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YEMİN METNİ 

 

Yüksek Lisans Tezi olarak sunduğum “Derin Öğrenme Teknikleri ile Anomali 

İçeren Metal Somunların Hata Tespit ve Sınıflandırılması” adlı çalışmanın, 

tarafımdan, akademik kurallara ve etik değerlere uygun olarak yazıldığını ve 

yararlandığım eserlerin kaynakçada gösterilenlerden oluştuğunu, bunlara atıf 

yapılarak yararlanılmış olduğunu belirtir ve bunu onurumla doğrularım. 

 

... /... / …… 

Hasan GÖKKAYA 
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ÖZET 

Yüksek Lisans Tezi 

Derin Öğrenme Teknikleri ile Anomali İçeren Metal Somunların Hata Tespit ve 

Sınıflandırılması 

Hasan GÖKKAYA 

 

Dokuz Eylül Üniversitesi 

Sosyal Bilimler Enstitüsü 

Yönetim Bilişim Sistemleri Anabilim Dalı 

Yönetim Bilişim Sistemleri Programı 

 

Bilişim ve iletişim sistemlerinde meydana gelen hızlı değişimler ve 

gelişimler, teknolojinin temas ettiği her alanda ani bir paradigma değişimine 

neden olmuştur. Bu paradigma değişimi eş zamanlı olarak endüstriyel alanda da 

kendisini hissettirmiş, sektörün ihtiyaçları doğrultusunda karşılığını bulmuş ve 

sektörün içinde Endüstri 4.0 olarak vücut bulmuştur. 4’üncü Sanayi Devrimi 

olarak anılan bu paradigma, içerisinde yer alan nesnelerin interneti kavramıyla 

birlikte birbirleriyle anlık iletişim halinde olan modern otomasyon sistemlerini, 

üretim teknolojilerini ve nihayetinde de akıllı endüstriyel sistemleri hayata 

geçirmiştir. Ortaya çıkan akıllı iletişim ağında, paylaşılan verilerin 

raporlaştırılıp analiz edilmesi, maliyet-etkin bir biçimde yönetilebilmesi ve 

verimli iş modellerinin geliştirilmesi işletmeler için büyük önem arz etmektedir. 

Bu süreç, endüstriyel işletmelerin iş süreçlerini akıllı sistemler ile entegre ederek 

geleceğe uyumlu modern otomasyon ve üretim birimlerine dönüştürmesini 

zorunlu kılmaktadır. 

Bilgisayarla görü uygulamaları, bu anlamda çağı yakalayan ve geleceğe 

uzanan çözümlerin başında gelmektedir. Otomasyon ve üretim sürecinden geçen 

işletmeler, makine öğrenmesi gibi teknikleri belirli operasyonlarına entegre 

etmeye başlamışlardır. Üretim süreci, endüstriyel işletmelerin hammadde 

kullanımı, kalite kontrol ve işletme verimliliği gibi ana başlıkları ile bir düğüm 

noktası oluşturduğu için özellikle bu entegrasyonda önem arz etmektedir.  Bu 
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çalışma, endüstriyel alanda, hatalı ürünleri tespit etmek ve üretim verimliliğini 

optimize etmek için kullanılan akıllı bir yaklaşım önermektedir. 

Bu çalışmanın amacı, vida ve somun üreten endüstriyel işletmelerde 

bilgisayarla görü ile insan faktörünün yerini alarak, üretim esnasında meydana 

gelen hatalı ürünleri tespit eden ve ayrıştırılmasını sağlayan, hata sebebinin 

belirlenmesine yardımcı olan, hata oranının düşürülmesine ve kalitenin 

artırılmasına katkıda bulunan, hammadde kullanımını optimize eden, üretim 

verimliliğini artıran ve sürecin maliyet-etkin bir şekilde işlemesini sağlayan derin 

öğrenmeye dayalı bir bilgisayarla görü uygulaması geliştirmektir. Bilgisayarla 

görü uygulaması tasarlanırken Python, OpenCV, Tensorflow Object Detection 

API, Tensorboard, GoogleColab, Visual Studio Code yazılım ve frameworkleri 

kullanılmıştır.  

 

Anahtar Kelimeler: Anomali , Hata, Bilgisayarla Görü, Derin Öğrenme, Nesne 

Tespit, Sınıflandırma. 
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ABSTRACT 

Master’s Thesis 

Fault Detection and Classification of Metal Nuts Containing Anomaly by Deep 

Learning Techniques 

Hasan GÖKKAYA 

 

Dokuz Eylul University 

Graduate School of Social Sciences 

Department of Management Information Systems 

Management Information Systems Program 

 

Rapid changes and developments in information and communication 

systems have caused a sudden paradigm shift in every field connected with 

technology. This paradigm shift made its presence felt simultaneously in the 

industrial field, has found its place in accordance with the needs of the sector and 

embodied as Industry 4.0 within the sector. This paradigm, known as the 4th 

Industrial Revolution, with the help of concept of the IoT, has implemented 

modern automation systems, production technologies and intelligent industrial 

systems, which are in instant communication with each other. In this smart 

communication network, reporting, analysis and cost-effective management of 

shared data and development of efficient business models are of great importance 

for enterprises. This process requires industrial enterprises to transform their 

business processes, into modern automation and production units that are 

compatible with the future by integrating business processes with intelligent 

systems. 

In this sense, computer vision applications are the leading solutions that 

capture the age and extend to the future. Businesses that have gone through 

automation and production processes have begun to integrate techniques such as 

machine learning into their specific operations. The production process is 

particularly important in this integration since it forms a joint point with the 

main headings of industrial enterprises such as raw material usage, quality 

control and operational efficiency. This study proposes an intelligent approach 
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used to detect faulty products and optimize production efficiency in the industrial 

area. 

The aim of this study is to develop a business intelligence application that 

detects and separates the defective products that occur during production, helps 

to determine the cause of the error, contributes to the reduction of the error rate 

and increase the quality, optimizes the use of raw materials, increases production 

efficiency and ensures low cost operation of the process by replacing the human 

factor with computer vision in industrial enterprises producing screws and nuts. 

Software and frameworks used to design this computer vision application are 

Python, OpenCV, Tensorflow Object Detection API, Tensorboard, GoogleColab, 

and Visual Studio Code. 

 

Keywords: Anomaly , Fault, Computer Vision, Deep Learning, Object Detection, 

Classification. 
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GİRİŞ 

 

Günümüzde meydana gelen teknolojik gelişmeler ve dijital dünyada ardarda 

meydana gelen değişimler serisi, insanlar arasındaki iletişimi ve bilgi paylaşımını 

kolaylaştırdığı gibi benzer etkiyi endüstriyel alanda da hissettirmiştir. Sanayi 

devriminden itibaren makineleşen dünya yarı iletken teknolojisinde meydana gelen 

atılımla birlikte dijitalleşmiş ve otomasyon teknolojisinin gelişmesiyle de insanoğlu, 

makinelerin iletişim ağındaki mevzilerini yavaş yavaş kaybetmeye başlamıştır. 1990’lı 

yıllardan itibaren yaygınlaşan internet kavramı bu ağa yeni bir boyut getirmiş ve 

internet, temas ettiği her nesneyi akıllı hale getirmeyi başarmıştır. Bu aşamadaki başarı 

ile ortaya çıkan ve Kevin Ashton tarafından 1999 yılında ilk defa dile getirilen 

“Nesnelerin İnterneti (IOT-Internet Of Things)” ifadesi (Ashton, 2009) ile insanlar 

arasında var olan etkileşimin bir benzeri de makineler arasında oluşmaya başlamış, bu 

gelişmelerin kaçınılmaz sonucu olarak da kendi içerisinde özelleşmiş akıllı süreçlerin 

bileşiminden oluşan Şekil 1’de bir örneği gösterilen akıllı fabrikalar doğmuştur. 

 

Şekil 1: Akıllı Fabrika Süreci 

 

Kaynak: Metaverbis, 2019 

http://metaverbis.com/computer-vision


 

2 

 

İşletmelerde uygulanan akıllı süreçlerin denetiminin yapılması, analizinin 

yapılması, kalitenin korunması ve verimliliğin artırılması için de yine akıllı sistemlerin 

günümüzde kalite kontrol sorunları, ürün ve malların imalatında önemli bir rol 

üstlenmektedir. Gittikçe daha fazla talepkâr olan pazarlarla birlikte şirketler, üretim 

döngüsü sırasında küçük kusurları bile tespit edebilen daha verimli denetim 

sistemlerine yatırım yapmak zorunda kalıyorlar. Bilgisayarla görme teknikleri, bu 

arıza tespit sürecinde önemli bir anahtar sunmaktadır (Gonzalez ve Woods, 1992; 

Russ,1995; Suetens ve diğerleri, 1992). 
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BİRİNCİ BÖLÜM 

ENDÜSTRİYEL ALANDA BİLGİ SİSTEM GEREKSİNİMLERİ 

 

Hayatın her alanında olduğu gibi, endüstriyel alanda da meydana gelen hızlı 

paradigma değişimleri, işletmelerin de bu değişime bilgi ve iletişim teknolojilerini 

yenileyerek eşlik etme gereksinimi duydukları hızlı çözüm bekleyen bir ortamın 

doğmasına neden olmaktadır. İnsan yığınlarının etkisini kaybettiği makinelerin 

yükselişini izlediğimiz bu ortamda, kullanıcı dostu arayüze sahip, işlevsel, ekonomik 

ve akıllı çözümler sunan yenilikçi uygulamalara ihtiyaç duyulmaktadır. 

Bu kapsamda incelendiğinde, bilgisayarla görü ile yapay zeka teknolojilerini 

birlikte oluşturulan çözümlerin endüstriyel işletmelere, akıllı bir şekilde entegre 

edilmesinin uygun olduğu değerlendirilmektedir. Çünkü üretimde kaynak yönetimi, 

kalite yönetimi ve elde edilen çıktıların her kademedeki yöneticiye sağlayacağı karar 

desteği işletmeler için stratejik anlamda büyük değer arz etmektedir.  

Kısaca değinilen bu gereksinimleri doğuran problemleri ortaya koymak ve bu 

aşamadan sonra problemlerin çözümüne yönelik öngörüleri hayata geçirmek yapısal 

ve stratejik açıdan son derece önemlidir. 

 

1.1. PROBLEMİN TANIMI 

 

Günümüzde, nesnelerin interneti ile birlikte ortaya çıkan ve Endüstri 4.0 ile 

endüstriyel alana yayılan yeni iletişim yapısı, işletmelerin varlığını sürdürebilmesi için 

yapısal değişimleri zorunlu kılmış ve her alanda kendini kabul ettiren akıllı değişime 

uyum sağlamasını da kaçınılmaz kılmıştır.  

Akıllı sistemlerin birbirleriyle girdiği etkileşim sonucu doğan sınırsız verinin, 

ana yakıtı veri olan siber dünya içerisinde kullanılmadan adeta bir siber çöp olarak 

kaybolmasına izin vermek yerine, verinin anlamlı bir iş parçacığı haline 

dönüştürülerek kullanılması, endüstriyel işletmelerin kendilerini geleceğe taşımaları 

için hayati derecede öneme sahiptir. 

Bu kapsamda, sektör içerisinde üretime yönelik çalışmalar yapan ve çağa uyum 

sağlayamayan işletmelerin karşılaştığı: 

 Öngörülemeyen ve önlenemeyen üretim hataları, 
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 Kalite denetiminde yetersizlik 

 Üretim sürecinde gecikme, 

 Hammadde tüketiminde artış, 

 Verimsiz üretim ve kontrol süreciyle birlikte oluşan maliyet artışı, 

 Oluşan bilgiden, elde edilmesi muhtemel potansiyel faydanın siber 

çöplükte yerini alması gibi sorunlar, uygulamanın doğrudan ya da dolaylı 

olarak katkı sağlayacağı problemler olarak belirlenmiştir. 

 

1.2. LİTERATÜR TARAMASI 

 

Literatür taraması yapılırken, gerçekleştirilen çalışmada uygulanan; 

bilgisayarla görme, derin öğrenme, transfer öğrenmesi, hata tespiti ve nesne tespiti gibi 

başlıklara odaklanılarak yapılan çalışmalar incelemeye alınmıştır. Endüstriyel 

işletmelerin artan ihtiyaçları ve değişen bilgi ve iletişim teknolojilerinin zorunlu 

kıldığı bu konularda birçok benzer çalışmanın yapıldığı görülmüştür. 

Saurabh (2018), önerilen çalışmada makine öğrenmeye dayalı çelik levha 

kusur algılama sistemi uygulanmıştır. Support vector classifier (SVC-Destek Vektör 

Makineleri), random forest classifier, gradient boosting, k-nearest neighbours (KNN-

k En Yakın Komşuluk), decision trees (karar ağaçları) ve AdaBoost (adaptive 

boosting) gibi farklı sınıflandırıcılar kullanmıştır. Gradyan Artırma Sınıflandırıcısı 

(Gradient boosting classifier) uygulanması ve hiperparametre değerlerinin hassas bir 

şekilde ayarlanmasıyla birlikte ezik, ek, yama, çukurlu yüzey ve çiziklerin %92,5 

doğrulukla istenen sınıflandırma değeri elde edilmiştir. 

Ferguson ve diğerleri (2018), yapılan çalışma ile metal dökümlerde ve 

uygulanan kaynak işleminde, meydana gelen kusurların eşzamanlı olarak algılanma ve 

bölütlenme (segmentasyon) yeteneği ile bir çeşit otomatik kalite kontrol uygulaması 

önermiştir. Önerilen bu sistem makine öğrenimi için transfer öğrenmesi, veri kümesi 

artırma (dataset augmentation) ve çok görevli öğrenme (multi-task learning) gibi bir 

takım güçlü paradigmalar kullanılarak özellik çıkarıcı (feature exactor) olarak ön 

eğitimli ImageNet ağırlıkları ve ön eğitimli Ms COCO veri seti ile 0.957’lik bir 

ortalama hassasiyet (mean average precision – mAPbbox) ile geliştirilmiştir. 

https://software.intel.com/en-us/user/1649054
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Campos ve diğerleri (2018), otomotiv sektöründe kullanılan birkaç .çeşit metal 

bileşen için bir bilgisayarla görme sistemi gerçekleştirmişlerdir. Delikli metal 

parçalardaki merkezi delikte bulunan tam veya kısmi kapanıklık, civata dişlerinin 

düzleşmesi ya da kaynak bağlantılarında çapak olması gibi üç tip kusur üzerinde kalite 

kontrol işlemi gerçekleştirmişlerdir. Farklı gri skala resim analiz algoritmaları 

birbirinden farklı kusurların her biri için test edilmiştir. Kapalı delik hatası için ilk 

olarak resimdeki birçok daire şeklini bulan Dairesel Hough Dönüşümü (Circular 

Hough Transformation) kullanılırken diğer bir yöntem olarak da kontur sınırlama 

kutusu (bounding box) uygulanmıştır. Bozuk dişler ve çapakların belirlenmesi için ise, 

iki resim arasındaki piksellerin karşılaştırılarak hatalı bölgenin başarılı bir şekilde 

belirlenmesi sağlanmıştır. 

