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YEMIN METNi

Yiiksek Lisans Tezi olarak sundugum “Derin Ogrenme Teknikleri ile Anomali
Iceren Metal Somunlarin Hata Tespit ve Smiflandirilmasi” adli ¢alismanin,
tarafimdan, akademik kurallara ve etik degerlere uygun olarak yazildigini ve
yararlandigim eserlerin kaynakgada gdsterilenlerden olustugunu, bunlara atif

yapilarak yararlanilmis oldugunu belirtir ve bunu onurumla dogrularim.

Hasan GOKKAYA



OZET
Yiiksek Lisans Tezi
Derin Ogrenme Teknikleri ile Anomali i¢eren Metal Somunlarin Hata Tespit ve

Siiflandirilmasi

Hasan GOKKAYA

Dokuz Eyliil Universitesi
Sosyal Bilimler Enstitiisii
Yonetim Bilisim Sistemleri Anabilim Dah

Yonetim Bilisim Sistemleri Programm

Bilisim ve iletisim sistemlerinde meydana gelen hizhh degisimler ve
gelisimler, teknolojinin temas ettigi her alanda ani bir paradigma degisimine
neden olmustur. Bu paradigma degisimi es zamanh olarak endiistriyel alanda da
kendisini hissettirmis, sektoriin ihtiyaclar1 dogrultusunda karsihigim bulmus ve
sektoriin icinde Endiistri 4.0 olarak viicut bulmustur. 4’iincii Sanayi Devrimi
olarak amilan bu paradigma, icerisinde yer alan nesnelerin interneti kavramiyla
birlikte birbirleriyle anlik iletisim halinde olan modern otomasyon sistemlerini,
iiretim teknolojilerini ve nihayetinde de akilh endiistriyel sistemleri hayata
gecirmistir. Ortaya ¢kan akilhh iletisim aginda, paylasilan verilerin
raporlastirthp analiz edilmesi, maliyet-etkin bir bi¢cimde yonetilebilmesi ve
verimli is modellerinin gelistirilmesi isletmeler i¢in biiyiik 6nem arz etmektedir.
Bu siirec, endiistriyel isletmelerin is siireclerini akilh sistemler ile entegre ederek
gelecege uyumlu modern otomasyon ve iiretim birimlerine doniistiirmesini
zorunlu kilmaktadir.

Bilgisayarla gorii uygulamalari, bu anlamda cag yakalayan ve gelecege
uzanan coziimlerin basinda gelmektedir. Otomasyon ve iiretim siirecinden gecen
isletmeler, makine o0grenmesi gibi teknikleri belirli operasyonlarina entegre
etmeye baslamislardir. Uretim siireci, endiistriyel isletmelerin hammadde
kullanimi, kalite kontrol ve isletme verimliligi gibi ana bashklari ile bir diigiim

noktasi olusturdugu icin 6zellikle bu entegrasyonda onem arz etmektedir. Bu



calisma, endiistriyel alanda, hatal iiriinleri tespit etmek ve iiretim verimliligini
optimize etmek icin kullanilan akilh bir yaklasim 6nermektedir.

Bu caliyjmanin amaci, vida ve somun iireten endiistriyel isletmelerde
bilgisayarla gorii ile insan faktoriiniin yerini alarak, iiretim esnasinda meydana
gelen hatal iiriinleri tespit eden ve ayristirilmasim saglayan, hata sebebinin
belirlenmesine yardimci olan, hata oranmn diisiiriillmesine ve Kkalitenin
artirilmasmma katkida bulunan, hammadde kullanimini optimize eden, iiretim
verimliligini artiran ve siirecin maliyet-etkin bir sekilde islemesini saglayan derin
o6grenmeye dayal bir bilgisayarla gorii uygulamas: gelistirmektir. Bilgisayarla
gorii uygulamasi tasarlanirken Python, OpenCV, Tensorflow Object Detection
API, Tensorboard, GoogleColab, Visual Studio Code yazihm ve frameworkleri

kullanilmastir.

Anahtar Kelimeler: Anomali , Hata, Bilgisayarla Gorii, Derin Ogrenme, Nesne

Tespit, Simiflandirma.



ABSTRACT
Master’s Thesis
Fault Detection and Classification of Metal Nuts Containing Anomaly by Deep
Learning Techniques
Hasan GOKKAYA

Dokuz Eylul University
Graduate School of Social Sciences
Department of Management Information Systems
Management Information Systems Program

Rapid changes and developments in information and communication
systems have caused a sudden paradigm shift in every field connected with
technology. This paradigm shift made its presence felt simultaneously in the
industrial field, has found its place in accordance with the needs of the sector and
embodied as Industry 4.0 within the sector. This paradigm, known as the 4th
Industrial Revolution, with the help of concept of the 10T, has implemented
modern automation systems, production technologies and intelligent industrial
systems, which are in instant communication with each other. In this smart
communication network, reporting, analysis and cost-effective management of
shared data and development of efficient business models are of great importance
for enterprises. This process requires industrial enterprises to transform their
business processes, into modern automation and production units that are
compatible with the future by integrating business processes with intelligent
systems.

In this sense, computer vision applications are the leading solutions that
capture the age and extend to the future. Businesses that have gone through
automation and production processes have begun to integrate techniques such as
machine learning into their specific operations. The production process is
particularly important in this integration since it forms a joint point with the
main headings of industrial enterprises such as raw material usage, quality

control and operational efficiency. This study proposes an intelligent approach

Vi



used to detect faulty products and optimize production efficiency in the industrial
area.

The aim of this study is to develop a business intelligence application that
detects and separates the defective products that occur during production, helps
to determine the cause of the error, contributes to the reduction of the error rate
and increase the quality, optimizes the use of raw materials, increases production
efficiency and ensures low cost operation of the process by replacing the human
factor with computer vision in industrial enterprises producing screws and nuts.
Software and frameworks used to design this computer vision application are
Python, OpenCV, Tensorflow Object Detection API, Tensorboard, GoogleColab,
and Visual Studio Code.

Keywords: Anomaly , Fault, Computer Vision, Deep Learning, Object Detection,
Classification.
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GIRIS

Giiniimiizde meydana gelen teknolojik gelismeler ve dijital diinyada ardarda
meydana gelen degisimler serisi, insanlar arasindaki iletisimi ve bilgi paylasimini
kolaylagtirdig1r gibi benzer etkiyi endiistriyel alanda da hissettirmistir. Sanayi
devriminden itibaren makinelesen diinya yar1 iletken teknolojisinde meydana gelen
atilimla birlikte dijitallesmis ve otomasyon teknolojisinin gelismesiyle de insanoglu,
makinelerin iletisim agindaki mevzilerini yavas yavas kaybetmeye baglamistir. 1990’1
yillardan itibaren yayginlasan internet kavrami bu aga yeni bir boyut getirmis ve
internet, temas ettigi her nesneyi akilli hale getirmeyi basarmistir. Bu asamadaki basari
ile ortaya c¢ikan ve Kevin Ashton tarafindan 1999 yilinda ilk defa dile getirilen
“Nesnelerin Interneti (IOT-Internet Of Things)” ifadesi (Ashton, 2009) ile insanlar
arasinda var olan etkilesimin bir benzeri de makineler arasinda olusmaya baslamis, bu
gelismelerin kagiilmaz sonucu olarak da kendi igerisinde 6zellesmis akilli stireglerin

bilesiminden olusan Sekil 1’de bir 6rnegi gosterilen akilli fabrikalar dogmustur.

Sekil 1: Akilli Fabrika Siireci

DEFECT DETECTION SYSTEM

Kaynak: Metaverbis, 2019


http://metaverbis.com/computer-vision

Isletmelerde uygulanan akilli siireclerin denetiminin yapilmasi, analizinin
yapilmasi, kalitenin korunmasi ve verimliligin artirilmasi i¢in de yine akilli sistemlerin
giinlimiizde kalite kontrol sorunlari, iirlin ve mallarin imalatinda 6nemli bir rol
istlenmektedir. Gittik¢e daha fazla talepkar olan pazarlarla birlikte sirketler, iiretim
dongiisii sirasinda kiiciik kusurlar1 bile tespit edebilen daha verimli denetim
sistemlerine yatirirm yapmak zorunda kaliyorlar. Bilgisayarla gorme teknikleri, bu
ariza tespit slirecinde 6nemli bir anahtar sunmaktadir (Gonzalez ve Woods, 1992;
Russ, 1995; Suetens ve digerleri, 1992).



BIiRINCi BOLUM
ENDUSTRIYEL ALANDA BiLGi SISTEM GEREKSINIMLERI

Hayatin her alaninda oldugu gibi, endiistriyel alanda da meydana gelen hizli
paradigma degisimleri, isletmelerin de bu degisime bilgi ve iletisim teknolojilerini
yenileyerek eslik etme gereksinimi duyduklari hizli ¢6ziim bekleyen bir ortamin
dogmasmna neden olmaktadir. Insan yigmlarinin etkisini kaybettigi makinelerin
yiikselisini izledigimiz bu ortamda, kullanic1 dostu arayiize sahip, islevsel, ekonomik
ve akilli ¢oziimler sunan yenilik¢i uygulamalara ihtiyag duyulmaktadir.

Bu kapsamda incelendiginde, bilgisayarla gorii ile yapay zeka teknolojilerini
birlikte olusturulan ¢oziimlerin endiistriyel isletmelere, akilli bir sekilde entegre
edilmesinin uygun oldugu degerlendirilmektedir. Ciinkii iiretimde kaynak yonetimi,
kalite yonetimi ve elde edilen ¢iktilarin her kademedeki yoneticiye saglayacagi karar
destegi isletmeler i¢in stratejik anlamda biiyiik deger arz etmektedir.

Kisaca deginilen bu gereksinimleri doguran problemleri ortaya koymak ve bu
asamadan sonra problemlerin ¢oziimiine yonelik ongdriileri hayata gecirmek yapisal

ve stratejik acidan son derece dnemlidir.

1.1. PROBLEMIN TANIMI

Gilinlimiizde, nesnelerin interneti ile birlikte ortaya ¢ikan ve Endiistri 4.0 ile
endiistriyel alana yayilan yeni iletisim yapisi, isletmelerin varligini siirdiirebilmesi i¢in
yapisal degisimleri zorunlu kilmis ve her alanda kendini kabul ettiren akilli degisime
uyum saglamasini da kagiilmaz kilmigstir.

Akalli sistemlerin birbirleriyle girdigi etkilesim sonucu dogan sinirsiz verinin,
ana yakit1 veri olan siber diinya i¢erisinde kullanilmadan adeta bir siber ¢6p olarak
kaybolmasmna izin vermek yerine, verinin anlamli bir is parcacigr haline
doniistiiriilerek kullanilmasi, endiistriyel isletmelerin kendilerini gelecege tagimalari
icin hayati derecede dneme sahiptir.

Bu kapsamda, sektor icerisinde liretime yonelik ¢calismalar yapan ve ¢aga uyum
saglayamayan isletmelerin karsilagtigi:

e Ongoriilemeyen ve 6nlenemeyen iiretim hatalari,



e Kalite denetiminde yetersizlik

e Uretim siirecinde gecikme,

e Hammadde tiikketiminde artis,

e Verimsiz iiretim ve kontrol siireciyle birlikte olusan maliyet artisi,

e Olusan bilgiden, elde edilmesi muhtemel potansiyel faydanin siber
¢opliikte yerini almasi gibi sorunlar, uygulamanin dogrudan ya da dolayl

olarak katki saglayacagi problemler olarak belirlenmistir.

1.2. LITERATUR TARAMASI

Literatiir taramast yapilirken, gerceklestirilen calismada uygulanan;
bilgisayarla gorme, derin 6grenme, transfer 6grenmesi, hata tespiti ve nesne tespiti gibi
basliklara odaklanilarak yapilan calismalar incelemeye alinmistir. Endiistriyel
isletmelerin artan ihtiyaclar1 ve degisen bilgi ve iletisim teknolojilerinin zorunlu
kildig1 bu konularda birgok benzer ¢alismanin yapildigr gorilmiistiir.

Saurabh (2018), onerilen ¢aligmada makine 6grenmeye dayali ¢elik levha
kusur algilama sistemi uygulanmustir. Support vector classifier (SVC-Destek Vektor
Makineleri), random forest classifier, gradient boosting, k-nearest neighbours (KNN-
k En Yakin Komsuluk), decision trees (karar agaclari) ve AdaBoost (adaptive
boosting) gibi farkli siniflandiricilar kullanmigtir. Gradyan Artirma Siiflandiricist
(Gradient boosting classifier) uygulanmasi ve hiperparametre degerlerinin hassas bir
sekilde ayarlanmasiyla birlikte ezik, ek, yama, cukurlu yiizey ve c¢iziklerin %92,5
dogrulukla istenen siiflandirma degeri elde edilmistir.

Ferguson ve digerleri (2018), yapilan c¢aligma ile metal dokiimlerde ve
uygulanan kaynak isleminde, meydana gelen kusurlarin eszamanli olarak algilanma ve
boliitlenme (segmentasyon) yetenegi ile bir ¢esit otomatik kalite kontrol uygulamasi
onermistir. Onerilen bu sistem makine dgrenimi icin transfer 6grenmesi, veri kiimesi
artirma (dataset augmentation) ve ¢ok gorevli 6grenme (multi-task learning) gibi bir
takim giiclii paradigmalar kullanilarak ozellik ¢ikarict (feature exactor) olarak on
egitimli ImageNet agirliklar1 ve 6n egitimli Ms COCO veri seti ile 0.957’1ik bir

ortalama hassasiyet (mean average precision — mAPbbox) ile gelistirilmistir.


https://software.intel.com/en-us/user/1649054

Campos ve digerleri (2018), otomotiv sektoriinde kullanilan birkag .¢esit metal
bilesen icin bir bilgisayarla gorme sistemi gerceklestirmiglerdir. Delikli metal
parcalardaki merkezi delikte bulunan tam veya kismi kapaniklik, civata dislerinin
diizlesmesi ya da kaynak baglantilarinda ¢apak olmasi gibi {i¢ tip kusur iizerinde kalite
kontrol islemi gerceklestirmislerdir. Farkli gri skala resim analiz algoritmalar
birbirinden farkli kusurlarin her biri i¢in test edilmistir. Kapali delik hatasi i¢in ilk
olarak resimdeki bir¢ok daire seklini bulan Dairesel Hough Doniisiimii (Circular
Hough Transformation) kullanilirken diger bir yontem olarak da kontur smirlama
kutusu (bounding box) uygulanmistir. Bozuk disler ve ¢apaklarin belirlenmesi igin ise,
iki resim arasindaki piksellerin karsilagtirilarak hatali bolgenin basarili bir sekilde
belirlenmesi saglanmistir.

Hajizadeh ve digerleri (2016), Hollanda tren rayr aginda, kusurlu ray
yiizeylerinin tespit edilmesi i¢in resim verilerinin uygulanabilirligini test etmeye
yonelik bir ¢alisma yapmislardir. Bu calismay1 yaparken verilerdeki dengesizligi
engellenebilecek sekilde etiketsiz resimlerin de bulundugu yar1 gézetimli 6grenme
yontemini (semi-supervised learning) uygulamais, hatali ray resimlerinin bulundugu bir
etiket ile cogunlukla normal saglikli raydan olusan ayn1 zamanda kaynaklar, yalitimli
baglantilar, 1yi huylu kusurlar, kiiclik c¢atlaklar gibi potansiyel diger kusurlar1 da
barindiran diger ray boliimlerini de igeren bir veri seti kullanmustir.

