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ABSTRACT 

 

EFFECT OF UNCERTAINTY IN WIND ON WIND-HYDRO  
HYBRID SYSTEM 

 
 
 

Gündoğdu, Onur 
Master of Science, Civil Engineering 

Supervisor: Prof. Dr. Elçin Kentel Erdoğan 
 

 
April 2025, 164 pages 

 
 

 

Energy management remains a critical challenge in today’s energy sector, where 

efficient storage and utilization are essential. Historically, fossil fuels have 

dominated energy production due to their ease of storage compared to renewable 

sources. However, growing energy demand, heightened awareness of environmental 

damage from fossil fuels, and the drive for energy independence in nations lacking 

fossil resources have fueled interest in renewable alternatives. Despite their 

advantages, renewables like wind and solar face difficulties due to their intermittent 

and unpredictable nature, complicating storage and grid integration. For instance, 

wind turbines rely on fluctuating wind speeds, making it hard to estimate energy 

generation in advance. Pumped-storage hydropower plants have emerged as a 

leading solution for large-scale renewable energy storage. This thesis extends a prior 

optimization study that determined the daily operational schedule for a wind-hydro 

hybrid system (Ercan, 2020). While the previous study neglected wind speed 

uncertainty, this study integrates it into the optimization model to evaluate its impact 

on energy storage efficiency and operational decisions. Wind speeds are simulated 
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using the autocorrelated Latin Hypercube Sampling (aLHS) method to reflect 

variability and uncertainty accurately. These simulated hourly wind speeds, 

combined with realized electricity prices, refine the model, deepening understanding 

of how wind speed and price uncertainties shape system performance. The findings 

of this thesis demonstrate that electricity price volatility has a greater impact on 

revenue than wind speed variability; therefore, WHHS operators should explicitly 

incorporate electricity price uncertainty and forecasting into their operational 

planning. 

 

Keywords: Renewable Energy, Uncertainty Analysis, Hourly Wind Speed 

Simulation, Autocorrelated Latin Hypercube Sampling  
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ÖZ 

 

RÜZGARDAKİ BELİRSİZLİĞİN RÜZGAR-HİDRO HİBRİT SİSTEM 
ÜZERİNDEKİ ETKİSİ 

 
 
 

Gündoğdu, Onur 
Yüksek Lisans, İnşaat Mühendisliği 

Tez Yöneticisi: Prof. Dr. Elçin Kentel Erdoğan 
 

 

Nisan 2025, 164 sayfa 

 
 

 

Enerji yönetimi, günümüz enerji sektöründe kritik bir zorluk olarak öne çıkmakta 

olup, enerjinin etkin depolanması ve kullanımı büyük önem taşımaktadır. Tarihsel 

olarak, fosil yakıtlar, yenilenebilir kaynaklara kıyasla daha kolay depolanabilir 

olmaları nedeniyle enerji üretiminde baskın rol oynamıştır. Ancak, artan enerji 

talebi, fosil yakıtların çevreye verdiği zarara dair artan farkındalık ve fosil yakıt 

kaynaklarına sahip olmayan ülkelerin enerji bağımsızlığına yönelik çabaları, 

yenilenebilir enerji alternatiflerine ilgiyi artırmıştır. Avantajlarına rağmen, rüzgar ve 

güneş gibi yenilenebilir kaynaklar, kesintili ve öngörülemez doğaları nedeniyle 

depolama ve şebeke entegrasyonunda zorluklarla karşılaşmaktadır. Örneğin, rüzgar 

türbinleri, dalgalanan rüzgar hızlarına bağlıdır ve bu durum üretilecek enerjinin 

önceden tahminini zorlaştırmaktadır. Pompalı depolamalı hidroelektrik santraller, 

yenilenebilir enerji sistemlerinde büyük ölçekli enerji depolama için önde gelen bir 

çözüm olarak ortaya çıkmıştır. Bu tez, bir rüzgar-hidro hibrit sisteminin günlük 

işletim programını belirleyen önceki bir optimizasyon çalışmasını (Ercan, 2020) 
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temel almaktadır. Önceki çalışma rüzgar hızı belirsizliğini göz ardı etmişken, bu 

çalışma, rüzgar hızı belirsizliğini bir optimizasyon modeline entegre ederek enerji 

depolama verimliliği ve işletim kararları üzerindeki etkisini değerlendirmektedir. 

Rüzgar hızları, değişkenlik ve belirsizliği doğru bir şekilde yansıtmak için oto-

korelasyonlu Latin Hiperküp Örnekleme (aLHS) yöntemiyle simüle edilmiştir. Bu 

simüle edilmiş saatlik rüzgar hızları, gerçekleşmiş elektrik fiyatlarıyla birleştirilerek 

model geliştirilmiş; böylece rüzgar hızı ve fiyat belirsizliklerinin sistem 

performansını nasıl etkilediğine dair daha derin bir anlayış sağlanmıştır. Bu tezin 

bulguları, geliri üzerinde rüzgâr hızı değişkenliğine kıyasla elektrik fiyatı 

oynaklığının daha belirleyici olduğunu ortaya koymaktadır; bu nedenle 

işletmecilerin, operasyonel planlamalarına elektrik fiyatı belirsizliğini ve elektrik 

fiyat tahminlerini açıkça dâhil etmelidir. 

 

Anahtar Kelimeler: Yenilenebilir Enerji, Belirsizlik Analizi, Saatlik Rüzgar Hızı 

Simülasyonu, Otokorelasyonlu Latin Hiperküp Örnekleme 
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CHAPTER 1  

1 INTRODUCTION  

Human development and population growth have led to a significant increase in 

energy consumption over time. This rising population is driven by factors such as 

urbanization, industrial development, and technological have contributed to the 

steady rise in energy demand. According to the International Energy Agency (IEA), 

the world’s total annual energy consumption increased by 90% between 1980 and 

2022 calculated using data given by IEA (2024). Notably, electricity's share of total 

energy consumption grew from 9% in 1980 to 21% in 2022 according to IEA (2024) 

data, highlighting the increasing electrification of human activities. Unfortunately, 

this progress has come at a cost: a substantial increase in CO₂ emissions over the past 

decades. Electricity and heat production account for the majority of these emissions, 

making them a major contributor to climate change and global warming (Lamb et 

al., 2021). CO₂ emissions, primarily from the burning of fossil fuels such as coal, oil, 

and natural gas, are a significant driver of environmental degradation. Ultimately, 

urgent action is required to address these challenges and protect the planet. One key 

international response to this crisis is the Paris Agreement, a legally binding treaty 

on climate change adopted by 196 Parties at the UN Climate Change Conference 

(COP21) in Paris on 12 December 2015. The agreement, which entered into force on 

4 November 2016, aims to limit global warming to below 2°C, preferably 1.5°C, 

compared to pre-industrial levels. A major component of this initiative is reducing 

reliance on fossil fuels for electricity production and transitioning to renewable 

energy sources. Renewable energy, such as wind, solar, and hydropower, is widely 

regarded as a sustainable solution to combat climate change and reduce CO₂ 

emissions. The Paris Agreement encourages nations to adopt clean energy 

technologies and invest in renewable energy infrastructure to mitigate environmental 
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damage. By decreasing the use of fossil fuels and embracing renewable energy, 

humanity can work towards a more sustainable and resilient future. 

Uncertainties introduced into future energy revenue predictions of a wind-hydro 

hybrid system due to future energy price and wind speed estimations are evaluated 

simultaneously in this study. Although wind speed uncertainty impacts revenue 

variability, its effect remains less significant than electricity price fluctuations. The 

study also underscores that robust simulation methods, like the autocorrelated Latin 

Hypercube Sampling (aLHS), enhance the understanding of wind speed variability’s 

role in system performance. These insights highlight the importance of addressing 

electricity price uncertainty to improve the operational reliability and financial 

outcomes of wind-hydro hybrid systems. 
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CHAPTER 2  

2 LITERATURE REVIEW 

In this thesis, an uncertainty analysis is conducted based on a study that developed 

an optimization model to determine the best daily operational strategy for a Wind-

Hydro Hybrid System (WHHS). In the base study by Ercan (2020), an LSTM model 

was used to forecast hourly electricity prices for the next day, which serves as input 

to the optimization model. However, for future hourly wind speed, they utilized 

historic wind speed data from the NASA MERRA-2 database. This approach 

neglects the uncertainty associated with wind speeds in their operational strategy. In 

this thesis, wind speed uncertainty is integrated into the optimization model to 

evaluate its impact on revenue estimation of the WHHS. Hourly wind speeds from 

2014 to 2023 are sourced from the Turkish State Meteorological Service (TSMS), as 

global datasets like NASA MERRA-2 and ERA5 are found inadequate for 

representing wind speeds in the case study area. Hourly wind speeds are used to 

generate a set of future hourly wind speed time series using aLHS. This method 

ensures that simulated data captures critical statistical characteristics such as 

seasonality, diurnal variations, and autocorrelation. This chapter provides a 

comprehensive overview of the relevant concepts and previous studies. In Section 

2.1, the roles of pumped storage hydropower plants, wind power plants, and the 

WHHS are explained. Section 2.2 presents an overview of the Turkish Electricity 

Spot Markets, highlighting their significance in optimizing energy storage and 

generation strategies. Section 2.3 describes the wind speed simulation process used 

to incorporate uncertainty into the optimization model. Finally, Section 2.4 describes 

uncertainty analysis in wind speeds and electricity prices on WHHS. 
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2.1 Pumped Storage Hydropower Plants, Wind Power Plants, WHHS 

Pumped Storage Hydropower Plants (PSHP) are large-scale energy storage systems 

that transfer water between two reservoirs at different elevations to store and 

generate electricity. Wind power plants are facilities that produce electricity by 

converting the kinetic energy of the wind into mechanical power using wind turbines. 

WHHS are integrated energy systems that combine wind power plants with pumped 

storage hydropower plants to enhance the reliability and efficiency of renewable 

energy generation. These systems address the unpredictability of wind power by 

using excess electricity generated from wind to pump water from a lower reservoir 

to an upper reservoir. The following sections explain these systems in more detail. 

 

2.1.1 Pumped Storage Hydropower Plants 

PSHP are a type of hydroelectric energy storage system designed to help balance 

electricity supply and demand. These systems work by using electricity to pump 

water from a lower reservoir to an upper reservoir during times of low energy 

demand and consequently low electricity price. Later, when demand is at its peak 

and consequently electricity price is high, the stored water is released back to the 

lower reservoir, passing through turbines to generate electricity. This process allows 

PSHPs to serve as large-scale energy storage solutions, enhancing the reliability and 

stability of the electricity grid. 

In 1882, Switzerland established the world's first pumped storage hydropower plant, 

marking nearly 140 years of development. Significant progress in pumped storage 

technology began in the 1950s, particularly in Europe, the United States, and Japan 

(Zhao et al., 2024). 

PSHP in Figure 2.1 consists of an upper reservoir, a lower reservoir, a penstock, and 

a powerhouse equipped with a reversible pump-turbine and motor-generator. Water 
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flows downward from the upper reservoir through the penstock to generate 

electricity during peak demand periods (i.e., on peak). Conversely, during off-peak 

hours, excess electricity is used to pump water back up to the upper reservoir, storing 

energy for later use 

 

Figure 2.1 Schematic Diagram of Main Building Composition of PSHP (Hino & 

Lejeune, 2012). 

PSHPs account for approximately 96% of the global storage power capacity and 99% 

of the global storage energy volume (Blakers et al., 2021). Studies by Blakers et al. 

(2021) and Yang & Jackson (2011) highlight the significance of PSHPs in balancing 

electricity loads, reducing reliance on fossil fuels, and integrating renewable energy 

sources like wind and solar into power grids. 

There are several types of PSHPs, each designed for different geographical and 

operational requirements. Open-loop PSHPs interact with natural water bodies such 

as rivers and lakes, making them easier to construct but often subject to 

environmental regulations. In contrast, closed-loop PSHPs operate independently of 

natural water sources, using artificial reservoirs, which significantly reduces 

environmental impact and water resource dependency (Hunt et al., 2020). Schematic 

diagrams of open-loop and closed-loop PSHP are shown in Figure 2.2. Other 

emerging variations include underground PSHPs, where water reservoirs are 
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constructed in abandoned mines or underground caverns, improving storage 

efficiency and minimizing land-use concerns (Madlener & Specht, 2020). Seawater 

PSHPs, demonstrated in Japan’s Yanbaru facility, present a promising alternative for 

coastal regions, utilizing seawater instead of freshwater for energy storage (Luo et 

al., 2015). These diverse configurations enable PSHPs to be implemented in various 

landscapes and energy networks. This thesis investigates uncertainty in wind speeds 

on the operation of a closed-loop PSHP due to its simplicity in modeling.  

 

Figure 2.2 Pure PSHP on left and pump back PSHP on right (Deane et al., 2010) 

According to IRENA(2024), the global installed power capacity has shown 

continuous growth from 2000 to 2023, exceeding 140,000 megawatt (MW) in total. 

As seen in Figure 2.3, Asia has played a dominant role in this expansion, with a 

significant increase after 2024. This rapid growth is primarily driven by the region’s 

increasing investment in renewable energy sources and grid infrastructure. Europe 

and North America have also experienced steady growth, though at a comparatively 

slower rate. The Rest of the World (ROW) and Africa remain minor contributors to 

the total capacity. With the rising demand for renewable energy integration, the need 

for greater installed capacity continues to grow. Future projections indicate that as 

more countries adopt renewable energy, the installed capacity is expected to further 

increase, especially in regions with strong policy support and infrastructure 

development. 
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Figure 2.3 PSHP Installed Capacities Trend in the World (based on IRENA (2024) 

data) 

2.1.2 Wind Power Plants 

The use of wind energy can be traced back thousands of years, with historical records 

indicating that multiple ancient civilizations independently discovered and employed 

it across different parts of the world. However, the first automatically operated wind 

turbine was developed by Charles Brush in 1888 (Tong, 2010). A wind turbine is a 

device that converts the kinetic energy of the wind into mechanical energy, which is 

then transformed into electricity. They are primarily categorized based on their 

installation location: onshore and offshore. Wind turbines are mainly classified as 

onshore, which are installed on land and typically have lower installation and 

maintenance costs, and offshore, which are located in bodies of water, benefiting 

from stronger and more consistent winds, resulting in higher energy output.   

Onshore wind turbines are installed on land and these turbines have seen significant 

growth in capacity over the years. In the United States, the average capacity of newly 
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installed onshore wind turbines was 3.4 MW in 2023, reflecting advancements in 

technology and efficiency (Wiser et al., 2024). Offshore wind turbines are in bodies 

of water, usually at sea and they benefit from stronger and more consistent wind 

patterns. These turbines are generally larger than their onshore counterparts. 

According to the latest data, global installations in 2023 had a capacity-weighted 

average turbine rating of 9.7 MW, representing a 26% year-over-year increase. The 

average rotor diameter reached 183.4 meters (a 5% increase), and the average hub 

height was 124 meters (a 6% increase) (McCoy et al., 2024). 

Wind turbines generate electricity by using wind energy to spin their blades, which 

drive a generator. They produce electricity immediately when wind speeds are 

adequate. Despite this limitation, Figure 2.4 shows that the global onshore and 

offshore wind energy installed capacity has been increasing steadily each year. From 

2000 to 2023, the onshore wind energy installed capacity grew from 16,896.74 MW 

to 944,205.12 MW, representing an increase of approximately 5,588%. In the same 

period, offshore wind energy capacity expanded from 66.95 MW in 2000 to 

73,185.40 MW in 2023, reflecting an impressive growth of 109,314% (IRENA, 

2024). 

 

Figure 2.4 Onshore and Offshore Wind Energy Installed Capacities Trend in the 

World (based on IRENA (2024) data) 
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the onshore wind energy installed capacity percentages by country in 2023 is given 

in Figure 2.5 presents. According to IRENA (2024) data, China leads the market 

with 43% of the total onshore capacity, reflecting its significant investment in 

renewable energy. The United States follows with 16%, while Germany (6%) and 

India (5%) are also key contributors. Additionally, Türkiye has achieved a significant 

position with an onshore wind energy installed capacity of 11,697.16 MW in 2023, 

marking a remarkable rise from just 19 MW in 2000. 

 

Figure 2.5 Onshore Wind Energy Installed Capacity Percentages of Countries in 

2023 (based on IRENA (2024) data) 

The offshore wind energy installed capacity percentages by country in 2023 is shown 

in Figure 2.6. According to IRENA (2024), China holds 51% of the total capacity, 

followed by the United Kingdom (20%) and Germany (11%). Other contributors 

include the Netherlands (5%), Denmark (4%), and Belgium (3%), while Chinese 

Taipei, Vietnam, and France account for smaller shares. The Rest of the World 
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(ROW) represents 1% of the total capacity. As of 2023, there is no installed offshore 

wind energy capacity in Türkiye. 

 

 

Figure 2.6 Offshore Wind Energy Installed Capacity Percentages of Countries in 

2023 (based on IRENA (2024) data) 

In this study, onshore wind turbines are considered, thus some of their important 

characteristics are summarized here. A typical onshore wind turbine has several 

essential components, as illustrated in Figure 2.7. The rotor includes the blades, 

which capture the wind's kinetic energy, and the hub, which connects the blades to 

the main shaft. The nacelle, located at the top of the tower, houses critical mechanical 

and electrical components, including the gearbox, which adjusts rotational speed, 

and the generator, which converts mechanical energy into electricity (Bhattacharya, 

2019). Supporting these components, the tower provides structural stability, 

elevating the nacelle to capture higher wind speeds efficiently. The foundation, 

though not shown in the image, anchors the entire structure to the ground, ensuring 
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stability against varying wind forces. Energy systems where wind turbines and PSHP 

are used together are called WHHS. Detailed information about these systems is 

provided in the following section. 