Hajizadeh ve diğerleri (2016), Hollanda tren rayı ağında, kusurlu ray 

yüzeylerinin tespit edilmesi için resim verilerinin uygulanabilirliğini test etmeye 

yönelik bir çalışma yapmışlardır. Bu çalışmayı yaparken verilerdeki dengesizliği 

engellenebilecek şekilde etiketsiz resimlerin de bulunduğu yarı gözetimli öğrenme 

yöntemini (semi-supervised learning) uygulamış, hatalı ray resimlerinin bulunduğu bir 

etiket ile çoğunlukla normal sağlıklı raydan oluşan aynı zamanda kaynaklar, yalıtımlı 

bağlantılar, iyi huylu kusurlar, küçük çatlaklar gibi potansiyel diğer kusurları da 

barındıran diğer ray bölümlerini de içeren bir veri seti kullanmıştır. 

Xian ve diğerleri (2018), bu çalışmada, metalik bir yüzey için karmaşık 

endüstriyel senaryolara karşı hem kusur tespit hem de sınıflandırma görevlerini doğru 

bir şekilde gerçekleştirmek için CNN tabanlı yeni bir mimari sunulmaktadır. Arıza 

incelemesi, önerilen metoda dayanarak segmentasyon ve sınıflandırma problemine 

dönüştürülür. Kusurları segmentlere ayırmak ve lokalize etmek için tasarlanan 

CASAE modülü, kusurlu bir görüntüyü yalnızca hatalı pikselleri ve arka plan 

piksellerini içeren piksel biçiminde bir tahmin maskesine dönüştürebilir. Kusur 

kategorisini gerçek muayene ortamlarında hızlı bir şekilde elde etmek için kompakt 

bir CNN sunulur. Metodumuzun muayene sonucunun IoU puanı, endüstriyel veri seti 

kullanılarak %89,60 olarak elde edilmiş olup, görsel ve nicel deneysel sonuçlar, 

önerilen algılama algoritmasının karmaşık endüstriyel ortamın gereksinimlerini 

karşılamak için yeterli olduğunu göstermiştir. 
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Staar ve diğerleri (2019), önerilen çalışmada yüzey anomalisi tespiti için ilk 

defa uygulanan derin metrik öğrenmenin nasıl kullanılabileceğini göstermişlerdir. 

Burada ilgili probleme, basit bir prototip çıkarım yöntemini derin öğrenme ile 

güçlendirerek yaklaşılmıştır. Diğer bir deyişle doğrudan piksel şeklinde çıkarım 

yerine, çıkarım, evrişimli sinir ağı (CNN) tarafından öğrenilen özellik uzayında 

gerçekleştirilmiştir. Önceki CNN tabanlı yaklaşımların aksine, ağlar, derin metrik 

öğrenme alanındaki gelişmeleri, yani üçlü ağları kullanarak yüzey dokuları için 

benzerlik metriklerini açıkça öğrenmek için eğitilmiştir. Kylberg Texture, DAGM ve 

CIFAR100 olmak üzere üç adet veri seti kullanılmış ve 10 sınıf üzerinden 

sınıflandırma işlemi gerçekleştirilmiştir. Performansın yüzey tipine bağlı olduğu 

görülmüştür. 1,3,5 ve 6’ncı sınıfların endüstriyel uygulamalar için kullanışlı olduğu 

buna karşın önerilen yöntemin 2 ve 4’üncü sınıflar için hatalı ve hatasız alanları ayırt 

edemediği belirlenmiştir. Ayrıca kullanılan veri setinin de sistem performansında 

etkisinin yüksek olduğu, bu bağlamda CIFAR-100 veri setinden alınan örneklerin 

DAGM veri setinden alınan örneklere göre daha performanslı olduğu görülmüştür. 

Fernandez-Robles ve diğerleri (2017), yapılan çalışmada rüzgar kulelerinin 

metal direklerinin işlenmesi için kullanılan freze makinelerinde, direkleri işleyen 

sitemin milinde bulunan kesici uçları incelemiş, kırık ve kırık değil şeklinde 

sınıflandırılmasını sağlayan bir sistem önermişlerdir. Uygulamayı gerçekleştirirlerken 

görüntülerin kontrast kalitesini artırmak ve kenarların algılanmasını kolaylaştırmak 

için kontrast sınırlı uyarlamalı histogram eşitleme (contrast-limited adaptive histogram 

equalisation-CLAHE) yöntemini uygulamışlardır. Vidaların dairesel şekillerini tespit 

etmek için iki aşamalı bir algoritma ile, düz çizgileri tespit etmeyi amaçlayan standart 

Hough dönüşümünü (Standart Hough Tranform-SHT) temel alarak çevrelerin lokalize 

edilmesini sağlayan bir özellik çıkarma tekniği olan, dairesel Hough dönüşümünü 

kullanır (Circular Hough Tranform-CHT). 2 GHz işlemci ile 3 dakikadan daha kısa 

sürede 1280 x 960px boyutlarında 24 adet görüntüyü analiz edebilen ve sağlam uçların 

referans görüntüleri ile karşılaştırılmasına gerek duymayan ilk bilgisayarlı görme 

uygulamasıdır. 

Song ve diğerleri (2018), metal vidaların yüzeyindeki mikro seviyedeki 

kusurları algılamak için derin evrişimli sinir ağı temelinde bir teknik önermiştir. 

Algılanmaya çalışılan kusurlar arasında yüzey hasarı, yüzey kiri ve ezilmiş vidalar 
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üzerinde çalışılmıştır. Farklı türdeki kusurlara sahip metal vidaların görüntüleri, 

tasarlanan derin CNN’leri eğitmek için kullanılan endüstriyel kameralar ile toplanarak 

CNN modeline uygulanmaktadır. Uygulama sonuçlarına göre, resim başına 1,2 sn’lik 

ortalama algılama süresi ile önerilen tekniğin %98’lik bir algılama doğruluğu 

sağladığını göstermiştir. Bu sonuç, örneğin şablon eşleştirme ve LeNet-5 gibi 

geleneksel makine görme tabanlı tekniklerle karşılaştırıldığında CNN’e dayalı 

önerilen sistemin üstünlüğünü göstermektedir. 
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İKİNCİ BÖLÜM 

YAPAY ZEKA VE DERİN ÖĞRENME 

 

2.1. YAPAY ZEKA KAVRAMI 

 

Yapay Zeka (Artificial Intelilgence-AI) ilk olarak 1955 (bazı görüşlere göre 

1956) yılında Dartmouth kolejindeki iki aylık atölye çalışması çerçevesinde, yeni bir 

araştırma disiplininin resmi adı olarak kabul edilmiştir. Yapay zeka terimini, 31 

Ağustos 1955 tarihinde proje başvurusunda kullanan John McCarthy, yapay zekaya 

ismini veren kişi olarak kabul edilir (Aydın ve diğerleri, 2019). Yapay Zeka insan gibi 

düşünmek ve hareket etmek için bir makine sistemi tasarlamaktır. İnsan zekasını yapay 

olarak taklit etmek ve genişletmek, insan gibi düşünmeyi ve davranmayı amaçlayan 

makinede gerçekleştirilir (Russell ve Norvig, 2009). Russell ve Norvig (1995) yapay 

zekayı, sekiz farklı tanımdan yola çıkarak iki ana boyuta göre Şekil 2’de görüldüğü 

gibi sınıflandırır. 

 

Şekil 2: Yapay Zeka Tanımlamaları ve Sınıflandırılması 

 

Kaynak: Russell ve Norvig, 1995 

 

Birinci boyut, düşünce süreçleri ve mantıkla ilgili, ikinci boyut ise 

kişiler ve davranışları ele almakla ilgilidir. Derine inildiğinde; 
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 İnsan gibi davranmak; Turing test yaklaşımıyla, 

 İnsan gibi düşünmek; Bilişsel modelleme yaklaşımıyla, 

 Akılcı düşünmek; Düşünce kanunlarının yasalarıyla, 

 Akılcı davranmak; Akılcı ajan yaklaşımıyla açıklanmaktadır. 

Yapay zeka, insanlarda zeka ile ilgili zihinsel fonksiyonları bilgisayar 

modelleri yardımıyla inceleyip bunları formel hale getirdikten sonra yapay sistemlere 

uygulamayı amaçlayan bir araştırma alanıdır. “Yapay zeka terimi ilk olarak önemli 

yapay zeka programlama dillerinden biri olan LISP’i geliştiren ve yapay zeka 

alanındaki öncülerden biri olan John McCarthy tarafından 1956 yılında ortaya 

atılmıştır (Russell ve Norvig, 1995: 17-18). 

 

2.1.1. Yapay Zeka Amaçları 

 

Yapay zeka uygulamalarının amacı, insan zekasını örnek alıp, insan zekası 

olması gereken görevleri gerçekleştirebilecek makineler yapabilmektir. Sonuç olarak 

insanların bilgisayarlardan daha iyi gerçekleştirdiği görevleri bilgisayarların daha üst 

düzeyde gerçekleştirmesini sağlamaktır. Genel olarak yapay zeka amaçları üç başlık 

altında sıralanabilir: 

 Makineleri daha akıllı yapabilmek: 

o Geleceğin bilgi toplumunun kurulmasında kilit rol olan “genel bilgi 

sistemleri” geliştirebilmek. 

o Öğrenme metotlarını formel hale getirmek ve bilgisayarlarda bilgi 

sistemleri halinde uygulamak 

o Özel bir uzmanlık alanındaki bilgileri, bir bilgi sistemi ya da uzman 

sistem halinde toplamaktır. 

 Zekanın ne olduğunu anlamak:  

o İnsanların zihinsel yetenekleri, bilgi kazanma, öğrenme ve buluş 

yapmada uyguladıkları strateji, metot ve teknikleri araştırmaktır. 

 Makineleri daha faydalı hale getirmek:  

o Yapay zeka iş yardımcıları ve zeki robot timleri geliştirmektir. 

Birçok davranış biçimi, zekanın belirtileri olarak kabul edilebilir. 

Aşağıda ise bunun tipik örnekleri belirtilmektedir. 
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 Tecrübelerden öğrenmek, 

 İnsan beyninin fonksiyonlarını bilgisayar modelleri yardımıyla anlamaya 

çalışmak, 

 İnsanların bilgisayar kullanımını kolaylaştırmaya yardımcı insan/bilgisayar 

ara geçiş birimleri geliştirmek, 

 Karışık ve zıt mesajlardan bir anlam çıkartmak, 

 Yeni bir duruma başarılı ve hızlı bir şekilde yanıt vermek 

 Problemlerin çözümünde muhakeme yeteneğini kullanmak, 

 Standart olmayan şaşırtıcı durumlar karşısında, bu durumların üstesinden 

gelebilmek, 

 Bilgiyi anlamak ve kullanmak, 

 Düşünmek ve muhakeme etmek. 

Yapay zeka programları sürekli gelişmekte ve insan zekası gerektiren 

durumlara rehberlik etmekte faydalı hale gelmektedir (Reis, 2017:14). 

 

2.2. DERİN ÖĞRENME 

 

Makine öğrenmesi yapay zekanın bir parçasıdır. Makine öğrenmesi veri ile 

eğitilebilir. Daha sonra ise verilerden elde ettiği bilgi ile alakalı tahminlerde 

bulunabilir. Derin öğrenme ise makine öğrenmesinin bir parçasıdır. Büyük veri 

üzerinde çalışan ön eğitimli (farklı işler için özelleşmiş) çok sayıda yapay zekadan 

oluşan, çok sayıda düğüme sahip ağlar derin öğrenme olarak isimlendirilir. Derin 

öğrenme uygulamaları büyük ve etiketsiz veri üzerinde çalışırken öğretmensiz ön 

eğitim (pre-unsupervised trained), sonrasında öğretmenli öğrenme süreçlerinin 

çalıştırıldığı sistemlerdir. Bu uygulamaların temel özelliklerinden biri de ağdaki 

düğüm miktarının çok büyük olmasıdır (Alpaydın, 2011). Derin öğrenme, çoklu işlem 

seviyelerinden oluşan hesaplama modellerinin, birden fazla soyutlama seviyesine 

sahip verilerin gösterimini öğrenmesini sağlar. Bu yöntemler nesne tanıma, konuşma 

tanıma, nesne algılama, görsel nesne tanıma, genomik  ve ilaç keşfi gibi diğer birçok 

alanda son teknolojiyi önemli ölçüde geliştirmiştir. Derin öğrenme, makinenin her 

katmandaki gösterimini bir önceki katmanda oluşturulan gösterimden hesaplamak için 

kullanılan dahili parametrelerinin nasıl değiştirilmesi gerektiğinin gösterilmesi için 
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geri yayılma (back propagation) algoritmasını kullanarak büyük veri kümelerinde 

karmaşık yapıyı araştırmaktadır (LeCun ve diğerleri, 2015). Derin öğrenme 

sistemlerinin hem öğrenme hem de karar verme aşamasında çıkarılan özelliklerden 

yakın olanların bütünleştirilmesi aşaması alt küme (Pooling) oluşturmadır. 

Milyonlarca farklı verinin (görüntü, ses ve bunun gibi) tüm özellikleri birebir aynı 

olmayacağı için bu aşama önemlidir. Oluşturulan alt kümelerin stokastik olarak 

elenmesine silme (drop out ) denir. Bu sayede genellikle zayıf ilişkiye ait olan bağlar 

koparılır. Silme katmanları sadece kıvrımlı ağ için kullanılmazlar, diğer ağlar için 

kullanılabilir. (Zocca ve diğerleri, 2017). Yapılan işlem gürültü giderme işlemine 

benzemektedir. Verideki gürültü ise girdi sayısı ile çıktı sayısına eşit olan yapay sinir 

ağlarıyla (autoencoder) sağlanır. Derin öğrenme sistemlerinde öğrenme ve karar 

verme süreçleri göz önünde bulundurulduğunda aşağıdaki bileşenlerin her derin 

öğrenme ağında bulunduğu anlaşılmaktadır. 

 Parametreler 

 Katmanlar 

 Aktivasyon fonksiyonları 

 Zarar fonksiyonları 

 Optimizasyon yöntemleri 

 Hiper parametreler (Patterson ve diğerleri, 2017). 

Derin öğrenme başlangıçta sinir ağı algoritmasının ilerlemesinden gelir. 

Sadece bir sinir ağındaki gizli bir katmanın sınırlamalarının üstesinden gelmek için 

çeşitli yöntemler uygulanmıştır. Bu yöntemler, hiyerarşik olarak basamaklandırılmış 

ardışık gizli katmanları kullanır. Derin öğrenmeye ait çeşitli modellerden dolayı, 

Aminanto ve Kim (2016) derin öğrenmeyi üç alt gruba ayıran, üretici, ayırt edici ve 

melez olan Deng (2014) tarafından yönlendirilen yaklaşımlara dayanarak birçok derin 

öğrenme modelini sınıflandırdılar. Sınıflandırma, mimarlık ve tekniklerin (örneğin 

sentez / üretim veya tanıma / sınıflandırma) amacına dayanmaktadır. Derin öğrenme 

yöntemlerinin sınıflandırması Şekil 3’te gösterilmektedir. 
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Şekil 3: Derin Öğrenme Yöntemlerinin Sınıflandırılması 

 

Kaynak: Aminanto ve Kim, 2016 

 

2.2.1. Gözetimsiz Öğrenme 

 

Denetimsiz öğrenme veya sözde üretici model, etiketlenmemiş verileri 

kullanır. Üretken mimarileri örüntü tanımaya uygulayan temel kavram denetimsiz 

öğrenme veya ön eğitimdir (Deng, 2014). Daha sonraki ağların daha düşük seviyelerini 

öğrenmek zor olduğundan, derin üretken yapılara ihtiyaç vardır. Bu nedenle, sınırlı 

eğitim verilerinden, her bir alt tabakayı, tüm üst tabakalara dayanmadan, tabaka 

bazında yaklaşımda öğrenmek esastır. Üretken modeller aynı zamanda verilen 

verilerin ortak istatistiksel dağılımlarını da öğrenmeyi amaçlamaktadır (Deng ve 

diğerleri, 2014) Bu modeller girdi verilen bağlantı ihtimalini hesaplar ve en yüksek 

olasılık olan sınıf etiketini seçer (Zang, 2015). Denetimsiz öğrenme olarak 

sınıflandırılan birçok yöntemler vardır. 