Xian ve digerleri (2018), bu c¢alismada, metalik bir ylizey icin karmasik
endiistriyel senaryolara karsg1 hem kusur tespit hem de siniflandirma goérevlerini dogru
bir sekilde gerceklestirmek icin CNN tabanli yeni bir mimari sunulmaktadir. Ariza
incelemesi, Onerilen metoda dayanarak segmentasyon ve siniflandirma problemine
doniistiiriilir. Kusurlart segmentlere ayirmak ve lokalize etmek igin tasarlanan
CASAE modiilii, kusurlu bir goriintiiyli yalnizca hatali pikselleri ve arka plan
piksellerini iceren piksel biciminde bir tahmin maskesine doniistiirebilir. Kusur
kategorisini gercek muayene ortamlarinda hizli bir sekilde elde etmek i¢in kompakt
bir CNN sunulur. Metodumuzun muayene sonucunun loU puani, endiistriyel veri seti
kullanilarak %89,60 olarak elde edilmis olup, gorsel ve nicel deneysel sonuglar,
Onerilen algilama algoritmasinin karmagik endiistriyel ortamin gereksinimlerini

karsilamak icin yeterli oldugunu géstermistir.



Staar ve digerleri (2019), 6nerilen ¢alismada yiizey anomalisi tespiti igin ilk
defa uygulanan derin metrik 6grenmenin nasil kullanilabilecegini gostermislerdir.
Burada ilgili probleme, basit bir prototip ¢ikarim yontemini derin 6grenme ile
giiclendirerek yaklasilmistir. Diger bir deyisle dogrudan piksel seklinde c¢ikarim
yerine, ¢ikarim, evrigimli sinir agr (CNN) tarafindan 6grenilen 6zellik uzayinda
gerceklestirilmistir. Onceki CNN tabanli yaklasimlarin aksine, aglar, derin metrik
O0grenme alanindaki gelismeleri, yani {icli aglar1 kullanarak yiizey dokular1 igin
benzerlik metriklerini agik¢a 6grenmek i¢in egitilmistir. Kylberg Texture, DAGM ve
CIFAR100 olmak tizere ii¢ adet veri seti kullanilmis ve 10 simf iizerinden
smiflandirma islemi gergeklestirilmistir. Performansin yiizey tipine bagli oldugu
goriilmiistiir. 1,3,5 ve 6’nc1 smiflarin endiistriyel uygulamalar i¢in kullanigh oldugu
buna karsin 6nerilen yontemin 2 ve 4’iincii siniflar i¢in hatal ve hatasiz alanlar1 ayirt
edemedigi belirlenmistir. Ayrica kullanilan veri setinin de sistem performansinda
etkisinin yiiksek oldugu, bu baglamda CIFAR-100 veri setinden alinan orneklerin
DAGM veri setinden alinan 6rneklere gore daha performanslt oldugu goriilmiistiir.

Fernandez-Robles ve digerleri (2017), yapilan ¢alismada riizgar kulelerinin
metal direklerinin islenmesi i¢in kullanilan freze makinelerinde, direkleri igleyen
sitemin milinde bulunan kesici uclari incelemis, kirik ve kirik degil seklinde
siniflandirilmasini saglayan bir sistem onermislerdir. Uygulamay gerceklestirirlerken
goriintiilerin kontrast kalitesini artirmak ve kenarlarin algilanmasini kolaylastirmak
icin kontrast sinirli uyarlamali histogram esitleme (contrast-limited adaptive histogram
equalisation-CLAHE) yontemini uygulamislardir. Vidalarin dairesel sekillerini tespit
etmek icin iki agamal1 bir algoritma ile, diiz ¢izgileri tespit etmeyi amaglayan standart
Hough doniistimiinii (Standart Hough Tranform-SHT) temel alarak ¢evrelerin lokalize
edilmesini saglayan bir 6zellik ¢ikarma teknigi olan, dairesel Hough doniisiimiinii
kullanir (Circular Hough Tranform-CHT). 2 GHz islemci ile 3 dakikadan daha kisa
stirede 1280 x 960px boyutlarinda 24 adet goriintiiyii analiz edebilen ve saglam uglarin
referans goriintiileri ile karsilastirilmasina gerek duymayan ilk bilgisayarli gérme
uygulamasidir.

Song ve digerleri (2018), metal vidalarin yiizeyindeki mikro seviyedeki
kusurlar1 algilamak i¢in derin evrigimli sinir ag1 temelinde bir teknik Onermistir.

Algilanmaya ¢alisilan kusurlar arasinda yiizey hasari, ylizey kiri ve ezilmis vidalar



tizerinde c¢aligilmistir. Farkli tiirdeki kusurlara sahip metal vidalarin goriintiileri,
tasarlanan derin CNN’leri egitmek i¢in kullanilan endiistriyel kameralar ile toplanarak
CNN modeline uygulanmaktadir. Uygulama sonuglarina gore, resim basina 1,2 sn’lik
ortalama algilama siiresi ile Onerilen teknigin %98’lik bir algilama dogrulugu
sagladigim1 gostermistir. Bu sonug, Ornegin sablon eslestirme ve LeNet-5 gibi
geleneksel makine gorme tabanli tekniklerle karsilastirildiginda CNN’e dayali

Onerilen sistemin tstiinliigiinti gostermektedir.



IKINCi BOLUM
YAPAY ZEKA VE DERIN OGRENME

2.1. YAPAY ZEKA KAVRAMI

Yapay Zeka (Artificial Intelilgence-Al) ilk olarak 1955 (baz1 goriislere gore
1956) yilinda Dartmouth kolejindeki iki aylik at6lye ¢alismasi ¢ergevesinde, yeni bir
arastirma disiplininin resmi adi olarak kabul edilmistir. Yapay zeka terimini, 31
Agustos 1955 tarihinde proje bagvurusunda kullanan John McCarthy, yapay zekaya
ismini veren Kisi olarak kabul edilir (Aydin ve digerleri, 2019). Yapay Zeka insan gibi
diisiinmek ve hareket etmek i¢in bir makine sistemi tasarlamaktir. Insan zekasi yapay
olarak taklit etmek ve genisletmek, insan gibi diisiinmeyi ve davranmay1 amaglayan
makinede gergeklestirilir (Russell ve Norvig, 2009). Russell ve Norvig (1995) yapay
zekayi, sekiz farkli tanimdan yola ¢ikarak iki ana boyuta gore Sekil 2°de goriildigi

gibi simiflandirir.

Sekil 2: Yapay Zeka Tanimlamalari ve Siniflandirilmasi

"Insan disuncesiyle iliskili oldugumuz | "Hesaplama modelleri
faaliyetlerin otomasyonu, karar | kullanarak zihinsel

verme, problem ¢ézme, 6grenme | yeteneklerin incelenmesi "

gibi faaliyetler..." (Charniak ve McDermott,

"Diuslnen bilgisayarlar (Bellman, 1978) | 1385)

yapma konusundaki
heyecan verici yeni ¢abalar"
(Haugeland, 1985)

"Algilama, mantik ve
hareket etmeyi mumkiin
kilan hesaplamalarin
incelenmesi"” (Winston, 1992)

insan gibi diigiinen] akila diigiinen
sistemler sistemler

"Akilli davranisin otomasyonu
ile ilgili olan bilgisayar bilimi
kolu " (Luger ve Stubblefield,
1993)

nsan gibi davranan| akilci davranan
sistemler sistemler

"Insanlann daha iyi oldugu
seyleri bilgisayarlann nasil
yapabilecegine dair

galisma" (Rich ve Knight
1991)

"Hesaplamali strecler
'Zeki insanlar tarafindan agisindan akilh davraniglan

gergeklestirilen islevleri yerine | agiklamak ve taklit etmek
getiren makineler yaratma isteyen bir ¢caligma alan"
sanat" (Kurzweil, 1990) (Schalkoff, 1990)

Kaynak: Russell ve Norvig, 1995

Birinci boyut, diisiince siiregleri ve mantikla ilgili, ikinci boyut ise

kisiler ve davranislari ele almakla ilgilidir. Derine inildiginde;



e Insan gibi davranmak; Turing test yaklasimiyla,

e Iinsan gibi diisiinmek; Bilissel modelleme yaklasimiyla,

e Akilc diisiinmek; Diisiince kanunlarinin yasalariyla,

e Akile1r davranmak; Akilel ajan yaklasimiyla agiklanmaktadir.

Yapay zeka, insanlarda zeka ile ilgili zihinsel fonksiyonlar1 bilgisayar
modelleri yardimiyla inceleyip bunlar1 formel hale getirdikten sonra yapay sistemlere
uygulamay1 amaglayan bir aragtirma alamidir. “Yapay zeka terimi ilk olarak 6nemli
yapay zeka programlama dillerinden biri olan LISP’i gelistiren ve yapay zeka
alanindaki onciilerden biri olan John McCarthy tarafindan 1956 yilinda ortaya
atilmistir (Russell ve Norvig, 1995: 17-18).

2.1.1. Yapay Zeka Amaclar

Yapay zeka uygulamalarinin amaci, insan zekasini 6rnek alip, insan zekasi
olmasi gereken gorevleri gergeklestirebilecek makineler yapabilmektir. Sonug olarak
insanlarin bilgisayarlardan daha iyi gerceklestirdigi gorevleri bilgisayarlarin daha iist
diizeyde gerceklestirmesini saglamaktir. Genel olarak yapay zeka amaglari {i¢ baglik
altinda siralanabilir:

e Makineleri daha akilli yapabilmek:

o Gelecegin bilgi toplumunun kurulmasinda kilit rol olan “genel bilgi
sistemleri” gelistirebilmek.

o Ogrenme metotlarini formel hale getirmek ve bilgisayarlarda bilgi
sistemleri halinde uygulamak

o Ozel bir uzmanlik alanindaki bilgileri, bir bilgi sistemi ya da uzman
sistem halinde toplamaktir.

e Zekanin ne oldugunu anlamak:

o Insanlarin zihinsel yetenekleri, bilgi kazanma, 6grenme ve bulus
yapmada uyguladiklar1 strateji, metot ve teknikleri arastirmaktir.

e Makineleri daha faydali hale getirmek:

o Yapay zeka is yardimcilar1 ve zeki robot timleri gelistirmektir.
Bir¢ok davranis bigimi, zekanin belirtileri olarak kabul edilebilir.

Asagida ise bunun tipik 6rnekleri belirtilmektedir.



e Tecriibelerden 6grenmek,

e Insan beyninin fonksiyonlarin bilgisayar modelleri yardimryla anlamaya
calismak,

e Insanlarin bilgisayar kullanimini kolaylastirmaya yardimei insan/bilgisayar
ara gegcis birimleri gelistirmek,

e Karisik ve zit mesajlardan bir anlam ¢ikartmak,

e Yeni bir duruma basarili ve hizli bir sekilde yanit vermek

e Problemlerin ¢6ziimiinde muhakeme yetenegini kullanmak,

e Standart olmayan sasirtict durumlar karsisinda, bu durumlarin iistesinden
gelebilmek,

e Bilgiyi anlamak ve kullanmak,

e Diisiinmek ve muhakeme etmek.

Yapay zeka programlar siirekli gelismekte ve insan zekasi gerektiren

durumlara rehberlik etmekte faydali hale gelmektedir (Reis, 2017:14).

2.2. DERIN OGRENME

Makine 6grenmesi yapay zekanin bir pargasidir. Makine 6grenmesi veri ile
egitilebilir. Daha sonra ise verilerden elde ettigi bilgi ile alakali tahminlerde
bulunabilir. Derin 6grenme ise makine 6grenmesinin bir pargasidir. Biylik veri
tizerinde ¢alisan On egitimli (farkli isler icin 6zellesmis) ¢cok sayida yapay zekadan
olusan, cok sayida diiglime sahip aglar derin 6grenme olarak isimlendirilir. Derin
O0grenme uygulamalar1 biiyiik ve etiketsiz veri lizerinde calisirken Ogretmensiz 6n
egitim (pre-unsupervised trained), sonrasinda Ogretmenli Ogrenme siireglerinin
calistirildig1 sistemlerdir. Bu uygulamalarin temel 6zelliklerinden biri de agdaki
diigim miktarinin ¢ok biiyiik olmasidir (Alpaydin, 2011). Derin 6grenme, ¢oklu islem
seviyelerinden olusan hesaplama modellerinin, birden fazla soyutlama seviyesine
sahip verilerin gosterimini 6grenmesini saglar. Bu yontemler nesne tanima, konusma
tanima, nesne algilama, gorsel nesne tanima, genomik ve ilag kesfi gibi diger bircok
alanda son teknolojiyi onemli 6lciide gelistirmistir. Derin 6grenme, makinenin her
katmandaki gosterimini bir dnceki katmanda olusturulan gosterimden hesaplamak i¢in

kullanilan dahili parametrelerinin nasil degistirilmesi gerektiginin gosterilmesi i¢in

10



geri yayllma (back propagation) algoritmasini kullanarak biiyiik veri kiimelerinde
karmagik yapiyr arastirmaktadir (LeCun ve digerleri, 2015). Derin 6grenme
sistemlerinin hem 6grenme hem de karar verme asamasinda ¢ikarilan 6zelliklerden
yakin olanlarin biitiinlestirilmesi asamas1 alt kiime (Pooling) olusturmadir.
Milyonlarca farkli verinin (goriintii, ses ve bunun gibi) tiim 6zellikleri birebir ayni
olmayacagi icin bu asama Onemlidir. Olusturulan alt kiimelerin stokastik olarak
elenmesine silme (drop out ) denir. Bu sayede genellikle zayif iliskiye ait olan baglar
koparilir. Silme katmanlar1 sadece kivrimli ag i¢in kullanilmazlar, diger aglar icin
kullanilabilir. (Zocca ve digerleri, 2017). Yapilan islem giiriiltii giderme islemine
benzemektedir. Verideki giiriiltii ise girdi sayisi ile ¢ikti sayisina esit olan yapay sinir
aglartyla (autoencoder) saglanir. Derin dgrenme sistemlerinde 6grenme ve karar
verme siiregleri goz Oniinde bulunduruldugunda asagidaki bilesenlerin her derin
o0grenme aginda bulundugu anlasilmaktadir.

e Parametreler

e Katmanlar

e Aktivasyon fonksiyonlar

e Zarar fonksiyonlari

e Optimizasyon yontemleri

e Hiper parametreler (Patterson ve digerleri, 2017).

Derin 6grenme baslangicta sinir ag1 algoritmasinin ilerlemesinden gelir.
Sadece bir sinir agindaki gizli bir katmanin sinirlamalariin {istesinden gelmek i¢in
cesitli yontemler uygulanmistir. Bu yontemler, hiyerarsik olarak basamaklandirilmig
ardigik gizli katmanlar1 kullanir. Derin 6grenmeye ait ¢esitli modellerden dolayi,
Aminanto ve Kim (2016) derin 6grenmeyi {i¢ alt gruba ayiran, iretici, ayirt edici ve
melez olan Deng (2014) tarafindan yonlendirilen yaklasimlara dayanarak birgok derin
o0grenme modelini siniflandirdilar. Siniflandirma, mimarlik ve tekniklerin (6rnegin
sentez / liretim veya tanima / siniflandirma) amacina dayanmaktadir. Derin 6grenme

yontemlerinin siniflandirmasi Sekil 3’te gosterilmektedir.
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Sekil 3: Derin Ogrenme Y 6ntemlerinin Siniflandirilmasi

Kaynak: Aminanto ve Kim, 2016

Stacked
DAE
(SDAE)

2.2.1. Gozetimsiz Ogrenme

.