 

Figure 2.7 Main Components of an Onshore Wind Tower (Bhattacharya, 2019) 

 

2.1.3 Wind-Hydro Hybrid Systems (WHHS) 

WHHS combines wind power generation with hydroelectric storage, increasing 

energy reliability, flexibility, grid stability, and profitability for electricity-

generating companies. These systems effectively address the intermittent nature of 

wind energy by using the storage capacities of hydroelectric power plants. The 

collaboration between wind and hydro resources enables a continuous energy supply 

and improves the integration of renewable energy into the power grid. Figure 2.8 

shows a typical WHHS. The system includes wind turbines, a pump turbine, 

penstocks, and both a higher and a lower reservoir.  
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There are many studies on WHHS in the world while there are a few studies on 

WHHS in Türkiye and a brief summary of these studies are given in the following 

paragraphs. These studies highlight the challenges associated with and advantages 

of WHHS.  

 

Figure 2.8 Schematic Representation of WHHS (Graça Gomes et al., 2021) 

 

WHHS represents an innovative solution to the challenges posed by wind energy's 

intermittency. According to Korpaas et al. (2003), integrating energy storage systems 

with wind power plants increases operational flexibility, allowing producers to align 

production with market demands. The dynamic programming approach discussed by 

Korpaas et al. (2003) optimizes energy exchange in the market, emphasizing the role 

of energy storage in smoothing wind power variations. Their conclusion suggests 

that WHHS can enhance market participation by mitigating the impact of wind 

power fluctuations. In this thesis, instead of dynamic programming, a Monte Carlo 

simulation-based approach is employed to handle wind energy variability. 
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Castronuovo and Lopes (2004) further explored the operational optimization of 

WHHS. Their study introduced an hourly-discretized optimization algorithm that 

balances economic profits with power output fluctuations. The stochastic nature of 

wind energy was modeled using Monte Carlo simulations, highlighting the 

importance of wind power forecasting for daily operational strategies. In their 

conclusion, they emphasized the role of accurate forecasting in maximizing 

profitability. Similarly, this thesis develops an hourly-resolution simulation 

framework incorporating an aLHS method to capture the temporal variability of 

wind power generation for the selected case study, aligning operational decisions 

with local grid dynamics. 

Chen et al. (2009) provided a comprehensive review of electrical energy storage 

(EES) technologies, including pumped hydroelectric storage, which is central to 

WHHS. Their work emphasized the importance of Electrical EES in stabilizing 

power systems, especially with increasing renewable energy penetration. They 

concluded that PSHP remains the most mature and reliable technology for large-

scale applications due to its high efficiency, long operational life, and ability to 

provide ancillary services.  

Díaz-González et al. (2012) reviewed energy storage technologies for wind power 

applications. They highlighted that WHHS not only addresses power quality issues 

but also supports grid stability by providing ancillary services such as frequency 

regulation and voltage control. Their conclusion emphasized that WHHS plays a 

crucial role in ensuring the long-term operational reliability of power grids by 

effectively integrating renewable sources. They noted that WHHS could 

significantly reduce curtailment rates and improve grid responsiveness during peak 

demand periods. 

Ghadikolaei et al. (2012) examined the risk-constrained scheduling of hydro-wind 

units in short-term electricity markets. Their stochastic programming model 

accounted for market price and wind power uncertainties, demonstrating that WHHS 

can enhance profitability while minimizing operational risks. Their conclusions 
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indicated that risk management frameworks are essential for successful WHHS 

operations. They also noted that incorporating probabilistic market price forecasts, 

wind generation uncertainty modeling using autoregressive integrated moving 

average (ARIMA) processes, and multiple risk tolerance scenarios significantly 

improve scheduling efficiency. Despite methodological differences, this thesis also 

shares the common goal of improving the operational efficiency of WHHS by 

addressing uncertainties in wind power generation. Studies on WHHS in Türkiye are 

included in the following paragraphs.  

Dursun and Alboyacı (2010) investigated the contribution of wind-hydro pumped 

storage systems in meeting Türkiye's growing electricity demand. The study 

examined the country’s wind and hydropower resources, emphasizing the necessity 

of integrating these energy sources for a more stable and efficient electricity supply. 

It highlighted that while Türkiye has substantial wind energy potential, its 

intermittent nature poses grid stability challenges. Pumped storage hydroelectric 

plants were proposed as a solution to store surplus wind energy and release it when 

needed, thus enhancing the reliability of the power system. 

Dursun, Alboyacı, and Gökcol (2011) explored an optimal wind-hydro hybrid 

energy solution for the Marmara region of Türkiye. The study analyzed six different 

sites with high wind potential and assessed their suitability for WHHS integration. 

Using long-term wind speed measurements and energy demand data, the researchers 

developed a model that optimized wind-hydro storage configurations to ensure 

continuous electricity supply. Their results demonstrated that WHHS could reduce 

dependency on fossil fuels while improving the efficiency of renewable energy 

generation in the region. 

Köse and Kaya (2013) analyzed the feasibility of using a wind-hydro hybrid system 

to meet the energy demand of the Konya Water Treatment Plant. The study designed 

a system that combined a hydroelectric power plant (HEPP) with wind power plants 

(WPP), using local wind energy measurement data for optimization. The findings 

showed that integrating wind energy into the existing hydro infrastructure could 
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significantly reduce electricity costs and reliance on fossil fuels. Additionally, an 

economic analysis was conducted, revealing a reasonable payback period for the 

system. 

Dinçer and Bozkus (2016) studied the hydraulic challenges associated with WHHS, 

particularly the occurrence of water hammer effects in pressurized pipelines. Their 

study focused on the Yahyalı Wind-Hydro Hybrid Plant and used numerical 

simulations to analyze transient pressure fluctuations caused by sudden flow 

changes. They found that without proper design considerations, these pressure 

variations could lead to pipe failures, increasing maintenance costs. Their study 

recommended installing surge tanks and other protective devices to mitigate these 

risks, ensuring the safe and efficient operation of WHHS.  

Ercan and Kentel (2022) developed an optimization model for the daily operation of 

WHHS, integrating electricity price forecasting into the decision-making process. 

Using an LSTM neural network, the study predicted electricity prices in Türkiye’s 

day-ahead market and coupled this with a mixed-integer linear programming model 

to maximize daily revenue. Their results show that forecasted electricity prices 

improve the efficiency of the optimization model compared to relying on past prices, 

leading to increased revenue. However, the LSTM network struggles with sudden 

fluctuations in electricity prices, particularly during midday hours. As wind turbine 

capacity increases, the system becomes less dependent on the grid, and revenue 

growth is primarily driven by wind energy utilization. The results of their study 

emphasize the importance of jointly optimizing the capacities of pumped storage 

hydropower and wind turbines for maximum efficiency. While wind turbine capacity 

does not significantly impact daily operation schedules within the studied range, 

integrating wind power reduces errors in revenue estimation. However, their study 

overlooked wind speed uncertainty. Therefore, this thesis aims to incorporate wind 

speed uncertainty into Ercan and Kentel (2022). 

These studies collectively demonstrate that WHHS offers a robust solution for 

integrating renewable energy into power grids. By combining wind power with 
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pumped storage, WHHS can mitigate energy supply fluctuations, enhance grid 

stability, and optimize market operations. In light of these findings, WHHS is 

utilized in this thesis to store energy generated from wind power and to optimally 

generate electricity by using the advantages of a pumped-storage hydropower 

system, with a particular focus on analyzing how wind power uncertainty impacts 

WHHS's performance in Turkish electricity spot market.  

2.2 Turkish Electricity Spot Market 

The Turkish electricity spot market is a fundamental mechanism for balancing 

supply and demand in the country's energy sector. It facilitates short-term electricity 

trading through organized market platforms, ensuring transparent price formation 

based on real-time market conditions. This market structure is critical in maintaining 

grid stability, enhancing competition, and optimizing resource allocation within the 

energy system.  

Eroğlu and Finger (2021) analyze the transformation of Turkey's wholesale 

electricity market from a state-controlled system to a competitive market-driven 

model, emphasizing the alignment of regulatory frameworks with European Union 

(EU) standards. Electricity Market Law No. 4628, enacted in 2001, was a pivotal 

step in this transition, leading to the establishment of the Energy Market Regulatory 

Authority (EMRA), which oversees licensing, market transparency, and pricing 

regulations. The liberalization process was further refined by the Electricity Market 

Law No. 6446 in 2013, which strengthened competition and ensured third-party 

access to the grid (Eroğlu & Finger, 2021). 

The Turkish electricity spot market consists of several interconnected markets, each 

serving a distinct role in the country's electricity trade. These markets are Day-Ahead 

Market (DAM), Intraday Market (IDM), Balancing Power Market (BPM), Power 

Futures Market (PFM), Renewable Energy Resources Support Mechanism 

(YEKDEM), Bilateral Contracts Market, and Environmental Markets. However, the 
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optimization model used in this study is designed solely based on DAM market 

participation, meaning that real-time adjustments, imbalance corrections, or intraday 

trading mechanisms are not included in the scope of this work. The study focuses 

exclusively on bidding in the DAM, where offers are submitted one day in advance, 

and scheduling decisions are made based on historic hourly electricity price and wind 

power availability, without incorporating the operational dynamics of other market 

structures. Other types of electricity markets in Türkiye, such as PFM and 

YEKDEM, are not considered in this study. However, the details of these markets 

can be found in the Electricity Market Sector Report (EMRA, 2024). 

The DAM was established on December 1, 2011, marking a crucial step toward 

market liberalization in Türkiye. This platform allows electricity trading one day in 

advance, where market participants submit bids, and the Market Clearing Price 

(MCP) is determined based on supply and demand conditions. The introduction of 

DAM replaced the earlier bilateral contract model, significantly improving price 

transparency and trading efficiency (EMRA, 2024). In this market, energy sellers 

submit offers for each hour of the next day, while energy buyers submit their 

demand, ensuring that generation and consumption are balanced before real-time 

operations. The market operator sorts these bids and determines the MCP at the 

intersection of supply and demand curves. The offer period covers 24 hours of the 

next day, from 00:00 to 24:00, with a submission deadline of 12:30 on the current 

day. The initial results are announced at 13:30, followed by a 30-minute objection 

period, after which the final results are declared at 14:00 (Yarıcı, 2018).  

The IDM was launched on July 1, 2015, as part of efforts to enhance market 

flexibility. IDM enables participants to adjust their electricity positions closer to real-

time, reducing imbalances between expected and actual electricity generation or 

consumption. By allowing market participants to fine-tune their trading strategies 

within the same operational day, IDM has played a crucial role in balancing Türkiye's 

power grid and ensuring a more responsive market (EMRA, 2024).  
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The BPM has been operational since 2009 and is managed by TEİAŞ (Turkish 

Electricity Transmission Corporation). BPM is designed to ensure real-time system 

balance by managing upward and downward balancing orders to maintain grid 

frequency stability. Before the introduction of BPM, Türkiye relied on a centrally 

controlled dispatch system, but the market-based approach has allowed a more 

efficient and cost-effective allocation of balancing resources (EMRA, 2024).  

An example timeline for the Turkish electricity spot markets is shown in Figure 2.9. 

This timeline shows the market operation schedule for 02.01.2020. 

 

Figure 2.9 Scheduling of Market for 02.01.2020 (Ercan, 2020) 

In this thesis, while conducting the optimization study to determine the best 

operation schedule for WHHS to maximize daily revenue, historic hourly electricity 

prices and simulated hourly wind speeds (or corresponding wind power generations) 

are utilized as input data.  

2.3 Hourly Wind Speed Simulation 

In this study, uncertainty in wind speed on WHHS revenue is quantified by 

simulating hourly wind speeds. Hourly wind speeds exhibit short-term temporal 

dependencies. These dependencies arise from local wind generation mechanisms and 
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long-term trends. Adding temporal dependency to wind speed models is necessary 

to ensure accurate and reliable results (Brett & Tuller, 1991). 

According to Brown et al. (1984), Monte Carlo methods can simplify wind speed 

simulations by using parameters such as the mean and variance of the distribution. 

However, this approach underestimates the variance of time-averaged wind speeds 

by ignoring positive correlations between successive observations. They concluded 

that long periods of high or low wind speeds, which are common in real data, are 

often underrepresented when wind speeds are assumed to be temporally 

uncorrelated. 

In this study, hourly wind speeds are sampled from the empirical distribution of the 

available hourly observed wind speeds. The empirical distribution refers to a 

distribution constructed from a given sample of data. It is defined as a discrete 

distribution where each observed data point in the sample is assigned an equal 

probability of 1/𝑛, where 𝑛 is the total number of observations (Borovkov, 1999). 

Typically, such procedures are carried out using Monte Carlo methods. However, in 

cases where the data to be sampled is limited, a variant of the Monte Carlo method, 

known as Latin Hypercube Sampling (LHS), can be preferred. Dutta and Gandomi 

(2020) describe LHS as "a stratified sampling technique designed to minimize the 

number of simulations required while effectively quantifying response uncertainty". 

LHS requires fewer samples to effectively capture the observed data distribution, 

making it a computationally efficient alternative for scenarios with constrained 

resources or limited data availability (Janssen, 2013). 

Li (2018) used an approach to include autocorrelation when inputting distributions. 

In his study, the Weibull distribution parameters are estimated from the observed 

wind speeds, and the generated samples follow the same probability distribution. 

However, while the generated wind speeds are independent, the actual wind speed 

time series are often correlated. To address this, the correlation in the simulated 

samples must match the observed data. Li (2018) iteratively adjusts the power 
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spectrum density (PSD) of the simulated wind speeds until they match the target 

PSD. 

In a more recent study, Le and Vargas (2024) introduced the autocorrelated 

conditioned Latin Hypercube Sampling (acLHS) method as an enhancement of the 

traditional conditioned Latin Hypercube Sampling (cLHS) (Minasny & McBratney, 

2006). The acLHS incorporates temporal or spatial autocorrelation into the sampling 

process by integrating semivariograms as an optimization criterion. This ensures that 

the sampled data not only preserves the univariate distributions and dependency 

relationships of the original data but also retains the temporal or spatial 

autocorrelation structure. They applied acLHS to two case studies: temporal 

sampling of soil CO2 efflux data and spatial sampling across the conterminous 

United States. Their results demonstrated that acLHS provides a more accurate 

representation of the temporal and spatial variability of the original datasets 

compared to fixed sampling and traditional cLHS methods. By maintaining the 

temporal or spatial dependencies, acLHS improves the quality of predictions and 

reduces uncertainty in geostatistical simulations.  

As explained above, one of the most important parameters in autoregressive models 

is the autocorrelation in the time series. Understanding and representing 

autocorrelation correctly is crucial for ensuring the effectiveness of the model. 

Autocorrelation can change for each time series data, and even when examining the 

same time series data in different regions, different autocorrelation patterns may be 

observed. Therefore, the autocorrelation of specific time series data in a particular 

region must be analyzed before building the model. Hence, in this study, while 

simulating wind speeds using LHS, an optimization procedure is integrated so that 

autocorrelation of simulated wind speeds can represent the observed wind speeds’ 

autocorrelation. 

Building on the concept introduced in Le and Vargas (2024), the Autocorrelated 

Latin Hypercube Sampling (aLHS) method, focusing solely on simulating a single 

time series while preserving its autocorrelation structure, is used in the current study. 
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Unlike the original acLHS method, which emphasizes conditioned sampling to 

ensure joint representation of multiple variables, this study simplifies acLHS by 

concentrating solely on the temporal autocorrelation of hourly wind speed data. The 

semivariance model is used to maintain the autocorrelation structure during 

simulation, enabling the generation of hourly wind speeds that reflect the temporal 

variability observed in the original dataset. This approach provides a tailored solution 

for addressing wind speed uncertainty in the optimization of Wind-Hydro Hybrid 

Systems. By accurately simulating wind speed time series with preserved 

autocorrelation, the method enhances the robustness of the operational strategies 

derived from the optimization model. 

Unlike the study by Le and Vargas (2024), which utilized the differential evolution 

method for optimization, the optimization procedure in this study is conducted using 

the Powell optimization method. The Powell method has found extensive 

applications across diverse scientific fields, proving to be a robust optimization tool. 

For example, Nakanishi et al. (2020) utilized it to enhance quantum-classical hybrid 

algorithms by optimizing parameterized quantum circuits, achieving efficient cost 

function minimization. Similarly, Romero et al. (2018) applied the method in the 

Variational Quantum Eigensolver (VQE) for molecular energy calculations, 

leveraging the unitary coupled-cluster ansatz. Additionally, Fulton et al. (2018) 

employed the Powell method in the RadVel toolkit to model radial velocity data, 

effectively estimating orbital parameters in multi-planet systems.  

There are numerous studies on wind speed simulations. In these studies, the first step 

has generally been to find the distribution of the data. Ramirez and Carta (2005) 

noted that one of the basic assumptions in statistics, whether wind speeds are 

dependent or independent, was rarely tested in the studies reviewed. They 

commented that since wind speeds recorded over short time intervals are usually 

dependent, using such samples violates the assumptions of estimation methods based 

on fitted distributions. This means that if the assumption of randomness is not met: 

(a) common statistical tests will not be valid, (b) uncertainties for commonly used 

statistics will not be significant, and (c) parameter estimates may not be reliable 
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(Ramírez & Carta, 2005). However, they concluded that the findings show that using 

autocorrelated hourly wind speeds does not significantly change the shape of the 

probability density distribution, although it does invalidate standard tests. In light of 

this information, in this study, when assigning an empirical distribution to the data 

for sampling purposes, the distribution is directly assigned without removing 

autocorrelation. 