  



 

13 

 

2.2.2. Hibrit Öğrenme 

 

Hibrit derin mimari hem üretken hem de ayırt edici mimarileri birleştiriyor. 

Hibrit yapı, veri ile ayrımcı yaklaşımı ayırt etmeyi amaçlamaktadır. Bununla birlikte, 

ilk adımda, üretici mimarilerin sonuçları ile önemli ölçüde yardımcı olmuştur. Hibrit 

mimarinin bir örneği, Derin Sinir Ağıdır (DNN) (Deng, 2014). Deng ve diğerlerine 

göre (2014), basamaklandırılmış tamamen birbirine bağlı gizli katmanlara sahip çok 

katmanlı bir ağ olarak tanımlanan DNN, eğitim öncesi bir aşama olarak istiflenmiş bir 

stokastik tekrarlayan sinir ağı olan Restricted Boltzman Machine (RBM) kullanır. 

Diğer birçok üretici model, sınıflandırma görevi sınıf etiketleriyle eklendiğinde, ayırt 

edici veya karma modeller olarak düşünülebilir. 

 

2.2.3. Gözetimli Öğrenme 

 

Denetimli öğrenme veya ayırt edici model, model sınıflandırması için verilerin 

bazı bölümlerini etiketli verilerle ayırt etmeyi amaçlar (Deng, 2014) Ayrımcı 

mimarinin bir örneği, özellikle görüntü tanıma için uygun olan özel bir mimariyi 

kullanan Evrişimli Sinir Ağı olan (CNN)’dir. CNN'nin temel avantajı, el yapımı 

özellik çıkarımının gerekli olmamasıdır. CNN, çok sayıda veri topluluğundan 

karmaşık, yüksek boyutlu, doğrusal olmayan eşlemeleri öğrenmek için çok katmanlı 

ağları eğitebilir (LeCun ve diğerleri, 1998).  CNN üç temel kavram kullanır: yerel alıcı 

alanlar, paylaşılan ağırlıklar ve havuzlama (Nielsen, 2015). CNN kullanılarak 

başarıyla dağıtılan kapsamlı bir araştırma, Google'dan AlphaGo’dur (Silver ve 

diğerleri, 2018). Ayrımcı modellerin diğer örnekleri doğrusal ve lojistik 

regresyonlardır (Wang, 2015).  

 

2.2.4. Derin Öğrenme Kütüphane ve Yazılımları 

 

Derin öğrenme alananda kullanılması amacıyla geliştirilen bir çok kütüphane 

ve yazılım bulunmaktadır. Tablo 1’de bu kütüphanelerden bazıları hakkında temel 

bilgilere değinilmiştir. 

  



 

14 

 

Tablo 1: Derin Öğrenme Kütüphaneleri 

Kütüphane 
Yazıldığı 

Dil 
Geliştirici Öne Çıkan Özellikleri 

Theano Python MILA Lab 

Öğreticileri (tutorial) çok etkili. - Keras, 

Blocks gibi API sayesinde matematiksel 

hesaplar kolaylaştırması.  

GPU desteği 

Caffe Python 

Berkeley 

Vision and 

Learning 

Center 

(BVLC) 

Caffe Model Zoo üzerinden indirilebilecek 

ve hemen kullanılacak önceden eğitimli 

ağların bulunması. 

GPU desteği.  

Torch Lua 

Ronan 

Collobert, 

Clement 

Farabet,  

Algoritmaları oluşturma konusunda 

maksimum esnekliğe ve hıza sahip olması.  

GPU desteği. (CUDA)  

Kullanıcı dostu arayüz  

Digits C++  NVIDIA 

Çoklu GPU sistemleri üzerinde sinir ağları 

tasarımı ve eğitimi,  

Gelişmiş görselleştirmelerle performansı 

gerçek zamanlı olarak izleme  

Tamamen etkileşimli  

TensorFlow Python  Google 

Tek bir API ile bir masaüstü, sunucu veya 

mobil cihazdaki bir veya daha fazla CPU’ya 

veya GPU’ya dağıtma olanağı.  

DeepLearni

ng 
Java  

Adam 

Gibson 
JVM tabanlı  

KNET Julia  Deniz Yuret 
Kolay anlaşılır, kısa kodlama yeteneği.  

İfade gücü. - GPU Desteği  

Kaynak: Cirean ve diğerleri, 2012 

 

Bu kütüphanelerden TensorFlow , Torch, Knet, Caffe  ve Theano  için bazı veri 

kümeleri ve modeller üzerinden tek GPU ile çalışma zamanı performansının 

karşılaştırması Tablo 3’te belirtilmiştir. 
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Tablo 2: Kütüphanelerin Çalışma Zamanı Performansının Karşılaştırılması 

Model  
Veri 

Kümesi  
Knet Theano Torch Caffe TensorFlow 

LinReg Housing  2.84 1.88 2.66 2.35 5.92 

Softmax MNIST  2.35 1.40 2.88 2.45 5.57 

MLP MNIST  3.68 2.31 4.03 3.69 6.94 

LeNet MNIST  3.59 3.03 1.69 3.54 8.77 

CharLM Hiawatha  2.25 2.42 2.23 1.43 2.86 

Kaynak: Cirean ve diğerleri, 2012 

 

Verilen tablo incelendiğinde , en yavaş çalışan kütüphanenin TensorFlow, en 

hızlı çalışan kütüphanenin ise Theano olduğu görülmektedir (Cirean ve diğerleri, 

2012). 
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ÜÇÜNCÜ BÖLÜM 

EVRİŞİMLİ SİNİR AĞLARI 

 

3.1. EVRİŞİM VE EVRİŞİMLİ SİNİR AĞI KAVRAMI 

 

Evrişim, bir giriş görüntüsünden özellikleri ayıklayan ilk katmandır. Giriş 

verisinin küçük karelerini kullanarak görüntü özelliklerini öğrenerek pikseller 

arasındaki ilişkiyi korur. Görüntü matrisi ve filtre veya çekirdek gibi iki giriş alan 

matematiksel bir işlemdir (Gopikrishna, 2018). 

Bir evrişimli sinir ağı (ESA-CNN-Convolutional Neural Network), sinir 

ağının, iç özellik sunumlarını öğrenerek ve nesne tanıma ve diğer bilgisayarlı görme 

sorunları gibi ortak görüntü problemlerindeki özellikleri genelleştirerek, hiyerarşik 

yapıyı koruduğu ileri beslemeli, yapay bir ağdır. Resimlerle sınırlı değildir; aynı 

zamanda doğal dil işleme problemlerinde ve konuşma tanımada son teknoloji sonuçlar 

elde etmektedir (Manaswi, 2018). Bir CNN, Şekil 4’te gösterildiği gibi çoklu 

katmanlardan oluşmaktadır. 

 

Şekil 4: Bir Evrişimli Sinir Ağındaki Katmanlar 

 

Kaynak: Manaswi, 2018 

 

Beyin ağlarını modelleme fikri, bilgisayarların ortaya çıkmasından önce bile 

bir araştırma sorusu olarak değerlendirilmekteydi. İlk aşamalarda, sinir ağları önerme 

mantığı ile değerlendirilmekte olup ardından sinir ağlarına uygulanan evrişim ve geri 

yayılımı gibi kavramların keşfi ile sinir ağları daha iyi sonuç verir hale gelmiştir. 

GPU'ların ortaya çıkmasına kadar, bilgisayarlar çok katmanlı sinir ağlarını 
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uygulayacak kadar hızlı değildi. Yani ticari olarak uygun değildi. GPU'ların gücü ve 

daha verimli algoritmalar sayesinde, CNN'ler gerçek hayattaki uygulamalara hale 

gelmiştir (Mane ve diğerleri, 2020). CNN’lerin tarihsel gelişimi Tablo 3’te 

gösterilmiştir. 

 

Tablo 3: CNN'in Gelişim Periyodu 

Dönem Süreç Yıl Eylem 

1940 - 1979 
Sinir Ağının 

Ortaya Çıkışı 

1943 
McCulloch, Pits sinirsel aktiviteyi önerme 

mantığıyla karşılaştırdı. 

1949 Hebb hücre montaj teorisini önerdi. 

1962 
Hubel ve Wiesel, kedi beynindeki görsel sistemi 

modelledi. 

1980 – 1998 
Evrişim 

Konsepti 

1980 
Fukushima, içsel geometrik temsili koruyan kendi 

kendine öğrenen bir NN önerdi. 

1989 

LeCun ve arkadaşları, gerçek hayat uygulamaları 

için geri yayılımlı (back propagation) CNN 

kullanımını gösterdi. 

1999 - 2010 
Daha Etkili 

CNN’ler 

1999 Poggio ve arkadaşları max. Pooling’i önerdi. 

2006 
Ranzato ve arkadaşları CNN için maxpooling’i 

önerdi. 

2011 

Günümüz 

CNN’in 

GPGPU 

ivmelenmesi 

2011 
Ciresan ve arkadaşları GPU’larda CNN kavramını 

ortaya koydu. 

2012 
Hinton ve arkadaşları CNN için Drop Out 

kullanımını gösterdi. 

2013 
LeCun ve arkadaşları daha iyi CNN için Drop 

Connect’i önerdi. 

2014 
Min Lin ve arkadaşları CNN için Ağ içinde Ağ 

konseptini önerdi. 

2015 
Google, CNN için farklı açık kaynak kütüphaneleri 

yayımladı. 

Kaynak: Yazar tarafından derlenmiştir. 

 

Görüntü analizi işlemlerinde en yaygın kullanım alanına sahip derin öğrenme 

mimarisi olan CNN’ler, bir veya birden fazla evrişim katmanından oluşan ve bu 

katmanlarda doğrusal olmayan fonksiyonların bulunduğu yapılardır. CNN, bir grup 

nöronun belirli bir özelliği tanımak ve bunları kategorilere ayırmaktan sorumlu olduğu 

denetimli bir makine öğrenme algoritmasıdır. Bu algoritmalar, çıktıyı olumsuz 

etkilemeden girdi özelliklerinin boyutunu azaltmak için girdi üzerinde evrişim 

gerçekleştirir. Bu özellik görüntüdeki bir kenar veya konuşma alt örneği olabilir. 

Belirli evrişim çekirdekleri, özellikle görüntülerde, herhangi bir özelliği temsil 
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etmeyen çok fazla gereksiz pikselin bulunduğu durumlarda, girişin özünü vurgulamak 

için kullanılır. CNN’in avantajı zengin kusurlu görüntü özelliklerini otomatik olarak 

çıkarabilmesidir (Chuncheng ve diğerleri., 2019). Bir CNN, elle tasarlanan özelliklere 

ihtiyaç duymak yerine, eğitim sürecinde otomatik olarak çalışan bir özellik çıkarıcı 

içerir. CNN özellik çıkarıcısı, eğitim aşamasında ağırlıkları belirlenen özel tür sinir 

ağlarından oluşur ve aynı boyutta katmanlara sahip standart ileri beslemeli sinir ağları 

ile karşılaştırıldığında, CNN’lerin çok daha az bağlantı ve parametreye sahip olduğu 

ve bu sayede eğitilmesinin daha kolay olduğu görülür (Krizhevsky ve diğerleri, 2012). 

Şekil 5’te verilen LeNet mimarisi, 1988 yılında Yann LeCun tarafından ortaya atılan, 

ve 1998’lere kadar iyileştirmeleri devam eden ilk CNN ağıdır. LeNet ağında, alt 

katmanlar art arda yerleştirilmiş konvolüsyon ve maksimum havuzlama 

katmanlarından oluşur. Sonraki üst katmanlar ise tamamen bağlı geleneksel MLP 

(Multilayer Perceptron)’ye karşılık gelmektedir. 

 

Şekil 5: LeNet Ağının Mimarisi 

 

Kaynak: Cirean ve diğerleri, 2012 

 

Tipik bir CNN mimarisi, Şekil 6'da gösterildiği gibi (LeCun ve diğerleri, 2010), 

sırasıyla girdi, evrişim, havuzlama, aktivasyon ve sınıflama katmanlarından 

oluşmaktadır (Chen ve diğerleri, 2018). 
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Şekil 6: Evrişimli Sinir Ağının Mimarisi 

 

Kaynak: Mane ve diğerleri, 2020 

 

Son yıllarda yapay zeka, bilgisayarla görü ve derin öğrenme alanlarındaki 

olağanüstü gelişmeler, özellikle de evrişimli sinir ağlarının kullanıldığı, görüntü 

sınıflandırma ve görü uygulamalarında (Russakovsky, 2015) dikkate değer bir 

performans artışına yol açmıştır (LeCun, 1989). Bu gelişmeler sonucunda bilgisayarla 

görü alanı istatistiksel yöntemlerden derin öğrenme yöntemlerine doğru kaymıştır. 

Derin öğrenme, nesne algılama, hareket izleme, eylem tanıma, insan pozu tahmini ve 

semantik bölümlendirme gibi çeşitli bilgisayarlı görme problemlerinde büyük adımlar 

atılmıştır (Volulodimos ve diğerleri, 2018). CNN’ler, yüz tanıma, nesne algılama, 

otonom araçlar gibi bilgisayarlı görme uygulamalarında son derece başarılı olmuştur. 

Ancak önemli bir dezavantajı vardır. Nesne tanıma konusunda evrişimli sinir 

ağları ile başarılı olunsa da, bazı sorunları da içermektedir. Eğitilmiş bir evrişimli sinir 

ağı, ilgili nesneye farklı bir açıdan bakıldığında tanıma işlemini farklı başarı oranı ile 

gerçekleştirmektedir. Evrişimli sinir ağının bir nesneyi oluşturan parçaların arasındaki 

hiyerarşiyi (örneğin bir yüzün göz, ağız, burun vb. organlardan oluşması) 

anlayamadığı bilinmektedir. Yapay genel zekaya (artificial general intelligence) giden 

yolda nesnelerin konum, yönelim ve açısal durumdan bağımsız olarak tanınabilmesi 

için farklı parametrelerle temsil edilmesi gerekmektedir (Beşer ve diğerleri, 2018). 