Deep Belief
Network (DBN)

Deep
Learning
\ 4 \ 4 \ 4
Generative Hybrid Discriminative
(Unsupervised) y (Supervised)
|
v A 4 \ 4 A 4 v A 4
Auto [ Sum- Recurrent Boltzman Generative Convolutional
Encoder | Product Neural Machine Adversarial Neural Network
(AE) | Network Network (BM) Network (GAN) | (CNN)
Stacked AE Denoising Deep BM Restricted
(SAE) AE (DAE) (DBM) BM (RBM)

Denetimsiz 68renme veya sOzde Tlretici model, etiketlenmemis verileri

kullanir. Uretken mimarileri oriintii tanimaya uygulayan temel kavram denetimsiz

O6grenme veya On egitimdir (Deng, 2014). Daha sonraki aglarin daha diisiik seviyelerini

ogrenmek zor oldugundan, derin tliretken yapilara ihtiyag vardir. Bu nedenle, sinirh

egitim verilerinden, her bir alt tabakayi, tim {ist tabakalara dayanmadan, tabaka

bazinda yaklasimda &grenmek esastir. Uretken modeller ayni zamanda verilen

verilerin ortak istatistiksel dagilimlarin1 da 6grenmeyi amaglamaktadir (Deng ve

digerleri, 2014) Bu modeller girdi verilen baglanti ihtimalini hesaplar ve en yiiksek

olasilik olan simf etiketini seger (Zang, 2015). Denetimsiz 6grenme olarak

siiflandirilan birgcok yontemler vardir.
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2.2.2. Hibrit Ogrenme

Hibrit derin mimari hem tretken hem de ayirt edici mimarileri birlestiriyor.
Hibrit yap1, veri ile ayrimci yaklagimi ayirt etmeyi amaglamaktadir. Bununla birlikte,
ilk adimda, iiretici mimarilerin sonuglari ile dnemli 6l¢iide yardimct olmustur. Hibrit
mimarinin bir 6rnegi, Derin Sinir Agidir (DNN) (Deng, 2014). Deng ve digerlerine
gore (2014), basamaklandirilmis tamamen birbirine bagli gizli katmanlara sahip ¢ok
katmanli bir ag olarak tanimlanan DNN, egitim 6ncesi bir asama olarak istiflenmis bir
stokastik tekrarlayan sinir ag1 olan Restricted Boltzman Machine (RBM) kullanir.
Diger birgok iiretici model, siniflandirma gorevi sinif etiketleriyle eklendiginde, ayirt

edici veya karma modeller olarak diisiiniilebilir.

2.2.3. Gozetimli Ogrenme

Denetimli 6grenme veya ayirt edici model, model siiflandirmasi i¢in verilerin
bazi boliimlerini etiketli verilerle ayirt etmeyi amaglar (Deng, 2014) Ayrimci
mimarinin bir 6rnegi, 6zellikle goriintii tanima i¢in uygun olan 6zel bir mimariyi
kullanan Evrisimli Sinir Ag1 olan (CNN)’dir. CNN'nin temel avantaji, el yapimi
ozellik ¢ikariminin gerekli olmamasidir. CNN, cok sayida veri toplulugundan
karmasik, yiiksek boyutlu, dogrusal olmayan eslemeleri 6grenmek icin ¢ok katmanl
aglari egitebilir (LeCun ve digerleri, 1998). CNN ii¢ temel kavram kullanir: yerel alici
alanlar, paylasilan agirliklar ve havuzlama (Nielsen, 2015). CNN kullanilarak
basariyla dagitilan kapsamli bir arastirma, Google'dan AlphaGo’dur (Silver ve
digerleri, 2018). Ayrimci modellerin diger Ornekleri dogrusal ve lojistik

regresyonlardir (Wang, 2015).
2.2.4. Derin Ogrenme Kiitiiphane ve Yazihmlar
Derin 6grenme alananda kullanilmasi amaciyla gelistirilen bir ¢ok kiitliphane

ve yazilim bulunmaktadir. Tablo 1°de bu kiitiiphanelerden bazilar1 hakkinda temel

bilgilere deginilmistir.
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Tablo 1: Derin Ogrenme Kiitiiphaneleri

Kiitiiphane Yaglitlilgl Gelistirici One Cikan Ozellikleri
Ogreticileri (tutorial) ¢ok etkili. - Keras,
Blocks gibi APl sayesinde matematiksel
VLIEETE FYHeL: MR ets hesaplar kolaylastirmasi.
GPU destegi
(B/‘iegi‘;er:ey and | Caffe Model Zoo iizerinden indirilebilecek
Caffe Python Learning ve hemen kullanilacak 6nceden egitimli
Center aglarin bulupma51.
(BVLC) GPU destegi.
Ronan Algoritmalar1 olusturma konusunda
Torch Lua Collobert, maksimum esneklige ve hiza sahip olmasi.
Clement GPU destegi. (CUDA)
Farabet, Kullanici dostu arayiiz
Coklu GPU sistemleri iizerinde sinir aglari
tasarimi ve egitimi,
Digits C++ NVIDIA Gelismis gorsellestirmelerle performansi
gercek zamanli olarak izleme
Tamamen etkilesimli
Tek bir API ile bir masaiistii, sunucu veya
TensorFlow | Python Google mobil cihazdaki bir veya daha fazla CPU’ya
veya GPU’ya dagitma olanagi.
Deeprll_gearnl Java é?t?sn(:n JVM tabanlh
. . Kolay anlasilir, kisa kodlama yetenegi.
KNET Julia Deniz Yuret Niails (ot - GBI Destels

Kaynak: Cirean ve digerleri, 2012

Bu kiitiiphanelerden TensorFlow , Torch, Knet, Caffe ve Theano igin bazi veri

kiimeleri ve modeller tizerinden tek GPU ile ¢alisma zamani performansinin

karsilastirmasi Tablo 3’te belirtilmistir.
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Tablo 2: Kiitiiphanelerin Calisma Zamani Performansinin Karsilastirilmasi

Model V(.E-I’I . Knet Theano Torch Caffe TensorFlow
Kiimesi

LinReg Housing | 2.84 1.88 2.66 2.35 5.92

Softmax MNIST 2.35 1.40 2.88 2.45 5.57

MLP MNIST 3.68 2.31 4,03 3.69 6.94

LeNet MNIST 3.59 3.03 1.69 3.54 8.77

CharLM | Hiawatha | 2.25 2.42 2.23 1.43 2.86

Kaynak: Cirean ve digerleri, 2012

Verilen tablo incelendiginde , en yavas ¢alisan kiitiiphanenin TensorFlow, en

hizli ¢alisan kiitiiphanenin ise Theano oldugu goriilmektedir (Cirean ve digerleri,

2012).
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UCUNCU BOLUM
EVRIiSiMLIi SiNiR AGLARI

3.1. EVRISIM VE EVRIiSIMLIi SINiR AGI KAVRAMI

Evrigim, bir giris goriintiisiinden 6zellikleri ayiklayan ilk katmandir. Giris
verisinin kii¢clik karelerini kullanarak goriintii 6zelliklerini 6grenerek pikseller
arasindaki iligkiyi korur. Goriintii matrisi ve filtre veya c¢ekirdek gibi iki giris alan
matematiksel bir islemdir (Gopikrishna, 2018).

Bir evrisimli sinir ag1 (ESA-CNN-Convolutional Neural Network), sinir
aginin, i¢ 6zellik sunumlarini 6grenerek ve nesne tanima ve diger bilgisayarli gorme
sorunlar1 gibi ortak goriintii problemlerindeki ozellikleri genellestirerek, hiyerarsik
yapiy1 korudugu ileri beslemeli, yapay bir agdir. Resimlerle sinirli degildir; aym
zamanda dogal dil isleme problemlerinde ve konusma tanimada son teknoloji sonuglar
elde etmektedir (Manaswi, 2018). Bir CNN, Sekil 4’te gosterildigi gibi ¢oklu

katmanlardan olusmaktadir.

Sekil 4: Bir Evrigimli Sinir Agindaki Katmanlar

Input

- 1

e

[

Convolution Subsampling FULLY
CONNECTED

Kaynak: Manaswi, 2018

Beyin aglarint modelleme fikri, bilgisayarlarin ortaya ¢ikmasindan once bile
bir arastirma sorusu olarak degerlendirilmekteydi. Ilk asamalarda, sinir aglar1 Snerme
mant1g1 ile degerlendirilmekte olup ardindan sinir aglarina uygulanan evrisim ve geri
yayilimi gibi kavramlarin kesfi ile sinir aglart daha iyi sonug¢ verir hale gelmistir.

GPU'larin ortaya ¢ikmasina kadar, bilgisayarlar ¢ok katmanli sinir aglarini
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uygulayacak kadar hizli degildi. Yani ticari olarak uygun degildi. GPU'larin giicii ve
daha verimli algoritmalar sayesinde, CNN'ler gercek hayattaki uygulamalara hale
gelmistir (Mane ve digerleri, 2020). CNN’lerin tarihsel gelisimi Tablo 3’te

gosterilmistir.

Tablo 3: CNN'in Gelisim Periyodu

Dénem Siire¢ Yil Eylem
McCulloch, Pits sinirsel aktiviteyi Onerme
1943 <
mantigiyla karsilastird.
IR 5!ur ASMO | 4.5 | Hebh hiicre montaj teorisini énerdi.
Ortaya Cikist
Hubel ve Wiesel, kedi beynindeki gorsel sistemi
1962 .
modelledi.
Fukushima, i¢sel geometrik temsili koruyan kendi
1980 oo . N .
Evrisim kendine 6grenen bir NN 6nerdi.
1980 — 1998 Konze ti LeCun ve arkadaslari, gercek hayat uygulamalar
P 1989 | i¢in geri yayilimhi (back propagation) CNN
kullanimini gosterdi.
1999 - 2010 Daha  Etkili 1999 | Poggio ve arkadaslart max. Pooling’i 6nerdi.
: CNN’ler 2006 Ranzato ve arkadaglart CNN i¢in maxpooling’i
Onerdi.
Ciresan ve arkadaslar1 GPU’larda CNN kavramint
2011
ortaya koydu.
Hinton ve arkadaslari CNN i¢in Drop Out
2012 N .
CNN'i kullanimini gosterdi.
2011 n LeCun ve arkadaslar1 daha iyi CNN i¢in Drop
P GPGPU 2013 v .
Giiniimiiz T Connect’i 6nerdi.
Min Lin ve arkadaslart CNN igin Ag iginde Ag
2014 o .
konseptini onerdi.
2015 Google, CNN i¢in farkl acik kaynak kiitiiphaneleri
yayimladi.

Kaynak: Yazar tarafindan derlenmistir.

Goriintii analizi islemlerinde en yaygin kullanim alanina sahip derin 6grenme
mimarisi olan CNN’ler, bir veya birden fazla evrisim katmanindan olusan ve bu
katmanlarda dogrusal olmayan fonksiyonlarin bulundugu yapilardir. CNN, bir grup
noronun belirli bir 6zelligi tanimak ve bunlar kategorilere ayirmaktan sorumlu oldugu
denetimli bir makine Ogrenme algoritmasidir. Bu algoritmalar, c¢iktiyr olumsuz
etkilemeden girdi 06zelliklerinin boyutunu azaltmak i¢in girdi iizerinde evrisim
gerceklestirir. Bu ozellik gorlintiideki bir kenar veya konugma alt 6rnegi olabilir.

Belirli evrisim cekirdekleri, 6zellikle goriintiilerde, herhangi bir 6zelligi temsil
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etmeyen c¢ok fazla gereksiz pikselin bulundugu durumlarda, girisin 6ziinii vurgulamak
icin kullanilir. CNN’in avantaji zengin kusurlu goriintii 6zelliklerini otomatik olarak
cikarabilmesidir (Chuncheng ve digerleri., 2019). Bir CNN, elle tasarlanan 6zelliklere
ihtiya¢c duymak yerine, egitim siirecinde otomatik olarak calisan bir 6zellik ¢ikarici
icerir. CNN o0zellik ¢ikaricisi, egitim asamasinda agirliklart belirlenen 6zel tiir sinir
aglarindan olusur ve ayni boyutta katmanlara sahip standart ileri beslemeli sinir aglar
ile karsilastirildiginda, CNN’lerin ¢ok daha az baglant1 ve parametreye sahip oldugu
ve bu sayede egitilmesinin daha kolay oldugu goriiliir (Krizhevsky ve digerleri, 2012).
Sekil 5’te verilen LeNet mimarisi, 1988 yilinda Yann LeCun tarafindan ortaya atilan,
ve 1998’lere kadar iyilestirmeleri devam eden ilk CNN agidir. LeNet aginda, alt
katmanlar art arda yerlestirilmis konvoliisyon ve maksimum havuzlama
katmanlarindan olusur. Sonraki iist katmanlar ise tamamen bagli geleneksel MLP

(Multilayer Perceptron)’ye karsilik gelmektedir.

Sekil 5: LeNet Aginin Mimarisi
i81) 4 Ozellikli Harita

E‘LI {C1) 4 Ozellikli Harita ~ (52) 6 Ozellikli Harita  {C2) 6 Ozellikli Harita
N b o O
0

Konvolisyon Kaimam Ali-trnekleme Katmani Konvolisvon Kaimam | Ali-Gmekleme Katmani | Tam Badli MLP

Giirdi Katmam

Kaynak: Cirean ve digerleri, 2012
Tipik bir CNN mimarisi, Sekil 6'da gosterildigi gibi (LeCun ve digerleri, 2010),

sirastyla girdi, evrisim, havuzlama, aktivasyon ve smiflama katmanlarindan

olusmaktadir (Chen ve digerleri, 2018).
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Sekil 6: Evrisimli Sinir Aginin Mimarisi

Feature Maps

Feature Maps feature Maps
Input “ge Feat M
i (5*156*156) (5*78°178) e v T
Kernal (40%4*q)
166 Kernal Kernal Kernal
. <
xl rl
| i -]
L:) = Ol jJJJ =
1644
3 156
— -— 78 s | O — I
156 s 4
Convolutional Pooling Convolutional  Pooling Output
Layer Layer Layer Layer
,‘ L Fully Connected Layer
1 v
Normalize Image Convolutional Neural Network Multi Layer Perceptron

Kaynak: Mane ve digerleri, 2020

Son yillarda yapay zeka, bilgisayarla gorii ve derin 6grenme alanlarindaki
olaganiistii gelismeler, 6zellikle de evrisimli sinir aglarimin kullanildigi, goriinti
smiflandirma ve gorii uygulamalarinda (Russakovsky, 2015) dikkate deger bir
performans artigina yol agmistir (LeCun, 1989). Bu gelismeler sonucunda bilgisayarla
gorii alani istatistiksel yontemlerden derin 6grenme yontemlerine dogru kaymuistir.
Derin 6grenme, nesne algilama, hareket izleme, eylem tanima, insan pozu tahmini ve
semantik boliimlendirme gibi ¢esitli bilgisayarli gérme problemlerinde biiyiik adimlar
atilmistir (Volulodimos ve digerleri, 2018). CNN’ler, yiiz tanima, nesne algilama,
otonom araglar gibi bilgisayarli gérme uygulamalarinda son derece basarili olmustur.