2.4 Uncertainty Analysis 

The uncertainty in annual revenue from wind power generation primarily arises from 

variability in hourly electricity prices and hourly wind speeds. Consequently, most 

studies investigating uncertainty in wind power generation or WHHS concentrate 

their analyses on these two factors. The following paragraphs provide and explain 

studies that address uncertainty analysis in wind power generation and electricity 

prices in electricity markets. 

The article by Pinson et al. (2009) presents a novel methodology for generating 

statistical scenarios of short-term wind power production, addressing the critical 

need for enhanced uncertainty representation in wind energy forecasting. Building 

on the limitations of traditional point forecasts, which offer only a single expected 

value, and probabilistic forecasts, which provide uncertainty information on a per-

horizon basis but lack insight into temporal interdependence, the authors propose a 

framework that integrates both predictive distributions and the interdependence 

structure of forecast errors. This approach transforms non-parametric probabilistic 

forecasts into a multivariate Gaussian random variable, utilizing a recursively 

estimated covariance matrix to capture the evolving relationships among prediction 

errors across forecast horizons. Applied to a multi-MW wind farm in Denmark over 

a two-year period, the method demonstrates its ability to produce reliable scenarios 

that respect input predictive distributions while reflecting time-varying error 

structures, as evidenced by empirical evaluations including Gaussianity tests and 

Probability Integral Transform (PIT) histograms. This advancement holds significant 
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potential for optimizing decision-making in applications such as wind-storage 

system operations and multi-market trading, offering a robust tool for integrating 

stochastic wind generation into power systems (Pinson et al., 2009). 

Pinson et al. (2007) develop a methodology for trading wind power in electricity 

markets by using short-term probabilistic forecasts to design optimal bidding 

strategies. They model wind generation as a random variable with predictive 

distributions and define a piecewise linear loss function that reflects the producer’s 

sensitivity to regulation costs, based on imbalance penalties. Two strategies are 

proposed: Probabilistic Choice (PC), which minimizes expected regulation costs 

using quantiles of the wind generation distribution, and Risk Averse (RA), which 

minimizes worst-case losses through numerical optimization. Applied to a 15-MW 

wind farm in the Dutch APX market for 2002, PC strategies leveraging annual (PC1) 

and quarterly (PC2) cost trends achieved performance ratios of 89.14% and 92.1%, 

respectively, compared to 86.99% for point forecasts. The authors conclude that 

integrating uncertainty into decision-making significantly enhances forecast value 

and reduces regulation costs, and that their flexible approach can adapt to producer 

needs, although it relies on estimating cost trends. 

Morales et al. (2010) developed a methodology to optimize bidding strategies for 

wind power producers across multiple markets, including day-ahead, adjustment, 

and balancing markets, using a multistage stochastic programming approach. They 

modeled uncertainties in wind availability and market prices using seasonal ARIMA 

and autoregressive models, which allowed them to generate simplified scenarios for 

better tractability. Their linear programming framework aims to maximize expected 

profit while incorporating risk management through conditional value-at-risk 

(CVaR), using a weighting factor (β) to balance profit and variability. When applied 

to a 100-MW wind farm in the Iberian Peninsula, their method demonstrated that 

including the adjustment market resulted in improved outcomes, reducing profit 

variability with only a minimal loss in expected profit. They emphasized that the 

strategy's success depends on the accuracy of scenario generation. In this thesis, a 

similar study is conducted; however, instead of using the ARIMA model, the aLHS 
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method is employed to generate different wind speed simulations, and historical 

electricity prices from the Turkish Electricity Spot Market are utilized to account for 

uncertainties in electricity prices.  

Ma et al. (2013) developed a methodology for generating short-term wind power 

scenarios to address the uncertainty and variability inherent in wind power forecasts. 

They proposed using empirical cumulative distribution functions (ECDFs) derived 

from historical forecast data, offering a nonparametric approach that avoids 

assumptions of normality. Their approach also incorporated inverse transform 

sampling with multivariate normal distributions and an exponential covariance 

structure, dynamically estimating the covariance parameter to match historical 

fluctuations. Validation with data from the Irish power system demonstrated that 

their method effectively captures forecast uncertainty and actual variability, 

significantly improving inputs for stochastic power system operations and decision-

making processes. They concluded that accurately modeling wind power 

uncertainties enhances operational decisions and system reliability in renewable 

energy integration. 

Hosseini-Firouz (2013) proposed an optimal offering strategy for wind power 

producers in electricity markets, emphasizing risk management. They focused on 

addressing the uncertainties associated with wind availability, market prices, and 

balancing energy requirements through stochastic programming methods. Their 

approach utilized ARIMA techniques to forecast wind speed and electricity market 

prices, enhancing prediction accuracy. Furthermore, scenario generation was 

conducted by employing probability distribution functions of forecast errors, which 

improved the reliability of these scenarios. The method incorporated CVaR to 

explicitly manage risk aversion, allowing producers to balance profit maximization 

with financial risk mitigation effectively. Numerical studies demonstrated the 

effectiveness of this approach in reducing financial risks due to forecasting 

inaccuracies and improving profitability. Hosseini-Firouz (2013) highlighted the 

advantage of their strategy, particularly in terms of reducing imbalance costs through 

optimized risk-aversion levels and improved reserve planning, leading to a 
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significant enhancement in the economic outcomes for wind power producers 

operating in competitive electricity markets.  

The studies mentioned above emphasize the impact of uncertainties in wind power 

generation and WHHS operations and underline the importance of understanding 

these uncertainties. This study aims to investigate the uncertainty in wind power 

using Monte Carlo simulation, and uncertainty in electricity prices through scenario-

based evaluations of historically realized electricity prices for different years. 
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CHAPTER 3  

3 METHODOLOGY 

This study aims to understand and quantify the effect of uncertainty in wind speed 

on the uncertainty in the annual revenue of WHHS calculated through an 

optimization model. Figure 3.1 shows the flowchart of the methodology. The two 

important inputs of the optimization model are hourly wind speed (used in the 

calculation of hourly wind energy) and hourly electricity prices. In this study, hourly 

wind speeds for a year are simulated using aLHS. Observed hourly wind speed data 

at Nilüfer meteorological station (MS18386) between 2014 and 2023 obtained from 

the Turkish State Meteorological Service are used as inputs to simulate hourly wind 

speed projections for a year. Then, simulated hourly wind speeds are converted to 

simulated hourly wind energy and used as input for the optimization model. The 

second input, hourly electricity prices are obtained from EPİAŞ Transparency 

Platform (n.d.) between 2012 and 2024. Simulating hourly wind speed time series is 

described in Section 3.1. Converting hourly wind speeds to hourly wind energy is 

explained in Section 3.2. The optimization model is summarized in Section 3.3. 

Finally, the uncertainty analysis is explained in detail in Section 3.4. 
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Figure 3.1 Methodology Flowchart 
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3.1 Hourly Wind Speed Simulation 

To understand the effect of uncertainty in wind on the annual revenue of the WHHS, 

a set of hourly wind speed time series for a year is generated using aLHS. The 

simulated hourly wind speeds are generated using the methodology explained below, 

which retains the statistical and temporal characteristics of the observed hourly wind 

speeds. This process captures diurnal, monthly, and autocorrelation patterns, 

ensuring the simulated hourly wind speeds reflect the dynamics of observed hourly 

wind speeds. The algorithm is applied systematically for each month of the year to 

account diurnal variability in the related month. 

The process begins with the preparation of observed hourly wind speeds obtained 

from MS18386 between 2014 and 2023. There are missing values in MS18386’s 

observations. Hence, missing values are filled using the means of the corresponding 

hour across the same month in the available years. This imputation method preserves 

the hourly variability of wind speeds and ensures the dataset is complete for 

statistical modeling.  

3.1.1 Removing Diurnal Variation from Observed Hourly Wind Speeds by 

Standardization for Each Month 

Before applying the aLHS simulation procedure, observed hourly wind speed data 

needs to be standardized to remove diurnal variations. If these variations are not 

removed, the aLHS method fails to simulate the data accurately, and the resulting 

simulated values will not reflect the original diurnal characteristics.  

An analysis of diurnal variation of hourly wind speeds at MS18386 over the period 

from 2014 to 2023, as well as for each month individually, reveals distinct variation 

patterns (see Section 4.3.1). Consequently, it was determined to remove the diurnal 

variations for each month separately. 
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Brown et al. (1984) suggested that diurnal variation in hourly wind speeds should be 

removed by subtracting the hourly expected values of the data. To remove diurnal 

variation of hourly wind speeds in each month, observed hourly wind speeds for each 

month are standardized using Equation (3-1). Hourly statistics, namely mean and 

standard deviation, are calculated separately for each hour of the day and each month 

to account for diurnal patterns and monthly variability. This standardization ensures 

that all subsequent operations are performed on observed hourly wind speeds with 

uniform statistical properties. 

 
𝑍ெ,஽(𝑡) =

𝑈ெ,஽(𝑡) − 𝜇ெ,௧

𝜎ெ,௧
 (3-1) 

 

where 𝑈ெ,஽(𝑡) is the observed wind speed at hour 𝑡 in 𝐷th day of month 𝑀, 𝑍ெ,஽(𝑡) 

is the standardized value of 𝑈ெ,஽(𝑡), 𝜇ெ,௧ is the mean of the observed hourly wind 

speeds in month 𝑀 for the 𝑡th hour, 𝜎ெ,௧ is the standard deviation of the observed 

hourly wind speeds in month 𝑀 for the 𝑡th hour. Thus, 𝑀 = January, February,…, 

December, 𝐷 = 1, 2, …, 30 (or 31), and 𝑡 = 1, 2,…, 24. For example, 𝜇௃௔௡௨௔௥௬,ସ is 

the mean of the observed hourly wind speeds at the 4th hour of each day in all 

Januarys during observation period (i.e., in this study from 2014 to 2023).  

3.1.2 Autocorrelated Latin Hypercube Sampling (aLHS) 

After standardizing the observed hourly wind speeds LHS is used to sample hourly 

wind speeds from the empirical cumulative distribution function of the standardized 

wind speeds for the corresponding month. Next, the sampled hourly wind speeds are 

reordered using the Powell optimization method to align their autocorrelation 

structure with that of the observed standardized hourly wind speeds. This procedure 

is referred to as aLHS. Finally, the reordered hourly wind speeds are de-standardized 

to reintroduce the original diurnal and monthly variations present in the observed 

data.  
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All standardized hourly wind speeds in the same month of the whole observation 

duration are gathered into 12 batches. For example, hourly wind speeds in all 

Januarys in the observation period are grouped together into the January batch. The 

procedure followed to generate simulated hourly wind speed time series for month 

which is carried out using all the data in batch 𝑀 as summarized in Figure 3.2. The 

details of the procedure are explained in the following sections. 

This process is repeated for each month of the year, generating monthly simulated 

datasets that retain the unique statistical and temporal characteristics of each period. 

The monthly datasets are then combined into a single dataset, representing simulated 

hourly wind speeds for a year.  

 

Figure 3.2 Autocorrelated Latin Hypercube Sampling Steps 

aLHS process is repeated 1,000 times, resulting in 1,000 simulated hourly wind 

speed time series for a year. This methodology guarantees that the simulated wind 

speeds not only represent the statistical distribution of the observed hourly wind 

speeds but also capture its temporal dependencies and diurnal variations. This 

approach enables the dataset to be suitable for applications requiring accurate 

representations of hourly wind speed behavior, particularly for time-sensitive energy 

storage and generation scheduling in hybrid systems. 

aLHS: Reorder sampled hourly wind speeds 

of month 𝑀 by Powell optimization method 

Apply LHS to standardized hourly wind 

speeds for month 𝑀 = 1, 2, … , 12 

De-standardize reordered hourly wind speeds 

for month 𝑀 
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3.1.2.1 Latin Hypercube Sampling 

In the first step of aLHS, LHS is applied to generate 𝑁 simulated hourly wind speed 

time series for month 𝑀. For instance, for January, a total number of 𝑁 (31 × 24 =

744) hourly wind speeds are sampled from the empirical distributions of January’s 

standardized hourly wind speeds.  

LHS is a stratified sampling scheme used to reduce the number of simulations in 

quantifying response uncertainty (Dutta & Gandomi, 2020).  

The following steps are used in one dimensional LHS to generate random samples 

from standardized hourly wind speeds of month 𝑀, 𝑍ெ,஽(𝑡) (Dutta & Gandomi, 

2020): 

 Sort the 𝑍ெ,஽(𝑡) for all 𝐷 in ascending order, call it the sample space 

 Partition the sample space into 𝑁 ranges of equal probability = 1/𝑁.  

 Select one random sample from each 𝑁 ranges and generate 𝑁 samples for a 

month  

After LHS is completed, there are 𝑁 standardized sampled hourly wind speeds for 

month 𝑀, but these standardized sampled hourly wind speeds do not have any 

correlation between consecutive hours because they are randomly sampled. In order 

to capture the autocorrelation structure of the standardized observed hourly wind 

speed, they should be reordered, as explained in the following subsection. 

 

3.1.2.2 Reordering Sampled Hourly Wind Speeds 

The second step is a semivariogram-matching optimization procedure to align the 

semivariogram of sampled hourly wind speeds (SSV) for month 𝑀 with the reference 

semivariogram (RSV) by reordering sampled hourly wind speeds. This is achieved 

by reordering the sampled hourly values such that the semivariance of the simulated 
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data approximates the semivariance of the observed wind speeds. The optimization 

continues until either (i) the change between successive iterations drops below 10⁻⁶ 

or (ii) the algorithm reaches the preset maximum of 1,000,000 iterations. Generation 

of the RSV and SSV is explained in the following section. This reordering process 

is executed using the optimize.minimize function of the Python Scipy library 

(Virtanen et al., 2020), employing the Powell optimization method.  

 

Semivariogram Calculations 

To do semivariogram-matching optimization, first, an RSV of the standardized 

observed hourly wind speeds of the observation duration to quantify its 

autocorrelation at different time lags is generated using Equation (3-2). The 

semivariogram captures the variance between pairs of data separated by specific time 

intervals and serves as a key metric for modeling temporal dependencies in data. For 

the sake of simplicity, the indices in 𝑍ெ,஽(𝑡) is dropped since the RSV is fitted to all 

the data in the observation period. 

 
γ(ℎ) =

1

2𝑁(ℎ)
෍ [𝑍(𝑡௜ + ℎ) − 𝑍(𝑡௜)]ଶ

ே(௛)

௜ୀଵ

 (3-2) 

 

where 𝛾(ℎ) is the semivariogram value for lag ℎ, 𝑁(ℎ) is the total number of data 

governed by the lag ℎ, 𝑍(𝑡௜) is the value of the variable Z at time 𝑡௜ and 𝑍(𝑡௜ + ℎ) is 

the value of the variable Z at the time 𝑡௜ + ℎ. When ℎ = 𝑐ଵ, 𝑁(ℎ) = 𝑁் − 2 × 𝑐ଵ 

where 𝑐ଵ = 1, 2, 3, … , 𝑘; 𝑘 is the maximum lag and 𝑁் is the total number of data. 

For example, for lag 4, ℎ = 4 and 𝑁(4) = 𝑁் −8. 

After RSV is generated, SSV of standardized sampled hourly wind speeds for month 

𝑀 is generated using Equation (3-2). In each iteration of aLHS (𝑀 = 1, 2, … , 12), 

the SSV is generated for the respective month to ensure that the variability in each 

month is individually treated. When reordering sampled hourly wind speeds of 
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month 𝑀, the error between the RSV and the SSV for that month is minimized using 

the Powell optimization method.  

 

Powell Optimization Method to Match RSV and SSV 

The Powell optimization method minimizes the absolute error between the RSV and 

SSV using Equation (3-3), ensuring that the autocorrelation structure is preserved in 

the simulated dataset. This step is critical for capturing the temporal dynamics of 

wind speed variations over short-term intervals. 

 
OF = ෍ |γୱ(h) − γୗ(h)|

୫୼୲

୦ୀ୼୲

 (3-3) 

 

where 𝑂𝐹 is the objective function value for comparing the semivariograms of the 

sampled and the observed data, Δt is the time lag (one hour), 𝑚Δ𝑡 is the maximum 

time lag considered, represented as a multiple of Δt, γୱ(h) is the empirical 

semivariogram value at lag h for the sampled data and γୗ(h) is empirical 

semivariogram value at lag h for the observed data. 

 

Maximum Time Lag (𝒎𝚫𝒕) Selection for the Objective Function 

In aLHS, the maximum time lag is a key parameter. During the simulation process, 

the goal is to preserve dependency within the maximum time lag, ensuring a realistic 

generation of wind speed data by minimizing the total semivariance error for lags up 

to the maximum time lag (𝑚Δ𝑡).  

The maximum time lag (𝑚Δ𝑡) is determined by analyzing the partial-autocorrelation 

function (PACF) of the standardized hourly wind speed observations, to identify the 

lag at which correlations become small. Autocorrelation analysis is essential for the 

time series of wind speeds, as hourly wind speeds are dependent on time, similar to 
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most meteorological data. This implies that a value in the time series can affect future 

values.  