Sinir ağlarından farklı olarak, CNN’lerde girdi Şekil 7’deki gibi çok kanallı bir 

görüntüye sahip bir vektördür (bu durumda 3 kanallı-RGB). 
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Şekil 7: CNN’e Giren Örnek Bir Resim Bilgisi 

 

Kaynak: Gopikrishna, 2018 

 

Şekil 8’de, 32 * 32 boyutlarında 3 kanallı, yani renkli bir giriş resmi olarak 

kullanıldığı görülmektedir. Bu görüntünün düzleştirilerek vektör hale getirilmesi 

gerekmektedir, fakat bu işlem esnasında resimdeki köşeler ve resim derinliği 

kaybedilmektedir. Buna engel olmak için CNN kullanılmaktadır. CNN ile resmi 

düzleştirip vektör haline getirmek yerine resmin 3 boyutlu yapısının korunması yoluna 

gidilir. Ve ağırlık (weight) olarak küçük filtreler kullanılır. Bu örnekte 5x5x3 filtre 

kullanılmakta ve resmin tüm piksellerine uygulanmaktadır. Filtrenin bize verdiği 

değer o bölgenin çıkış değeri olacaktır. Şekil 8’de görüldüğü gibi filtre uygulandıktan 

sonra yalnızca bir çıktı alınmış ve çıktı olarak 28 * 28 * 1 boyutunda bir aktivasyon 

haritası elde edilmiştir. Layer içinde kaç adet filtre varsa bu filtrelerin hepsi tek tek 

uygulanır ve sonunda kaç adet filtre uygulandıysa çıkış derinliği de o kadar olacaktır. 

Ayrıca filtre derinliğinin uygulandığı layer derinliğiyle aynı olmak zorunda olduğuna 

dikkat edilir. 
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Şekil 8: Örnek Bir Evrişim İşlemi 

 

Kaynak: Gopikrishna, 2018 

 

Şekil 9’da görüntü piksel değerleri 0, 1 değerlerinden oluşan 5 x 5 görüntü 

matrisi ile 3 x 3 filtre matrisinin çarpımı görülmektedir. 

 

Şekil 9: Görüntü ve Filtre Matrisleri 

 

Kaynak: Gopikrishna, 2018 

 

Filtreleme işleminin ardından Şekil 10’da görüldüğü gibi, 3 x 3 boyutlarında 

bir “Özellik Haritası” oluşur. 

  

https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------
https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------
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Şekil 10: Filtreleme İşlemi Sonucu Oluşan Evrişimli Özellik Haritası 

 

Kaynak: Gopikrishna, 2018 

 

Adım (stride): Adım, giriş matrisine uygulanan filtrenin kaydırıldığı piksel 

sayısıdır. Adım değeri 1 olduğunda, filtreler tek seferde 1 piksel kaydırılır. Adım 

değeri 2 olduğunda filtreler tek seferde 2 piksel kaydırılır. 

Zero Padding (Sıfır Doldurma): Filtre uygulandığında boyutlar her zaman 

küçülür. Boyutların her katmanda düşmesini engellemek için zero padding (sıfır 

doldurma) işlemi uygulanır. Kaybolan her piksele 0 değeri verilirse küçülme 

engellenmiş olur. 

Şekil 11’de, filtreleme uygulanan görüntüden, sıfırlarla doldurma işlemi 

uygulandıktan sonra görüntünün boyutunun korunduğu gözlemlenebilir. 

 

Şekil 11: Zero Padding Uygulaması 

 

Kaynak: Gopikrishna, 2018 

 

ReLU Aktivasyon Fonksiyonu: ReLU doğrusal olmayan bir operasyon için 

Doğrultulmuş Doğrusal Ünite (Rectified Lineaar Unit) anlamına gelir. Amacı, 

doğrusal olmayan gerçek dünya özelliklerini tanıtmaktır ki, bu da hataları kolayca geri 

https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------
https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------
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yayabildiğimiz (back propagation) ve ConvNet (Evrişimsel Ağ)’deki ReLU 

fonksiyonu tarafından etkinleştirilen birden fazla nöron katmanına sahip 

olabileceğimiz anlamına gelir. Çünkü gerçek dünya verileri, ConvNet’imizin 

öğrenmesini etkileyen negatif olmayan doğrusal değerler olacaktır. 

Havuzlama (Pooling): Havuzlama katmanının amacı, giriş görüntüleri çok 

büyük olduğunda modeli küçültmek ve parametre sayısını azaltmaktır. Genellikle 

pooling işlemi ile layer boyutu yarı yarıya indirilir. Daha sonra, sonraki evrişim 

katmanları arasına düzenli olarak havuzlama katmanlarının eklenmesi arzu edilir. 

Havuzlama, yalnızca görüntünün uzamsal boyutunu azaltmak amacıyla yapılır. 

Havuzlama her derinlik boyutunda bağımsız olarak yapılır, yani derinlik boyutunu 

etkilemez. Bu nedenle görüntünün derinliği değişmeden kalır. Genel olarak uygulanan 

havuzlama katmanının en yaygın şekli maksimum havuzlamadır (max pooling). 

 

Şekil 12: Max Pooling İşlemi 

 

Kaynak: Gopikrishna, 2018 

 

Yukarıda verilen Şekil 12’de, 4 * 4 evrişimli çıkış değeri maksimum 

havuzlama işleminden sonra 2 * 2 olduğu görülmektedir. 2’şer adım atarken, boyutu 

da 2 olarak birleştirdik. Maksimum havuzlama işlemi, evrişimli çıktının her derinlik 

boyutuna uygulanır. Bu katmanda yapılan işlem aşağı örnekleme olarak da 

adlandırılır. Bu katmanda yapılan işlemler sonucu boyuttaki azalma veri kaybına 

neden olur. Bunun faydası ise bir sonraki ağ katmanı için hesaplama yükünü azaltmak 

ve sistemin ezberlemesini engellemektir. 

Şekil 13, bir giriş görüntüsünü işlemek için tam bir CNN akışını ve nesnelerin 

değerlere göre sınıflandırıldığını gösterir. 

  

https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------
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Şekil 13: CNN Akışı ve Sınıflandırma İşlemi 

 

Kaynak: Gopikrishna, 2018 

 

Tamamen Bağlı Katman (Fully Connected Layer) / Çıkış Katmanı: Havuzlama 

katmanından sonraki özellik eşleme matrisi, vektör (x1, x2, x3…) olarak düzleştirilmiş 

olacaktır. Bir model oluşturmak için bu özellikleri, fully connected katmanlarla bir 

araya getirilir. Konvolüsyon katmanları, 3B aktivasyon haritaları oluştururken, 

görüntünün belirli bir sınıfa ait olup olmadığı gibi çıktıya ihtiyaç duyulur. Çıktı 

katmanı, tahmindeki hatayı hesaplamak için kategorik çapraz-entropi (cross-entropy) 

gibi bir kayıp fonksiyonuna (loss function) sahiptir. İleri geçiş tamamlandığında, geri 

yayılım (back propagation), hata ve kayıp azaltma için ağırlığı (weight) ve önyargıları 

(biases) güncellemeye başlar. Bu andan itibaren CNN'den bir özellik haritası 

alındıktan sonra, ilginç bölgeler bulmak için Bölge Öneri Ağı’na (RPN) geçirilmesi 

gerekir. Bölge Öneri Ağları, bir nesneyi bulup bulmadığına ilişkin kaybı ve nesnenin 

bulunduğu yere ilişkin kaybı verir. 

Şekil 14’te, RPN kullanan ve çalışmamızda uyguladığımız Faster-RCNN için 

yüksek düzeyli mimari görülmektedir. 

 

Şekil 14: Faster R-CNN Mimarisi 

 

Kaynak: Gopikrishna, 2018 

  

https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------
https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------
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CNN'den giriş görüntüsü için özellikler elde edildikten sonra, Bölge Öneri Ağı 

(RPN-Region Proposal Network) katmanı ile bölge önerilerinin oluşturulması 

(Anchors (Çapalar) / Bounding Box (Sınırlayıcı Kutu)) yapılabilir. Öngörülen bölge 

önerileri daha sonra görüntüyü önerilen bölge içinde sınıflandırmak ve sınırlama 

kutuları için R-CNN ile offset değerlerini tahmin etmek amacıyla kullanılan bir İlgi 

Alanı Havuzlama (RoIP-Reigon of Interested Pooling) katmanı kullanılarak yeniden 

şekillendirilir. 

 

3.2. FASTER R-CNN VE RPN (REGION PROPOSAL NETWORK) 

 

3.2.1. Faster R-CNN ve RPN 

 

Faster R-CNN Nesne algılama yapan bir ağdır. Adından da anlaşılacağı gibi, 

temelini oluşturan RCNN ve FastRCNN'den daha hızlıdır. Bu, otonom araçlarda, 

üretimde, güvenlikte kullanım alanına sahiptir. 

Faster R-CNN ağı aşağıdaki temel adımlar çizgisinde çalışır: 

 Bir Özellik Haritası (Feature Map) almak için görüntü CNN üzerinden 

çalıştırılır, 

 Etkinleştirme Haritası (Activation Map), Bölge Öneri Ağı (Region 

Proposal Network - RPN) adı verilen ve ilginç kutular / bölgeler üreten ayrı 

bir ağ üzerinden çalıştırılır, 

 RPN'den gelen ilginç kutular / bölgeler için sınıf + Sınırlayıcı Kutu (class 

+ bounding box) koordinatlarını çıkarmak için birkaç tam bağlantılı katman 

kullanılır. 

Şekil 15’te RPN ve Faster R-CNN Mimarisi gösterilmektedir. 
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Şekil 15: RPN ve Faster R-CNN Mimarisi 

 

Kaynak: Gopikrishna, 2018 

 

Faster R-CNN’in hızlı olmasının sebebi, bölge önerilerini tahmin etmek 

amacıyla özellik haritası (future map)’nda seçici arama (selective search) algoritması 

kullanmak yerine, bölge önerilerini belirlemek için farklı bir ağ kullanmasıdır.  

Giriş görüntüsü CNN den geçirilip özellik haritası çıkarıldıktan sonra bu 

aşamada selective search (seçici arama) ile bölge önerisi almak yerine, bu önerileri ağ 

içerisinde yapılır. Artık bölge önerileri bu ağ üzerinde yapılır ve hız kazanımı sağlanır. 

Bundan sonrası Fast R-CNN gibi çalışır. 

Sınıflandırma işlemi yapıldıktan sonra 4 farklı parametre ortaya çıkar. Hem 

bölge önerisi veren ağın hem de normal evrişim işlemlerinin yapıldığı ağın eğitilmesi 

gerekir.  

https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------
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Burada, RPN’in iki görevi vardır: 

 Her öneri için orada “nesne var mı yok mu?” karar vermek, 

 Aynı zamanda önerilerin pencere büyüklüğünü belirlemek. 

Asıl Ağımızda yapılacak iki görev vardır: 

 Sınıflandırma yaparak baktığı bölge içinde “nesne var mı yok mu?” 

belirlemek, 

 Bulduğu nesnenin sınırlarını belirlemek (Cebeci, 2019). 

Son evrişimli katmanda bir dizi evrişimli özellik haritası (özellik matrisi) elde 

edildikten sonra, bu özellik haritalarında uzamsal olarak kayan bir pencere çalıştırılır. 

Kayan pencerenin boyutu n × n'dir (burada 3 × 3). Her bir kayan pencere için, hepsi 

aynı merkeze (xa, ya) sahip, ancak Şekil 16’da gösterildiği gibi 3 farklı en boy oranına 

ve 3 farklı ölçeğe sahip bir dizi (9) anchor (çapa) üretilir. 

 

Şekil 16: Anchor Üretimi 

 

Kaynak: Gopikrishna, 2018 

 

Daha yakından bakılırsa: 

 Üç renk üç ölçeği veya boyutu temsil eder: 128x128, 256x256 ve 512x512. 

https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------
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 Kırmızı kutuları (boxes) / çapaları (anchors) seçelim. Üç kutucuk sırasıyla 

1: 1, 1: 2 ve 2: 1 yükseklik genişlik oranlarına sahiptir. 

Bu anchor’lar, Pascal VOC veri kümesi ve COCO veri kümesi için iyi çalışır. 

Ancak, farklı anchor / box tasarımı yapılabilmektedir. Örneğin, yolcuları / yayaları 

saymak için bir ağ tasarımı yapıldığı varsayılırsa, çok kısa, çok büyük veya kare 

kutuların düşünülmesi gerekmeyebilir. Düzgün bir anchor seti, hızı ve doğruluğu 

artırabilir. 

Ayrıca, bu anchorların her biri için, bu anchorların yer-doğruluk sınırlama 

kutuları (GTBox-Ground Truth Box) ile ne kadar örtüştüğünü gösteren bir p ∗ değeri 

hesaplanır. 

Son olarak, bu evrişim özellik haritalarından çıkarılan 3 × 3 uzamsal özellikler, 

iki görevi olan daha küçük bir ağı besler: sınıflandırma ve regresyon. Regresörün 

çıktısı, tahmin edilen bir sınırlama kutusu (x, y, w, h) belirler, sınıflandırma alt ağının 

çıktısı, tahmin edilen kutunun bir nesne (1) içerip içermediğini veya arka plandan (0 

için obje yok) olduğunu gösteren bir p olasılığıdır. 

 

3.2.2. Faster R-CNN ve ROI (İlgi Alanı) Katmanı 

 

RPN'den sonra, farklı boyutlarda önerilen bölgeler elde edilir. Farklı boyutlu 

bölgeler, farklı boyutlu CNN özellik haritaları anlamına gelir. Farklı boyutlardaki 

özellikler üzerinde çalışmak için verimli bir yapı oluşturmak kolay değildir. ROI 

Pooling, özellik haritalarını aynı boyuta indirerek sorunu basitleştirebilir. 

Sonuç olarak, farklı boyutlardaki dikdörtgen listesinden, sabit boyuttaki 

karşılık gelen özellik haritalarının bir listesi hızlı bir şekilde alınabilir. 

ROI havuzu oluşturmanın faydalarından biri işlem hızıdır. Çerçevede birden 

fazla nesne öneri varsa (ve genellikle birçoğu varsa), yine de hepsi için aynı giriş 

özelliği haritası kullanılabilir. Evrişimleri işlemenin erken aşamalarında hesaplamak 

çok pahalı olduğundan, bu yaklaşım bize çok zaman kazandırabilir. 
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3.2.3. Faster R-CNN ve R-CNN Katmanı 

 

Son katman olan bölge tabanlı evrişimli sinir ağı (R-CNN), Faster R-CNN’in 

boru hattındaki (pipeline) son adımdır. Görüntüden evrişimli bir özellik haritası 

aldıktan sonra, bunu RPN ile nesne önerileri almak için kullandıktan ve son olarak bu 

tekliflerin her biri için (RoI Pooling aracılığıyla) özellikleri ayıkladıktan sonra, bu 

özelliklerin sınıflandırma için kullanılması gerekir. R-CNN, mümkün olan her nesne 

sınıfı için bir puan çıkarmak için tam olarak bağlı bir katmanın kullanıldığı CNN'lerin 

sınıflandırılmasının son aşamalarını taklit etmeye çalışır. 

R-CNN'nin iki farklı hedefi vardır: 

 Önerileri sınıflardan birine ve bir arka plan sınıfına (kötü teklifleri 

kaldırmak için) sınıflandırır, 

 Önerinin sınırlayıcı kutusunu öngörülen sınıfa göre daha iyi ayarlar. 