Ancak onemli bir dezavantaji vardir. Nesne tanima konusunda evrigimli sinir
aglari ile basarili olunsa da, bazi sorunlari da igermektedir. Egitilmis bir evrisimli sinir
ag1, ilgili nesneye farkli bir agidan bakildiginda tanima islemini farkli basari orani ile
gerceklestirmektedir. Evrisimli sinir aginin bir nesneyi olusturan pargalarin arasindaki
hiyerarsiyi (0rnegin bir yiiziin g6z, agiz, burun vb. organlardan olusmasi)
anlayamadigi bilinmektedir. Yapay genel zekaya (artificial general intelligence) giden
yolda nesnelerin konum, yonelim ve acisal durumdan bagimsiz olarak taninabilmesi
i¢cin farkli parametrelerle temsil edilmesi gerekmektedir (Beser ve digerleri, 2018).
Sinir aglarindan farkli olarak, CNN’lerde girdi Sekil 7°deki gibi ¢ok kanalli bir
goriintiiye sahip bir vektordiir (bu durumda 3 kanalli-RGB).
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Sekil 7: CNN’e Giren Ornek Bir Resim Bilgisi

Kaynak: Gopikrishna, 2018

Sekil 8’de, 32 * 32 boyutlarinda 3 kanalli, yani renkli bir giris resmi olarak
kullanildig1r goriilmektedir. Bu goriintiiniin diizlestirilerek vektor hale getirilmesi
gerekmektedir, fakat bu islem esnasinda resimdeki koseler ve resim derinligi
kaybedilmektedir. Buna engel olmak i¢in CNN kullanilmaktadir. CNN ile resmi
diizlestirip vektor haline getirmek yerine resmin 3 boyutlu yapisinin korunmasi yoluna
gidilir. Ve agirlik (weight) olarak kiigtik filtreler kullanilir. Bu 6rnekte 5x5x3 filtre
kullanilmakta ve resmin tiim piksellerine uygulanmaktadir. Filtrenin bize verdigi
deger o bolgenin ¢ikis degeri olacaktir. Sekil 8’de goriildiigii gibi filtre uygulandiktan
sonra yalnizca bir ¢ikt1 alinmis ve ¢ikt1 olarak 28 * 28 * 1 boyutunda bir aktivasyon
haritas1 elde edilmistir. Layer i¢inde ka¢ adet filtre varsa bu filtrelerin hepsi tek tek
uygulanir ve sonunda kag adet filtre uygulandiysa ¢ikis derinligi de o kadar olacaktir.
Ayrica filtre derinliginin uygulandigi layer derinligiyle ayni olmak zorunda olduguna
dikkat edilir.
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Sekil 8: Omek Bir Evrisim Islemi

Kaynak: Gopikrishna, 2018

Sekil 9°da goriintii piksel degerleri 0, 1 degerlerinden olusan 5 x 5 gdriintii

matrisi ile 3 x 3 filtre matrisinin ¢arpimi goriilmektedir.

Sekil 9: Goriintii ve Filtre Matrisleri

5 x5 - Image Matrix 3 x 3 ~ Filter Matrix

Kaynak: Gopikrishna, 2018

Filtreleme isleminin ardindan Sekil 10°da goriildiigii gibi, 3 x 3 boyutlarinda

bir “Ozellik Haritas1” olusur.
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Sekil 10: Filtreleme islemi Sonucu Olusan Evrisimli Ozellik Haritas:

1|1({1(0|0
0f1|1|1|0 4134
0|0 2143
0|0 213|4
01
mage Convolved
Feature

Kaynak: Gopikrishna, 2018

Adim (stride): Adim, giris matrisine uygulanan filtrenin kaydirildig: piksel
sayisidir. Adim degeri 1 oldugunda, filtreler tek seferde 1 piksel kaydirilir. Adim
degeri 2 oldugunda filtreler tek seferde 2 piksel kaydirilir.

Zero Padding (Sifir Doldurma): Filtre uygulandiginda boyutlar her zaman
kiictiliir. Boyutlarin her katmanda diismesini engellemek i¢in zero padding (sifir
doldurma) islemi uygulanir. Kaybolan her piksele 0 degeri verilirse kiigiilme
engellenmis olur.

Sekil 11°de, filtreleme uygulanan goriintiiden, sifirlarla doldurma islemi

uygulandiktan sonra goriintiiniin boyutunun korundugu gézlemlenebilir.

Sekil 11: Zero Padding Uygulamasi

0f O 0l O 0 0
18| 54| 51| 239|244]188
55/121| 75| 78| 95| 88
35| 24|204|113|109| 221
3| 154|104} 235| 25|130
15] 253]| 225|159]| 78] 233
68| 85| 180| 214|245 0
0 0 0o O 0 0

WEIGHT

1] o] 1 139] 184] 250 409} 410] 283

o] 1] of 133| 429] 05| 686| 856] 441
1] o 3 310| 261] 792] 412] 640| 341

280| 633] 653] 851] 751] 317

254| 608] 913] 713} 657] 503

321 325] 592| 517] 637] 78

QIOIOIOIOIDIO|O

OO0 |00 ]|0]O

Kaynak: Gopikrishna, 2018
ReLU Aktivasyon Fonksiyonu: ReLU dogrusal olmayan bir operasyon igin

Dogrultulmus Dogrusal Unite (Rectified Lineaar Unit) anlamma gelir. Amaci,

dogrusal olmayan ger¢ek diinya 6zelliklerini tanitmaktir ki, bu da hatalar1 kolayca geri
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yayabildigimiz (back propagation) ve ConvNet (Evrisimsel Ag)’deki ReLU
fonksiyonu tarafindan etkinlestirilen birden fazla ndéron katmanma sahip
olabilecegimiz anlamina gelir. Ciinkii gercek diinya verileri, ConvNet’imizin
O0grenmesini etkileyen negatif olmayan dogrusal degerler olacaktir.

Havuzlama (Pooling): Havuzlama katmaninin amaci, girig goriintiileri ¢ok
biiyiikk oldugunda modeli kiigiiltmek ve parametre sayisini azaltmaktir. Genellikle
pooling islemi ile layer boyutu yar1 yariya indirilir. Daha sonra, sonraki evrigim
katmanlar1 arasina diizenli olarak havuzlama katmanlarinin eklenmesi arzu edilir.
Havuzlama, yalnizca goriintiinlin uzamsal boyutunu azaltmak amaciyla yapilir.
Havuzlama her derinlik boyutunda bagimsiz olarak yapilir, yani derinlik boyutunu
etkilemez. Bu nedenle goriintiiniin derinligi degismeden kalir. Genel olarak uygulanan

havuzlama katmaninin en yaygin sekli maksimum havuzlamadir (max pooling).

Sekil 12: Max Pooling Islemi

429| 505| 686| 856
261|792(412| 640 792| 856
633|653| 851| 751 913|851
608| 913| 713| 657

Kaynak: Gopikrishna, 2018

Yukarida verilen Sekil 12°de, 4 * 4 evrisimli ¢ikis degeri maksimum
havuzlama isleminden sonra 2 * 2 oldugu goriilmektedir. 2’ser adim atarken, boyutu
da 2 olarak birlestirdik. Maksimum havuzlama islemi, evrigimli ¢iktinin her derinlik
boyutuna uygulanir. Bu katmanda yapilan islem asagi Ornekleme olarak da
adlandirilir. Bu katmanda yapilan islemler sonucu boyuttaki azalma veri kaybina
neden olur. Bunun faydasi ise bir sonraki ag katmani i¢in hesaplama yiikiinii azaltmak
ve sistemin ezberlemesini engellemektir.

Sekil 13, bir giris goriintiislinii islemek i¢in tam bir CNN akisini ve nesnelerin

degerlere gore siniflandirildigini gosterir.
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Sekil 13: CNN Akis1 ve Siniflandirma Islemi
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Kaynak: Gopikrishna, 2018

Tamamen Bagli Katman (Fully Connected Layer) / Cikis Katmani: Havuzlama
katmanindan sonraki 6zellik esleme matrisi, vektor (x1, x2, x3...) olarak diizlestirilmis
olacaktir. Bir model olusturmak igin bu 6zellikleri, fully connected katmanlarla bir
araya getirilir. Konvoliisyon katmanlari, 3B aktivasyon haritalar1 olustururken,
goriintiiniin belirli bir smifa ait olup olmadigi gibi ¢iktiya ihtiyag duyulur. Cikti
katmani, tahmindeki hatay1 hesaplamak i¢in kategorik capraz-entropi (cross-entropy)
gibi bir kayip fonksiyonuna (loss function) sahiptir. Ileri gecis tamamlandiginda, geri
yayilim (back propagation), hata ve kayip azaltma i¢in agirlig1 (weight) ve onyargilar
(biases) glincellemeye baglar. Bu andan itibaren CNN'den bir 06zellik haritas
alindiktan sonra, ilging bolgeler bulmak i¢in Bolge Oneri Agi’na (RPN) gecirilmesi
gerekir. Bolge Oneri Aglari, bir nesneyi bulup bulmadigna iliskin kayb1 ve nesnenin
bulundugu yere iligkin kaybi verir.

Sekil 14°te, RPN kullanan ve ¢alismamizda uyguladigimiz Faster-RCNN i¢in

yiiksek diizeyli mimari goriilmektedir.

Sekil 14: Faster R-CNN Mimarisi
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Kaynak: Gopikrishna, 2018
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CNN'den giris goriintiisii icin dzellikler elde edildikten sonra, Bolge Oneri Ag
(RPN-Region Proposal Network) katmani ile bolge Onerilerinin olusturulmasi
(Anchors (Capalar) / Bounding Box (Smirlayict Kutu)) yapilabilir. Ongériilen bolge
Onerileri daha sonra goriintliyli onerilen bolge icinde siniflandirmak ve sinirlama
kutular1 icin R-CNN ile offset degerlerini tahmin etmek amaciyla kullanilan bir ilgi
Alan1 Havuzlama (RoIP-Reigon of Interested Pooling) katmani kullanilarak yeniden

sekillendirilir.

3.2. FASTER R-CNN VE RPN (REGION PROPOSAL NETWORK)

3.2.1. Faster R-CNN ve RPN

Faster R-CNN Nesne algilama yapan bir agdir. Adindan da anlasilacagi gibi,
temelini olusturan RCNN ve FastRCNN'den daha hizlidir. Bu, otonom araglarda,
tiretimde, giivenlikte kullanim alanina sahiptir.

Faster R-CNN ag1 asagidaki temel adimlar ¢izgisinde caligir:

e Bir Ozellik Haritas1 (Feature Map) almak igin goriintii CNN iizerinden

calistirilir,

e Etkinlestirme Haritas1i (Activation Map), Bolge Oneri Ag (Region
Proposal Network - RPN) adi verilen ve ilging kutular / bolgeler tireten ayr1
bir ag lizerinden ¢alistirilir,

e RPN'den gelen ilging kutular / bdlgeler i¢in siif + Siirlayict Kutu (class
+ bounding box) koordinatlarini ¢ikarmak i¢in birkag tam baglantili katman
kullanilir.

Sekil 15’te RPN ve Faster R-CNN Mimarisi gosterilmektedir.
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Sekil 15: RPN ve Faster R-CNN Mimarisi
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Kaynak: Gopikrishna, 2018

Faster R-CNN’in hizli olmasinin sebebi, bdlge Onerilerini tahmin etmek
amaciyla 6zellik haritasi (future map)’nda seg¢ici arama (selective search) algoritmasi
kullanmak yerine, bolge onerilerini belirlemek i¢in farkl: bir ag kullanmasidir.

Girig goriintlisii CNN den gegirilip 6zellik haritast ¢ikarildiktan sonra bu
asamada selective search (secici arama) ile bolge onerisi almak yerine, bu Onerileri ag
icerisinde yapilir. Artik bolge 6nerileri bu ag iizerinde yapilir ve hiz kazanimi saglanir.
Bundan sonrasi Fast R-CNN gibi ¢alisir.

Siniflandirma islemi yapildiktan sonra 4 farkli parametre ortaya ¢ikar. Hem
bolge Onerisi veren agin hem de normal evrisim islemlerinin yapildig1 agin egitilmesi

gerekir.
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Burada, RPN’in iki gorevi vardir:

e Her Oneri i¢in orada “nesne var m1 yok mu?” karar vermek,

e Ayni zamanda Onerilerin pencere biiylikliigiinii belirlemek.

Asil Agimizda yapilacak iki gorev vardir:

e Smiflandirma yaparak baktifi bolge i¢inde “nesne var mi yok mu?”

belirlemek,

e Buldugu nesnenin siirlarini belirlemek (Cebeci, 2019).

Son evrisimli katmanda bir dizi evrisimli 6zellik haritas1 (6zellik matrisi) elde
edildikten sonra, bu 6zellik haritalarinda uzamsal olarak kayan bir pencere ¢alistirilir.
Kayan pencerenin boyutu n x n'dir (burada 3 x 3). Her bir kayan pencere igin, hepsi
ayn1 merkeze (xa, ya) sahip, ancak Sekil 16’da gosterildigi gibi 3 farkli en boy oranina
ve 3 farkli 6lgege sahip bir dizi (9) anchor (¢apa) iiretilir.

Sekil 16: Anchor Uretimi

500

00
o 300 L] 00 5040 Lo o] B0

Kaynak: Gopikrishna, 2018

Daha yakindan bakilirsa:
e Ug renk ii¢ dlgegi veya boyutu temsil eder: 128x128, 256x256 ve 512x512.
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e Kirmizi kutulari (boxes) / ¢apalar1 (anchors) secelim. Ug kutucuk sirasiyla
1: 1, 1: 2 ve 2: 1 yiikseklik genislik oranlarina sahiptir.

Bu anchor’lar, Pascal VOC veri kiimesi ve COCO veri kiimesi i¢in iyi ¢alisir.
Ancak, farkli anchor / box tasarimi yapilabilmektedir. Ornegin, yolcular1 / yayalar
saymak i¢in bir ag tasarimi yapildig1 varsayilirsa, ¢ok kisa, ¢ok biiyiikk veya kare
kutularin diistiniilmesi gerekmeyebilir. Diizgiin bir anchor seti, hiz1 ve dogrulugu
artirabilir.

Ayrica, bu anchorlarin her biri i¢in, bu anchorlarin yer-dogruluk siirlama
kutular1 (GTBox-Ground Truth Box) ile ne kadar ortiistiiglinii gdsteren bir p * degeri
hesaplanir.

Son olarak, bu evrisim 6zellik haritalarindan ¢ikarilan 3 x 3 uzamsal 6zellikler,
iki gorevi olan daha kiigiik bir ag1 besler: siniflandirma ve regresyon. Regresoriin
¢iktist, tahmin edilen bir sinirlama kutusu (x, y, w, h) belirler, siniflandirma alt aginin
¢iktist, tahmin edilen kutunun bir nesne (1) igerip icermedigini veya arka plandan (0

icin obje yok) oldugunu gdsteren bir p olasiligidir.

3.2.2. Faster R-CNN ve ROI (ilgi Alam) Katmam

RPN'den sonra, farkli boyutlarda 6nerilen bolgeler elde edilir. Farkli boyutlu
bolgeler, farkli boyutlu CNN o6zellik haritalar1 anlamima gelir. Farkli boyutlardaki
ozellikler lizerinde caligmak i¢in verimli bir yap: olusturmak kolay degildir. ROI
Pooling, 6zellik haritalarini ayni1 boyuta indirerek sorunu basitlestirebilir.

Sonu¢ olarak, farkli boyutlardaki dikdortgen listesinden, sabit boyuttaki
karsilik gelen 6zellik haritalarinin bir listesi hizli bir sekilde alinabilir.