The PACF is based on the relationship between the current observation and past 

observations, removing the effects of the intermediate lags. It is derived from the 

Yule-Walker equations (Yule, 1927). The PACF at lag 𝑘 is the correlation between 

the original time series, represented with 𝑈௧
ሬሬሬሬ⃗  vector and time series lagged 𝑘 hours, 

𝑈௧ି௞
ሬሬሬሬሬሬሬሬሬ⃗  vector, adjusted for the linear effects of all the intermediate lags 1, 2, … , 𝑘 − 1.  

For a time series 𝑈௧
ሬሬሬሬ⃗ , the PACF at lag 𝑘, denoted as ϕ௞௞, is computed as follows: 

 ϕ௞௞ = corr ቀ𝑈௧
ሬሬሬሬ⃗ − 𝑃൫𝑈௧

ሬሬሬሬ⃗ ห𝑈௧ିଵ
ሬሬሬሬሬሬሬሬ⃗ , … , 𝑈௧ି௞ାଵ

ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ൯,  𝑈௧ି௞
ሬሬሬሬሬሬሬሬሬሬ⃗

− 𝑃൫𝑈௧ି௞
ሬሬሬሬሬሬሬሬሬ⃗ ห𝑈௧ିଵ

ሬሬሬሬሬሬሬሬ⃗ , … , 𝑈௧ି௞ାଵ
ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ൯ቁ 

(3-4) 

where 𝑃(𝑈௧
ሬሬሬሬ⃗ | ·) represent the best linear predictor of 𝑈௧

ሬሬሬሬ⃗  based on lag 𝑘. 

The PACF graph of the standardized hourly wind speed observations is plotted to 

examine the structure of temporal dependence. Based on the visual inspection of the 

PACF plot, a maximum time lag 𝑚Δ𝑡 is selected at this stage. 

In addition to PACF analysis, a sensitivity analysis is performed by generating 

simulated hourly wind speed time series using various maximum time lags (1 to 24 

hours) to determine the optimal maximum time lag (𝑚Δ𝑡). For each simulation, the 

autocorrelation function (ACF) is calculated and compared with the ACF of the 

observed hourly wind speeds. The absolute differences between the observed and 

simulated ACFs are plotted across all lags to evaluate how well each simulation 

preserves the autocorrelation structure. Based on these visual comparisons, the 

maximum time lag that best aligns with the observed ACF pattern is selected as the 

optimal 𝑚Δ𝑡. 

The ACF of observed and simulated hourly wind speeds for a lag of 𝑘 is calculated 

as follows: 
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ρ(𝑘) =

∑ (𝑈௧ − 𝑈ഥ)(𝑈௧ା௞ − 𝑈ഥ)ௌି௞
௧ୀଵ

∑ (𝑈௧ − 𝑈ഥ)ଶௌ
௧ୀଵ

 (3-5) 

 

where 𝜌(𝑘) is autocorrelation at lag k, 𝑈௧ is value at time t, 𝑈ഥ is the mean of the time 

series, S is the total number of data points, and 𝑘 is the lag (time shift).  

 

3.1.2.3 De-standardization of Reordered Hourly Wind Speeds  

Once the optimization is completed, de-standardization is performed using Equation 

(3-6) ensuring the final data reflects the diurnal and seasonal variability of observed 

hourly wind speeds.  

 𝑈ெ,஽
∗ (𝑡) = 𝑍ெ,஽

∗ (𝑡) × 𝜎ெ,௧ + 𝜇ெ,௧ (3-6) 
 

where 𝑈ெ,஽
∗ (𝑡) is the simulated wind speed at hour 𝑡 in 𝐷th day of month 𝑀, 𝑍ெ,஽

∗ (𝑡) 

is the standardized, sampled and reordered wind speed at hour 𝑡 in 𝐷th day of month 

𝑀, 𝜇ெ,௧ is the mean of the observed hourly wind speeds in month 𝑀 for the 𝑡th hour, 

𝜎ெ,௧ is the standard deviation of the observed hourly wind speeds in month 𝑀 for the 

𝑡th hour. Thus, 𝑀 = January, February,…, December, 𝐷 = 1, 2, …, 30 (or 31), and 

𝑡 = 1, 2,…, 24.  

3.2 Calculation of Hourly Wind Energy 

In generating simulated hourly wind speeds, station-based observed hourly wind 

speeds at 10 meters are used. However, since the wind turbines are located at higher 

elevations, the simulated hourly wind speeds have to be extrapolated to the hub 

height. This is achieved by the power-law expression in this study. The power law is 

defined by the following equation (Manwell et al., 2009): 
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 𝑈(𝑒)

𝑈(𝑒௥)
=  ൬

𝑒

𝑒௥
൰

ఈ

 (3-7) 

 

where 𝑈(𝑒) is hourly wind speed at height 𝑒, 𝑈(𝑒௥) is the reference hourly wind 

speed at the reference height 𝑒௥, 𝛼 is the power-law exponent. Here, 𝑈(𝑒௥) is the 

simulated hourly wind speeds obtained at 10 meters. The power-law exponent 

changes with many parameters, and these parameters affect the power-law exponent 

in a complicated manner, so Justus & Mikhail (1976) reduce the simplicity and 

applicability of the power-law (Manwell et al., 2009). Therefore, an empirical 

expression proposed by Justus & Mikhail (1976) is used in this study: 

 
α =

0.37 − 0.088 ln൫𝑈(𝑒௥)൯

1 − 0.088 ln ቀ
𝑒௥

10ቁ
 (3-8) 

 

where the unit of 𝑈(𝑒௥) is m/s, and the unit of 𝑒௥ is m.  

Equation (3-8) is derived from the power law for wind profiles, considering the 

consistency between the wind speed height variation and Weibull wind speed 

probability distributions. The constants 0.37 and -0.088 used in Equation (3-8) are 

specific to a reference height of 10 meters (Justus & Mikhail, 1976). It can be seen 

from Equation (3-8) that α is a function of the hourly wind speed at the reference 

height. 

Once the simulated hourly wind speeds are adjusted to hub height, they can be used 

for wind energy calculations. The power generated by a wind turbine varies with 

wind speed, and each turbine has a unique power curve based on its technical 

specifications. Using this power curve allows for the assessment of a wind turbine's 

energy production without the need for detailed technical calculations for each 

component. In this study, the power curve of the selected General Electric (GE) 2.5 

MW wind turbine is sourced from the catalog of wind turbine manufacturers and is 

employed to calculate wind energy (GE, 2010). Wind energy is determined by 

multiplying power output by the time interval. The calculated wind energy is 
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integrated into the optimization model, which seeks to identify the optimal daily 

operation schedule for the WHHS.  

3.3  Daily Revenue Optimization Model 

In this study, the daily revenue optimization model used in Ercan (2020) is used. The 

original optimization model was developed by Cruz et al. (2014) to maximize the 

daily revenue of the WHHS while operating as a closed-loop system (i.e., all external 

inflows and outflows to the reservoirs are excluded). Then, it was modified by Ercan 

(2020), and these modifications are mentioned in Appendix A. The mathematical 

formulation of the optimization model and associated explanations are given in 

Appendix A. 

The optimization model has eight parameters (Ercan, 2020), which are the maximum 

energy that can be generated by wind turbines in an hour, the maximum energy that 

can be generated by the hydro turbine in an hour, the maximum energy that can be 

bought from the grid in an hour, the maximum energy that can be consumed by the 

pump in an hour, the minimum energy level in the upper reservoir, the maximum 

energy level that can be stored in the upper reservoir, the efficiency for the turbine 

mode and the efficiency for the pump mode (Ercan, 2020). Details of parameters of 

the daily revenue optimization model are given in Appendix B. 

The inputs for the daily revenue optimization model are hourly wind energy 

generation and hourly electricity price. The optimization model operates on a daily 

basis, meaning that for each day, it optimizes revenue using hourly wind energy 

values from 00:00 to 23:00 and the corresponding hourly electricity prices for the 

same period. Since the optimization model operates on a daily basis, it runs 

separately for each of the 365 days in a year to determine the optimal revenue for 

each day. The final annual revenue is obtained by aggregating the results of these 

365 daily optimizations. This means that while the optimization model runs for 365 
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days, it retrieves the required data for each day from the available hourly wind energy 

and hourly electricity price data for the entire year.  

Ercan (2020) estimated hourly electricity prices using an LSTM model and used 

hourly wind speed data from the NASA MERRA-2 database and did not include 

uncertainties in wind speed into his study. Here, since the main goal is to analyze the 

effect of uncertainties in wind speed on annual energy revenue of the WHHS, 1,000 

simulated hourly wind speed series for a year are used.  

In this study, the optimization model takes hourly wind energy and day-ahead market 

electricity prices as input variables. Hourly wind energy is derived from simulated 

hourly wind speeds, which are generated using the aLHS method. Hourly electricity 

prices of 13 years from 2012 to 2024 are obtained from the EPİAŞ Transparency 

Platform (n.d.) and are used directly as inputs for the daily revenue optimization 

model.  

3.4 Uncertainty Analysis 

Uncertainty in annual revenue is primarily due to uncertainties in hourly electricity 

prices and uncertainties in hourly wind speeds. In this study, the effect of electricity 

price uncertainty on the annual revenue is incorporated into the analysis through a 

scenario-based approach. Each scenario consists of the realized hourly electricity 

prices (historic and realized are used interchangeably in this study) of the scenario 

year which are directly obtained from EPİAŞ Transparency Platform (n.d.). In this 

study, thirteen different scenarios are used to represent electricity prices for each 

year from 2012 to 2024. On the other hand, uncertainties in wind speed are integrated 

into the analysis through a Monte Carlo simulation based on aLHS approach. 

Consequently, the optimization model is run for each of the 1,000 simulated hourly 

wind speed time series and for each scenario. This approach allows for a 

comprehensive analysis of the system's performance under various simulated 

scenarios, capturing the variability in wind speed and electricity prices. 
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To model the uncertainty in wind speed, hourly wind speed data from 2014 to 2023, 

obtained from the Turkish State Meteorological Service, are used as the basis for 

generating simulated wind speeds. aLHS method is applied to capture the statistical 

properties and temporal dependencies (autocorrelations) of the observed wind 

speeds, and 1,000 simulated hourly wind speed series for a year are generated. 

In this study, the daily revenue optimization model aims to maximize the operating 

revenue by utilizing hourly electricity prices and simulated hourly wind speed data 

for each day of a year. For every day, the model determines the optimal operational 

strategy based on 24-hour data, and the daily revenues are subsequently aggregated 

to compute the annual optimized revenue. 

The model assesses the impact of variations in electricity prices on system 

performance by employing realized electricity prices for each scenario from 2012 to 

2024. For each scenario, the same set of 1,000 simulated hourly wind speed series is 

used as input. This approach facilitates a detailed examination of how fluctuations 

in electricity price conditions affect the revenue performance of the system, enabling 

comprehensive analyses based on the results obtained. 

Furthermore, two wind farms with different installed capacities, one being 

significantly larger than the other, are evaluated in order to quantify the effect of 

capacity expansion. This methodology elucidates how the outcomes derived from 

both electricity price scenarios and wind speed simulations vary with different 

capacity setups, thereby making a significant contribution to literature. 

Consequently, within the framework of uncertainty analysis, a total of 26,000 

optimized annual WHHS revenue outcomes are obtained by considering 13 different 

scenarios (i.e., realized electricity prices in years from 2012 to 2024), 1,000 

simulated hourly wind speed series per year, and 2 different wind farm installed 

capacities (i.e., 13 × 1,000 × 2 = 26,000). This approach provides a deeper 

understanding of how variability in wind conditions and electricity prices affects the 

operational strategies and financial performance of the hybrid system, thereby 

enhancing decision-making under uncertainty. 
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CHAPTER 4  

4 CASE STUDY AND DATA 

A hypothetical WHHS is used as a case study to demonstrate the application of the 

models developed in this study. The hypothetical WHHS is a wind farm integrated 

with the existing Uluabat Hydropower Plant, which operates as a closed-loop system. 

The main goal of this study is to analyze the impact of wind speed uncertainty on 

energy revenue by simulating hourly wind speeds and incorporating them into an 

optimization model. Using the simulated hourly wind speeds and historic hourly 

electricity prices from EPİAŞ for the years 2012 to 2024 (referred to as the scenario 

years), the optimization model generates an optimum daily schedule for the WHHS 

to maximize daily revenue for each day of the scenario year.  

In this chapter, the details of the case study site (Section 4.1) and the data that serve 

as inputs for the models are explained. Hourly wind speed data source selection is 

explained in Section 4.2. Observed hourly wind speeds at MS18386 are analyzed in 

Section 4.3. Calculation of hourly wind energy from simulated hourly wind speeds 

is explained in Section 4.4. Finaly, Historic hourly electricity prices are described 

and analyzed in Section 4.5.  

4.1 Location of the WHHS 

The Uluabat Hydropower Plant, with its 100 MW installed capacity, is located in the 

Susurluk Basin on the Orhaneli River in the Marmara Region of Turkey. Water from 

the Çınarcık Dam reservoir is released to Lake Uluabat to generate electricity. In this 

study, a hypothetical scenario is considered. The Çınarcık Dam and Lake Uluabat 

are conceptualized as the upper and lower reservoirs of a pumped storage 

hydropower plant, respectively. Additionally, it is assumed that wind turbines are 

located near the hydropower plant site, owned and operated by the same company. 
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The pumped storage hydropower plant and the wind turbines collectively represent 

the hypothetical WHHS. Although the Çınarcık Dam and Uluabat Hydropower Plant 

are located on a river, it is assumed that the hypothetical WHHS operates as a closed-

loop system. This means that all natural inflows and outflows to and from the 

Çınarcık Dam are neglected. The location of the Uluabat Hydropower Plant is shown 

in Figure 4.1. 

 

 

Figure 4.1 Location of the Case Study Site 
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4.2 Selection of Hourly Wind Speed Data Source 

This study is based on a hypothetical scenario, as there is no existing wind farm in 

the study area. However, the goal is to analyze how the operation of a hydroelectric 

power plant changes with the addition of a wind farm, particularly considering the 

uncertainty in hourly wind speeds. To achieve this, a hypothetical wind farm is 

assumed and placed close to the hydroelectric power plant at a reasonable location. 

There is not any meteorological station at or in the close vicinity of the hydroelectric 

power plant, meaning that no direct wind speed measurements are available for this 

specific location. However, global meteorological models provide hourly wind speed 

data for specific locations at various spatial resolutions. One of the most widely used 

datasets is ERA5, the fifth-generation reanalysis dataset from the European Centre 

for Medium-Range Weather Forecasts (ECMWF). ERA5 provides global climate 

and weather data spanning the past eight decades, with records available from 1940 

onward. It replaces the previous ERA-Interim reanalysis and offers improved spatial 

and temporal resolution. 

Among reanalysis datasets, ERA5 demonstrates strong performance compared to 

others, as shown by Olauson (2018). This study highlights that ERA5 outperforms 

datasets like MERRA-2 in wind energy modeling, though its performance varies 

depending on the region. Thus, first the performance of ERA5 data in this region is 

evaluated through comparison of hourly wind speeds from ERA5 with observed 

hourly wind speeds from three nearby meteorological stations. The results given in  

Table 4.1 indicate that ERA5 data aligns well with MS17673, showing a relatively 

high correlation (0.79) and a positive Nash-Sutcliffe Efficiency (0.52), suggesting 

reasonable agreement with observed data. However, for MS17675 and MS18386, 

the correlations are lower (0.58 and 0.62, respectively), and the NSE values are 

negative (-1.38 and -0.18, respectively), indicating poor performance. In addition, 

ERA5 underestimates wind speed at all stations, as shown by the negative PBIAS 
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values. These findings suggest that the ERA5 model’s performance is poor in this 

region, likely due to local geographical and meteorological influences. 

The results show that ERA5 model performance varies across stations and is 

particularly poor for MS17675 and MS18386. Therefore, using ERA5 reanalysis 

data in this region is not reliable for this study. As a result, the wind farm is assumed 

to be located near the closest meteorological station (MS18386), with available 

hourly wind speed measurements. Thus, observed hourly wind speeds from 

MS18386 are used in this study.  

Table 4.1 Comparison of ERA5 Hourly Wind Speeds with Three Nearby 

Meteorological Stations' Observed Hourly Wind Speeds 

 Correlation RMSE PBIAS NSE 

MS17673 0.79 1.45 -28.27 0.52 

MS17675 0.58 1.89 -60.24 -1.38 

MS18386 0.62 1.93 -40.83 -0.18 

4.3 Analysis of the MS18386 Hourly Wind Speeds  

The observed hourly wind speeds at MS18386 are obtained from the Turkish State 

Meteorological Service for the years between 2014 and 2023. Within the simulation 

duration (i.e., 2014-2023) there are 83521 hours with data and 4127 missing hours 

of wind speed data (see Table 4.2). It is observed that missing values mostly result 

from short-term measurement gaps (e.g., 2, 3, or 4 hours). However, in the measured 

data between 2014 and 2023, there are two instances of long-term measurement 

gaps: the first between June 5, 2018, and August 1, 2018, resulting in a 57-day 

missing period, and the second between April 28, 2023, and June 22, 2023, lasting 

55 days. Due to the presence of missing data, which hindered the correlation 

analyses, and considering that the amount of missing data is small relative to the 

overall dataset, it is decided to impute these missing values as explained in Section 

3.1. While filling the missing values in the wind speed dataset, the time of day and 
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month is taken into account. For each missing value, the average wind speed for the 

same hour of the same month is calculated and used as a replacement. The dataset is 

grouped by month and hour, and the mean wind speed for each group is determined. 