Nesne tespit uygulamalarındaki son gelişmeler, Bölge öneri yöntemleri 

(Region Proposal Methods-RPN) ve bölgesel tabanlı evrişimli sinir ağları (R-CNN) 

başarısıyla meydana gelmiştir (Shaoqing ve diğerleri, 2016). 

RPN, belirli nesne türlerini tanımlamak yerine resimlerdeki ilgi bölgelerini 

(ROI'ler) tanımladığı için transfer öğreniminin uygulanması için ideal bir adaydır 

(Ferguson ve diğerleri, 2018). 

RPN, birçok sınıfa sahip büyük bir veri kümesi üzerinde bir nesne algılama 

ağını eğitirken, RPN, nesne sınıfına göre ayrım yapmadan, muhtemelen nesne içeren 

görüntünün alt bölümlerini tanımlamayı öğrenir. Bu özellik, ilk olarak nesne algılama 

sisteminin Micrososft Common Objects in Context (COCO) veri seti gibi çok sayıda 

nesne sınıfı olan büyük bir veri setinde ön eğtimiyle geliştirilir. İlginç bir şekilde, 

eğitilmiş nesne algılama sisteminden gelen RPN hatalı bir metal somun görüntüsüne 

uygulandığında, görüntünün diğer ilginç bölgeleri arasındaki döküm kusurlarını 

hemen tespit eder. 
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COCO veri setiyle gerçekleştirilmiş bir eğitimden sonra RPN’in çıktısı  

Şekil 17’de gösterilmektedir. 

 

Şekil 17: RPN ile İşaretlenen Bir Metal Somun Resmi 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

3.2.4. Faster R-CNN ve Inception V2 Yapısı 

 

Inception V2, evrişim ağının karmaşıklığını azaltmak için tasarlanmış bir 

modüldür. Bu modül, evrişim ağının daha derinden geniş olmasını sağlar. Inception 

V2, A, B, C olarak adlandırılan üç farklı tip modüle sahiptir. Şekil 18 ile gösterilmiştir. 

Şekil 18 (a) ile gösterilen yumruk modülü (A), 5x5 konvolüsyonun 3x3 konvolüsyon 

olması yerine değiştirildi. Bu, prensipleri takip ederek, mekansal toplanmanın, temsil 

gücünde çok fazla veya herhangi bir kayıp olmadan daha düşük boyutlu gömme 

üzerinde yapılabileceğini gösterdi. 3x3 evrişimi gerçekleştirilerek, evrişim 

performansı artırılmıştır (C. Szegedy ve diğerleri, 2016). 

  



 

31 

 

Şekil 18: Inception V2 Modeli 

 

Kaynak: Alamsyah ve diğerleri, 2019 

 

Filtre boyutunun N x n, 1 x n ve n x 1 evrişimleriyle çarpanlara ayrılması ile, 

bu yöntemin tekli 3x3 konvolüsyondan %33 daha ucuz olduğu görülmüştür. Bu, modül 

B olarak Şekil 18 (b) ile gösterilmiştir.  

Dahası, filtre genişletilerek daha yüksek boyutlu gösterimler ilkesinin bir ağ 

içinde yerel olarak işlenmesi daha kolaydır. Genişletilmiş modül, Şekil 18 (c) ile 

gösterilmiştir (Alamsyah ve diğerleri, 2019). 

 

3.2.5. MSCOCO ve Transfer Öğrenmesi 

 

Transfer öğrenmesi, bir ortamda öğrenilen bilgilerin başka bir ortamda 

genelleştirmeyi geliştirmek için kullanıldığı bir makine öğrenme tekniğidir (Ferguson 

ve diğerleri, 2018). 

Transfer öğrenme, bir sınıflandırma senaryosunda eğitilmiş bir modeli, basit 

yapısal düzenlemeler yoluyla yeni bir sınıflandırma senaryosuna uyarlar 

(Gopalakrishnan ve diğerleri, 2017). 

(Kolar ve diğerleri, 2018; Gao ve Mosalam, 2018) çalışmaları ile transfer 

öğreniminin sınırlı eğitim verisi olan alana özgü görevler için özellikle uygulanabilir 

olduğu gösterilmiştir. 

Bu çalışmalardan da anlaşılacağı gibi transfer öğreniminin avantajı, mevcut 

eğitim veri seti küçük olduğunda bile tespit doğruluğunu artırabilmesidir. Şekil 19, 

transfer öğrenmesi ilkesini gösterir. Faster RCNN tabanlı yapısal visual inspection 

metodu çoklu hata tiplerini tespit etmek için önerilmiştir (Cha ve diğerleri, 2018). 
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Şekil 19: Transfer Öğrenme Şeması 

 

Kaynak: MissingLink, 2016  
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DÖRDÜNCÜ BÖLÜM 

HATA TESPİT VE SINIFLANDIRMA SİSTEMİ 

 

Bu bölümde, derin öğrenme ile resim, video ve gerçek zamanlı kamera 

görüntüleri üzerinden anomali içeren metal somunlar üzerinde hata tespit ve 

sınıflandırma işlemi gerçekleştiren bir sistem uygulanmıştır.  

Uygulama geliştirilirken Şekil 20’de belirtilen model kullanılmıştır. 

 

Şekil 20: Uygulama Geliştirme Modeli 

 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

Önerilen sistem, metal somunlar üzerinde anomali tespit ve sınıflandırma 

işlemleriyle bir resim lokalizasyon ve nesne algılama sistemi gibi çalışır. Anomali 

tespit sisteminin tasarımı, diğer CNN mimarilerine göre doğruluğunun daha yüksek 

olması nedeniyle Faster R-CNN modeline dayanmakta ve COCO veri seti ile eğitilmiş 

olan Faster-RCNN Inception V2 modeli kullanılarak transfer öğrenmesi ile sistemin 

eğitimi gerçekleştirilmiştir.  
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4.1. METODOLOJİ 

 

Anomali içeren metal somunların hata tespit ve sınıflandırma uygulamasının 

gerçekleştirilmesi için Şekil 21’de belirtilen iş akışı uygulanmıştır. 

 

Şekil 21: Hata Tespit ve Sınıflandırma Uygulaması Geliştirme İş Akışı 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

Uygulamanın test aşamasında ve kullanımında ise Şekil 22’de verilen 

algoritma uygulanmıştır. 

 

Şekil 22: Hata Tespit ve Sınıflandırma Algoritması 

 

Kaynak: Yazar tarafından derlenmiştir.  
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Veri hazırlama aşamasında, çalışmamıza uygun veri olmadığı için özgün bir 

veri seti hazırlanmıştır. Veri setindeki veri sayısının artırıması ve modelimizin başarısı 

için veri artırım işlemi gerçekleştirilmiştir. Bu işlemden sonra veri setinin 

tamamlanmasıyla birlikte metal somunları “hatalı” ve “hatasız” olacak şekilde 

etiketleme işlemi yapılmıştır. 

Derin öğrenme aşamasında, Tensorflow Object Detection API kurulumu, bu 

API’ye ait transfer öğrenmesi gerçekleştireceğimiz, Micrososft Common Objects in 

Context (COCO) veri setiyle eğitilmiş olan Faster-RCNN-Inception-V2 modelinin 

yüklemesi ve konfigürasyonu, etiketleme işleminin ardından oluşan etiket bilgilerinin 

tensorflow’u anlayacağı tfrecord dosyalarına dönüştürülme işlemi ve ardından 

modelin özgün veri setiyle eğitimi gerçekleştirilmiştir. 

Bilgisayarla görü aşamasında, nesne tespit yazılımlarımız çalıştırılarak resim 

ve video dosyaları üzerinden ya da gerçek zamanlı kamera görüntüleri üzerinden 

görüntü alma işlemi gerçekleştirilmiştir. 

Cevap aşamasında ise uygulamamız gördüğü metal somunları tespit ederek 

“hatalı” veya “hatasız” olarak sınıflandırma işlemini başarmıştır. 

Hata tespit ve sınıflandırma uygulaması geliştirilirken, Şekil 23’te belirtilen ve 

bir disiplin içeren Sistem Geliştirme Yaşam Döngüsü (SGYD) adımlarına bağlı 

kalmaya özen gösterilmiştir.  

 

Şekil 23: Sistem Geliştirme Yaşam Döngüsü 

 

Kaynak: Tecim, 2015: 3.  
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Problemin ve amaçların tanımlanması aşamasında, hedef sektörün iş akışları 

incelenmiştir.  

Belirlenen eksiklere yönelik gereksinimler ortaya konmuştur. 

İhtiyaçların analizi kapsamında ise ihtiyaç duyulduğu düşünülen geliştirme 

süreçleri ve yöntemler ile ihtiyaç duyulan veriler belirlenmiştir. 

Sistem tasarımında, hata tespit ve sınıflandırma işleminin sorunsuz 

yapılabilmesi için, metal somunların konveyörde ilerleyiş biçimleri, kullanılacak 

kamera sayısı ve yakalanacak görüntü açısına uygun bir veri seti ile uygun bir 

uygulama tasarımına gidilmiştir.  

Yazılım geliştirme aşamasında ise derin öğrenme uygulamaları için en uygun 

dillerden Python kullanılmıştır. Ayrıca, ihtiyaç duyulan kütüphaneler ve frameworkler 

kullanılarak özellikle, ücretsiz GPU desteği sağlaması sebebi ile, Google’ın bulut 

hizmeti olan Colaboratory kullanılmıştır. 

Sistem geliştirilirken, eğitim aşamasına kadar uygulanan yapılandırmaların 

doğru olup olmadığı ve eğitim ardından uygulamanın sınıflandırma işlemini doğru 

yapıp yapmadığı test edilmiştir. Alınan hatalar sonucunda, konfigürasyon işlemleri 

tekrar düzenlenerek yeniden eğitim sağlanmış ve başarı oranı artırılmıştır. 

Sistemin gerçekleştirilmesi ve değerlendirilmesi aşamasında, sistemin 

işletmenin kullanımına hazır hale getirilmesi hedeflenmiştir. 

 

4.2. YAPILAN HAZIRLIKLAR 

 

Çalışmaya başlanmadan önce içerisinde metal somunların yer aldığı bir veri 

seti olmadığı için model üzerinde istenilen eğitimi yapabilmek amacıyla özgün bir veri 

seti hazırlama gereği duyulmuştur. 

Hatalı ve hatasız somunların yer aldığı bir veri seti oluştururken uygun nitelikte 

görüntüler elde etmek için uygun ortamın hazırlanması yapılması gereken ilk iş olarak 

ele alınmıştır.   
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4.2.1. İdeal Ortamın Hazırlanması 

 

Veri setini hazırlarken alınan görüntülerin ihtiyaç duyulan ideal ortam, bir 

plastik kabın şerit ledlerle aydınlatılması ve görüntü alınması için yan ve üst 

taraflarından delik açılmasıyla birlikte Şekil 24’te görüldüğü gibi adeta küçük bir 

stüdyo şeklinde oluşturulmuştur. 

 

Şekil 24 : Oluşturulan Stüdyo Ortamı 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

Ardından ihtiyaç duyulan açılardan el değmeden ve zaman kaybetmeden 

ardarda seri görüntüler alınabilmesi için oluşturulan stüdyoya step motor devresi 

eklenmiştir. Step motor, step motor sürücü kartı ve Arduino nano kartı kullanılarak 

oluşturulan Şekil 25’te görülen sistem ile step motorun 200 ms gecikmelerle adım 

adım dönmesi sağlanmış olup, step motor üzerine eklenen bir stand ile de somunların 

hareketli olarak her açıdan görüntülerinin alınması sağlanmıştır. Step motor bilgileri 

ve kullanılan kod parçası Ek 1’de belirtilmiştir. 
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Şekil 25: Step Motor Çalışma Sistemi 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

İdeal ortamın sağlanmasının ardından, öncelikle 13 Mp kamera çözünürlüğe 

sahip Lenovo K5 Note akıllı telefon ile 1080 px video çözünürlükte videolar çekilmiş 

ve VLC medya oynatıcı uygulaması ile bu videolardan, belirtilen frame aralıklarında 

farklı açılardan hatalı ve hatasız görüntülerin yer aldığı 360 adet resim hazırlanmıştır. 

Bu veri setinde yer alan 360 adet resim 72 adet test ve 288 adet train olacak şekilde 

ayrıştırılmıştır. Elde edilen bu resimler, derin öğrenme modeline verildiğinde harcanan 

eğitim süresinin kısaltılması için Photoshop CS2 Extended grafik tasarım uygulaması 

kullanılarak en/boy oranları 100x76 px çözünürlüğüne indirgenmiştir. Daha sonra, 

kullanılan derin öğrenme modellerinin veri giriş değerlerine uyum sağlaması ve 

herhangi bir veri kaybına mani olmak amacıyla bu değerler Python ile yazılmış olan 

ve Ek-2’de belirtilen kodlar kullanılarak 600x600 px çözünürlükte standart boyutlara 

getirilmiştir. 

Ardından veri setinin yetersiz olduğu düşünülerek 12 Mp kamera 

çözünürlüğüne sahip LG G7 ThinQ akıllı telefon kullanılarak, 1:1 görüntü oranında, 

3492x3492 px çözünürlüğünde resimler çekilerek, aralarında nesne algılama 

uygulamamıza uygun olduğu değerlendirilen yalnızca üst ve yan açılardan alınmış 

olan resimler seçilmiş, somun resimlerinin sayısını artırmak amacıyla hatasız somun 

resimlerine veri artırım (data augmentation) işlemi uygulanarak toplam 2000 adet 
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resimden oluşan özgün veri setimiz hazırlanmıştır. Veri setimizdeki 2000 adet resim 

400 adet test ve 1600 adet train olmak üzere iki gruba ayrılmıştır. 

 

4.2.2. VLC Media Player Uygulamasının Yapılandırılması 

 

Video üzerinden istenilen frame aralıklarında resim alınabilmesi için VLC 

Media Player’ın, aşağıdaki adımlarda belirtildiği gibi yapılandırılması sağlanmıştır: 

 VLC ortam oynatıcısının arayüzü açılır ve Araçlar menüsünden Ayarlar 

sekmesi seçilir. 

 

Şekil 26: VLC Player Konfigürasyon Ayarları 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Video ve resim işlemleriyle ilgilendiğimiz için Açılan Basit Ayarlar 

penceresinden “Görüntü” menüsü seçilir. 
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Şekil 27: VLC Player Görüntü Ayarları 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Görüntü alma işlemlerine giriş yapabilmek için pencerenin sol alt tarafında 

yer alan “Ayrıntılı” seçeneği seçilerek açılan “Gelişmiş Ayarlar” 

penceresinden Görüntü” menüsü ve bu menü içerisinden de “Sahne 

Görüntü Süzgeci” işaretlenir.  

 

Şekil 28: VLC Player Sahne Görüntü Süzgeci 

 

Kaynak: Yazar tarafından derlenmiştir. 
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Şekil 29: VLC Player Sahne Görüntü Süzgeci Konfigürasyonu 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Sahne Süzgeci Ayarlarından “Sahne Görüntü Süzgeci” değerleri 

girilmelidir.  