ROI havuzu olusturmanin faydalarindan biri islem hizidir. Cergevede birden
fazla nesne oneri varsa (ve genellikle bircogu varsa), yine de hepsi i¢in ayni giris
Ozelligi haritasi kullanilabilir. Evrigimleri islemenin erken asamalarinda hesaplamak

¢ok pahali oldugundan, bu yaklasim bize ¢ok zaman kazandirabilir.
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3.2.3. Faster R-CNN ve R-CNN Katmani

Son katman olan bolge tabanli evrisimli sinir ag1 (R-CNN), Faster R-CNN’in
boru hattindaki (pipeline) son adimdir. Goriintiiden evrisimli bir 6zellik haritasi
aldiktan sonra, bunu RPN ile nesne dnerileri almak i¢in kullandiktan ve son olarak bu
tekliflerin her biri i¢in (Rol Pooling araciligiyla) ozellikleri ayikladiktan sonra, bu
Ozelliklerin siniflandirma i¢in kullanilmasi gerekir. R-CNN, miimkiin olan her nesne
sinifi i¢in bir puan ¢ikarmak i¢in tam olarak bagli bir katmanin kullanildigit CNN'lerin
siiflandirilmasinin son asamalarini taklit etmeye ¢alisir.

R-CNN'nin iki farkli hedefi vardir:

e Onerileri siniflardan birine ve bir arka plan smifina (kotii teklifleri

kaldirmak i¢in) siniflandirir,

e  Onerinin sinirlayict kutusunu dngériilen siifa gére daha iyi ayarlar.

Nesne tespit uygulamalarindaki son gelismeler, Bolge oneri yontemleri
(Region Proposal Methods-RPN) ve bolgesel tabanli evrigimli sinir aglari (R-CNN)
basaristyla meydana gelmistir (Shaoqing ve digerleri, 2016).

RPN, belirli nesne tiirlerini tanimlamak yerine resimlerdeki ilgi bdlgelerini
(ROI'ler) tanimladig i¢in transfer 6greniminin uygulanmasi igin ideal bir adaydir
(Ferguson ve digerleri, 2018).

RPN, bir¢ok sinifa sahip biiyiik bir veri kiimesi iizerinde bir nesne algilama
agim egitirken, RPN, nesne sinifina gore ayrim yapmadan, muhtemelen nesne iceren
gOriintliniin alt boliimlerini tanimlamay1 6grenir. Bu 6zellik, ilk olarak nesne algilama
sisteminin Micrososft Common Objects in Context (COCO) veri seti gibi ¢ok sayida
nesne sinifi olan biiyiik bir veri setinde 6n egtimiyle gelistirilir. Ilging bir sekilde,
egitilmis nesne algilama sisteminden gelen RPN hatali bir metal somun goriintiisiine
uygulandiginda, goriintiiniin diger ilging bdlgeleri arasindaki dokiim kusurlarini

hemen tespit eder.
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COCO veri setiyle gerceklestirilmis bir egitimden sonra RPN’in ¢iktisi
Sekil 17°de gosterilmektedir.

Sekil 17: RPN ile isaretlenen Bir Metal Somun Resmi

Kaynak: Yazar tarafindan derlenmistir.

3.2.4. Faster R-CNN ve Inception V2 Yapisi

Inception V2, evrisim aginin karmasikligini azaltmak i¢in tasarlanmis bir
modiildiir. Bu modiil, evrisim aginin daha derinden genis olmasini saglar. Inception
V2, A, B, C olarak adlandirilan ti¢ farkli tip modiile sahiptir. Sekil 18 ile gosterilmistir.
Sekil 18 (a) ile gosterilen yumruk modiilii (A), 5x5 konvoliisyonun 3x3 konvoliisyon
olmasi yerine degistirildi. Bu, prensipleri takip ederek, mekansal toplanmanin, temsil
giiciinde ¢ok fazla veya herhangi bir kayip olmadan daha diisiikk boyutlu gomme
izerinde yapilabilecegini gosterdi. 3x3 evrisimi  gergeklestirilerek, evrisim

performansi artirilmistir (C. Szegedy ve digerleri, 2016).
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Sekil 18: Inception V2 Modeli
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Kaynak: Alamsyah ve digerleri, 2019

Filtre boyutunun N x n, 1 x n ve n x 1 evrisimleriyle ¢arpanlara ayrilmasi ile,
bu yontemin tekli 3x3 konvoliisyondan %33 daha ucuz oldugu goriilmiistiir. Bu, modiil
B olarak Sekil 18 (b) ile gosterilmistir.

Dahasi, filtre genisletilerek daha yiliksek boyutlu gosterimler ilkesinin bir ag
iginde yerel olarak islenmesi daha kolaydir. Genisletilmis modiil, Sekil 18 (c) ile
gosterilmistir (Alamsyah ve digerleri, 2019).

3.2.5. MSCOCO ve Transfer Ogrenmesi

Transfer 6grenmesi, bir ortamda Ogrenilen bilgilerin baska bir ortamda
genellestirmeyi gelistirmek i¢in kullanildigi bir makine 6grenme teknigidir (Ferguson
ve digerleri, 2018).

Transfer 6grenme, bir siniflandirma senaryosunda egitilmis bir modeli, basit
yapisal diizenlemeler yoluyla yeni bir smiflandirma senaryosuna uyarlar
(Gopalakrishnan ve digerleri, 2017).

(Kolar ve digerleri, 2018; Gao ve Mosalam, 2018) calismalar ile transfer
ogreniminin smirlt egitim verisi olan alana 6zgii gorevler icin 6zellikle uygulanabilir
oldugu gosterilmistir.

Bu caligmalardan da anlagilacag: gibi transfer 6greniminin avantaji, mevcut
egitim veri seti kii¢iik oldugunda bile tespit dogrulugunu artirabilmesidir. Sekil 19,
transfer 6grenmesi ilkesini gosterir. Faster RCNN tabanli yapisal visual inspection

metodu ¢oklu hata tiplerini tespit etmek i¢in onerilmistir (Cha ve digerleri, 2018).
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Sekil 19: Transfer Ogrenme Semasi
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Kaynak: MissingLink, 2016
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DORDUNCU BOLUM
HATA TESPIiT VE SINIFLANDIRMA SISTEMIi

Bu boéliimde, derin 6grenme ile resim, video ve gercek zamanli kamera
goriintiileri lizerinden anomali igeren metal somunlar {izerinde hata tespit ve
siiflandirma islemi gerceklestiren bir sistem uygulanmustir.

Uygulama gelistirilirken Sekil 20°de belirtilen model kullanilmustir.

Sekil 20: Uygulama Gelistirme Modeli

[ Veri Hazirlama
‘ Derin Ogrenme l
[ Bilgisayarla Gorii ]

API Yiikleme [

Model Gergek Zamanlh
Konfigiirasyonu Goriintl

Transfer Ogrenme

Yeniden Egitim

Siniflandirma

Kaynak: Yazar tarafindan derlenmistir.

Onerilen sistem, metal somunlar iizerinde anomali tespit ve siniflandirma
islemleriyle bir resim lokalizasyon ve nesne algilama sistemi gibi galigir. Anomali
tespit sisteminin tasarimi, diger CNN mimarilerine gore dogrulugunun daha yiiksek
olmasi nedeniyle Faster R-CNN modeline dayanmakta ve COCO veri seti ile egitilmis
olan Faster-RCNN Inception V2 modeli kullanilarak transfer 6grenmesi ile sistemin

egitimi gergeklestirilmistir.
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4.1. METODOLOJi

Anomali igeren metal somunlarin hata tespit ve siiflandirma uygulamasinin

gergeklestirilmesi i¢in Sekil 21°de belirtilen is akist uygulanmustir.

Sekil 21: Hata Tespit ve Siniflandirma Uygulamasi Gelistirme Is Akis

C)
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Kaynak: Yazar tarafindan derlenmistir.

Etiketleme islemi

Uygulamanin test asamasinda ve kullaniminda ise Sekil 22’de verilen

algoritma uygulanmistir.

Sekil 22: Hata Tespit ve Simiflandirma Algoritmasi

Goruntu Girii

Bilgisayarla
Goru

Kaynak: Yazar tarafindan derlenmistir.
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Veri hazirlama asamasinda, ¢alismamiza uygun veri olmadig1 i¢in 6zgiin bir
veri seti hazirlanmistir. Veri setindeki veri sayisinin artirimasi ve modelimizin basarisi
icin veri artirim islemi gercgeklestirilmistir. Bu islemden sonra veri setinin
tamamlanmasiyla birlikte metal somunlar1 “hatali” ve “hatasiz” olacak sekilde
etiketleme islemi yapilmigtir.

Derin 6grenme asamasinda, Tensorflow Object Detection API kurulumu, bu
API’ye ait transfer 6grenmesi gerceklestirecegimiz, Micrososft Common Objects in
Context (COCO) veri setiyle egitilmis olan Faster-RCNN-Inception-V2 modelinin
yiiklemesi ve konfigilirasyonu, etiketleme isleminin ardindan olusan etiket bilgilerinin
tensorflow’u anlayacagi tfrecord dosyalarina doniistiiriilme islemi ve ardindan
modelin 6zgiin veri setiyle egitimi gergeklestirilmistir.

Bilgisayarla gorii asamasinda, nesne tespit yazilimlarimiz calistirilarak resim
ve video dosyalar1 lizerinden ya da gergek zamanli kamera goriintiileri tizerinden
goriintli alma islemi gerceklestirilmistir.

Cevap asamasinda ise uygulamamiz gordiigii metal somunlar tespit ederek
“hatal1” veya “hatasiz” olarak siniflandirma islemini bagarmistir.

Hata tespit ve siniflandirma uygulamasi gelistirilirken, Sekil 23°te belirtilen ve
bir disiplin iceren Sistem Gelistirme Yasam Dongiisii (SGYD) adimlarina bagh

kalmaya 6zen gosterilmistir.

Sekil 23: Sistem Gelistirme Yasam Dongiisii

1.
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T -
Sistemin _ Gereksinimlerin
Gergeklestinilmes:. Belirlenmesi
Degerlendinlmesi
6. | 3.
Sistemin Test Iht;}rag:]!a.l_']n
Edilmesa
5. 4.
Yazilmun Sistemin
Gelistinlmesi Tasarmm

Kaynak: Tecim, 2015: 3.
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Problemin ve amagclarin tanimlanmasi asamasinda, hedef sektdriin is akiglari
incelenmistir.

Belirlenen eksiklere yonelik gereksinimler ortaya konmustur.

Ihtiyaclarin analizi kapsaminda ise ihtiya¢ duyuldugu diisiiniilen gelistirme
stiregleri ve yontemler ile ihtiya¢ duyulan veriler belirlenmistir.

Sistem tasariminda, hata tespit ve smiflandirma isleminin sorunsuz
yapilabilmesi i¢in, metal somunlarin konveyorde ilerleyis bigimleri, kullanilacak
kamera sayisi ve yakalanacak goriintii agisina uygun bir veri seti ile uygun bir
uygulama tasarimina gidilmistir.

Yazilim gelistirme asamasinda ise derin 6grenme uygulamalari i¢in en uygun
dillerden Python kullanilmistir. Ayrica, ihtiya¢ duyulan kiitiiphaneler ve frameworkler
kullanilarak 6zellikle, ticretsiz GPU destegi saglamasi sebebi ile, Google’in bulut
hizmeti olan Colaboratory kullanilmstir.

Sistem gelistirilirken, egitim asamasina kadar uygulanan yapilandirmalarin
dogru olup olmadig1 ve egitim ardindan uygulamanin siniflandirma islemini dogru
yapip yapmadigi test edilmistir. Alinan hatalar sonucunda, konfigiirasyon islemleri
tekrar diizenlenerek yeniden egitim saglanmis ve basari orani artirilmistir.

Sistemin gerceklestirilmesi ve degerlendirilmesi asamasinda, sistemin

isletmenin kullanimina hazir hale getirilmesi hedeflenmistir.

4.2. YAPILAN HAZIRLIKLAR

Calismaya baglanmadan once igerisinde metal somunlarin yer aldig bir veri
seti olmadig1 i¢in model iizerinde istenilen egitimi yapabilmek amaciyla 6zgiin bir veri
seti hazirlama geregi duyulmustur.

Hatali ve hatasiz somunlarin yer aldigi bir veri seti olustururken uygun nitelikte
gorintiiler elde etmek i¢in uygun ortamin hazirlanmasi yapilmasi gereken ilk is olarak

ele alinmistir.
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4.2.1. ideal Ortamin Hazirlanmasi

Veri setini hazirlarken alinan goriintiilerin ihtiyag duyulan ideal ortam, bir
plastik kabin serit ledlerle aydinlatilmasi ve goriintii alinmasi i¢in yan ve {ist
taraflarindan delik agilmasiyla birlikte Sekil 24’te goriildiigii gibi adeta kiigiik bir
stiidyo seklinde olusturulmustur.

Sekil 24 : Olusturulan Stiidyo Ortami

Kaynak: Yazar tarafindan derlenmistir.

Ardindan ihtiya¢ duyulan agilardan el degmeden ve zaman kaybetmeden
ardarda seri goriintiiler alinabilmesi i¢in olusturulan stiidyoya step motor devresi
eklenmistir. Step motor, step motor siiriicii kart1 ve Arduino nano kart1 kullanilarak
olusturulan Sekil 25’te goriilen sistem ile step motorun 200 ms gecikmelerle adim
adim donmesi saglanmis olup, step motor iizerine eklenen bir stand ile de somunlarin
hareketli olarak her agidan goriintiilerinin alinmasi saglanmistir. Step motor bilgileri

ve kullanilan kod parcgas1 Ek 1’°de belirtilmistir.
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Sekil 25: Step Motor Caligsma Sistemi

Kaynak: Yazar tarafindan derlenmistir.

Ideal ortamin saglanmasmin ardindan, éncelikle 13 Mp kamera ¢dziiniirliige
sahip Lenovo K5 Note akilli telefon ile 1080 px video ¢oziiniirliikte videolar ¢ekilmis
ve VLC medya oynatici uygulamasi ile bu videolardan, belirtilen frame araliklarinda
farkli agilardan hatali ve hatasiz goriintiilerin yer aldig1 360 adet resim hazirlanmistir.
Bu veri setinde yer alan 360 adet resim 72 adet test ve 288 adet train olacak sekilde
ayristirllmigtir. Elde edilen bu resimler, derin 6grenme modeline verildiginde harcanan
egitim siiresinin kisaltilmasi i¢in Photoshop CS2 Extended grafik tasarim uygulamasi
kullanilarak en/boy oranlari 100x76 px ¢oziinirliigiine indirgenmistir. Daha sonra,
kullanilan derin 6grenme modellerinin veri giris degerlerine uyum saglamasi ve
herhangi bir veri kaybina mani olmak amaciyla bu degerler Python ile yazilmis olan
ve Ek-2’de belirtilen kodlar kullanilarak 600x600 px ¢oziiniirliikkte standart boyutlara
getirilmistir.

Ardindan veri setinin yetersiz oldugu distiniilerek 12 Mp kamera
¢ozinirligiine sahip LG G7 ThinQ akilli telefon kullanilarak, 1:1 gériintii oraninda,
3492x3492 px ¢ozinirliginde resimler ¢ekilerek, aralarinda nesne algilama
uygulamamiza uygun oldugu degerlendirilen yalnizca iist ve yan acilardan alinmis
olan resimler se¢ilmis, somun resimlerinin sayisini artirmak amaciyla hatasiz somun

resimlerine veri artirim (data augmentation) islemi uygulanarak toplam 2000 adet

38



resimden olusan 6zgilin veri setimiz hazirlanmistir. Veri setimizdeki 2000 adet resim

400 adet test ve 1600 adet train olmak iizere iki gruba ayrilmistir.