Missing values are then substituted with the appropriate group means. Using this 

approach, the dataset is preprocessed while preserving its daily and seasonal patterns, 

making it more reliable for future analysis and simulations. The integrity of the data 

is maintained throughout this process. 

Table 4.2 Periods of Received Record and Numbers of Observations at MS18386 

SMS Station 

Name 

SMS Station 

Number 

Received Period 

of Record 

Number of 
Observations 

Valid Missing 

Nilüfer MS18386 2014-2023 83521 4127 

4.3.1 Stationarity Analysis of MS18386 Hourly Wind Speeds 

The stationarity of hourly observed wind speed is evaluated using an R script that 

applies the Augmented Dickey-Fuller (ADF) test introduced by Dickey & Fuller 

(1979) across various frequencies (daily, weekly, monthly, yearly), lags (0, 1, 2, 3, 

4, 5 and 6 hours), and test types. Four test types are utilized: one assuming 

stationarity, and three others with distinct model specifications—no constant, 

constant only, and constant with trend. The first type tests for stationarity directly, 

while the second excludes a constant term, the third includes a constant to account 

for a mean level, and the fourth incorporates both a constant and a trend to capture 

potential linear growth. R script stationarity test is provided in Appendix C. The 

results across all lags, frequencies (daily, weekly, monthly, yearly), and test types 

consistently confirm stationarity. The results of the stationary test are provided in 

Appendix D.  
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4.3.2 Diurnal Variation and Seasonality Analysis of MS18386 Hourly 

Wind Speeds 

This study utilizes hourly wind speeds at station MS18386 from 2014 to 2023. Figure 

4.2 displays the diurnal variation of hourly wind speeds from January 2014 to 

December 2023 observed at MS18386. As seen in Figure 4.2, there are fluctuations 

in the expected values of the observed hourly wind speeds. This phenomenon is 

known as diurnal variation.  

 

 

Figure 4.2 Diurnal Variation of Hourly Wind Speeds at MS18386 from 2014 to 2023 

 

Diurnal variation of hourly wind speeds observed in each month at MS18386 

between 2014 and 2023 is investigated as well. Diurnal variation of hourly wind 

speeds at MS18386 for each of the twelve months from 2014 to 2023 is given in 

Figures 4.3 to 4.14. An examination of Figure 4.3 through Figure 4.14 reveals that 

diurnal variation exhibits distinct characteristics across different months, providing 

compelling evidence of seasonality within the data.  
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Figure 4.3 Diurnal Variation of Hourly Wind Speeds at MS18386 for all January 

 

 

Figure 4.4 Diurnal Variation of Hourly Wind Speeds at MS18386 for all February 

Months from 2014 to 2023  
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Figure 4.5 Diurnal Variation of Hourly Wind Speeds at MS18386 for all March 

Months from 2014 to 2023  

 

 

Figure 4.6 Diurnal Variation of Hourly Wind Speeds at MS18386 for all April 

Months from 2014 to 2023   
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Figure 4.7 Diurnal Variation of Hourly Wind Speeds at MS18386 for all May 

Months from 2014 to 2023   

 

Figure 4.8 Diurnal Variation of Hourly Wind Speeds at MS18386 for all June 

Months from 2014 to 2023  
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Figure 4.9 Diurnal Variation of Hourly Wind Speeds at MS18386 for all July Months 

from 2014 to 2023   

 

 

Figure 4.10 Diurnal Variation of Hourly Wind Speeds at MS18386 for all August 

Months from 2014 to 2023   
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Figure 4.11 Diurnal Variation of Hourly Wind Speeds at MS18386 for all September 

Months from 2014 to 2023   

 

 

Figure 4.12 Diurnal Variation of Hourly Wind Speeds at MS18386 for all October 

Months from 2014 to 2023  
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Figure 4.13 Diurnal Variation of Hourly Wind Speeds at MS18386 for all November 

Months from 2014 to 2023   

 

 

Figure 4.14 Diurnal Variation of Hourly Wind Speeds at MS18386 for all December 

Months from 2014 to 2023   
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Monthly average wind speeds are calculated using observed hourly wind speeds at 

station MS18386 from 2014 to 2023 and are shown in Figure 4.15. As indicated by 

these averages, there are noticeable differences between the monthly averages, some 

months demonstrating higher similarity. For example, October, November and 

December have similar values, as do April and May, while January, February and 

March also show comparable averages. However, these patterns do not align with 

the typical seasonal cycles of winter, spring, or summer, as the groupings do not 

follow the traditional seasonal months. Given these variations, it is not appropriate 

to divide the data into three-month periods based on conventional seasons. To 

effectively treat seasonality and ensure a more accurate analysis, we decided to 

remove diurnal variations for each month separately. This approach takes into 

account the distinct characteristics of each month, leading to more reliable results. 

 

Figure 4.15 Monthly Average MS18386 Wind Speeds between 2014 and 2023 

Another approach to analyze seasonal variations is the use of monthly cumulative 

distribution functions (CDFs) which will help identifying periods of stable or highly 

variable wind conditions. The shape and steepness of the CDF curves reveal 

important characteristics such as the consistency of wind speeds and the presence of 
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extreme values, which impact the efficiency and reliability of wind-based 

applications. CDFs of hourly wind speeds for each month are given in Figure 4.16. 

As shown in Figure 4.16, the CDFs display distinct patterns, reflecting seasonal 

differences in wind behavior. The positioning and shape of the curves indicate that 

some months experience higher or lower wind speeds more frequently than others. 

June and August have CDFs that are positioned further to the right, indicating that 

wind speeds are generally higher during these months. In contrast, months such as 

October, November, and December have CDFs positioned further to the left and 

increase more gradually, suggesting that wind speeds are lower on average. The 

differences in the slopes of the curves further emphasize the distribution of wind 

speeds, with some months having more concentrated wind speed values while others 

exhibit a wider range. These results provide essential insights into seasonal wind 

speed behavior. 

Based on the previous analysis, diurnal variations are removed by subtracting the 

hourly expected values of data for each month separately, as explained in Section 

3.1.1. CDFs of hourly wind speeds for each month after standardization (removal of 

diurnal variation) are given in Figure 4.17. 

As can be seen from Figure 4.17, although these CDFs are in better agreement with 

each other than those of non-standardized wind speeds but they do not exactly align. 

Thus, examination of the CDFs indicates that sampling hourly wind speed data in 

monthly blocks is preferable to better represent monthly variations. For this reason, 

LHS is applied for each month to generate a simulated hourly wind speed time series 

for that month, then they are combined to obtain a simulated hourly wind speed time 

series for a year. 

 



 
 

55 

 

Figure 4.16 CDFs of Hourly Wind Speeds at MS18386 for all Months 

 

 

Figure 4.17 CDFs of Standardized Hourly Wind Speeds at MS18386 for all Months 
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4.4 Wind Turbine Used in the Hypothetical WHSS 

Wind energy is one of two inputs for the daily revenue optimization model. Hourly 

wind speeds are simulated using aLHS for a year, and they need to be converted to 

hourly wind energy to be used as the input of the optimization model. Thus, first, 

hourly wind speeds are simulated based on the historical data observed in MS18386 

meteorological station between the years 2014 and 2023. MS18386 station records 

wind speeds at 10 m above ground. 

This study assumes a hypothetical WHSS. The wind turbines used in the WHSS are 

assumed to be 2.5 MW wind turbines manufactured by General Electric. This wind 

turbine has 85 meters hub height, 3 m/s cut-in speed and 25 m/s cut-out speeds (GE, 

2010). Thus, simulated wind speeds are extrapolated to the 85 m hub height from the 

10 m observation height using Equation (3-7). Then, to convert simulated hourly 

wind energy at 85 m hub height to hourly wind energy power curve of the wind 

turbine acquired from General Electric (2010) is used. The power curve of the 2.5 

MW wind turbine is given in Figure 4.18.  

 

Figure 4.18 GE 2.5 MW Wind Turbine Power Curve (GE, 2010) 
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Since manually reading wind energy values corresponding to each of the 1,000 

simulated hourly wind speeds for a year from the graph is time-consuming, a 

polynomial function fitted to the power curve presented in Figure 4.18 by Ercan 

(2020) is used. This function is given in Equation (4.1). 

 

 

𝑓(𝑥) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

 
0                                                                        𝑥 ≤ 3                                

                      
0.001𝑥ଷ + 0.025𝑥ଶ − 0.182𝑥 + 0.291  3 < 𝑥 ≤  8.859              

   
0.003𝑥ଷ − 0.168𝑥ଶ + 2.83𝑥 − 12.511  8.859 <  𝑥 ≤  12.791

 
2.5                                                                    𝑥 >  12.791                   

            
0                                                                       𝑥 > 25                             

 

 (4.1) 

 

4.5 Analysis of the Hourly Electricity Price Data 

Hourly electricity prices for the years 2012 to 2024 are obtained from the EPİAŞ 

Transparency Platform (n.d.). These realized electricity prices are used to generate 

scenarios for the years 2012 to 2024 to assess the impact of electricity price 

uncertainty on WHHS operations. Diurnal variation in hourly electricity prices for 

each year from 2012 to 2024 are given in Figure 4.19 to Figure 4.31. Each year's 

behavior is examined to better understand the data used. In 2012, electricity prices 

were highly volatile with sharp spikes between 10:00 and 19:00, and extreme outliers 

indicated serious imbalances. The year 2013 showed improved stability, with fewer 

outliers and a more controlled diurnal pattern, while 2014 maintained this structure 

with a clear increase in prices during the day and a decrease at night, though still 

with some spread in midday hours. In 2015, the diurnal trend became more distinct, 

but price volatility increased. The volatility peaked in 2016 with high price spikes 

between 10:00 and 17:00, reflecting an unstable marked. In contrast, 2017 marked a 

period of stability with tighter distributions and fewer outliers, and this stability 

continued into 2018 and 2019, where the diurnal shape of the prices became well-
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defined and consistent. Starting in 2020, prices began to rise moderately, and though 

the diurnal pattern remained, volatility increased, especially in peak hours. In 2021, 

price levels rose significantly across all hours, and the difference between night and 

day prices flattened, accompanied by greater uncertainty and price variability. The 

year 2022 experienced a dramatic price surge, with medians exceeding 2000 

TL/MWh and many hours hitting the price cap of 5000 TL/MWh.  This trend of 

extremely high prices continued into 2023, although a slight re-emergence of the 

diurnal pattern was observed. In 2024, despite the continued high price environment, 

the hourly structure of the market became more organized again, with daytime prices 

increasing and nighttime prices decreasing, and fewer extreme outliers than previous 

years.  

To summarize, between 2012 and 2016, the Turkish electricity market experienced 

significant volatility and instability, with frequent price spikes and irregular diurnal 

trends. From 2017 to 2019, the system became more stable and predictable, with 

clear daily cycles and fewer extreme fluctuations. However, starting in 2020, prices 

began to rise, and by 2022, the market faced a severe shock. While 2023 and 2024 

saw continued high prices, the hourly structure of the market started to normalize 

again. Thus, the scenario years used in this study demonstrate a wide range of hourly 

electricity price variations which will allow detailed analysis of the effect of variation 

in electricity prices on energy revenue variation in addition to wind speed variation. 
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Figure 4.19 Diurnal Variation of Hourly Electricity Prices in 2012 

 

 

Figure 4.20 Diurnal Variation of Hourly Electricity Prices in 2013 
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Figure 4.21 Diurnal Variation of Hourly Electricity Prices in 2014 

 

 

Figure 4.22 Diurnal Variation of Hourly Electricity Prices in 2015 



 
 

61 

 

Figure 4.23 Diurnal Variation of Hourly Electricity Prices in 2016 

 

 

Figure 4.24 Diurnal Variation of Hourly Electricity Prices in 2017 
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Figure 4.25 Diurnal Variation of Hourly Electricity Prices in 2018 

 

 

Figure 4.26 Diurnal Variation of Hourly Electricity Prices in 2019 
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Figure 4.27 Diurnal Variation of Hourly Electricity Prices in 2020 

 

Figure 4.28 Diurnal Variation of Hourly Electricity Prices in 2021 
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Figure 4.29 Diurnal Variation of Hourly Electricity Prices in 2022 

 

 

Figure 4.30 Diurnal Variation of Hourly Electricity Prices in 2023 
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Figure 4.31 Diurnal Variation of Hourly Electricity Prices in 2024 

To gain a clearer view of how electricity prices have changed over time, the monthly 

average values in TL, USD and EUR are computed and illustrated in Figure 4.32. 

From 2012 to around mid-2021, the electricity prices in TL remained relatively 

stable, fluctuating between approximately 100 and 400 TL/MWh. During this same 

period, the prices in USD and EUR also showed minor variation, remaining almost 

flat and close to each other. Starting in late 2021, a sharp and sustained increase in 

TL-based prices is observed, peaking in late 2022 to early 2023, where monthly 

average prices exceeded 3500 TL/MWh. While TL prices surged drastically, the 

corresponding USD and EUR prices rose only modestly, which confirms that much 

of the increase in TL terms was driven by currency devaluation rather than just real 

energy cost hikes. After reaching the peak, TL-based prices began to decrease but 

remained significantly elevated compared to the pre-2021 period, stabilizing around 

2000–2500 TL/MWh in 2023 and 2024. Meanwhile, prices in USD and EUR 

declined and flattened again, returning closer to pre-crisis levels. Thus, it is decided 

to carry out the energy revenue calculations in EUR rather than TL, to reflect 

variations in energy costs rather than currency devaluation. 
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Figure 4.32 Monthly Averaged Electricity Prices 

 



 
 

67 

CHAPTER 5  

5 RESULTS AND DISCUSSIONS 

In this chapter, the results of hourly wind speed simulation, the optimization model, 

and uncertainty analysis are presented and discussed. After developing an hourly 

wind speed simulation method that best represents the original hourly wind speed 

and obtaining the simulated hourly wind speeds for a year, they are used in the 

optimization model to evaluate the effect of uncertainty in wind speed and electricity 

prices on the uncertainty in energy revenue. Effect of uncertainties in hourly wind 

speeds on energy revenue is quantified through generation of 1,000 hourly wind 

speed time series using the LHS procedure, while uncertainties in hourly electricity 

prices are analyzed through a scenario-based approach. Energy revenues are 

obtained for 13 scenario years, from 2012 to 2024. 

5.1 Hourly Wind Speed Simulations 

Initially, the need for normalization of observed hourly wind speeds is investigated. 

In Monte Carlo or LHS simulations, normalization is not necessary since data can be 

sampled from any distribution (Minasny & McBratney, 2006) while for 

autoregressive models, data has to be normalized (Poggi et al., 2003). In this study, 

the decision to normalize or not normalize the observed hourly wind speeds is made 

by conducting simulations with both approaches and comparing their performances. 

As seen in Figure 5.1, simulations performed with and without normalization with a 

maximum time lag of 5 hours generated very similar results. Thus, it is found 

unnecessary to carry out normalization in this study. 
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Figure 5.1 ACF of Simulated Hourly Wind Speeds with Normalization and without 

Normalization of MS18386 Hourly Wind Speeds 

 

5.1.1 Selection of the Maximum Time Lag 

The maximum time lag is a key parameter in the hourly wind speed simulation 

process. The objective function used in minimizing the difference between the 

semivariograms of the sampled and the observed data (see Equation (3.3)) requires 

a maximum time lag, which is determined using two approaches in this study. First, 

the partial autocorrelation function, PACF of standardized observed hourly wind 

speed is examined to determine the time lag at which the autocorrelation becomes 

insignificant. Secondly, the aLHS-based hourly wind speed simulation is run with 

different maximum time lags (e.g., 1, 2, 3, ..., 24 hours), and the ACFs of simulated 

hourly wind speeds for each maximum time lag are compared with the ACF of 

observed hourly wind speeds. The results are presented in the following subsections. 
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5.1.1.1 PACF Analyses for Maximum Time Lag Selection 

To select the maximum time lag to be used in the optimization step of aLHS, PACF 

analysis is conducted. In order to examine the partial autocorrelation behavior of 

observed hourly wind speeds without diurnal effect, hourly wind speed data is 

standardized using Equation (3.1). This preprocessing step is crucial for analyzing 

temporal dependencies, without the interference of repetitive daily patterns. 

The maximum time lag for the optimization step of aLHS is determined by analyzing 

the PACF of standardized hourly wind speed observations, as shown in Figure 5.2. 

It shows higher than 0.8 partial autocorrelation at 1-hour lag, indicating a strong 

correlation between wind speeds one hour apart. This suggests short-term persistence 

in wind speed. Partial autocorrelations decay with increasing lag and around 6-hours 

it diminishes. At this point the maximum time lag is selected as 5 hours. 