 

Buradan kayıt edilecek resmin formatı, boyutları, görüntü alınması istenen 

videonun bulunduğu klasör uzantısı, kaydedilecek olan resmin kaydedilmesi istenen 

klasör yolu ve Videonun frame değerine göre istenen kayıt periyodu girilir. 

Kullandığımız videonun frame değeri 25 olduğu için biz burada 25 değerini kullandık 

ve her saniyede 1 kare resim kaydedilmesini sağladık. 

 

4.2.3. Veri Artırma (Data Augmentation) İşlemi 

 

Sinir ağlarının derin öğrenme performansı, mevcut veri miktarının sık sık 

artırılmasıyla iyileşme kaydeder. Veri artırımı, mevcut eğitim verilerinden yapay 

olarak yeni bir eğitim verisi oluşturmak için kullanılan bir tekniktir. Bu, yeni ve farklı 

eğitim örnekleri oluşturan eğitim verilerinden örneklere alana özgü teknikler 

uygulanarak yapılır. 
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Resim veri artırma işlemi, belki de en iyi bilinen veri artırma türüdür ve orijinal 

görüntüyle aynı sınıfa ait eğitim veri seti içindeki görüntülerin dönüştürülmüş 

versiyonlarını oluşturmayı içerir. 

Bu dönüşümler, kaydırma, çevirme, yakınlaştırma ve çok daha fazlası gibi 

görüntü işleme alanındaki birçok işlemi içerisinde barındırır. 

Amaç, eğitim veri setini yeni ve makul örneklerle genişletmektir. Bu, eğitim 

seti görüntülerinin model tarafından görülmesi muhtemel olan varyasyonları anlamına 

gelir. Örneğin, bir kedi resminin yatay bir şekilde çevrilmesi, fotoğrafın soldan veya 

sağdan çekildiği için mantıklı gelebilir. Bir kedi fotoğrafının dikey olarak çevrilmesi 

anlamsızdır ve muhtemelen modelin baş aşağı bir kedinin fotoğrafını görmesi pek 

mümkün olmadığından uygun olmayabilir. 

Bu nedenle, bir eğitim veri seti için kullanılan özel veri artırma tekniklerinin 

seçiminin dikkatli bir şekilde ve eğitim veri seti bağlamında ve problemin alanı bilgisi 

dahilinde seçilmesi gerektiği açıktır.  

Evrişimli sinir ağı veya CNN gibi modern derin öğrenme algoritmaları, 

görüntüdeki konumlarına göre değişmeyen özellikleri öğrenebilir. Bununla birlikte, 

veri artırma bu dönüşüme daha fazla yardımcı olabilir ve öğrenmeye karşı değişmez 

yaklaşımı destekleyebilir ve sıralama, fotoğraflardaki ışık seviyeleri ve daha fazlası 

gibi dönüşümler için değişmeyen öğrenme özelliklerinde modele yardımcı olabilir. 

Görüntü veri büyütme işlemi genellikle eğitim veri setine uygulanır, doğrulama 

veya test veri setine uygulanmaz. Bu, görüntü yeniden boyutlandırma ve piksel 

ölçeklendirme gibi veri hazırlığından farklıdır; modelle etkileşime giren tüm veri 

kümelerinde tutarlı bir şekilde gerçekleştirilmeleri gerekir (Brownlee, 2019). 
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Şekil 30 : Veri Artırımı Sonucu Oluşan Resim Örnekleri 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

Veri artırma işlemi, keras kütüphanesinin ImageDataGenerator() sınıfına ait 

bazı metotlar kullanılarak gerçekleştirilmiştir. 

Amacımız yetersiz olduğu düşünülen hatasız somun resimlerinin sayısının ve 

çeşitliliğinin artırılarak eğitim doğruluğunun artırılmasını sağlamaktır. 

Data augmentation için Ek-3’te belitilen kodlar kullanılmıştır. 

 

4.2.4. Resim Boyutlarının Düzenlenmesi 

 

4.2.4.1. Photoshop ile Resim Boyutlarının Düzenlenmesi 

 

Eğitimin daha hızlı gerçekleştirilebilmesi için oluşturulan ilk veri setinde 

kullanılması düşünülen 360 adet resmin boyutlarının düşürülmesi için Photoshop CS3 

Extended uygulaması aşağıdaki adımlar kullanılarak yapılandırılmıştır :   

 Photoshop programından File -> Scripts -> İmage Processor adımları 

izlenerek Image Processor penceresi açılır. 
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Şekil 31: Image Processor Penceresinin Açılması 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Açılan Image Processor penceresinde sırasıyla :  

o İşlem yapılacak resimlerin bulunduğu klasör seçilir. 

o İşlem yapılan resimlerin kaydedileceği klasör seçilir. 

o Kaydedilecek dosya uzantısı seçilir. Nesne tespit işlemlerinde .jpeg 

ya da .jpg uzantılı dosyaların kullanılması gerektiği için burada 

JPEG seçilir. 

o Oluşan yeni resim dosyasının ölçülerinin ne olması gerektiği 

yazılır. 

 Run butonuna basarak resim işleme adımı uygulanır. 
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Şekil 32: Resim Boyutlarının Düzenlenmesi 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

4.2.4.2. Python Kodu ile Resim Boyutlarının Düzenlenmesi:  

 

Modelimizin girdi olarak kullanacağı resimlerin standart boyutlarda olması, 

katmanlar arasında filtreleme işlemlerinden geçirilirken veri kaybının engellenmesi ve 

3492 x 3492 px boyutundaki resimlerin eğitilirken eğitim süresini uzatabileceği 

düşünüldüğünde eğitim süresinin kısaltılması için resim boyutları 600 x 600 px 

değerlerine indirgenmiştir. Hatalı ve hatasız resimler için kullanılan Python kodu Ek-

2’de belirtilmiştir. 

 

4.2.5. Resimlerin Etiketlenmesi 

 

Gerçekleştirdiğimiz sistemin hatalı ve hatasız metal somunları tespit ederek 

onları sınıflandırması için “hatalı” ve “hatasız” olmak üzere iki adet sınıf 

oluşturulmuştur. Tespit ve sınıflandırma işleminin başarılı bir şekilde 

gerçekleştirilebilmesi için modelimizin bunu öğrenecek şekilde eğitilmesi 
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gerekmektedir. Bu da hatalı ve hatasız metal somun resimlerinin doğru olarak 

etiketlenerek modele verilmesi ile mümkün olmaktadır. Etiketleme işlemi aşağıda 

verilen Şekil 33’te görüldüğü gibi yapılmıştır. 

 

4.2.5.1. LabelImg Resim Etiketleme Uygulaması 

 

Şekil 33: LabelImg ile Bir Etiketleme İşlemi 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

LabelImg, grafik resim etiketleme aracıdır. Python ile yazılmış ve grafik 

arayüz olarak Qt kullanır.  

Etiketlenen resimlere ait etiket bilgileri, ImageNet tarafından kullanılan 

PASCAL VOC formatında, .xml dosyaları olarak kaydedilir. Bunun haricinde, etiket 

bilgileri YOLO formatında desteklemektedir. 

Biz etiketleme işlemini PASCAL VOC formatında yaptığımız için bu adımlara 

göre ilerleyeceğiz. 

 Windows işletim sistemine sahip bir laptop üzerinde etiketleme işlemi 

gerçekleştirildiği için Windows üzerinde uygulanan kurulum ve etiketleme adımları 

aşağıdaki gibi uygulanmıştır. 
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4.2.5.1.1. LabelImg Kurulumu 

 

 LabelImg dosyaları indirilerek, indirilen zip dosyası kök dizine (C:\) açılır. 

 Aşağıdaki Şekil 34’te belirtildiği gibi cmd komutu ile komut satırı 

penceresi açılır. 

 

Şekil 34: Komut Satırının Açılması 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Kök dizin içerisinde (C:\) C:\>cd LabelImg-master komutuyla etiketleme 

aracımızın setup klasörüne girilir.  

 C:\LabelImg-master> dizininde C:\LabelImg-master>python LabelImg.py 

komutu ile uygulamamız açılır. 

  

1 
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Şekil 35: Komut İstemi Üzerinden LabelImg Uygulaması Açılması 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

4.2.5.1.2. Etiketleme 

 

Şekil 36: LabelImg ile Etiketleme Örneği 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Açılan pencerede “Open Dir” menüsü seçilerek etiketleme yapılması 

istenen resimlerin bulunduğu klasör seçilir ve resimler getirilir  

 Etiket ismi belirtilir. 

 Crete RectBox menüsü seçilir. 

 Fare tuşuna basılı tutarak etiketlenmesi istenen alan sürükleyerek seçilir. 

 Ctrl+S ile koordinatları içeren etiket bilgilerini saklayan .xml uzantılı dosya 

oluşturulmuş olur. 
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Şekil 37: Oluşturulan XML Dosyaları 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Oluşan .xml dosyasının içeriği aşağıdaki şekilde gösterilmektedir. 

 

Şekil 38: Xml Dosyasının İçeriği 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

LabelImg Kısayol Tuşları Tablo 4’te gösterildiği gibidir: 
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Tablo 4: LabelImg Kısayol Tuşları 

Kısayol İşlevi 

Ctrl + u Resimlerin tamamını klasörden yükler 

Ctrl + r Varsayılan etiket hedef dosyasını değiştirir 

Ctrl + s Kaydet 

Ctrl + d Mevcut etiket ve kare kutuyu kopyalar 

Space Geçerli görüntüyü doğrulanmış olarak işaretler 

w Bir kare kutu oluşturur 

d Sonraki resme geçiş yapar 

a Önceki resme geçiş yapar 

del Seçili kare kutuyu siler 

Ctrl++ Yakınlaştırır 

Ctrl-- Uzaklaştırır 

↑→↓← Klavye okları seçili olan kare kutuyu hareket ettirir 

Kaynak: Yazar tarafından derlenmiştir. 

 

Verify Image (Resim Doğrulama), boşluğa basıldığında, kullanıcı görüntüyü 

doğrulandığı gibi işaretleyebilir, yeşil bir arka plan görünecektir. Bu, otomatik olarak 

veri kümesi oluştururken kullanılır, kullanıcı daha sonra tüm resimlerden sonra bunları 

ek açıklama yerine işaretleyebilir. 

Difficult (Zor) ise, 1 olarak ayarlanır, nesnenin "zor" olarak açıklandığı, 

örneğin bağlamı büyük ölçüde kullanmadan açıkça görülebilen ancak tanınması zor 

bir nesne olarak belirlendiği belirtilir. Derin sinir ağı uygulamanıza göre, eğitim 

sırasında zor nesneler dahil edilebilir veya hariç tutulabilir. (Lin, 2015). 

Etiketleme işlemi tamamlandıktan sonra derin öğrenme işlemini 

gerçekleştirmek için tensorflow nesne tespit API (Object Detection API) 

kullanılmıştır. 
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4.3. EĞİTİMDE KULLANILAN ARAÇLAR 

 

Metal somun hata tespit sisteminin geliştirilmesi esnasında, derin öğrenme 

modelimizin eğitiminin yapılması için ihtiyaç duyulan donanım gereksinimleri 

Google’ın bulut hizmeti olarak sunmuş olduğu Colaboratory hizmeti kullanılmıştır. 

Yoğun işlem gücü gerektiren modelin eğitim aşaması, Google Colab’in sunmuş 

olduğu GPU ile hızlı bir şekilde gerçekleştirilmiştir. 

Eğitim için TensorFlow kütüphanesinin Object Detection API’si kullanılarak, 

bu API içerisinde önceden hazırlanmış ve eğitilmiş olan başarılı modeller kullanılarak 

transfer öğrenmesi ve hazırladığımız veri seti ile bu modellerin yeniden eğitilmesi 

sağlanmıştır. 

Eğitim aşamasında elde edilen verilerin görselleştirilmesi için yine Google 

Colab üzerinde çalıştırılabilen tensorboard platformu kullanılmıştır. Tensorboard 

üzerinden, eğitimin loss değerleri takip edilerek eğitimin başarılı olup olmadığına 

karar verilmiştir. 

 

4.3.1. Google Colaboratory 

 

Colaboratory, kurulum gerektirmeyen ve tamamen bulutta çalışan ücretsiz bir 

Jupyter dizüstü bilgisayar ortamıdır. 

Colaboratory ile tarayıcınızdan ücretsiz olarak kod yazabilir ve yürütebilir, 

analizlerinizi kaydedebilir ve paylaşabilir ve güçlü bilgi işlem kaynaklarına 

erişebilirsiniz. 

Google Colaboratory çalışma sayfaları (notebooks), Google Drive üzerinde 

açık kaynak Jupyter Notebook formatında yani .ipynb formatında depolanır. Yapılan 

çalışmalar, Google Drive dosya paylaşım adımları kullanılarak paylaşılabilir. 

Colaboratory Python 2.7 ve Python 3.6 versiyonlarını destekler. Ancak 2020 

yılından itibaren 2.7 desteği kesilecektir. 

Colab ile Python programlama dilinde uygulama geliştirilebilir. 

Keras, TensorFlow, PyTorch ve OpenCV gibi kütüphaneleri kullanılarak derin 

öğrenme (deep learning) uygulamaları geliştirilebilir.  
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Colab’ı,, ücretsiz hizmet veren diğer bulut hizmetlerinden ayıran en önemli 

özellik; GPU kullanımını ücretsiz olarak sağlamasıdır. 

Hizmet verdiği Tesla K80 GPU ile derin öğrenme uygulamalarında modelin 

eğitilmesi için oldukça hızlıdır. Çalışma zamanı 12 saat sonunda sonlanmaktadır ve 

yeniden giriş yapılarak işlemlere devam edilebilmektedir. Bitcoin madenciliği 

uygulamalarını desteklememektedir. 

 

4.3.2. Tensorboard 

 

Tensorboard Tensorflow Geliştirme Ekibinin 2017 yılında ortaya attığı bir 

görselleştirme aracıdır.  

Tensorboard ile eğitim parametreleri, metrikleri, hiper parametreler ya da sinir 

ağının herhangi bir istatistiği görselleştirilebilmektedir. Bu sayede yapılan anlık takip 

ile modele doğrudan anında müdahale yapma imkanı elde edilebilmektedir. 

Histogram olarak veri koleksiyonu ya da vektörleri görselleştirilebilmektedir. 

Öğrenme süresince sinir ağının ağırlık güncellemelerinin sinir ağlarına olan 

etkilerinin ağırlık yüklemeleriyle nasıl karşılaştırıldığı görülür. 

Aşağıdaki başlıklarda görselleştirme işlemleri takip edilebilir: 

 Scalars ile, sınıflandırma doğruluğu gibi skaler değerleri görselleştirir, 

 Graph ile, sinir ağı modeli gibi, modelin grafik hesaplama değeri 

görselleştirilir. 

 Distributions ile, sinir ağı ağırlıklarının zaman içerisinde nasıl değişim 

gösterdiği görselleştirilir. 

 Histogramlar ile dağılımları 3 boyutlu perspektifte gösteren daha ince bir 

görünüm elde edilir. 

 Projektör ile, Kelime gömülmelerini görselleştirmek için kullanılabilir 

(kelime gömülmeleri, onların anlamsal ilişkilerini yakalayan kelimelerin 

sayısal temsilidir)  

 Görüntü ile, Görüntü verileri görselleştirilir. 