4.2.2. VLC Media Player Uygulamasinin Yapilandirilmasi

Video tizerinden istenilen frame araliklarinda resim alinabilmesi i¢in VLC
Media Player’in, asagidaki adimlarda belirtildigi gibi yapilandirilmasi saglanmistir:
e VLC ortam oynaticisinin arayiizii acilir ve Araglar meniisiinden Ayarlar

sekmesi segilir.

Sekil 26: VLC Player Konfigiirasyon Ayarlari
| & VLC Otam Oynaticms 0
Otam  Oymatim  Ses  Goruntu AR Yan  Araclar  GoeUnum  Yardim
I [rkler ve SGrgecher
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Ovtam Bdgden Ctrle

Kodiayw/Cozuco Bdgder Cule)

VIM Yapdandirman Ctrle Shaft« W

Progeam Rehberi

etiler

Uygulama £l ve Edlentder

Géte Uyarla

P B i = S A P

Kaynak: Yazar tarafindan derlenmistir.

e Video ve resim islemleriyle ilgilendigimiz i¢in Agilan Basit Ayarlar

penceresinden “Goriintli” meniisii secilir.
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Sekil 27: VLC Player Goriintii Ayarlar
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Kaynak: Yazar tarafindan derlenmistir.

e Goriintli alma islemlerine giris yapabilmek i¢in pencerenin sol alt tarafinda
yer alan “Ayrintili” secenegi secilerek acilan “Gelismis Ayarlar”
penceresinden GOriintii” meniisii ve bu menii icerisinden de “Sahne

Gortintii Stizgeci” isaretlenir.

Sekil 28: VLC Player Sahne Goriintii Siizgeci
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Kaynak: Yazar tarafindan derlenmistir.
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Sekil 29: VLC Player Sahne Goriintii Stizgeci Konfigiirasyonu
& Geligmis Ayarlar = [m] X
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Kaynak: Yazar tarafindan derlenmistir.

e Sahne Siizgeci Ayarlarindan “Sahne Goriintii Stizgeci” degerleri

girilmelidir.

Buradan kayit edilecek resmin formati, boyutlari, goriintii alinmasi istenen
videonun bulundugu klasor uzantisi, kaydedilecek olan resmin kaydedilmesi istenen
klasor yolu ve Videonun frame degerine gore istenen kayit periyodu girilir.
Kullandigimiz videonun frame degeri 25 oldugu i¢in biz burada 25 degerini kullandik

ve her saniyede 1 kare resim kaydedilmesini sagladik.
4.2.3. Veri Artirma (Data Augmentation) islemi

Sinir aglarinin derin 6grenme performansi, mevcut veri miktarinin sik sik
artirilmasiyla iyilesme kaydeder. Veri artirimi, mevcut egitim verilerinden yapay
olarak yeni bir egitim verisi olusturmak i¢in kullanilan bir tekniktir. Bu, yeni ve farklh
egitim Ornekleri olusturan egitim verilerinden Orneklere alana ozgili teknikler

uygulanarak yapilir.
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Resim veri artirma iglemi, belki de en iyi bilinen veri artirma tiiriidiir ve orijinal
goriintliyle ayn1 sinifa ait egitim veri seti i¢indeki goriintiilerin doniistiiriilmiis
versiyonlarini olusturmay1 igerir.

Bu doniistimler, kaydirma, ¢evirme, yakinlastirma ve ¢ok daha fazlasi gibi
goriintli isleme alanindaki bir¢ok islemi igerisinde barindirir.

Amag, egitim veri setini yeni ve makul 6rneklerle genisletmektir. Bu, egitim
seti gorlintiilerinin model tarafindan goriilmesi muhtemel olan varyasyonlar1 anlamina
gelir. Ornegin, bir kedi resminin yatay bir sekilde cevrilmesi, fotografin soldan veya
sagdan cekildigi i¢in mantikli gelebilir. Bir kedi fotografinin dikey olarak ¢evrilmesi
anlamsizdir ve muhtemelen modelin bas asagi bir kedinin fotografini gérmesi pek
miimkiin olmadigindan uygun olmayabilir.

Bu nedenle, bir egitim veri seti i¢in kullanilan 6zel veri artirma tekniklerinin
seciminin dikkatli bir sekilde ve egitim veri seti baglaminda ve problemin alan1 bilgisi
dahilinde segilmesi gerektigi agiktir.

Evrigimli sinir ag1 veya CNN gibi modern derin 6grenme algoritmalari,
goriintiideki konumlarina goére degismeyen ozellikleri 6grenebilir. Bununla birlikte,
veri artirma bu doniisiime daha fazla yardimer olabilir ve 6grenmeye karst degismez
yaklasimi destekleyebilir ve siralama, fotograflardaki 1sik seviyeleri ve daha fazlasi
gibi dontisiimler i¢in degismeyen 6grenme 6zelliklerinde modele yardimci olabilir.

Goriintii veri biiyiitme islemi genellikle egitim veri setine uygulanir, dogrulama
veya test veri setine uygulanmaz. Bu, goriintii yeniden boyutlandirma ve piksel
Olceklendirme gibi veri hazirligindan farklidir; modelle etkilesime giren tiim veri

kiimelerinde tutarli bir sekilde gergeklestirilmeleri gerekir (Brownlee, 2019).
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Sekil 30 : Veri Artirim1 Sonucu Olusan Resim Ornekleri

Kaynak: Yazar tarafindan derlenmistir.

Veri artirma islemi, keras kiitliphanesinin ImageDataGenerator() sinifina ait
bazi metotlar kullanilarak gergeklestirilmistir.

Amacimiz yetersiz oldugu diisiiniilen hatasiz somun resimlerinin sayisinin ve
cesitliliginin artirilarak egitim dogrulugunun artirilmasini saglamaktir.

Data augmentation i¢in Ek-3’te belitilen kodlar kullanilmistir.

4.2.4. Resim Boyutlarinin Diizenlenmesi

4.2.4.1. Photoshop ile Resim Boyutlarinin Diizenlenmesi

Egitimin daha hizli gerceklestirilebilmesi i¢in olusturulan ilk veri setinde
kullanilmasi diisiiniilen 360 adet resmin boyutlarinin diisiiriilmesi i¢cin Photoshop CS3
Extended uygulamasi asagidaki adimlar kullanilarak yapilandirilmigtir :

e Photoshop programindan File -> Scripts -> Image Processor adimlari

izlenerek Image Processor penceresi agilir.
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Sekil 31: Image Processor Penceresinin Agilmasi
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Kaynak: Yazar tarafindan derlenmistir.

e Acilan Image Processor penceresinde sirasiyla :

Islem yapilacak resimlerin bulundugu klasér segilir.

O

o Islem yapilan resimlerin kaydedilecegi klasor segilir.

o Kaydedilecek dosya uzantisi segilir. Nesne tespit islemlerinde .jpeg
ya da jpg uzantili dosyalarin kullanilmasi gerektigi i¢in burada
JPEG segilir.

o Olusan yeni resim dosyasinin Olg¢iilerinin ne olmasi gerektigi
yazilir.

e Run butonuna basarak resim isleme adim1 uygulanir.
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Sekil 32: Resim Boyutlarinin Diizenlenmesi

Image Processor X
Select the images to process m
t7)® | selectFoider.. PD:\YBS YUKSEKLIS... hatalya eklendi Cance

op epPEge to apply settings
Select location to save processed images Load...

o n
o 4
&/ <© Select Folder... >D:\YBS YUKSEK L...NS\TEZ\somunijpg SV

File Typg
[] Save as JPEG

Qualty: |12
[[] Convert Profile to sRGB

£/l Resize to Fit

w:[ 100 Jpx

[[]save as PSD Restze to Fit

?| Save a file to the PSD format |

[Jsave as TIFF

Preferences

[CJRun Action:
Copyright Info:
Include ICC Profie

Kaynak: Yazar tarafindan derlenmistir.

4.2.4.2. Python Kodu ile Resim Boyutlarmin Diizenlenmesi:

Modelimizin girdi olarak kullanacagi resimlerin standart boyutlarda olmasi,
katmanlar arasinda filtreleme islemlerinden gegirilirken veri kaybinin engellenmesi ve
3492 x 3492 px boyutundaki resimlerin egitilirken egitim siiresini uzatabilecegi
diisiiniildiiglinde egitim siiresinin kisaltilmasi i¢in resim boyutlar1t 600 x 600 px
degerlerine indirgenmistir. Hatali ve hatasiz resimler i¢in kullanilan Python kodu Ek-

2’de belirtilmistir.

4.2.5. Resimlerin Etiketlenmesi

Gergeklestirdigimiz sistemin hatali ve hatasiz metal somunlari tespit ederek
onlar1 smiflandirmasi i¢in “hatali” ve “hatasiz” olmak iizere iki adet sif

olusturulmustur. Tespit ve smiflandirma isleminin basarili  bir sekilde

gerceklestirilebilmesi  i¢in  modelimizin bunu O6grenecek sekilde egitilmesi
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gerekmektedir. Bu da hatali ve hatasiz metal somun resimlerinin dogru olarak
etiketlenerek modele verilmesi ile miimkiin olmaktadir. Etiketleme islemi asagida

verilen Sekil 33’te goriildiigii gibi yapilmstir.

4.2.5.1. Labellmg Resim Etiketleme Uygulamasi

Sekil 33: Labellmg ile Bir Etiketleme Islemi

B labelimg Dr\ybs_ yuksek_ksans\tez\somuntf\hatali\train\ hatab-62.pg - 0 x

Fielst L4
ove powt | YDI-yuksek lisans!tez\somuntf\hatak rain\hataii- 1 jpg

\ybs _yuisek_lisang' e\ somuntf Ratak tram\hatah- 399
D:\ybs_ywksek_lsans'\tez\somuntf\ hata tran\hatah 4 g
0\ybs_ywiksek_isans!te\somuntf hataf train\hatali-3 jpg
DAAybs_yuksek lisang\ter\somuntf\hataif\train\hatali-7 jpg
Dr\ybs_yuksek_lisans\ter\somuntf\ hatali\train\hatali-8jpg
Dybs_yuisek isans!ter\somuntf\ hataktrain\hatali-3.9g
Diybs_yuksek_lsans'tez\somuntf\ Nataki train\ hatali- 10jpg
D\ybs_ywksek_lisans\tez\somuntf\ hata\train\hatali- 11 jpg
D\ybs_yuksek_lisans\tez\soemuntf\ hatali\train\hatah- 13 jpg
D:\ybs_yuksek_lisans’te\somuntf hata¥ train' hatsli- 14 jpg
D\ybs_yuksek lisans\ter\somuntfhatalf\train\hatab-15jpg
Dr\ybs_yuksek_lisans\tez\somuntf\hatai\train\hatali- 16 jpg
Diybs_yuksek lisang\ter\somuntf\ hataltrain\hatali-17 jpg

Kaynak: Yazar tarafindan derlenmistir.

Labellmg, grafik resim etiketleme aracidir. Python ile yazilmis ve grafik
arayiiz olarak Qt kullanir.

Etiketlenen resimlere ait etiket bilgileri, ImageNet tarafindan kullanilan
PASCAL VOC formatinda, .xml dosyalar1 olarak kaydedilir. Bunun haricinde, etiket
bilgileri YOLO formatinda desteklemektedir.

Biz etiketleme islemini PASCAL VOC formatinda yaptigimiz i¢in bu adimlara
gore ilerleyecegiz.

Windows isletim sistemine sahip bir laptop {lizerinde etiketleme islemi
gergeklestirildigi icin Windows iizerinde uygulanan kurulum ve etiketleme adimlari

asagidaki gibi uygulanmistir.
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4.2.5.1.1. Labellmg Kurulumu

e Labellmg dosyalari indirilerek, indirilen zip dosyas1 kok dizine (C:\) agilir.
o Asagidaki Sekil 34°te belirtildigi gibi cmd komutu ile komut satir

penceresi agilir.

Sekil 34: Komut Satirinin A¢ilmasi

[+ 1 = e T

TemesMewR -[12 - & & Aa- 8 S -12-%C. g2 4 I

Larmal
it Komut Istemi

B Anacondas Prompt (Anacondsd) >
Anaconda Prompt >
Webde ara T
2 emd - w 5 > Yonetici olarak aljtr
Ayartar (1) [ Dosys kanumunu s

= Raglangic’s sabithe

= Gonev gublgung taketls

Kaynak: Yazar tarafindan derlenmistir.

e Kok dizin igerisinde (C:\) C:\>cd Labellmg-master komutuyla etiketleme
aracimizin setup klasoriine girilir.
e C:\Labellmg-master> dizininde C:\Labellmg-master>python Labellmg.py

komutu ile uygulamamiz agilir.
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Sekil 35: Komut Istemi Uzerinden Labellmg Uygulamasi A¢ilmasi

Bl Komut stemi — [ >

sion 18.6.

ration.

LabelImg-master

C:\labelImg-master>python LabelImg.py

Kaynak: Yazar tarafindan derlenmistir.

4.25.1.2. Etiketleme

Sekil 36: Labellmg ile Etiketleme Ornegi

R bt D0 brt i s riehded amegon e JEHHLIEA_ 8500 1 OF iy

4

Ot & G V6 e gt X S0 Y AN

Kaynak: Yazar tarafindan derlenmistir.

Acilan pencerede “Open Dir” meniisii secilerek etiketleme yapilmasi
istenen resimlerin bulundugu klasor secilir ve resimler getirilir

o Etiket ismi belirtilir.

e (Crete RectBox meniisii secilir.

o Fare tusuna basili tutarak etiketlenmesi istenen alan siiriikleyerek segilir.

e Ctrl+Sile koordinatlari iceren etiket bilgilerini saklayan .xml uzantili dosya

olusturulmus olur.
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Sekil 37: Olusturulan XML Dosyalar1

i3 labellmg - Choose File X
T e cvdefdet > images » test v O Ara: test »
Diizenle v Yeni klasér = - 2]
A
[ Bu bilgisayar % L
B 30 Nesneler <G> <“>
|| Belgeler
‘ Indirilenler
B Masaiista 2191201161648 20191201_161658  20191201_161702  20191201_161725
_HDR _HDR _HDR _HDR
J! Mizikler
=/ Resimler " IF_ " IF_ " IE =5
< g <. = <.l =
n Videolar
i Werel Disk (C)
—. hdd (D)
20191201_.161731 20191201_181737 20191201_161738 20191201_161740 ©
Linn Linn Limn Limn
Dosya ade: ~
Kayit tird: | File (*xml) ~
~ Klasorleri Gizle Iptal

Kaynak: Yazar tarafindan derlenmistir.

e Olusan .xml dosyasinin igerigi asagidaki sekilde gosterilmektedir.

Sekil 38: Xml Dosyasinin Igerigi

[ Di\ybs_yuksek_lisans\cvdefdetiimages\train\20191201_161644 HDRxml - Notepad-++ — O X
Dosya Dizenle Ara Goranim Kodlama Diller Ayarlar Araglar Makrolar Galigtr Eklentiler Pencereler 7 X
cHH®B R G| (&) [t | ®x % |BE|= 2SRRI ”

B faster_ronn_inception_v2_coco.config £ | Elliez1 0 63| B tez ybsa (3| Bl aug oy 3| Bl tez2 63| B sma €3 5 20191201_1616841 < [+
1 Ekannotation>
2 <folde rain</folder>

<filenams>20191201_161644_ HDR.jpg</filename>
<path>D:\ybs_yuksek_lisans\cvdefdet\images\train\20191201_161644_HDR.Jpg</path>

5 [ <source>
& <database>Unknown</database>
</source>
8 [ <size>
3 <width>600</width>
1o <height>600</height>
11 <depth>3</depth>
12 - </size>

13 <segmented>0</segmented:>

= <object>

<name>hatali</name>
<poss>Unspecified</poss>
<truncated>0</truncated>
<difficulc»0</difficule>
=] <bndbox>
<xmi
<ymi
<xma
<yma
- </bndbox:
+ </object>
-</annotation>

>33/ xmi
6</ ymi
46</ xmax>
33</ymax>

length: 561 lines: 27 Ln:1 Col:1 Sel:0|0 Unix (LF} UTF-8 INS.