 

Figure 5.2 PACF of Standardized Hourly Wind Speed at MS18386 between 2014 

and 2023 
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5.1.1.2 Sensitivity Analysis for Maximum Time Lag Selection 

Hourly wind speed simulations are conducted using different maximum time lag 

values, and ACF is computed for each simulated dataset. Then, to compare ACF of 

observed hourly wind speeds with ACF of simulated hourly wind speeds with 

different maximum lag time, the absolute errors between them are calculated and 

plotted in Figure 5.3 to Figure 5.7. The y-axis in Figure 5.3 to Figure 5.7 (ACF 

Observed - ACF Simulated) represents the absolute difference between the observed 

hourly wind speed ACF and the simulated hourly wind speed ACF for different 

maximum time lags. Higher values indicate a greater discrepancy between the 

simulated and observed ACF, while lower values signify a better alignment. As the 

difference between the ACF of observed values and simulated values approach zero, 

the simulation more accurately captures the autocorrelation structure of the observed 

wind speed data. Large fluctuations and consistently high differences suggest 

simulation struggles to replicate the observed data. The ACF errors are visualized to 

analyze the impact of different maximum lag times on temporal dependence. This 

analysis is done to identify the most suitable maximum time lag value that produces 

results closest to the observed hourly wind speed autocorrelation values. 

Analysis Figure 5.3 to Figure 5.7 reveals that when the maximum time lag is between 

1 and 6 hours, the ACF differences are slightly higher in the first few hours. 

However, as time progresses, the simulated ACF values gradually converge toward 

the observed hourly wind speed ACF. Among these, a maximum time lag of 5 hours 

yields the best results, as it demonstrates the lowest error at initial lag hours and the 

most stable alignment with the observed ACF for late time lags. In contrast, when 

the maximum time lag ranges from 7 to 24 hours, the simulated ACF values become 

increasingly irregular and oscillatory. These fluctuations suggest that the simulations 

struggle to capture the observed ACF structure effectively, particularly for longer 

time lags. The deviation is especially pronounced beyond 15 hours, where the 

simulated ACF significantly diverges from the observed ACF, failing to preserve its 

temporal correlation.  
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Figure 5.3 The error between ACF of Observed and Simulated Hourly Wind Speeds 

with maximum time lags of 1, 2, 3, 4, and 5 hours 

 

 

Figure 5.4 The error between ACF of Observed and Simulated Hourly Wind Speeds 

with maximum time lags of 5, 6, 7, 8, 9, and 10 hours 
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Figure 5.5 The error between ACF of Observed and Simulated Hourly Wind Speeds 

with maximum time lags of 10, 11, 12, 13, 14 and15 hours 

 

 

Figure 5.6 The error between ACF of Observed and Simulated Hourly Wind Speeds 

with maximum time lags of 15, 16, 17, 18, 19, and 20 hours 
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Figure 5.7 The error between ACF of Observed and Simulated Hourly Wind Speeds 

with maximum time lags of 20, 21, 22, 23, and 24 hours 

Figure 5.3 and Figure 5.4 show that the autocorrelation values of the simulated 

hourly wind speeds which have a maximum time lag between 1 hour to 6 hours 

closely match the autocorrelation values of the observed hourly wind speeds, 

especially in the early lags. To facilitate a more precise comparison between the 

observed and simulated ACF values in the early lags, Table 5.1 presents the ACF 

values of simulated hourly wind speeds generated with maximum time lags of 1, 2, 

3, 4, 5, and 6 hours, alongside the observed data’s ACF values. ACF values are 

shown for the first 24 hours lag since after 24 hours lag all simulated hourly wind 

speeds (maximum time lags of 1, 2, 3, 4, 5, and 6 hours) ACF get close to each other 

as can be seen from Figure 5.3 and Figure 5.4.  
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Table 5.1 ACF of Simulated Hourly Wind Speeds for Maximum Time Lags up to 6 

Hours 

                      Max. Time  
                      Lag (Hours) 
     ACF 
Lag (Hours) 

1 2 3 4 5 6 
MS18386 

 Hourly Wind 
Speeds 

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
1 0.76 0.77 0.78 0.79 0.79 0.78 0.88 
2 0.45 0.55 0.59 0.62 0.62 0.61 0.77 
3 0.20 0.27 0.39 0.45 0.48 0.47 0.65 
4 0.02 0.06 0.14 0.27 0.34 0.34 0.53 
5 -0.07 -0.11 -0.04 0.03 0.16 0.21 0.41 
6 -0.10 -0.19 -0.19 -0.13 -0.07 0.05 0.30 
7 -0.12 -0.23 -0.29 -0.25 -0.21 -0.18 0.20 
8 -0.15 -0.23 -0.34 -0.35 -0.30 -0.29 0.11 
9 -0.19 -0.22 -0.34 -0.42 -0.38 -0.36 0.04 

10 -0.23 -0.21 -0.32 -0.42 -0.44 -0.40 -0.01 
11 -0.26 -0.21 -0.29 -0.40 -0.48 -0.43 -0.05 
12 -0.28 -0.21 -0.25 -0.37 -0.45 -0.46 -0.07 
13 -0.27 -0.21 -0.22 -0.32 -0.40 -0.46 -0.07 
14 -0.24 -0.20 -0.18 -0.25 -0.35 -0.40 -0.05 
15 -0.19 -0.18 -0.15 -0.18 -0.28 -0.31 -0.02 
16 -0.14 -0.13 -0.11 -0.11 -0.18 -0.22 0.03 
17 -0.08 -0.07 -0.06 -0.02 -0.06 -0.13 0.10 
18 0.00 0.01 0.01 0.06 0.05 -0.03 0.18 
19 0.08 0.09 0.09 0.15 0.15 0.09 0.27 
20 0.17 0.17 0.17 0.23 0.25 0.22 0.36 
21 0.26 0.24 0.25 0.31 0.35 0.33 0.44 
22 0.33 0.31 0.32 0.36 0.42 0.40 0.51 
23 0.38 0.35 0.36 0.39 0.45 0.44 0.56 
24 0.40 0.37 0.38 0.39 0.45 0.45 0.57 

 

Based on Table 4.1, during the initial hours, the simulated hourly wind speeds using 

a maximum time lag of 5 hours yield the most accurate results, closely matching the 

observed hourly wind speeds. According to the findings from the sensitivity analysis, 

setting the maximum time lag to 5 hours appears to be the most effective approach 

for achieving an accurate representation of the observed wind speed ACF. 

As a result of the analyses conducted above, the most suitable maximum time lag for 

this study has been determined as 5-hours. Hence, a maximum time lag of 5 hours is 

used in the optimization step of aLHS. From here on the simulated hourly wind speed 

generated using a 5-hour maximum time lag will be referred to as the simulated 

hourly wind speeds. 
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5.1.2 Autocorrelated Latin Hypercube Sampling (aLHS) 

After determining the maximum lag time as 5 hours, the aLHS procedure is carried 

out. Then to preserve the autocorrelation structure, a reordering process is applied to 

the sampled data using the Powell optimization method where the semivariogram of 

the reordered data is matched to that of the observed data, by minimizing the total 

semivariance error across lags of 1 to 5 hours which is the maximum lag time. 

Although a maximum of 1,000,000 iterations is allowed, convergence is typically 

achieved within 20 to 40 iterations in this study. After the de-standardization step 

simulated hourly wind speed time series for a year is obtained.  

5.1.3 Hourly Wind Speed Simulation Results 

Using the methodology outlined in Section 3.1, 1,000 simulated hourly wind speeds 

for a year are generated. To evaluate the effectiveness of this approach, the statistical 

properties of these simulated wind speeds are compared with those observed hourly 

wind speeds recorded between 2014 and 2023. The following paragraphs present a 

detailed comparison of their statistical characteristics, highlighting the performance 

of the simulation methodology.  

In Figure 5.8, the diurnal variation of the observed hourly wind speeds from 2014 to 

2023 and the simulated hourly wind speeds are presented. The observed dataset 

consists of 83,521 hourly wind speed data (10×365×24-missing data). On the other 

hand, simulated data includes 1,000 separate one-year-long hourly wind speed series, 

resulting in a total of approximately 8,760,000 simulated hourly wind speed data 

(1,000×365×24). In Figure 5.9, out of 83,521 observed wind speed data points, 

80,389 (96.25%) falls within the whisker range of the boxplot, while 3,132 values 

(3.75%) are considered outliers. Similarly, in the simulated dataset containing 

8,760,000 values, 8,454,470 (96.51%) are within the whiskers, and 305,530 (3.49%) 

are outliers. 
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As can be seen from Figure 5.8, both datasets exhibit a clear diurnal pattern, with 

wind speeds increasing during the afternoon hours (approximately between 13:00 

and 17:00). The median values and interquartile ranges of the simulated data are 

similar to those of the observed data, indicating that the simulation method 

effectively captures both the central tendency and variability. While the proportion 

of outliers in both datasets is approximately the same (3.75% for observed and 3.49% 

for simulated), the outlier values in the simulated dataset tend to be higher than those 

in the observed dataset. This is due to the sampling of extreme events with longer 

return periods, which are rarely or not observed in the historical dataset, but are 

sampled during 1,000 simulation cycles. 

 

Figure 5.8 Diurnal Variation of Observed and Simulated Hourly Wind Speeds  

In Figure 5.9, diurnal variation of standardized observed and simulated hourly wind 

speeds are presented. The standardized observed and standardized simulated hourly 

wind speeds do not exhibit a diurnal pattern, as the standardization removes the 

diurnal behavior. The distributions of both datasets appear centered around zero with 

similar interquartile ranges, indicating that the simulation method preserves the 

relative variability in wind speed. In Figure 5.10, 80,180 out of 83,521 observed 

values (95.98%) fall within the whisker range, leaving 3,341 values (4.02%) as 
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outliers. In the simulated dataset, 8,437,765 out of 8,760,000 values (96.32%) lie 

within the whiskers, with 322,235 (3.68%) classified as outliers. 

 

Figure 5.9 Diurnal Variation of Standardized Observed and Standardized Simulated 

Hourly Wind Speeds  

Figure 5.10 compares the monthly distribution of observed (blue) and simulated 

(orange) hourly wind speeds. Overall, the simulated data successfully reproduces the 

seasonal trend observed in the historical dataset. The median values of the simulated 

wind speeds are generally close to those of the observed data, although some 

deviations are present—particularly in July and August, where the simulated 

medians are higher, and in November, where they are slightly lower. The observed 

data tends to show wider whisker ranges, indicating greater variability within the 

central distribution. Notably, although the proportion of outliers in both datasets 

(%2.70 for observed and % 3.06 for simulated) are similar, the outlier values in the 

simulated dataset are typically higher than those in the observed dataset. This may 

again be due to the sampling of extreme events with longer return periods, which are 

not or rarely observed in the historical dataset, but are sampled during 1,000 

simulation cycles. 
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Figure 5.10 Monthly Variation of Observed and Simulated Hourly Wind Speeds 

In Figure 5.11, monthly variation of standardized observed and simulated hourly 

wind speeds is presented. For both boxplots, the outliers are around 4%.  

 

Figure 5.11 Monthly Variation of Standardized Observed and Standardized 

Simulated Hourly Wind Speeds  
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Figure 5.12 displays the CDFs of both observed and simulated hourly wind speeds. 

The black lines represent the CDFs of observed hourly wind speeds for each year 

between 2014 and 2023, while the green lines correspond to the CDFs of 1,000 

simulated hourly wind speed time series, each representing a simulation year. The 

simulated CDFs closely follow the range and shape of the observed CDFs, indicating 

that the simulation method effectively reproduces the overall statistical distribution 

of the historical wind speed data. The agreement is particularly strong in the central 

part of the distribution, while minor deviations can be observed in the tails, especially 

at higher wind speed values. This suggests that the simulation model successfully 

captures the general probabilistic behavior of wind speeds, with slight differences 

likely due to the rare extreme events introduced during the sampling process. 

 

Figure 5.12 CDFs of Observed and Simulated Hourly Wind Speeds  

Figure 5.13 presents the ACFs of observed and simulated hourly wind speeds up to 

a lag of 72 hours. The blue line represents the ACF calculated from the observed 

data spanning the years 2014 to 2023, while the orange line corresponds to the ACF 

computed from the 1,000 simulated hourly wind speed time series. Both curves 

exhibit a clear 24-hour periodicity, reflecting the diurnal nature of wind speed. The 

simulated ACF closely follows the observed ACF, particularly at larger lags, 
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indicating that the simulation method successfully captures the temporal dependency 

structure of wind speed. However, slight underestimations are observed in the 

simulated ACF at lower lags, suggesting a somewhat weaker short-term 

autocorrelation in the simulated data compared to the observed data. 

 

Figure 5.13 ACF of both Observed and Simulated Hourly Wind Speeds 
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5.2 Daily Revenue Optimization Model 

The simulation outcomes of the WHHS annual revenue, reflecting uncertainties in 

electricity prices and wind speeds, are presented in two sections: Section 5.2.1 details 

the results for a WHHS with a wind farm of 50 MW installed capacity, while Section 

5.2.2 outlines the outcomes for a WHHS with a wind farm of 250 MW installed 

capacity. 

5.2.1 Daily Revenue Optimization Results of WHHS with a 50 MW 

Installed Capacity  

In Figure 5.14 to Figure 5.26, the daily revenues for each year from 2012 to 2024 are 

presented, showcasing the optimized performance of a WHHS with a wind farm of 

50 MW installed capacity under varying electricity price and wind speed conditions. 

For the years between 2014 and 2023, observed hourly wind speed data is available. 

Therefore, for these specific years, the daily revenues calculated using observed 

hourly wind speeds and the corresponding realized electricity prices are also 

included in Figures 5.16 to 5.25. These additional red lines represent the WHHS 

revenue that would have been obtained based on actual wind and price conditions. 

The average daily revenues (i.e., the average of 1,000 simulations) for each year from 

2012 to 2024 are shown for a WHHS with a wind farm of 50 MW installed capacity 

on Figure 5.27.  
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Figure 5.14 Optimized Daily Revenues for Realized Electricity Price Year 2012. In 
February 13, daily revenue reached approximately 0.62 million euros, which is not shown on the 
figure to enhance the representation in the rest of the days.  
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Figure 5.15 Optimized Daily Revenues for Realized Electricity Price Year 2013 
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Figure 5.16 Optimized Daily Revenues for Realized Electricity Price Year 2014 
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Figure 5.17 Optimized Daily Revenues for Realized Electricity Price Year 2015 
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Figure 5.18 Optimized Daily Revenues for Realized Electricity Price Year 2016 
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Figure 5.19 Optimized Daily Revenues for Realized Electricity Price Year 2017 
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Figure 5.20 Optimized Daily Revenues for Realized Electricity Price Year 2018 
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Figure 5.21 Optimized Daily Revenues for Realized Electricity Price Year 2019 
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Figure 5.22 Optimized Daily Revenues for Realized Electricity Price Year 2020 
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Figure 5.23 Optimized Daily Revenues for Realized Electricity Price Year 2021 
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Figure 5.24 Optimized Daily Revenues for Realized Electricity Price Year 2022 
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Figure 5.25 Optimized Daily Revenues for Realized Electricity Price Year 2023 
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Figure 5.26 Optimized Daily Revenues for Realized Electricity Price Year 2024 
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Figure 5.27 Optimized Average Daily Revenues for Realized Electricity Price Years. 
In February 13, daily revenue reached approximately 0.62 million euros, which is not shown on the 
figure to enhance the representation in the rest of the days.  
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Monthly revenues from 2012 to 2024 are presented in Figure 5.28 to Figure 5.40. 

For the years between 2014 and 2023, observed hourly wind speed data is available. 

Therefore, for these specific years, the monthly revenues calculated using observed 

hourly wind speeds and the corresponding realized electricity prices are also 

included in Figures Figure 5.30 to Figure 5.39. These additional red lines represent 

the WHHS revenue that would have been obtained based on actual wind and price 

conditions. In most of these years, revenue in August is the highest with the highest 

variability. Variability in revenue from November to April is usually smaller than 

that of the rest of the year. 

 

Figure 5.28 Optimized Monthly Revenues for Realized Electricity Price Year 2012  
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Figure 5.29 Optimized Monthly Revenues for Realized Electricity Price Year 2013 

 

Figure 5.30 Optimized Monthly Revenues for Realized Electricity Price Year 2014 
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Figure 5.31 Optimized Monthly Revenues for Realized Electricity Price Year 2015 

 

Figure 5.32 Optimized Monthly Revenues for Realized Electricity Price Year 2016 
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Figure 5.33 Optimized Monthly Revenues for Realized Electricity Price Years 2017 

 

Figure 5.34 Optimized Monthly Revenues for Realized Electricity Price Year 2018 
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Figure 5.35 Optimized Monthly Revenues for Realized Electricity Price Year 2019 

 

Figure 5.36 Optimized Monthly Revenues for Realized Electricity Price Year 2020 
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Figure 5.37 Optimized Monthly Revenues for Realized Electricity Price Year 2021 

 

Figure 5.38 Optimized Monthly Revenues for Realized Electricity Price Year 2022 
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Figure 5.39 Optimized Monthly Revenues for Realized Electricity Price Year 2023 

 

Figure 5.40 Optimized Monthly Revenues for Realized Electricity Price Year 2024 

Figure 5.41, the average monthly revenues for each year from 2012 to 2024 are 

shown for a WHHS with wind farm of a 50 MW installed capacity. Each line 



 
 

103 

represents one year, calculated by averaging 1,000 monthly revenue trajectories from 

simulated wind speeds and optimized with that year’s electricity prices.  