 Ses ile, Ses verileri görselleştirilir. 

 Metin ile, Metin (dize) verileri görselleştirilir. 
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4.3.3. Tensorflow Object Detection API 

 

Tensorflow Nesne Algılama API’si, transfer öğrenme yöntemini kullanarak 

önceden eğitilmiş nesne algılama modellerinin kullanılmasını veya yeni modeller 

oluşturulmasını ve eğitilmesini sağlayan açık kaynaklı bir çerçevedir. Son derece 

kullanışlıdır, çünkü sıfırdan bir nesne algılama modeli oluşturmak zor olabilir ve çok 

fazla bilgi işlem gücü alabilir.  

API, iNaturalist Tür Tespit Veri Kümesinde 4 milyon yineleme için eğitilmiş 

ResNet-50 ve ResNet-101 özellik çıkarıcılarını kullanarak nesneleri algılar. 

Tensorflow Object Detection API, tensorflow1.x versiyonları ile oldukça 

başarılı uygulamalar geliştirilmesine yardımcı olmuş ve tensorflow2.0 ile birlikte 

yapısal bazı değişikliklere gitmiştir. Modüllerde yapılan güncellemeler ile birlikte 1.x 

versiyonlarında kullanılan bazı metotların kullanımı sona erdirilmiştir.  

Çalışmamızda bu konuda sorun yaşanmış ve Google Colab üzerinde yapılan 

eğitim esnasında ve nesne tespit modülünün çalıştırılması esnasında çözümü mümkün 

olmayan ya da uzun süren oldukça fazla sayıda hata ile karşılaşılmıştır. 

Modelimiz eğitilirken Tensorflow Nesne Algılama API kullanılmış ve 

ModelZoo üzerinden ulaşılan, nesne tespit için kullanılan MS COCO veri seti ile 

eğitilmiş olan Faster RCNN Inception V2 modeli üzerinden transfer öğrenmesi 

gerçekleştirilerek eğitim işlemi tamamlanmıştır. 

 

Şekil 39: Tensorflow Logosu 

 

Kaynak: Tensorflow, 2015 
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4.3.3.1. Tensör  

 

Tensör, derin öğrenmede verileri temsil eden soyut bir kavramdır, fiili bir 

kavram değildir. 

 

Şekil 40: Tensör Dizileri 

 

Kaynak: Bakshi, 2019 

 

Derin öğrenmede, yüksek boyutlu veri kümeleriyle uğraşılır. Şekil 40’da 

görüleceği üzere, tensörler yalnızca yüksek boyutlu olan verilerin temsil edilmesine 

izin veren çok boyutlu dizilerdir ve herhangi bir boyutta olan bir dizi içinde tutulan 

ilkel (integer, float) verilerden oluşan veri setidir. “TensorFlow” ismi, sinir ağlarının 

tensörler üzerinde gerçekleştirdiği işlemlerden ortaya çıkmıştır.. 

 

4.3.3.2. Graph  

 

 TensorFlow’da tüm işlemler bir grafik (graph) içerisinde gerçekleştirilir. 

Graph art arda gerçekleşen bir hesaplama kümesidir. Graph, bir eğitim sırasında 

yapılan tüm hesaplamaları tanımlar. Graph’ın bir çok avantajı vardır: 

Birden fazla CPU veya GPU üzerinde ve hatta mobil işletim sisteminde 

çalışmak için geliştirilmiştir. 

Graph’ın taşınabilirliği, derhal veya daha sonra kullanım için hesaplamaları 

korumaya izin verir. Graph gelecekte çalıştırılmak üzere kaydedilebilir. 

Graph’ta bulunan tüm hesaplamalar, tensörleri birbirine bağlayarak yapılır. 
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Bir tensörün bir düğümü ve bir kenarı vardır. Düğüm matematiksel işlemi taşır 

ve bir uç nokta çıktısı üretir. Kenarlar, düğümler arasındaki giriş / çıkış ilişkilerini 

açıklar (Bakshi, A., 2019). 

 

4.3.3.3. Tensorflow  

 

Tensorflow, Google tarafından, yeni başlayanların ve uzmanların makine 

öğrenimi modelleri oluşturmasını kolaylaştıran, makine öğrenmesi uygulamaları için 

geliştirilmiş uçtan uca açık kaynaklı bir kütüphanedir 

(https://www.tensorflow.org/overview/). 

TensorFlow terimi iki terimden oluşur Tensor & Flow. 

TensorFlow’da tensör (tensor) terimi, verilerin çok boyutlu dizi olarak temsil 

edilmesine karşılık gelirken, akış (flow)terimi, Şekil 41’de gösterildiği gibi bir tensör 

üzerinde gerçekleştirilen işlem serilerini ifade eder. 

 

Şekil 41: TensorFlow Yapısı 

 

Kaynak: Bakshi, 2019 

 

Bir tensorflow programı yazma işlemi genellikle iki adımdan oluşur: 

 Hesaplamalı grafik oluşturmak: Bir hesaplama grafiği, grafikte düğümler 

olarak düzenlenmiş bir dizi TensorFlow işlemini ifade eder. Her düğüm, 

giriş olarak 0 veya daha fazla tensörü alır ve çıkış olarak bir tensör üretir. 

Üç düğümden oluşan (a, b ve c) örnek bir hesaplama grafiği Şekil 42’de 

görülmektedir.  

https://www.tensorflow.org/overview/
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Şekil 42: Tensorflow Computational Graph 

 

Kaynak: Bakshi, 2019 

 

Sabit düğümler, sabit değerleri sıfır giriş olarak saklamak için kullanılır, ancak 

kayıtlı değerleri çıktı olarak üretir. Şekil 42’deki örnekte a ve b, sırasıyla 5 ve 6 

değerlerine sahip sabit düğümlerdir. c düğümü, sabit a düğümünün b düğümü ile 

çarpılması işlemini temsil eder. Bu nedenle, c düğümünün yürütülmesi, a ve b sabit 

düğümlerinin çoğaltılmasına neden olur. 

Bir hesaplama grafiği, TensorFlow programında yer alan matematiksel 

hesaplamaları kavramsallaştırmanın alternatif bir yolu olarak düşünülebilir. 

Hesaplamalı grafiğin farklı düğümlerine atanan işlemler paralel olarak 

gerçekleştirilebilir, böylece hesaplamalar açısından daha iyi bir performans sağlanır. 

 Hesaplamalı grafik çalıştırmak: c düğümünün çıktısını almak için, 

hesaplama grafiğini bir oturumda çalıştırmamız gerekiyor. Oturum, grafik 

işlemlerini CPU veya GPU gibi aygıtlara yerleştirir ve bunları yürütmek 

için yöntemler sağlar. 

Bir oturum, TensorFlow çalışma zamanının kontrolünü ve durumunu 

kapsüllemekte, yani, tüm işlemlerin gerçekleştirileceği sırayla ilgili bilgileri 

saklamakta ve önceden hesaplanmış işlemin sonucunu akış hattındaki bir sonraki 

işleme geçirmektedir. Hesaplama grafiğinin bir oturumda çalıştıran kod Şekil 43’te 

gösterilmiştir. 
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Şekil 43: Hesaplama Grafiğinin Çalıştırılması 

 

Kaynak: Bakshi, 2019 

 

4.4. TENSORFLOW OBJECT DETECTION API İLE EĞİTİMİN 

GERÇEKLEŞTİRİLMESİ 

 

Tensorflow, görüntüleri otomatik olarak tespit etmek için CNN gibi sinir ağı 

modelleri oluşturmamıza yardımcı olur. Bu kapsamda Tensorflow görüntü tanıma için 

iki yaklaşım ortaya koyar; 

 Sınıflandırma: CNN’i kedi, köpek, araba vb. gibi nesne kategorilerini 

tanıyacak şekilde eğitilir.  Eğitilen sistem bu kategorilere göre görüntüyü 

bir bütün olarak sınıflandırır. 

 Nesne Algılama: sınıflandırmadan daha güçlüdür ve aynı görüntü içinde 

birçok nesneyi algılar. Ayrıca algıladığı nesneleri etiketlerve görüntü 

üzerinde nesnelerin yerlerini gösterir. 

Bu çalışmada, her iki adım da uygulanarak metal somunların hata tespit ve 

sınıflandırma işlemleri gerçekleştirilmiştir. 

 

4.4.1. Veri Seti İşlemleri 

 

Tez dokümanımızın “4.2. VERİLERİN HAZIRLANMASI” başlığı 

kapsamında veri seti hazırlanmış, veri artırım işlemleri uygulanmış, yeniden 

boyutlandırma gerçekleştirilmiş, 2000 adet resimden oluşan veri setindeki resimler 
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%80 train (1600) ve %20 test (400) verisi olacak şekilde ayrılmış ve resimlerin “hatalı” 

ve “hatasız” olarak etiketleme işlemi Şekil 44’te görüldüğü gibi tamamlanmıştır. 

Şekil 44: Etiketleme Örnekleri 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

4.4.2. Object Detection API Kurulumu ve Derin Öğrenme 

 

Bu aşamada Tensorflow Object Detection API kurulumu yapılmış, 

kullandığımız model olan Faster R-CNN Inception V2 modelimiz yüklenmiş, train ve 

test klasörlerinde yer alan etiket bilgileri öncelikle CSV formatına ve ardından da CSV 

formatından tensorflow’un anlayacağı tfRecord dosyasına dönüştürülmüştür. 

Model konfigürasyonumuz modele ait config dosyası içerisinde yapılmış, 

etiket atamalarının yapıldığı label.pbxt dosyası yapılandırılmış ve transfer 

öğrenmesiyle birlikte eğitim işlemi bize ait olan veri setiyle yeniden yapılmıştır.  

Inference Graph’la birlikte modelimiz en uygun eğitim adımında dondurularak 

kullanıma hazır hale getirilmiştir. 

Bu aşamada aşağıdaki adımlar sırasıyla uygulanmıştır: 

 Google Colaboratory kullanıcı giriş işlemleri Şekil 45’te olduğu gibi 

yapılmıştır. Gelen linke tıklanarak elde edilen kullanıcı yetki anahtarı 

girilerek Colab üzerindeki klasörümüze giriş yapılmıştır. 
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Şekil 45: Google Colaboratory Dizinine Giriş 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 46’da görülen adım ile gerekli olan kütüphaneler yüklenmiştir. 

Burada tensorflow 2.0 güncellemesiyle yapılan değişikliklerden meydana 

gelen hatalardan kaçınmak ve GPU üzerinde işlem yapabilmek için 

tensorflow-gpu= = 1.13.2 versiyonu kullanılmıştır. 

 

Şekil 46: Kütüphanelerin Yüklenmesi 

 

Kaynak: Yazar tarafından derlenmiştir. 
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 Şekil 47’de belirtilen kodun çalıştırılmasıyla yüklenen kütüphaneler 

kontrol edilmiştir. 

 

Şekil 47: Kütüphanelerin Kontrol Edilmesi 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 48’de gösterilen yöntemle birlikte MS COCO modelimiz 

uygulamamıza yüklenmiştir. 

 

Şekil 48: MS COCO Modelinin Yüklenmesi 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 49 ile modelimiz inşa edilmiştir. 
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Şekil 49: Modelin İnşa Edilmesi 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 50 ile, hazırlanan modelimiz yüklenmiştir. 

 

Şekil 50: Modelin Yüklenmesi 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 51 ile modelimiz test edilmiştir. 

  



 

62 

 

Şekil 51: Modelin Test Edilmesi 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 52’de görüldüğü gibi object detection klasörüne girilerek bu dosya 

içerisinde yer alan xml dosyaları csv formatına dönüştürülür. 

 

Şekil 52: Etiket Bilgilerinin XML-CSV Dönüşümü 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 53’te belirtilen işlem ile CSV formatına dönüştürülmüş olan resim 

etiket verileri tensorflow record dosyalarına dönüştürülür. 
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Şekil 53: CSV Dosyalarının tfRecord Dosyalarına Dönüştürülmesi 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 54’ de belirtilen kod dizisiyle birlikte Tensorboard kurulumu ve veri 

geldiğinde görselleştirme işlemini yapabilmesi için 0.0.0.0 host’u 

üzerinden sürekli olarak dinleme durumuna geçilmiştir. 

 

Şekil 54: Tensorboard Kurulumu ve Dinlemeye Hazır Hale Getirilmesi 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 55’te eğitim işleminin gerçekleştirilmesi görülmektedir. 
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Şekil 55: Eğitimin Gerçekleştirilmesi 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Eğitimin başlamasıyla birlikte Tensorboard’ta verileri okumaya 

başlamıştır. Aldığı verileri görselleştirerek grafik olarak okunabilir hale 

getirmiştir. Şekil 56 Modelimizin Learning Rate grafiğini göstermektedir. 

 

Şekil 56: Learning Rate Grafiği 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 57, Loss grafiklerini göstermektedir. 
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Şekil 57: Loss Grafiklerinin Genel Görünümü 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 58’de BoxClassifierLoss/classification_loss grafiği görülmektedir. 

Bu grafik, tespit edilen nesnelerin çeşitli sınıflara sınıflandırılması 

aşamasında takip edilen loss değerini gösterir. 

 

Şekil 58: Loss/BoxClassifierLoss/classification_loss 

 

Kaynak: Yazar tarafından derlenmiştir. 
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 Şekil 59, BoxClassifierLoss/localization_loss grafiğini gösterir. Bu grafik, 

Yerelleştirme Kaybı veya Sınırlayıcı Kutu regresörünün Kaybını 

görselleştirmektedir. 

 

Şekil 59: Loss/BoxClassifierLoss/localization_loss 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 60, RPNLoss/localization_loss grafiğini gösterir. Bu kayıp RPN için 

Yerelleştirme Kaybı veya Sınırlayıcı Kutu regresörünün kaybını 

göstermektedir. 
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Şekil 60: Loss/RPNLoss/localization_loss 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 61, Sınırlayıcı bir kutunun ilgi alanı veya arka plan nesnesi olup 

olmadığını sınıflandıran sınıflandırıcı'nın kaybını gösteren grafiği içerir. 

 

Şekil 61: Loss/RPNLoss/objectness_loss 

 

Kaynak: Yazar tarafından derlenmiştir. 
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 Şekil 62 Total Loss değerini göstermektedir. Bu değer modelimiz için takip 

edilmesi gereken en önemli loss grafiğidir. Bu grafiği takip ederek modelin 

en uygun noktasında eğitimi durdurma ve dondurma ya da bir hata 

durumunda eğitimi durdurup hatayı düzeltme gibi işlemleri yaparak zaman 

kazanmamızı sağlar.  