Kaynak: Yazar tarafindan derlenmistir.

Labellmg Kisayol Tuslar1 Tablo 4’te gosterildigi gibidir:



Tablo 4: Labellmg Kisayol Tuslart

Resimlerin tamamini klasérden yiikler

Varsayilan etiket hedef dosyasini degistirir

Kaydet

Mevcut etiket ve kare kutuyu kopyalar

Gegerli goriintiiyii dogrulanmig olarak isaretler

Bir kare kutu olusturur

Sonraki resme gecis yapar

Onceki resme gegis yapar

Segili kare kutuyu siler

Yakinlastirir

Uzaklagtirir

Klavye oklari segili olan kare kutuyu hareket ettirir

Kaynak: Yazar tarafindan derlenmistir.

Verify Image (Resim Dogrulama), bosluga basildiginda, kullanic1 goriintiiyii
dogrulandigi gibi isaretleyebilir, yesil bir arka plan goriinecektir. Bu, otomatik olarak
veri kiimesi olustururken kullanilir, kullanici daha sonra tiim resimlerden sonra bunlari
ek aciklama yerine isaretleyebilir.

Difficult (Zor) ise, 1 olarak ayarlanir, nesnenin "zor" olarak agiklandigi,
ornegin baglami biiyiik 6l¢iide kullanmadan agikca goriilebilen ancak taninmasi zor
bir nesne olarak belirlendigi belirtilir. Derin sinir ag1 uygulamaniza goére, egitim
sirasinda zor nesneler dahil edilebilir veya harig tutulabilir. (Lin, 2015).

Etiketleme islemi tamamlandiktan sonra derin Ogrenme islemini
gergeklestirmek icin tensorflow nesne tespit API (Object Detection API)

kullanilmastir.
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4.3. EGITIMDE KULLANILAN ARACLAR

Metal somun hata tespit sisteminin gelistirilmesi esnasinda, derin 6grenme
modelimizin egitiminin yapilmasi ic¢in ihtiya¢ duyulan donanim gereksinimleri
Google’in bulut hizmeti olarak sunmus oldugu Colaboratory hizmeti kullanilmistir.
Yogun islem giicii gerektiren modelin egitim asamasi, Google Colab’in sunmus
oldugu GPU ile hizl1 bir sekilde gergeklestirilmistir.

Egitim i¢in TensorFlow kiitiiphanesinin Object Detection API’si kullanilarak,
bu APl igerisinde 6nceden hazirlanmig ve egitilmis olan basarili modeller kullanilarak
transfer 6grenmesi ve hazirladigimiz veri seti ile bu modellerin yeniden egitilmesi
saglanmistir.

Egitim agsamasinda elde edilen verilerin gorsellestirilmesi i¢in yine Google
Colab iizerinde calistirilabilen tensorboard platformu kullanilmistir. Tensorboard
tizerinden, egitimin loss degerleri takip edilerek egitimin basarili olup olmadigina

karar verilmistir.

4.3.1. Google Colaboratory

Colaboratory, kurulum gerektirmeyen ve tamamen bulutta ¢alisan {icretsiz bir
Jupyter diziistii bilgisayar ortamidir.

Colaboratory ile tarayicinizdan ticretsiz olarak kod yazabilir ve yiiriitebilir,
analizlerinizi kaydedebilir ve paylasabilir ve gii¢lii bilgi islem kaynaklarina
erisebilirsiniz.

Google Colaboratory ¢aligma sayfalari (notebooks), Google Drive lizerinde
acik kaynak Jupyter Notebook formatinda yani .ipynb formatinda depolanir. Yapilan
caligmalar, Google Drive dosya paylasim adimlar1 kullanilarak paylasilabilir.

Colaboratory Python 2.7 ve Python 3.6 versiyonlarini destekler. Ancak 2020
yilindan itibaren 2.7 destegi kesilecektir.

Colab ile Python programlama dilinde uygulama gelistirilebilir.

Keras, TensorFlow, PyTorch ve OpenCV gibi kiitiiphaneleri kullanilarak derin

ogrenme (deep learning) uygulamalar1 gelistirilebilir.
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Colab’1,, iicretsiz hizmet veren diger bulut hizmetlerinden ayiran en 6nemli
ozellik; GPU kullanimini {icretsiz olarak saglamasidir.

Hizmet verdigi Tesla K80 GPU ile derin 6grenme uygulamalarinda modelin
egitilmesi i¢in oldukca hizlidir. Calisma zamani1 12 saat sonunda sonlanmaktadir ve
yeniden girig yapilarak islemlere devam edilebilmektedir. Bitcoin madenciligi

uygulamalarini desteklememektedir.

4.3.2. Tensorboard

Tensorboard Tensorflow Gelistirme Ekibinin 2017 yilinda ortaya attigi bir
gorsellestirme aracidir.

Tensorboard ile egitim parametreleri, metrikleri, hiper parametreler ya da sinir
aginin herhangi bir istatistigi gorsellestirilebilmektedir. Bu sayede yapilan anlik takip
ile modele dogrudan aninda miidahale yapma imkani elde edilebilmektedir.

Histogram olarak veri koleksiyonu ya da vektorleri gorsellestirilebilmektedir.

Ogrenme siiresince sinir aginin agirhik giincellemelerinin sinir aglarina olan
etkilerinin agirlik yliklemeleriyle nasil karsilastirildigr goriiliir.

Asagidaki basliklarda gorsellestirme iglemleri takip edilebilir:

e Scalars ile, siniflandirma dogrulugu gibi skaler degerleri gorsellestirir,

e Graph ile, sinir ag1 modeli gibi, modelin grafik hesaplama degeri

gorsellestirilir.

o Distributions ile, sinir ag1 agirliklarinin zaman igerisinde nasil degisim
gosterdigi gorsellestirilir.

e Histogramlar ile dagilimlari 3 boyutlu perspektifte gosteren daha ince bir
gorliniim elde edilir.

e Projektor ile, Kelime gomiilmelerini gorsellestirmek icin kullanilabilir
(kelime gomiilmeleri, onlarin anlamsal iliskilerini yakalayan kelimelerin
sayisal temsilidir)

e (oriinti ile, Gorlintii verileri gorsellestirilir.

e Sesile, Ses verileri gorsellestirilir.

e Metin ile, Metin (dize) verileri gorsellestirilir.
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4.3.3. Tensorflow Object Detection API

Tensorflow Nesne Algilama API’si, transfer 6grenme yontemini kullanarak
onceden egitilmis nesne algilama modellerinin kullanilmasin1 veya yeni modeller
olusturulmasini ve egitilmesini saglayan acik kaynakli bir ¢ergevedir. Son derece
kullanighdir, ¢iinkii sifirdan bir nesne algilama modeli olusturmak zor olabilir ve ¢ok
fazla bilgi islem giicii alabilir.

API, iNaturalist Tiir Tespit Veri Kiimesinde 4 milyon yineleme i¢in egitilmis
ResNet-50 ve ResNet-101 o6zellik ¢ikaricilarini kullanarak nesneleri algilar.

Tensorflow Object Detection API, tensorflowl.x versiyonlart ile oldukca
basarili uygulamalar gelistirilmesine yardimci olmus ve tensorflow2.0 ile birlikte
yapisal baz1 degisikliklere gitmistir. Modiillerde yapilan giincellemeler ile birlikte 1.x
versiyonlarinda kullanilan bazi metotlarin kullanimi sona erdirilmistir.

Calismamizda bu konuda sorun yasanmis ve Google Colab {izerinde yapilan
egitim esnasinda ve nesne tespit modiiliiniin ¢alistirilmasi esnasinda ¢éziimii miimkiin
olmayan ya da uzun siiren oldukca fazla sayida hata ile karsilasilmistir.

Modelimiz egitilirken Tensorflow Nesne Algilama API kullanilmis ve
ModelZoo iizerinden ulasilan, nesne tespit i¢in kullanilan MS COCO veri seti ile
egitilmis olan Faster RCNN Inception V2 modeli lizerinden transfer 6grenmesi

gerceklestirilerek egitim iglemi tamamlanmustir.

Sekil 39: Tensorflow Logosu

v

Tensor

Kaynak: Tensorflow, 2015
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4.3.3.1. Tensor

Tensor, derin 6grenmede verileri temsil eden soyut bir kavramdir, fiili bir

kavram degildir.

Sekil 40: Tensor Dizileri

1 31|41 ___"r:'g- 1-—_" -
2
e 5092|686 El ,'_2 CI]. E
n 5 | 3 | 5 B 234 bg Eq ,:;1
% 7 3 . j |
o 2 E ' 1 . >
v 626 4 —l___}:' 312 g
L2 &)
Tensor of Tensor of Tensor of
dimension[1] dimensions[2] dimensions[3]

Kaynak: Bakshi, 2019

Derin 6grenmede, yiiksek boyutlu veri kiimeleriyle ugrasilir. Sekil 40°da
goriilecegi tizere, tensorler yalnizca yiiksek boyutlu olan verilerin temsil edilmesine
izin veren ¢ok boyutlu dizilerdir ve herhangi bir boyutta olan bir dizi iginde tutulan
ilkel (integer, float) verilerden olusan veri setidir. “TensorFlow” ismi, sinir aglarinin

tensorler lizerinde gerceklestirdigi islemlerden ortaya ¢ikmistir..

4.3.3.2. Graph

TensorFlow’da tiim islemler bir grafik (graph) igerisinde gergeklestirilir.
Graph art arda gerceklesen bir hesaplama kiimesidir. Graph, bir egitim sirasinda
yapilan tiim hesaplamalari tanimlar. Graph’in bir ¢ok avantaji vardir:

Birden fazla CPU veya GPU f{izerinde ve hatta mobil isletim sisteminde
calismak i¢in gelistirilmistir.

Graph’in tasinabilirligi, derhal veya daha sonra kullanim i¢in hesaplamalari
korumaya izin verir. Graph gelecekte calistirilmak tizere kaydedilebilir.

Graph’ta bulunan tiim hesaplamalar, tensorleri birbirine baglayarak yapilir.
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Bir tensoriin bir diiglimii ve bir kenar1 vardir. Diigiim matematiksel islemi tagir
ve bir u¢ nokta ¢iktisi iiretir. Kenarlar, diiglimler arasindaki giris / ¢ikis iligkilerini

aciklar (Bakshi, A., 2019).

4.3.3.3. Tensorflow

Tensorflow, Google tarafindan, yeni baslayanlarin ve uzmanlarin makine
O0grenimi modelleri olugturmasini kolaylastiran, makine 6grenmesi uygulamalar1 i¢in
gelistirilmis uctan uca acik kaynakli bir kiitiiphanedir
(https://www.tensorflow.org/overview/).

TensorFlow terimi iki terimden olusur Tensor & Flow.

TensorFlow’da tensor (tensor) terimi, verilerin ¢ok boyutlu dizi olarak temsil
edilmesine karsilik gelirken, akis (flow)terimi, Sekil 41°de gosterildigi gibi bir tensor

tizerinde gergeklestirilen islem serilerini ifade eder.

Sekil 41: TensorFlow Yapisi

Operations
]
* ,*
Tensor Flow Relu 0
'] ol
L}
i | i g
3.2 1.4 5.1 . . Add ¥
4 4 )
1 7 24 [y i
(]
B l '
. Matmul T
# e

2-D TENSOR b

. ’
Tensars ¢ - ==--= W) X )

COMPUTATIONAL GRAFH

Kaynak: Bakshi, 2019

Bir tensorflow programi yazma islemi genellikle iki adimdan olusur:

e Hesaplamali grafik olusturmak: Bir hesaplama grafigi, grafikte diigtimler
olarak diizenlenmis bir dizi TensorFlow islemini ifade eder. Her diigiim,
giris olarak 0 veya daha fazla tensorii alir ve ¢ikis olarak bir tensor lretir.
Ug diigiimden olusan (a, b ve ¢) 6rnek bir hesaplama grafigi Sekil 42°de

goriilmektedir.
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Sekil 42: Tensorflow Computational Graph

import tensorflow as tf

# Build a graph

a = th.constant(5.0

b =tf.constant(6.0f—mmm—0pr—

c=a*h

TensorFlow Code Computational Graph

Kaynak: Bakshi, 2019

Sabit diiglimler, sabit degerleri sifir girig olarak saklamak i¢in kullanilir, ancak
kayith degerleri ¢ikt1 olarak iretir. Sekil 42°deki Ornekte a ve b, sirasiyla 5 ve 6
degerlerine sahip sabit diigiimlerdir. ¢ digimi, sabit a diigiimiiniin b digimi ile
carpilmasi islemini temsil eder. Bu nedenle, ¢ diiglimiiniin yiiriitilmesi, a ve b sabit
diigiimlerinin ¢ogaltilmasina neden olur.

Bir hesaplama grafigi, TensorFlow programinda yer alan matematiksel
hesaplamalari kavramsallagtirmanin alternatif bir yolu olarak diistinilebilir.
Hesaplamali grafigin farkli diigiimlerine atanan islemler paralel olarak
gergeklestirilebilir, bdylece hesaplamalar agisindan daha iyi bir performans saglanir.

e Hesaplamali grafik c¢alistirmak: c¢ diiglimiinlin ¢iktisin1 almak igin,

hesaplama grafigini bir oturumda c¢alistirmamiz gerekiyor. Oturum, grafik
islemlerini CPU veya GPU gibi aygitlara yerlestirir ve bunlar1 yiiriitmek
icin yontemler saglar.

Bir oturum, TensorFlow c¢alisma zamaninin kontroliinii ve durumunu
kapsiillemekte, yani, tim islemlerin gerceklestirilecegi sirayla ilgili bilgileri
saklamakta ve onceden hesaplanmis islemin sonucunu akis hattindaki bir sonraki
isleme gecirmektedir. Hesaplama grafiginin bir oturumda ¢alistiran kod Sekil 43’te

gosterilmistir.
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Sekil 43: Hesaplama Grafiginin Calistirilmasi

# Create the session object
sess = tf.Session()

#Run the graph within a session and store the output to a variable
output_c = sess.run(c)

#Print the output of node c
print{output c)

#Close the session to free up some resources
sess.close()

Output:
30

Kaynak: Bakshi, 2019

4.4, TENSORFLOW OBJECT DETECTION API ILE EGITIMIN
GERCEKLESTIRILMESI

Tensorflow, goriintiileri otomatik olarak tespit etmek i¢in CNN gibi sinir ag1
modelleri olusturmamiza yardimci olur. Bu kapsamda Tensorflow goriintii tanima i¢in
iki yaklasim ortaya koyar;

e Smiflandirma: CNN’i kedi, kopek, araba vb. gibi nesne kategorilerini
tantyacak sekilde egitilir. Egitilen sistem bu kategorilere gore goriintiiyii
bir biitlin olarak siniflandirir.

e Nesne Algilama: simiflandirmadan daha giicliidiir ve ayn1 goriintii i¢inde
birgok nesneyi algilar. Ayrica algiladigi nesneleri etiketlerve goriintii
tizerinde nesnelerin yerlerini gosterir.