 

 

Figure 5.41 Optimized Average Monthly Revenues for Realized Electricity Price 

Years  

In Figure 5.42, variation of annual revenues for each scenario year are plotted. In 

Figure 5.43 and Figure 5.44, variations of monthly revenues for each scenario year 

are plotted.  
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Figure 5.42 Variation of Annual Revenues for Realized Electricity Price Years  
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Figure 5.43 Variation of Monthly Revenues for Realized Electricity Price Years from 

2012 to 2019 
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Figure 5.44 Variation of Monthly Revenues for Realized Electricity Price Years from 

2020 to 2024 

Figure 5.45 presents the distribution of annual revenues for the WHHS with a wind 

farm of 50 MW installed capacity for each scenario year (i.e., 2012–2024). For each 

year, 1,000 annual revenue values are computed using the same set of 1,000 

simulated hourly wind speed time series. This allows isolating the impact of 

electricity price variability from that of wind speed uncertainty. Although the 

simulated wind speed data includes some extreme outliers (see Figure 5.8), the width 
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of the revenue distributions remains relatively narrow across all years. This suggests 

that the uncertainty resulting from wind speed variability has a limited influence on 

annual revenue. In contrast, the position of the PDFs shifts considerably along the x-

axis from year to year, reflecting changes in electricity prices result in relatively large 

changes in annual revenues. These horizontal shifts demonstrate that electricity price 

variability is the dominant driver of revenue variation. Although wind speed 

simulations included some extreme outliers (see Figure 5.9and Figure 5.10), the 

effect of wind-related uncertainty is relatively smaller compared to that of electricity 

market fluctuations. 

 

Figure 5.45 PDF of Annual Revenue for Realized Electricity Price Years 

 

Change in annual revenue interquartile range (IQR) with respect to hourly electricity 

price IQR is given in Figure 5.46. Each data point represents one scenario year (i.e., 

2012 to 2024) in Figure 5.46. There is a positive relationship between electricity 

price variability and revenue variability. In other words, as the hourly electricity 

price variability increases within a year, the corresponding uncertainty in the annual 

revenue, obtained through the optimization model with simulated wind data 



 
 

108 

increases. Notably, a particular year exhibits significantly higher price variability 

(~85 EUR) resulting in a substantial rise in revenue uncertainty (~0.27 million EUR), 

emphasizing how extreme market fluctuations can considerably amplify financial 

risk for WHHS. 

 

 

Figure 5.46 Change in Annual Revenue IQR with Hourly Electricity Price IQR  

 

The change in annual revenue median with hourly electricity price median is given 

in Figure 5.47. Again, each data point represents one scenario year (i.e., 2012 to 

2024) in Figure 5.47. As the median hourly electricity price increases, the 

corresponding median annual revenue increases as expected. A year with particularly 

high electricity prices (~130 EUR median price) clearly yields significantly higher 

median annual revenues (~14 million EUR), emphasizing the substantial influence 

of electricity market price levels on annual profitability. 
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Figure 5.47 Change in Annual Revenue Median with Hourly Electricity Price 

Median  
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5.2.2 Daily Revenue Optimization Results of WHHS with a 250 MW 

Installed Capacity  

In Figure 5.48 to Figure 5.60 the daily revenues for each year from 2012 to 2024 are 

presented, showcasing the optimized performance of a WHHS with a wind farm of 

250 MW installed capacity under varying electricity price and wind speed 

conditions. For the years between 2014 and 2023, observed hourly wind speed data 

is available. Therefore, for these specific years, the daily revenues calculated using 

observed hourly wind speeds and the corresponding realized electricity prices are 

also included in Figures 5.50 to 5.59. These additional red lines represent the WHHS 

revenue that would have been obtained based on actual wind and price conditions. 

The average daily revenues (i.e., the average or 1,000 simulations) for each year from 

2012 to 2024 are shown for a WHHS with a wind farm of 250 MW installed capacity 

on Figure 5.61.   
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Figure 5.48 Optimized Daily Revenues for Realized Electricity Price Year 2012. In 
February 13, daily revenue reached approximately 1.51 million euros, which is not shown on the 
figure to enhance the representation in the rest of the days.  
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Figure 5.49 Optimized Daily Revenues for Realized Electricity Price Year 2013 
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Figure 5.50 Optimized Daily Revenues for Realized Electricity Price Year 2014 
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Figure 5.51 Optimized Daily Revenues for Realized Electricity Price Year 2015 
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Figure 5.52 Optimized Daily Revenues for Realized Electricity Price Year 2016 
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Figure 5.53 Optimized Daily Revenues for Realized Electricity Price Year 2017 
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Figure 5.54 Optimized Daily Revenues for Realized Electricity Price Year 2018 
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Figure 5.55 Optimized Daily Revenues for Realized Electricity Price Year 2019 
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Figure 5.56 Optimized Daily Revenues for Realized Electricity Price Year 2020 
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Figure 5.57 Optimized Daily Revenues for Realized Electricity Price Year 2021 
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Figure 5.58 Optimized Daily Revenues for Realized Electricity Price Year 2022 
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Figure 5.59 Optimized Daily Revenues for Realized Electricity Price Year 2023 
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Figure 5.60 Optimized Daily Revenues for Realized Electricity Price Year 2024 
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Figure 5.61 Optimized Average Daily Revenues for Realized Electricity Price Years  
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Monthly revenues from 2012 to 2024 are given in Figure 5.62 to Figure 5.74. For 

the years between 2014 and 2023, observed hourly wind speed data is available. 

Therefore, for these specific years, the monthly revenues calculated using observed 

hourly wind speeds and the corresponding realized electricity prices are also 

included in Figure 5.30 to Figure 5.73. These additional red lines represent the 

WHHS revenue that would have been obtained based on actual wind and price 

conditions. Similar to the 50 MW installed capacity case, under the 250 MW case, 

August typically exhibits the highest monthly revenue along with the highest 

variability. Variability in revenue from November to April is usually smaller than 

that of the rest of the year. 

 

Figure 5.62 Optimized Monthly Revenues for Realized Electricity Price Year 2012  
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Figure 5.63 Optimized Monthly Revenues for Realized Electricity Price Year 2013 

 

Figure 5.64 Optimized Monthly Revenues for Realized Electricity Price Year 2014 
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Figure 5.65 Optimized Monthly Revenues for Realized Electricity Price Year 2015 

 

Figure 5.66 Optimized Monthly Revenues for Realized Electricity Price Year 2016 
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Figure 5.67 Optimized Monthly Revenues for Realized Electricity Price Year 2017 

 

Figure 5.68 Optimized Monthly Revenues for Realized Electricity Price Year 2018 
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Figure 5.69 Optimized Monthly Revenues for Realized Electricity Price Year 2019 

 

Figure 5.70 Optimized Monthly Revenues for Realized Electricity Price Year 2020 
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Figure 5.71 Optimized Monthly Revenues for Realized Electricity Price Year 2021 

 

Figure 5.72 Optimized Monthly Revenues for Realized Electricity Price Year 2022 
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Figure 5.73 Optimized Monthly Revenues for Realized Electricity Price Year 2023 

 

Figure 5.74 Optimized Monthly Revenues for Realized Electricity Price Year 2024 

Figure 5.75, the average monthly revenues for each year from 2012 to 2024 are 

shown for a WHHS with a wind farm of 250 MW installed capacity. Each line 
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represents one year, calculated by averaging 1,000 monthly revenue trajectories from 

simulated wind speeds and optimized with that year’s electricity prices.  

 

 

Figure 5.75 Optimized Average Monthly Revenues for Realized Electricity Price 

Years  

In Figure 5.76, variation of annual revenues for each scenario year are plotted. In 

Figure 5.77 and Figure 5.78, variations of monthly revenues for each scenario year 

are plotted.  
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Figure 5.76 Variation of Annual Revenues for Realized Electricity Price Years  
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Figure 5.77 Variation of Monthly Revenues for Realized Electricity Price Years from 

2012 to 2019 
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Figure 5.78 Variation of Monthly Revenues for Realized Electricity Price Years from 

2020 to 2024 

 

Figure 5.79 presents the distribution of annual revenues for the WHHS with a wind 

farm of 250 MW installed capacity for each scenario year (i.e., 2012–2024). For each 

year, 1,000 annual revenue values are computed using the same set of 1,000 

simulated hourly wind speed time series. This allows isolating the impact of 
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electricity price variability from that of wind speed uncertainty. Although the 

simulated wind speed data includes some extreme outliers (see Figure 5.8), the width 

of the revenue distributions remains relatively narrow across all years. This suggests 

that the uncertainty resulting from wind speed variability has a limited influence on 

annual revenue. In contrast, the position of the PDFs shifts considerably along the x-

axis from year to year, reflecting changes in electricity prices results in relatively 

large changes in annual revenues. Similar to the 50 MW installed capacity case, 

electricity price variability remains the dominant driver of revenue variation under 

the 250 MW case as well. Although wind speed simulations included some extreme 

outliers (see Figures 5.10 and 5.11), the effect of wind-related uncertainty is 

relatively smaller compared to that of electricity market fluctuations. 

 

Figure 5.79 PDF of Annual Revenue for Realized Electricity Price Years  

 

Change in annual revenue interquartile range (IQR) with respect to hourly electricity 

price IQR is given in Figure 5.80. Each data point represents one scenario year (i.e., 

2012 to 2024) in Figure 5.80. There is a positive relationship between electricity 

price variability and revenue variability. In other words, as the hourly electricity 
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price variability increases within a year, the corresponding uncertainty in the annual 

revenue, obtained through the optimization model with simulated wind data 

increases. Notably, a particular year exhibits significantly higher price variability 

(~85 EUR) resulting in a substantial rise in revenue uncertainty (~1.37 million EUR), 

emphasizing how extreme market fluctuations can considerably amplify financial 

risk for WHHS. Notably, while the 50 MW installed capacity case exhibited an 

increase in revenue IQR of approximately 0.27 million EUR under a price IQR of 

~85 EUR, the 250 MW case shows a much larger absolute increase of about 1.37 

million EUR, illustrating how a higher installed capacity amplifies annual revenue 

uncertainty from market fluctuations. 

 

Figure 5.80 Change in Annual Revenue IQR with Hourly Electricity Price IQR 

 

The change in annual revenue median with hourly electricity price median is given 

in Figure 5.81. Again, each data point represents one scenario year (i.e., 2012 to 

2024) in Figure 5.81. As the median hourly electricity price increases, the 

corresponding median annual revenue increases as expected. A year with particularly 

high electricity prices (~130 EUR median price) clearly yields significantly higher 
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median annual revenues (~40 million EUR), emphasizing the substantial influence 

of electricity market price levels on annual profitability. By comparison, in the 50 

MW case the same ~130 EUR median price corresponds to a median annual revenue 

of only about 14 million EUR, underscoring how increasing installed capacity 

amplifies revenue outcomes. 

 

 

Figure 5.81 Change in Annual Revenue Median with Hourly Electricity Price 

Median 
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CHAPTER 6  

6 CONCLUSION 

This thesis examines the effect of uncertainty in wind speed on the revenue of a 

WHHS. To maximize yearly revenues, a daily revenue optimization model is 

employed, accounting for wind speed variability and electricity price fluctuations. 

Simulated wind speed time series are generated using the aLHS method to 

realistically reflect uncertainty in wind. Realized electricity price data from 2012 to 

2024 are obtained from the Turkish electricity spot market and are used as scenarios 

to understand electricity price uncertainty, providing a robust representation of 

market variability. These datasets offer practical insight into optimizing hybrid 

systems under changing market conditions. 

The significant findings of this thesis are given below: 

 The analysis of PDFs of annual revenues for each scenario year from 2012 

to 2024 (Figure 5.45) reveals that electricity price variability is the primary 

driver of revenue uncertainty in the WHHS. The PDFs shift significantly 

from year to year, reflecting substantial changes in annual revenue due to 

fluctuating electricity prices, while the width of the distributions—indicative 

of wind speed variability—remains relatively narrow. This suggests that, 

despite the inclusion of extreme wind speed outliers in the 1,000 simulated 

time series (Figure 5.8), wind speed uncertainty contributes less to revenue 

variability compared to electricity price fluctuations. For operators, this 

underscores the need to prioritize strategies that mitigate risks associated 

with electricity market volatility over those addressing wind speed 

unpredictability. 
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 A clear positive relationship between the IQR of hourly electricity prices and 

the IQR of annual revenues across the scenario years are observed (Figure 

5.46). As electricity price variability increases, so does the uncertainty in 

annual revenue, with one year exhibiting exceptionally high price variability 

(~80 EUR) leading to a significant revenue uncertainty of approximately 0.28 

million EUR. This finding highlight that, years with volatile electricity prices 

amplify financial risk, necessitating robust price forecasting and risk 

management strategies to stabilize WHHS revenue. 

 

 A strong positive correlation between the median hourly electricity price and 

the median annual revenue is observed (Figure 5.47). Higher median 

electricity prices correspond to increased median revenues, with a notable 

outlier year (~130 EUR median price) yielding an annual revenue of 

approximately 15 million EUR. This indicates that the overall level of 

electricity prices in a given year significantly influences the profitability of 

the WHHS. 

 

 The monthly revenue plots (Figure 5.28 to Figure 5.40) and their averages 

(Figure 5.41) reveal distinct seasonal patterns, with August consistently 

exhibiting the highest revenue and variability across most years, while 

November to April show lower variability. This aligns with seasonal wind 

speed trends (e.g., higher speeds in summer months like August, as seen in 

Figure 5.10). The variation of monthly revenues (Figure 5.43 and Figure 

5.44) further supports this, showing broader spreads in the summer months. 

Operationally, this suggests that the WHHS could benefit from tailored 

strategies to capitalize on high revenue in summer months while managing 

lower variability in winter periods. 
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Some recommendations for future studies are listed below: 

 A detailed economic study can be conducted to compare the initial 

investment, operational costs, and long-term returns of WHHS with other 

renewable energy systems, such as solar-hydro or wind-solar hybrids. A life-

cycle assessment could also be included to evaluate which system offers the 

best value and sustainability over time. 

 

 The model can be extended to include inflows (e.g., rainfall, river 

contributions) and outflows (e.g., evaporation, irrigation needs), reflecting an 

open-system approach. The WHHS simulation could be made more 

representative of real-world conditions. 

 

 In this thesis, realized electricity prices serve to examine how fluctuations in 

electricity prices affect WHHS revenue. Instead of relying solely on realized 

electricity price data, future studies can use simulated electricity prices to 

capture future price uncertainty. This approach enables researchers to explore 

a broader range of scenarios, including extreme price spikes or potential 

future market conditions not reflected in historical data. By incorporating 

simulated electricity prices, researchers may gain a deeper understanding of 

the risks and opportunities arising from price volatility. 
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APPENDICES 

A. Daily Revenue Optimization Model 

In this study, the same optimization model used in Ercan (2020) is used. Thus, the 

mathematical formulation and following explanations are taken from Ercan (2020). 

Mathematical Formulation 

The daily schedule of the WHHS that maximizes the net revenue of the day can be 

obtained from the solution of the following optimization problem modified by Ercan 

(2020) from the formulation developed by Cruz et al.(2014): 

 
Max. Z = ෍ λ୲p୲

ଶଷ

୲ୀ଴

 (6-1) 

 

s.t. 

 𝑝௧ = 𝑝௧
wdirect + 𝑝௧

hydro
− 𝑝௧

fgrid (6-2)  

 

 𝑝௧
wdirect + 𝑝௧

hydro
≤ ൫𝑝௠௔௫

௪ + 𝑝௠௔௫
hydro

൯𝑦௧ ∀𝑦௧ (6-3)  

 

 𝑝௧
fgrid

≤ 𝑝௠௔௫
fgrid

(1 − 𝑦௧) ∀𝑦௧ (6-4)  

 

 𝑝௧
௪ = 𝑝௧

wdirect + 𝑝௧
wpump (6-5)  

 

 𝑝௧
pump

= 𝑝௧
wpump

+ 𝑝௧
fgrid (6-6)  

 

 0 ≤ 𝑝௧
௪ ≤ 𝑝௠௔௫

௪  (6-7)  



 
 

152 

 

 0 ≤ 𝑝௧
hydro

≤ 𝑝௠௔௫
hydro

(1 − 𝑥௧) ∀𝑥௧ (6-8)  

 

 0 ≤ 𝑝௧
pump

≤ 𝑝௠௔௫
pump

𝑥௧  ∀𝑥௧ (6-9)  

 

 𝑝௧
hydro

≤ min{ (𝐸௧ − 𝐸௠௜௡)ηhydro,  𝑝௠௔௫
hydro

} (6-10)  

 

 
𝑝௧

pump
≤ min ቊ(𝐸௠௔௫ − 𝐸௧)

1

ηpump
,  𝑝௠௔௫

pump
ቋ (6-11)  

 

 
𝐸௧ାଵ = 𝐸௧ + ηpump𝑝௧ାଵ

pump
−

1

ηhydro
𝑝௧ାଵ

hydro
 𝑡 = 0,1, … ,22 (6-12)  

 

 
𝐸଴ = 𝐸initial + ηpump𝑝଴

pump
−

1

ηhydro
𝑝଴

hydro (6-13)  

 

 𝐸௠௜௡ ≤ 𝐸௧ ≤ 𝐸௠௔௫ (6-14)  

 

 𝑦௧ ∈ {0,1} (6-15)  

 

 𝑥௧ ∈ {0,1} (6-16)  

 

 𝑝௧
hydro

,  𝑝௧
wdirect,  𝑝௧

fgrid
,  𝑝௧

wpump
,  𝑝௧

pump
,  𝑝௧

ௐ,  𝐸௧ ≥ 0 (6-17)  
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Where the set is: 

𝑡 ∈ {0,1,2, … ,23 the duration of each interval, hour; 

where the variables are: 

𝑝௧    the energy output injected into the grid minus energy bought from the grid 

   in 𝑡; 

λ௧    the electricity price in 𝑡; 

𝑝௧
wdirect   the energy output of wind turbines that is sold directly to the grid in 𝑡; 

𝑝௧
hydro    the energy output of the hydro turbine that is sold directly to the grid in t; 

𝑝௧
fgrid    the energy bought from the grid in 𝑡; 

𝑝௧
௪    the wind energy that is generated in 𝑡; 

𝑝௧
wpump   the energy that is generated by wind turbines and is used by the pump in 𝑡; 

𝑝௧
pump    the energy that is used for pumping in 𝑡; 

𝐸௧    the energy stored in the upper reservoir at the end of 𝑡; 

𝑦௧    the binary variable that represents the buying or selling mode of the system 

   in t where 𝑦௧ = 0 is the buying mode, and 𝑦௧ = 1 is the selling mode; 

𝑥௧    the binary variable that represents the turbine or pump modes in t where 

   𝑥௧ = 0 is the turbine mode, and 𝑦௧ = 1 is the pump mode; 

and the corresponding parameters are: 

𝑝௠௔௫
௪     the maximum energy that can be generated by the wind turbines in an hour; 

𝑝௠௔௫
hydro    the maximum energy that can be generated by the hydro turbine in an hour; 

𝑝௠௔௫
fgrid     the maximum energy that can be bought from the grid in an hour; 
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𝑝௠௔௫
pump    the maximum energy that can be used as pumping input in an hour; 

𝐸௠௜௡    the minimum energy level in the upper reservoir; 

𝐸௠௔௫    the maximum energy level that can be stored in the upper reservoir; 

ηhydro    the efficiency for the turbine mode; 

ηpump    the efficiency for the pump mode; 

𝐸initial    the initial energy in the upper reservoir. 