 

Şekil 62: Total Loss 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Şekil 63 Clone Loss grafiğini göstermektedir. Clone Loss değeri eğer 

birden fazla GPU kullanılırsa bir anlam ifade etmektedir. clone_loss_1 

yalnızca birden fazla GPU üzerinde eğitim veriyorsanız geçerlidir: 

Tensorflow, her GPU üzerinde eğitim almak ve her bir klondaki kaybı 

bildirmek için modelin bir kopyasını oluşturur. Modeli tek bir GPU / 

CPU'da eğitiyorsanız, TotalLoss ile aynı olan clone_loss_1 öğesini 

görürsünüz. Biz eğitimimizde bir adet GPU kullandığımız için 

değerlerimiz Total Loss değerleriyle aynı olmuştur. 
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Şekil 63: Clone Loss 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

Eğitimimiz 28.850’nci adıma kadar gerçekleştirilmiştir. COCO modeli ile 

eğitim yapıldığı için loss değeri 0,05 ve altında bir değere kadar istikrarlı bir şekilde 

düşmesi gerekmektedir. Biz 28.850 adım eğittikten sonra loss değerimiz 0,01 

değerlerinde seyretmeye başlamıştır. Loss değeri istediğimiz çerçevede olduğu için 

modelin ezberlemesini (overfitting) engellemek amacıyla eğitimimiz 28.850’nci 

adımda sonlandırılmıştır. 

 Eğitim esnasında periyodik olarak yedeklenen eğitim verileri training 

klasörü içerisine otomatik olarak kaydedilir. 
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Şekil 64: training Klasörünün İçeriği 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Eğitimin tamamlanmasının ardından elde edilen verilerin hata tespit ve 

sınıflandırma işleminde kullanılması için dondurulması gereklidir. 

Dondurma işlemi aşağıda belirtilen Şekil 65’te gösterilen kod vasıtasıyla 

yapılır.  

 

Şekil 65: Inference Graph ile Eğitim Verilerinin Dondurulması 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

Dondurma işleminden sonra Object_detection klasöründe Inferece_graph 

klasörü oluşur ve 28.350’nci adımda dondurulan eğitim verileri, hata tespit ve 

sınıflandırma işleminde kullanılmak üzere buraya kaydedilir. Şekil 66’da 

inference_graph klasörünün içeriği gösterilmiştir. 
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Şekil 66 : Inference Graph Klasörü 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

4.4.3. Bilgisayarla Görü İşlemi 

 

Eğitimimiz başarılı bir şekilde gerçekleştikten sonra artık hata tespit ve 

sınıflandırma işlemi yapan bilgisayarla görü adımı uygulanabilir hale gelmiştir. 

Ama önce tensorflow 2.0 güncellemesinden kaynaklanan uyumsuzluk 

sorunundan dolayı Google Drive üzerinde bulunan dosyaların tamamı yerel 

bilgisayarın C:\ sürücüsüne tensorflow1 adıyla kaydedilmiştir. Ve bilgisayarla görü 

işlemi bu klasör içerisinde yer alan Object_detection_image.py ve 

Object_detection_webcam.py modülleri komut penceresi üzerinden çalıştırılarak 

gerçekleştirilmiştir. 
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Şekil 67: Komut İstemi Üzerinde Object_detection _image.py Modülü Çalıştırılması 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

 Object_detection_image.py modülü çalıştırıldıktan sonra, yerel dosyada 

yer alan test resimleri üzerinde hata tespit ve sınıflandırma işlemi 

gerçekleştirilmiş, ardından Object_detection_webcam.py modülü 

çalıştırılarak gerçek zamanlı görüntüler üzerinde hatalı ve hatasız metal 

somunlar üzerinde tespit ve sınıflandırma işlemi gerçekleştirilmiştir. 
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Şekil 68: Hatasız Metal Somunun Resim Üzerinde %99 Doğrulukla Tespit ve 

Sınıflandırılması 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

Şekil 69: Hatalı Metal Somunun Resim Üzerinde %99 Doğrulukla Tespit ve Sınıflandırılması 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

Yukarıda Şekil 68 ve Şekil 69’da verilen resimlerden de görüleceği üzere 

gerçekleştirilen sistem ile bir tek metal somunun bulunduğu ve uygun ortam 

koşullarında veri setine uygun açılardan alınan görüntülerde nesne tespit işleminin 
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kolayca yapıldığı ve aynı zamanda da %99 gibi oranlarda doğru sınıflandırma 

işleminin yapıldığı anlaşılmaktadır. 

 

Şekil 70: Birden Fazla Nesne Hata Tespit ve Sınıflandırılması 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

Şekil 70’te görüldüğü gibi, farklı açılardan birden fazla nesnenin yer aldığı 

görüntü üzerinde yapılan işlemde ise veri setine uygun açılarda bulunan somunların 

tespit işleminin yapıldığı ve sınıflandırma oranının da %90’lar seviyesinde bir 

doğrulukta olduğu anlaşılmaktadır. Ancak, uyumsuz açılardan gelen görüntülerde 

nesne tespit işleminde sorun yaşanmadığı, bunun yanında sınıflandırma işleminde 

hatalar meydana geldiği belirlenmiştir. 

 Veri setimizdeki resimlerin tamamı üstten ve yandan olmak üzere 

yalnızca iki açıdan alınan görüntüler ile oluşturulduğu için resim üzerinde yapılan hata 

tespit ve sınıflandırma uygulamasında üst ve yan açılardan alınan metal somun 

görüntülerinin tespit ve sınıflandırma doğruluğu %99 seviyelerine kadar çıkmaktadır. 
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Şekil 71: Uygun Koşullarda Nesne Tespit İşlemi Örnekleri 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

Veri setinde belirlenen üst ve yan açılardaki görüntüler haricinde farklı 

açılardan gelen görüntüler üzerinde de RPN (bölge öneri ağı) sınırlandırma kutuları 

(bounding box) oluşturarak tespit ve lokalizasyon gerçekleştirmeye çalışmaktadır. Bu 

nedenle resimdeki metal somunların farklı bölgelerinde hatalı ya da hatasız etiketleme 

işlemi gerçekleştiği görülmektedir. 

 

Şekil 72: RPN’in Farklı Açılardan Bounding Box Oluşturma İsteği 

 

Kaynak: Yazar tarafından derlenmiştir. 
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Şekil 73: Hatalı Sınıflandırma ve Bounding Box Örneği 

 

Kaynak: Yazar tarafından derlenmiştir. 

 

Benzer bir işlem de somun resimlerinin webcam üzerinden alınan gerçek 

zamanlı görüntüler üzerinde de meydana gelmiştir. Dik veya yan metal somun 

görüntülerinde, aydınlatma yeterli ise %90 - %99 aralığında bir doğrulukla hata tespit 

ve sınıflandırma işleminin gerçekleştiği, ancak ışığın yetersiz olduğu durumlarda 

sistemin doğruluk oranının düştüğü, özellikle yan açılardan gelen metal somun 

görüntülerinde yetersiz aydınlatmadan dolayı hatalı sınıflandırmalar meydana geldiği 

anlaşılmıştır. Ayrıca, aynı metal somunların arka zemin renginde değişim meydana 

geldiğinde, görüntünün farklı bölgelerinde de bounding boxların görülmeye başlandığı 

belirlenmiştir. 
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SONUÇ VE ÖNERİLER 

 

Gerçekleştirilen uygulama ile, önerilen sistemin çalışmanın başında belirtilen 

amaçlarına uygun olarak endüstriyel alanda sağlayacağı çözümlere yönelik umut 

verici sonuçlar alındığı düşünülmektedir. 

Operasyonel açıdan bakıldığında, uygulama bilgisayarla görü vasıtasıyla insan 

faktörünün yerini alarak, akıllı bir otomasyon süreci oluşturmuş, kalite kontrol 

işleminin minimum hata ile sürdürülmesine yardımcı olmuş, hataya neden olan sürecin 

tespit edilmesine katkıda bulunarak süreç iyileştirmelerinin belirlenmesinde etkin rol 

oynayacağı görülmüştür. 

Yapılan denemelerde, üst ve yan taraflarından elde edilen görüntülerde yer alan 

metal somunların duruş açılarının önemli olduğu görülmüştür. Veri setine uygun 

olmayan açılarda alınan görüntülerde, bölge öneri ağının sınırlandırma kutusu 

oluşturma isteğinden dolayı farklı açılarda birden çok sınırlandırma kutusu 

oluşturduğu ve sınıflandırma işleminde başarının düştüğü görülmüştür. 

Derin öğrenme yöntemi ile metal somun resimlerine ait üst ve yan açılardan 

çekilmiş resimlerden oluşan veri setine uygulanan eğitimler ile webcam üzerinden 

gerçek zamanlı olarak elde edilen ya da yerel bilgisayarda bulunan test resimleri 

üzerinden alınan görüntüler ile yapılan tespit ve hata sınıflandırma işlemlerinde, veri 

setine uygun aydınlatma ve açılarda gerçekleştirilen işlem, %90-%99 oranları arasında 

tespit ve sınıflandırma doğruluğuyla başarılı sonuçlar vermiştir. 

Derin öğrenme ve bilgisayarla görü çözümlerine duyulan ihtiyaç ve ilginin 

artarak devam ettiği günümüzde, bilgisayarla görü uygulamalarının üretim ve denetim 

süreçlerine entegre edilmesinin kaçınılmaz olduğu açıkça görülmektedir.  

Önerilen yöntemin bir sınırlaması, derin bir ağın eğitiminin, çok zaman ve 

masraf gerektiren, elle etiketlenmiş verileri gerektirmesidir. Geliştirilen sistem şu anda 

prototip aşamasındadır. Tez kapsamında geliştirilen uygulamanın endüstriyel alana 

katkısının süreklilik arz edebilmesi için, gelecek çalışmalarda,  

 Veri setindeki veri sayısının artırılması, 

 Verilerin tamamı üzerinde veri artırım işleminin uygulanması, 

 Mask RCNN kullanılarak hata tiplerine göre sınıflandırmanın yapılması, 
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 Kapsül ağlarının kullanılarak Faster RCNN in gerektirdiği açısal görünüm 

zorluklarından kurtularak, herhangi bir açıda doğru tespit ve sınıflandırma 

avantajı sağlanması, 

 Uygulamanın Raspberry Pi gibi mini bilgisayarlar üzerinde çalışabilir hale 

getirilmesi, 

 Birden fazla kameralar üzerinden elde edilen eş zamanlı görüntüler 

kullanılması, 

 Kendi kendine öğrenen bir tasarım uygulanması 

 Kullanıcıya ikaz ve öneri sunan bir yazılımın entegre edilmesi gibi önemli 

geliştirmelerle başarım oranının artırılması, sistem kararlılığının ve 

kullanılabilirliğinin artırılması sağlanabilir. 
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Ek 1: Step Motor Kodları 
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Ek 2: Veri Artırım Kodları 
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Ek 3: Yeniden Boyutlandırma Kodları 
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Ek 4: Google Colaboratory Kodları 
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Ek 5: Uygulama Geliştirme Esnasında Yaşanan Hatalar 

 

Hata 1: Tensorboard, Google Colab üzerinde çalıştırıldığında hata alınıyordu 

ve pencere açılmıyordu. 

Aşağıdaki kod ile host adresi 0.0.0.0. olarak düzenlendikten sonra tensorboard 

googlecolab üzerinden bizim server url’mize ve portumuzla bağlanmış ve sorunsuz 

çalışmaya başlamıştır. 

tensorboard --host 0.0.0.0 <other args here> 

--host 0.0.0.0 host’u tensorflow’a, yerel makinedeki tüm Ipv4 adresleri 

üzerindeki bağlantıları  dinlemesini söyler.  

Hata 2: Tensorboard’un, runtime süresi 12 saat geçince donduğu ve sayfadan 

attığı görülmüş olup, böyle bir durumla karşılaşıldığında aşağıdaki yöntemle kolayca 

çözüldüğü tespit edilmiştir. 

 

 

  



 

ek s. 8 

 

 

 

Hata 3: Tensorflow 2.0 kurulundan sonra, model_builder_test.py python 

modülü çalıştırıldığında aşağıdaki hata alınmıştır. 

 

 

 

Tensorflow 2.0 ile Tensorflow1.x versiyonlarında kullanılan Contrib modülü 

kullanımına son verildiği tespit edilmiştir 

(https://stackoverflow.com/questions/55870127/module-tensorflow-has-no-attribute-

https://stackoverflow.com/questions/55870127/module-tensorflow-has-no-attribute-contrib
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contrib). Tensorflow 2.0 kurulumu kaldırılmış ve yerine Tensorflow1.13.2 versiyonu 

kurularak bu hata çözülmüştür. 

Hata 4: Eğtim esnasında loss değerlerinde büyük sapmalar meydana gelmiştir. 

3000’inci adımdan sonra yavaş yavaş loss değeri 4-6-7-9 görülmeye başlanmış ve 

adım sayısı arttıkça bu değer 9’lara kadar sık sık çıkmıştır. 35500 adım eğitilmiş ama 

loss değeri 1’in altına hiç düşmemiştir. 

 

 

 

Bu sapmaların nedeninin ezberleme (overfitting) mi olduğu yoksa kodlarla 

ilgili konfigürasyonunda mı sorun olduğu araştırılmıştır. Bu noktada sorunun, sınıf 

sayısının 2 yazılarak yalnızca 1 etiket belirtilmesinden kaynaklandığı düşünülmüştür. 

Ardından hatasiz fotoların da etiketlenmesi, label_img.pbtx ve config dosyalarının 2 

sınıf 2 etiket olacak şekilde yeniden düzenlenerek eğitilmesiyle sorun çözülmüştür. 

Hata 5: Object_detection_image.py modülü çalıştırıldığında : cannot connect 

to X server hatası alınması. 

  

 

https://stackoverflow.com/questions/55870127/module-tensorflow-has-no-attribute-contrib
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Eğitim işleminin tensorflow 1.13.2 versiyonunda yapılmasına rağmen, nesne 

tespit modülünün tensorflow 2.0 versiyonu üzerinde çalıştırıldığı anlaşılmıştır. Nesne 

tespit modülü tensorflow 1.13.2 üzerinde tekrar çalıştırılınca hata alınmamıştır. 

Hata 6: ModuleNotFoundError: No module named 'deployment' hatası. 

Bu hatanın sebebinin PYTHONPATH'in doğru yazılmadığında ortaya çıktığı 

görülmüştür. 

Hata 7: TypeError: __init__() got an unexpected keyword argument 

'dct_method' 

Bu hatayı düzeltmek için /object_detection/data_decoders/tf_example_decoder.py 

dosyası açılarak 110’uncu satırda "dct_method=dct_method" argümanı silinmiştir. 

Hata 8: ImportError: cannot import name 'preprocessor_pb2' (ve pb2 ile ilgili 

diğer hatalar) 

Bu hatanın derlenmeyen .proto dosyası olduğunda meydana geldiği anlaşılmıştır. 

/object_detection/protos klasörü kontrol edilmiş ve eksik olan proto dosyasının 

protobufları derlediğimiz komuta eklenmiş ve kod tekrar çalıştırılmıştır. 

Hata 9: Unsuccessful TensorSliceReader constructor: Failed to get "file path"  

The filename, directory name, or volume label syntax is incorrect. 

Bu hatanın, config dosyasının yanlış düzenlediğinde alındığı görüşmüştür. Doya 

uzantıları düzeltilerek ve düz slash(/) kullanılarak sorun çözülmüştür. 

Hata 10: ModuleNotFoundError: No module named 

'object_detection.legacy'Tensorflow Object Detection API'ın en son güncellenmiş 

versiyonu indirilmiş ve bu versiyonda legacy klasörü yüklenmiştir. 
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Hata 11: TypeError: a bytes-like object is required, not 'str' 

labelmap.pbtxt UTF-8'e çevrilerek düzeltilmiştir. 

 




