_results.xlsx"'.\n")
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D. ADF Stationarity Test Results of Observed Hourly Wind Speeds

Table 6-1 Stationarity Test Results for Observed Hourly Wind Speeds (lag=1 hour)

Frequency | Lag Test Type Statistic | P value
daily 1 tseries: Stationary -73.72 0.01
daily 1 fUnitRoots: No Constant -42.79 0.01
daily 1 fUnitRoots: Constant -73.51 0.01
daily 1 fUnitRoots: Constant+Trend -73.72 0.01
weekly 1 tseries: Stationary -73.72 0.01
weekly 1 fUnitRoots: No Constant -42.79 0.01
weekly 1 fUnitRoots: Constant -73.51 0.01
weekly 1 fUnitRoots: Constant+Trend -73.72 0.01
monthly 1 tseries: Stationary -73.72 0.01
monthly 1 fUnitRoots: No Constant -42.79 0.01
monthly 1 fUnitRoots: Constant -73.51 0.01
monthly 1 fUnitRoots: Constant+Trend -73.72 0.01
yearly 1 tseries: Stationary -73.72 0.01
yearly 1 fUnitRoots: No Constant -42.79 0.01
yearly 1 fUnitRoots: Constant -73.51 0.01
yearly 1 fUnitRoots: Constant+Trend -73.72 0.01
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Table 6-2 Stationarity Test Results for Observed Hourly Wind Speeds (lag=2 hour)

Frequency | Lag Test Type Statistic | P value
daily 2 tseries: Stationary -76.13 0.01
daily 2 fUnitRoots: No Constant -43.21 0.01
daily 2 fUnitRoots: Constant -75.91 0.01
daily 2 fUnitRoots: Constant+Trend -76.13 0.01
weekly 2 tseries: Stationary -76.13 0.01
weekly 2 fUnitRoots: No Constant -43.21 0.01
weekly 2 fUnitRoots: Constant -75.91 0.01
weekly 2 fUnitRoots: Constant+Trend -76.13 0.01
monthly 2 tseries: Stationary -76.13 0.01
monthly 2 fUnitRoots: No Constant -43.21 0.01
monthly 2 fUnitRoots: Constant -75.91 0.01
monthly 2 fUnitRoots: Constant+Trend -76.13 0.01
yearly 2 tseries: Stationary -76.13 0.01
yearly 2 fUnitRoots: No Constant -43.21 0.01
yearly 2 fUnitRoots: Constant -75.91 0.01
yearly 2 fUnitRoots: Constant+Trend -76.13 0.01

Table 6-3 Stationarity Test Results for Observed Hourly Wind Speeds (lag=2 hour)

Frequency | Lag Test Type Statistic | P value
daily 3 tseries: Stationary -80.81 0.01
daily 3 fUnitRoots: No Constant -44.69 0.01
daily 3 fUnitRoots: Constant -80.55 0.01
daily 3 fUnitRoots: Constant+Trend -80.81 0.01
weekly 3 tseries: Stationary -80.81 0.01
weekly 3 fUnitRoots: No Constant -44.69 0.01
weekly 3 fUnitRoots: Constant -80.55 0.01
weekly 3 fUnitRoots: Constant+Trend -80.81 0.01
monthly 3 tseries: Stationary -80.81 0.01
monthly 3 fUnitRoots: No Constant -44.69 0.01
monthly 3 fUnitRoots: Constant -80.55 0.01
monthly 3 fUnitRoots: Constant+Trend -80.81 0.01
yearly 3 tseries: Stationary -80.81 0.01
yearly 3 fUnitRoots: No Constant -44.69 0.01
yearly 3 fUnitRoots: Constant -80.55 0.01
yearly 3 fUnitRoots: Constant+Trend -80.81 0.01
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Table 6-4 Stationarity Test Results for Observed Hourly Wind Speeds (lag=4 hour)

Frequency | Lag Test Type Statistic | P value
daily 4 tseries: Stationary -83.64 0.01
daily 4 fUnitRoots: No Constant -44.97 0.01
daily 4 fUnitRoots: Constant -83.36 0.01
daily 4 fUnitRoots: Constant+Trend -83.64 0.01
weekly 4 tseries: Stationary -83.64 0.01
weekly 4 fUnitRoots: No Constant -44.97 0.01
weekly 4 fUnitRoots: Constant -83.36 | 0.01
weekly 4 fUnitRoots: Constant+Trend -83.64 | 0.01
monthly 4 tseries: Stationary -83.64 0.01
monthly 4 fUnitRoots: No Constant -44.97 0.01
monthly 4 fUnitRoots: Constant -83.36 0.01
monthly 4 fUnitRoots: Constant+Trend -83.64 0.01
yearly 4 tseries: Stationary -83.64 0.01
yearly 4 fUnitRoots: No Constant -44.97 0.01
yearly 4 fUnitRoots: Constant -83.36 0.01
yearly 4 fUnitRoots: Constant+Trend -83.64 0.01

Table 6-5 Stationarity Test Results for Observed Hourly Wind Speeds (lag=5 hour)

Frequency | Lag Test Type Statistic | P value
daily 5 tseries: Stationary -85.14 0.01
daily 5 fUnitRoots: No Constant -44.43 0.01
daily 5 fUnitRoots: Constant -84.82 0.01
daily 5 fUnitRoots: Constant+Trend -85.14 0.01
weekly 5 tseries: Stationary -85.14 1 0.01
weekly 5 fUnitRoots: No Constant -44.43 0.01
weekly 5 fUnitRoots: Constant -84.82 0.01
weekly 5 fUnitRoots: Constant+Trend -85.14 0.01
monthly 5 tseries: Stationary -85.14 0.01
monthly 5 fUnitRoots: No Constant -44.43 0.01
monthly 5 fUnitRoots: Constant -84.82 0.01
monthly 5 fUnitRoots: Constant+Trend -85.14 0.01
yearly 5 tseries: Stationary -85.14 0.01
yearly 5 fUnitRoots: No Constant -44.43 0.01
yearly 5 fUnitRoots: Constant -84.82 0.01
yearly 5 fUnitRoots: Constant+Trend -85.14 0.01

163



Table 6-6 Stationarity Test Results for Observed Hourly Wind Speeds (lag=6 hour)

Frequency | Lag Test Type Statistic | P value
daily 6 tseries: Stationary -84.41 0.01
daily 6 fUnitRoots: No Constant -42.74 0.01
daily 6 fUnitRoots: Constant -84.07 0.01
daily 6 fUnitRoots: Constant+Trend -84.41 0.01
weekly 6 tseries: Stationary -84.41 0.01
weekly 6 fUnitRoots: No Constant -42.74 0.01
weekly 6 fUnitRoots: Constant -84.07 1 0.01
weekly 6 fUnitRoots: Constant+Trend -84.41 0.01
monthly 6 tseries: Stationary -84.41 0.01
monthly 6 fUnitRoots: No Constant -42.74 0.01
monthly 6 fUnitRoots: Constant -84.07 0.01
monthly 6 fUnitRoots: Constant+Trend -84.41 0.01
yearly 6 tseries: Stationary -84.41 0.01
yearly 6 fUnitRoots: No Constant -42.74 0.01
yearly 6 fUnitRoots: Constant -84.07 0.01
yearly 6 fUnitRoots: Constant+Trend -84.41 0.01
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