 

Equation (6-1) is the objective function of the optimization problem. It aims to 

maximize the revenue of one day. Equation (6-2) defines the net energy sold to the 

grid, which is the energy sold minus the energy bought. When 𝑝௧
wdirect and 𝑝௧

hydro are 

positive values, 𝑝௧
fgridcannot be a positive value. Because selling and buying energy 

from the grid at the same time is illogical and not allowed. This is achieved by 

Equations (6-3) and (6-4). If 𝑦௧ equals one, the system sells energy to the grid in 𝑡; 

if it equals zero, the system buys energy from the grid in 𝑡. The wind energy that is 

generated in 𝑡 𝑝௧
௪ , can be sold directly to the grid or used to pump the water to the 

upper reservoir. This is defined in Equation (6-5). The energy that is used for 

pumping in 𝑡 𝑝௧
pump, can be supplied by wind turbines or can be bought from the 

grid. Equation (6-6) presents this constraint. The wind energy that is generated in 𝑡 

𝑝௧
௪, has a minimum value of zero, and its upper bound cannot exceed 𝑝௠௔௫

௪  as defined 

in Equation (6-7). The energy output of the hydro turbine in 𝑡 𝑝௧
hydro, and the energy 

used for pumping in 𝑡 𝑝௧
pump cannot be larger than their maximum installed 

capacities. Also, they cannot be positive values at the same hour since it is not 

possible to run the pump and the turbine at the same time. These limitations are 

defined in Equations (6-8) and (6-9). 

The energy output of the hydro turbine in 𝑡 𝑝௧
hydro is limited by two components in 

Equation (6-10). In the first component, 𝐸௧ − 𝐸௠௜௡ represents the energy in the upper 
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reservoir that can be used to generate energy by the hydro turbine. When it is 

multiplied by ηhydro, it becomes the energy output of the hydro turbine. The second 

component is the maximum capacity of the hydro turbine. So, 𝑝௧
hydro is restricted to 

be at most the minimum of these two terms. 

The energy that is used for pumping in 𝑡 𝑝௧
pump is limited by two components in 

Equation (6-11). In the first component, 𝐸௠௔௫ − 𝐸௧ represents the available empty 

energy storage that can be filled by the water. When it is divided by ηpump, it becomes 

the pumping energy input. The second component is the maximum energy input for 

the pump. So, 𝑝௧
pump is restricted to be at most the minimum of these two terms. 

The energy balance of the upper reservoir is defined in Equation (6-12). The energy 

stored in the upper reservoir at the end of 𝑡 + 1 is composed of three components. 

The first component is the stored energy from the previous hour. The second 

component is the energy used for pumping the water from the lower reservoir to the 

upper reservoir in 𝑡 + 1. The third component is the energy spend to run the hydro 

turbine to generate electricity in 𝑡 + 1. So, 𝐸௧ାଵ equals the summation of the first 

two components minus the third component. For the first hour, 𝑡 = 0, the energy 

stored in the upper reservoir is initialized based on the starting energy storage in the 

upper reservoir 𝐸ିଵ. Lastly, 𝐸௧ must be between 𝐸௠௜௡ and 𝐸௠௔௫, and that is defined 

in Equation (6-14). 

Except binary variables, 𝑦௧ and 𝑥௧, units of all decision variables (𝑝௧, 𝑝௧
wdirect, 𝑝௧

hydro, 

𝑝௧
fgrid, 𝑝௧

wpump, 𝑝௧
pump, 𝑝௧

௪, 𝐸௧) are MWh. Units of all parameters (𝑝௠௔௫
hydro, 𝑝௠௜௡

hydro, 

𝑝௠௔௫
pump, 𝑝௠௜௡

pump, 𝑝௠௔௫
௪ , 𝑝௠௜௡

௪ , 𝑝௠௔௫
fgrid , 𝐸initial, 𝐸௠௔௫, 𝐸௠௜௡) are MWh, except a few ones. 

The unit of λ௧ is TL/MWh, and ηhydro and ηpump are unitless. 

The optimization model involves three assumptions. First, head losses in the piping 

system of WHHS are not included explicitly. They are assumed to be included in the 

efficiency values of the turbine and pump modes. Second, there is no inflow to or 

outflow from the reservoir. So, the system is assumed to be a closed-loop system. 
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Third, the cost of pumping operation is assumed to be the same value as the 

electricity price at that hour (Cruz et al., 2014).  

The following modifications to the mathematical formulation suggested by Cruz et 

al. (2014) are carried out in this study: 

 The energy that is generated by the wind turbines is allowed to be used for 

pumping and direct selling, and stored in two different variables (see 

Equation (6-5)). 

 The energy that is used for pumping is allowed to be obtained from wind 

turbines and grid, and stored in two different variables (see Equation (6-6)). 

 To prevent buying and selling at the same time in each hour, a binary variable 

is defined (see Equations (6-3) and (6-4)). 

 Considering the minimum and maximum water levels in the upper reservoir, 

water can be pumped or released from the upper reservoir, and the energy 

stored in the upper reservoir is updated (see Equations (6-10) and (6-11)). 

 Equations (13) and (14) in Cruz et al. (2014) are not used since they are 

satisfied by Equations (6-10) and (6-11). 

 In Cruz et al. (2014), the final energy level of the upper reservoir is taken as 

a fixed value. However, in our study, we used the reservoir level of the last 

hour of the previous day. 

The formulated optimization problem is a mixed-integer linear programming 

problem since two of the decision variables (i.e., 𝑥௜  and 𝑦௜) are restricted to binary 

values. To solve the optimization problem, a code is written in Python. The code 

uses Coinor branch and cut solver which is developed by Forrest, Ralphs, Vigerske, 

LouHafer, Kristjansson, Jpfasano, EdwinStraver, Lubin, Santos, Rlougee and 

Saltzman (2018). To apply this solver in Python, Google OR-Tools library is 

included in the code. 
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B. Daily Revenue Optimization Model Parameters 

The optimization model has eight parameters, which are the maximum energy that 

can be generated by wind turbines in an hour, the maximum energy that can be 

generated by the hydro turbine in an hour, the maximum energy that can be bought 

from the grid in an hour, the maximum energy that can be consumed by the pump in 

an hour, the minimum energy level in the upper reservoir, the maximum energy level 

that can be stored in the upper reservoir, the efficiency for the turbine mode and the 

efficiency for the pump mode. The maximum energy that can be generated by the 

wind turbines 𝑝௠௔௫
௪  in an hour equals to the available hourly wind energy. Its 

calculation is explained in Section 4.4. 

Currently, the installed capacity of the hydro turbine in the Uluabat Hydropower 

Plant is 100 MW (Akenerji, 2005). Same installed capacity is sued by changing the 

hydro turbine with a hydro pump-turbine. So, for this case study, the system can 

work either as a hydro turbine or a pump. Thus, the maximum energy that can be 

generated by the hydro turbine in an hour 𝑝௠௔௫
hydro and the maximum energy that can 

be consumed by pumping in an hour 𝑝௠௔௫
pump equal to 100 MWh. 

The maximum energy that can be bought from the grid in an hour is not limited. 

Thus, this parameter equals positive infinity. The schematic view of Çınarcık Dam, 

Uluabat Hydropower Plant, and Lake Uluabat are shown in Figure 6.1. The 

minimum energy level in the upper reservoir and the maximum energy level that can 

be stored in the upper reservoir is computed based on the elevation-area curve of the 

dam by using the following expression: 

 𝐸௣ = 2.778 × 10ିଵ଴ 𝜌𝑔ℎ𝑉  (6.18)  

 

where 𝐸௣ is the potential energy of the fluid in MWh, 𝑉 is the volume of the fluid in 

m³, 𝜌 is the density of the fluid in kg/m³, 𝑔 is the acceleration due to gravity in 

𝑚/𝑠², ℎ is the height of the fluid in 𝑚. The minimum energy level in the upper 
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reservoir 𝐸௠௜௡, and the maximum energy level that can be stored in the upper 

reservoir 𝐸௠௔௫ are computed as 138233.8  MWh and 298624.1  MWh, respectively. 

The initial energy level 𝐸initial is fixed to 𝐸௠௜௡, 138233.8 MWh. 

The efficiency of the turbine mode and the efficiency of the pump mode are assumed 

as 0.88 and 0.85, respectively, based on the study by Cruz et al. (2014). 

 

Figure 6.1 The Schematic View of Çınarcık Dam, Uluabat Hydropower Plant and 

Lake Uluabat (Ercan, 2020) 
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C. R Script for Stationarity Test of Observed Hourly Wind Speeds 
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D. ADF Stationarity Test Results of Observed Hourly Wind Speeds 

Table 6-1 Stationarity Test Results for Observed Hourly Wind Speeds (lag=1 hour) 

Frequency Lag Test Type Statistic P value 
daily 1 tseries: Stationary -73.72 0.01 
daily 1 fUnitRoots: No Constant -42.79 0.01 
daily 1 fUnitRoots: Constant -73.51 0.01 
daily 1 fUnitRoots: Constant+Trend -73.72 0.01 
weekly 1 tseries: Stationary -73.72 0.01 
weekly 1 fUnitRoots: No Constant -42.79 0.01 
weekly 1 fUnitRoots: Constant -73.51 0.01 
weekly 1 fUnitRoots: Constant+Trend -73.72 0.01 
monthly 1 tseries: Stationary -73.72 0.01 
monthly 1 fUnitRoots: No Constant -42.79 0.01 
monthly 1 fUnitRoots: Constant -73.51 0.01 
monthly 1 fUnitRoots: Constant+Trend -73.72 0.01 
yearly 1 tseries: Stationary -73.72 0.01 
yearly 1 fUnitRoots: No Constant -42.79 0.01 
yearly 1 fUnitRoots: Constant -73.51 0.01 
yearly 1 fUnitRoots: Constant+Trend -73.72 0.01 
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Table 6-2 Stationarity Test Results for Observed Hourly Wind Speeds (lag=2 hour) 

Frequency Lag Test Type Statistic P value 
daily 2 tseries: Stationary -76.13 0.01 
daily 2 fUnitRoots: No Constant -43.21 0.01 
daily 2 fUnitRoots: Constant -75.91 0.01 
daily 2 fUnitRoots: Constant+Trend -76.13 0.01 
weekly 2 tseries: Stationary -76.13 0.01 
weekly 2 fUnitRoots: No Constant -43.21 0.01 
weekly 2 fUnitRoots: Constant -75.91 0.01 
weekly 2 fUnitRoots: Constant+Trend -76.13 0.01 
monthly 2 tseries: Stationary -76.13 0.01 
monthly 2 fUnitRoots: No Constant -43.21 0.01 
monthly 2 fUnitRoots: Constant -75.91 0.01 
monthly 2 fUnitRoots: Constant+Trend -76.13 0.01 
yearly 2 tseries: Stationary -76.13 0.01 
yearly 2 fUnitRoots: No Constant -43.21 0.01 
yearly 2 fUnitRoots: Constant -75.91 0.01 
yearly 2 fUnitRoots: Constant+Trend -76.13 0.01 

 

Table 6-3 Stationarity Test Results for Observed Hourly Wind Speeds (lag=2 hour) 

Frequency Lag Test Type Statistic P value 
daily 3 tseries: Stationary -80.81 0.01 
daily 3 fUnitRoots: No Constant -44.69 0.01 
daily 3 fUnitRoots: Constant -80.55 0.01 
daily 3 fUnitRoots: Constant+Trend -80.81 0.01 
weekly 3 tseries: Stationary -80.81 0.01 
weekly 3 fUnitRoots: No Constant -44.69 0.01 
weekly 3 fUnitRoots: Constant -80.55 0.01 
weekly 3 fUnitRoots: Constant+Trend -80.81 0.01 
monthly 3 tseries: Stationary -80.81 0.01 
monthly 3 fUnitRoots: No Constant -44.69 0.01 
monthly 3 fUnitRoots: Constant -80.55 0.01 
monthly 3 fUnitRoots: Constant+Trend -80.81 0.01 
yearly 3 tseries: Stationary -80.81 0.01 
yearly 3 fUnitRoots: No Constant -44.69 0.01 
yearly 3 fUnitRoots: Constant -80.55 0.01 
yearly 3 fUnitRoots: Constant+Trend -80.81 0.01 
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Table 6-4 Stationarity Test Results for Observed Hourly Wind Speeds (lag=4 hour) 

Frequency Lag Test Type Statistic P value 
daily 4 tseries: Stationary -83.64 0.01 
daily 4 fUnitRoots: No Constant -44.97 0.01 
daily 4 fUnitRoots: Constant -83.36 0.01 
daily 4 fUnitRoots: Constant+Trend -83.64 0.01 
weekly 4 tseries: Stationary -83.64 0.01 
weekly 4 fUnitRoots: No Constant -44.97 0.01 
weekly 4 fUnitRoots: Constant -83.36 0.01 
weekly 4 fUnitRoots: Constant+Trend -83.64 0.01 
monthly 4 tseries: Stationary -83.64 0.01 
monthly 4 fUnitRoots: No Constant -44.97 0.01 
monthly 4 fUnitRoots: Constant -83.36 0.01 
monthly 4 fUnitRoots: Constant+Trend -83.64 0.01 
yearly 4 tseries: Stationary -83.64 0.01 
yearly 4 fUnitRoots: No Constant -44.97 0.01 
yearly 4 fUnitRoots: Constant -83.36 0.01 
yearly 4 fUnitRoots: Constant+Trend -83.64 0.01 

 

Table 6-5 Stationarity Test Results for Observed Hourly Wind Speeds (lag=5 hour) 

Frequency Lag Test Type Statistic P value 
daily 5 tseries: Stationary -85.14 0.01 
daily 5 fUnitRoots: No Constant -44.43 0.01 
daily 5 fUnitRoots: Constant -84.82 0.01 
daily 5 fUnitRoots: Constant+Trend -85.14 0.01 
weekly 5 tseries: Stationary -85.14 0.01 
weekly 5 fUnitRoots: No Constant -44.43 0.01 
weekly 5 fUnitRoots: Constant -84.82 0.01 
weekly 5 fUnitRoots: Constant+Trend -85.14 0.01 
monthly 5 tseries: Stationary -85.14 0.01 
monthly 5 fUnitRoots: No Constant -44.43 0.01 
monthly 5 fUnitRoots: Constant -84.82 0.01 
monthly 5 fUnitRoots: Constant+Trend -85.14 0.01 
yearly 5 tseries: Stationary -85.14 0.01 
yearly 5 fUnitRoots: No Constant -44.43 0.01 
yearly 5 fUnitRoots: Constant -84.82 0.01 
yearly 5 fUnitRoots: Constant+Trend -85.14 0.01 
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Table 6-6 Stationarity Test Results for Observed Hourly Wind Speeds (lag=6 hour) 

Frequency Lag Test Type Statistic P value 
daily 6 tseries: Stationary -84.41 0.01 
daily 6 fUnitRoots: No Constant -42.74 0.01 
daily 6 fUnitRoots: Constant -84.07 0.01 
daily 6 fUnitRoots: Constant+Trend -84.41 0.01 
weekly 6 tseries: Stationary -84.41 0.01 
weekly 6 fUnitRoots: No Constant -42.74 0.01 
weekly 6 fUnitRoots: Constant -84.07 0.01 
weekly 6 fUnitRoots: Constant+Trend -84.41 0.01 
monthly 6 tseries: Stationary -84.41 0.01 
monthly 6 fUnitRoots: No Constant -42.74 0.01 
monthly 6 fUnitRoots: Constant -84.07 0.01 
monthly 6 fUnitRoots: Constant+Trend -84.41 0.01 
yearly 6 tseries: Stationary -84.41 0.01 
yearly 6 fUnitRoots: No Constant -42.74 0.01 
yearly 6 fUnitRoots: Constant -84.07 0.01 
yearly 6 fUnitRoots: Constant+Trend -84.41 0.01 

 