Bu calismada, her iki adim da uygulanarak metal somunlarin hata tespit ve

siniflandirma islemleri gerceklestirilmistir.
4.4.1. Veri Seti islemleri
Tez dokiimanimizin “4.2. VERILERIN HAZIRLANMASI” bashg

kapsaminda veri seti hazirlanmig, veri artinm islemleri uygulanmig, yeniden

boyutlandirma gergeklestirilmis, 2000 adet resimden olusan veri setindeki resimler
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%380 train (1600) ve %20 test (400) verisi olacak sekilde ayrilmis ve resimlerin “hatali”
ve “hatasiz” olarak etiketleme islemi Sekil 44’te goriildiigii gibi tamamlanmigtir.

Sekil 44: Etiketleme Ornekleri

hatali®=

Kaynak: Yazar tarafindan derlenmistir.
4.4.2. Object Detection API Kurulumu ve Derin Ogrenme

Bu asamada Tensorflow Object Detection API kurulumu yapilmis,
kullandigimiz model olan Faster R-CNN Inception V2 modelimiz yiiklenmis, train ve
test klasorlerinde yer alan etiket bilgileri 6ncelikle CSV formatina ve ardindan da CSV
formatindan tensorflow’un anlayacagi tfRecord dosyasina doniistiiriilmiistiir.

Model konfigiirasyonumuz modele ait config dosyasi icerisinde yapilmis,
etiket atamalarinin yapildigi label.pbxt dosyasi yapilandirilmis ve transfer
ogrenmesiyle birlikte egitim islemi bize ait olan veri setiyle yeniden yapilmistir.

Inference Graph’la birlikte modelimiz en uygun egitim adiminda dondurularak
kullanima hazir hale getirilmistir.

Bu agamada asagidaki adimlar sirasiyla uygulanmistir:

e Google Colaboratory kullanici giris islemleri Sekil 45’te oldugu gibi

yapilmistir. Gelen linke tiklanarak elde edilen kullanict yetki anahtari

girilerek Colab iizerindeki klasoriimiize giris yapilmistir.
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Sekil 45: Google Colaboratory Dizinine Girig

# Load the Drive helper and mount
from google.colab import drive

# This will Prompt for authorization.
deive.mount('/content/drive')

Go to this VAL dn o browser: hitos://accounts. goo fandq et eebebinclircs]. e, pecqLevsercontent conbredirect urisureiladetfilamgilacautrial dlacatdr

(=]

Enter your autharization code:

Mounted at [oomtent/drive

(] ¥
[ 1 115 ®/content/drivey Orive/tensorflond®

[v ocels training. ipynb

[] 'pip uninstall tenssrflon

uninstalling tensorfloa-1,15.8
would remove:
fusr/local/bin/estinater_thpt converter
fusr/lacalsbln/freeze_gragh
Juse/1ocal/oin/saved_sodel 11
Jusr/1aeal/bin/tenserbosrd
fusrilocal/bin/td_upgrade_vi
fuseilocal/oin/telite_convert
fuse/laeal /bl tecy
fusr/local/bin/toco_from protos
fuseilacal/lib/pytnond &/ ¢ist -packages/ tensorflon-1, 18 0. dlst-info/*
fusr/local/10b/pythond &/ alstapackages/ tensar flow/*
fusr/local/1ib/python3.6/dist -packages/tensorflon_core/*
Proceed (y/n)d y
Successfully uninstalled tensorflow.1.15.4

(=]

Kaynak: Yazar tarafindan derlenmistir.

o Sekil 46°da goriilen adim ile gerekli olan kiitiiphaneler yiliklenmistir.
Burada tensorflow 2.0 giincellemesiyle yapilan degisikliklerden meydana
gelen hatalardan kagimmak ve GPU {izerinde islem yapabilmek igin

tensorflow-gpu= = 1.13.2 versiyonu kullanilmstir.

Sekil 46: Kiitiiphanelerin Yiiklenmesi

2vo080

© *lpip3 tnstall grpcioest.2s.0 e o =i

Ipipd install tensorflowssi.1d.2

Ipip3 install tensorflow-gpuesl.13.2

Ipip3 install tensorboard

fapt-get install protobuf-cospiler python-pil python-lxal python.tk

Ipip3 install Cython

1pip3 install contextlib2

Ipip3 install jupyter

Ipip3 install matplotlid

Ipip? install pandas

Ipig? install opencv-python

Ipip3 install tensorboardcolabesl 3.2

Collecting tensorflowes,13.2 =
Oownloading btsos://¢iles oython ,mg SD/A/ES1F982800% /3e0s0rflon=1,13.2¢ diouxl x36 §5.un] (92.6%8)
| sxsva 11268/

=

Requiresent already satisfied:
Aequiresent already sats :
Requiresent alresdy

: $80021.10.8 in fusr/local

Requiresent i nuepy<2,9,>61.16.0 in /u
Requirenent keras.preprocessingrel .8
Requirement already Erociorsl. 8.6 in Jusr/local/11v/ 3.6/d1s5t-packages (from tensorélow

Requiresent already satisfied: protobuf>e3.6.1 In /usr/local/1ib/pythons.6/dist-packages (from tensorflowesl.13.2) (3.10.0)
Collecting tensorflow-estimatorcl.1s.0rce,>el.13.0

Oownloading hitos://files.ovthonnosted. org/oackages/bb/ag/)3¢40¢cafag 3 44873 /tensorflou estimatoe-,13.9-0) 1-none-any.uwh] (367ke)

| | 368ke S2.6M8/5

Requiresent already satisfied: wheel>sl.26 in /usr/locel/1ib/pythond.é/cist-packages (from tensorflowssl.13.2) (0.33.6)
fequirenent already satisfied: gastys0.2.@ In /usr/local/lib/python3.6/0ist.packages (from tensorflowssl.13.2) (8.2.2)
Collecting tensorboardcl.14.9,>s1.13.9

Downloading b Qyzhonhosted, org/eackages/Q¢/3e/ 2930988 2010373 /tensorboard 1. 13, 1-0y3-none a0y wh] (3.248)
| | 3.218 si.5me/s
Requiresent alred keras-applications>s1.@.6 in /usr/local/1ib/python3.6/dist-packages (from tensorflowssl,13.2) (1.0.8)
fequirenent already satisfied: absl.py>s0.1.6 in /use/local/1ib/python3.6/dist.packages (from tensorflowss1.13.2) (0.8
Requirenent alrepdy satisfied: setuptools in /usr/local/1ib/python3.s/dist-packages (from protobufse3.6.1->tensorflows
Collecting mock>«2.0.0

Downloading hisos: Ck3geL/05/d2/ Fagd /865K-3,9,5-0v2,Qv3- 0008 -3y, bl
Requirement already i werkzeug>e@,11.15 in /usr/local/1ib/pythond.6/dist-packages (from tensorboardcd.14,9,>e1.13.0->tensorélowssl, 13.2) \Q 16 @)
Sequiresent already satisfied: markdown> s in /usr/local/1ib/pythend. 6/dsst packages (from tensorboardcl.
Requirenent already satisfied: hspy in Jusr/locel/1ib/p .6/8158-packages (from kerss-appl 8.6
Instaliing collectes packages: mock, unsernc- estimator, tensorboard, tensorflow
oung exfsting {nctallaticn: tensorfl i 5

13.2) (42.0.1)

Kaynak: Yazar tarafindan derlenmistir.

59



e Sekil 47°de belirtilen kodun calistirilmasiyla yiiklenen kiitiiphaneler

kontrol edilmistir.

Sekil 47: Kiitiiphanelerin Kontrol Edilmesi

[ ] !pip3 st | grep tensorflow

O fishetensorflon 8.1.6
tensorflow 1.15.8
tenzorflow-datasets 1.3.8
tensorflow-estinator  1.15.1
tensort 1oi- gan 2.0.8
tensorf low-hub 8.7.8
tenzorflow-metadata 8.15.1
tensorflow-privacy 4.2
tensorflon-probabllity 9.7.8

Kaynak: Yazar tarafindan derlenmistir.

e Sekil 48’de gosterilen yontemle birlikte

uygulamamiza yliklenmistir.

Sekil 48: MS COCO Modelinin Yiiklenmesi

[ ] 'git clone https://github.con/cocodataset/cacoapl. git
!ed cocoapi/PythonAPT; make; cp -r pycocotools /content/drive/My\ Orive/tensorfloul/models/research

tree = Parsing.p_nodule(s, prd, full_module_name)
building ‘pycocotools. mask' extension

creating build

creating build/comon

creating build/temp. linux-»86_64-3.6

creating build/temp. 1inux-x86_64-3.6/pycocatonls

G

MS

COCO modelimiz

%86 _64-Jinux-gnu-gee -pthread -DDEBUS -g -furapy <02 -Kall -g -fstack-protector-strong -Wformat -Werror=format-security -Ndate-tine -D FORTIFY SOURCE=2 -fRI(

../coamon/maskApd.c: In function ‘rleDecode’:

¥86_64-Linux-gnu-gce -pthread -DNDEBUS -g ~furapy -02 -Wall -g -fstack-protector-strong -Wformat -Werrorsformat-security -Wdate-tine -D _FORTIFY SOURCE=2 -fPI(

creating build/1ib. linux-x85_64-3.6
creating build/1ib, 1inux-x86_64-3.6/pycocotools

%86 _64-linux-gnu-gec -pthread -shared -K1,-01 -bl, -Bsymbolic-functions -Wl,-Bsymbolic-functions -Wl,-z,relro -Wl,-Bsymbolic-functions -Wl,-z,relro -g -fstack-

copying build/1ib. linux-x86_84-3.6/pycocotaols/ mask.cpython-36m-xB6_64-1inux-gnu.s0 -» pycocotoals
ra -rf build

Kaynak: Yazar tarafindan derlenmistir.

e Sekil 49 ile modelimiz insa edilmistir.
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Sekil 49: Modelin insa Edilmesi

C

x

3

C

]

«d /content/drive/My Drive/tensorflow2/models/research

/content/drive/My Orive/tensorflow2/models/research

Imkdir train eval

Xset_env PYTHONPATHs/content/drive/My Drive/tensorflow2/models:/content/drive/My Drive/tensorflon2/models/research:/content/drive/My Drive/tensorflon2/models/research/slin

env: PYTHONPATHe/content/drive/My Drive/tensorflow2/models:/content/drive/My Drive/tensorflow2/models/research:/content/drive/My Drive/tensorflow2/models/research/slin

Iprotoc object detection/protos/*.proto --python outs.

[ Code — @ Text
Ipython setup.py build

running build

running build_py

creating build

creating build/lib

creating build/1ib/object detection

copying object_detection/generate_tfrecord.py -> build/lib/object_detection
copying object_detection/xml_to_csv.py -> build/1ib/object_detection

copying object_detection/resizer.py -> build/lib/object_detection

copying object_detection/Object detection video.py -> build/lib/object detection
copying object_detection/train.py -> build/lib/object_detection

copying object_detection/Object_detection webcam.py -> build/1ib/object detection
copying object_detection/Object_detection_imsge.py -> build/1ib/object detection
copying object_detection/eval util.py -> build/1ib/object_detection

copying object_detection/eval util test.py -> build/1ib/object _detection

copying object_detection/exporter.py «> build/lib/object_detection

conving ahiact datactinalsvnart $£19ta ced oranh av -3 huild/1ih/ahdart detartinn

Kaynak: Yazar tarafindan derlenmistir.

e Sekil 50 ile, hazirlanan modelimiz yiiklenmistir.

Sekil 50: Modelin Yiiklenmesi

[]
&)

!python setup.py install

byte-compiling build/bdist. B6_G4/egg/object 1 ils/learning_: py to learning L Y B.pye -
byte-compiling build/bdist.linux-x86_64/egg/object_detectionfutils/ison_utils.py to json_utils.cpython-36.pyc

byte-compiling build/bdist. linux-x86_84/egg/object _detection/utils/label map_util test.py to label map_util test.cpython-36.pyc
byte-compiling build/bdist.linux-xB6_64/egg/object_detection/utils/dataset_util.py to dataset util.cpythen-36.pyc

byte-compiling build/bdist.linux-xB8_64/egg/object_detection/utils/learning_schedules_test.py to learning_schedules_test.cpython-36.pyc
byte-compiling build/bdist.linux-xB6_64/egg/object_detection/utils/label map util.py to label map util.cpythen-36.pye

byte-compiling build/bdist.linux-x86_64/egg/object_detection/utils/metrics.py to metrics.cpython-26.pyc

byte-compiling build/bdist.linux-xB6_64/egg/object_detection/utils/ng_box_list ops.py to np_box list eps.cpython-36.pye

byte-compiling build/bdist.linux-x86_64/egg/object_detection/utils/model_util.py to model_util.cpython-36.pyc

byte-compiling build/bdist.linux-xB6_64/egg/object_detection/utils/metrics_test.py to metrics test.cpython-36.pyc

byte-compiling build/bdist.linux-xB6_64/egg/object_detection/utils/model_util_test.py to model_util_test.cpython-36.pyc

byte-compiling build/bdist.linux-xB6_64/egg/object_detection/utils/np_box_list.py to np_box_List.cpython-36.pyc

Eyte-compiling build/bdist, linux-x86_64/egg/object_detection/utils/np_box_list_ops_test.py to np_box_list_ops_test.cpython-36.pyc
byte-compiling build/bdist.linux-xB6_64/egg/object_detsction/utils/np_box_mask_list.py to np_box_mask_list.cpython-36.pye

byte-compiling build/bdist. linux-x86_64/egg/object_detection/utils/np_box_list_test.py to np_box_list_test.cpython-36.pyc

byte-compiling build/bdist.linux-x86_64/egg/object_detection/utile/np_box_mask_list _ops.py to np_box_mask_list_ops.cpython-36.pye
byte-compiling build/bdist.linux-x86_64/egg/object_detection/utils/np_box_mask_list_ops_test.py to np_box_mask_list_ops_test.cpython-36.pyc
byte-compiling bulld/bdist.linux-xB6_64/egg/object_detection/utils/ng_box_ops_test.py to np_box_ops_test.cpython-36.pyc

byte-compiling build/bdist.linux-x86_64/egg/object_detection/utils/ng_mask_ops_test.py to np_mask_ops_test.cpython-36.pyc

byte-compiling bulld/bdist.linux-xB5_64/egg/object_detection/utils/np_mask_ops.py to np_mask_ops.cpython-36.pyc

byte-compiling build/bdist.linux-x86_64/egg/object_detection/utils/np_box_mask_list_test.py to np_box_mask_list_test.cpython-36.pyc
byte-compiling build/bdist.linux-x86_84/egg/object_detection/utils/np_box_ops.py to np_box_ops.cpython-36.pye

byte-compiling build/bdist.linux-x86_64/egg/object_detection/utils/object_detection_evaluation_test.py to object_detection_evaluation_test.cpython-36.pyc
byte-compiling build/bdist. linux-xB6_B4/egg/object_detection/utils/ops.py to ops.cpython-26.pyc

byte-compiling build/bdist.linux-x86_64/egg/object_detection/utils/object_detection_sevaluation.py to cbject_detection_evaluation.cpython-36.pyc
byte-compiling build/bdist.ld B6_64/egg/object_d t! ilsfops_test.py to ops_test.cpython-36.pyc

byte-compiling build/bdist.linux-x86_64/egg/object_detectionfutils/patch_ops.py to patch_ops.cpython-36.pyc

byte-compiling build/bdist.linux-x86_84/egg/object _detection/utils/per_image_evalustion.py to per_image evaluation.cpython-38.pye
byte-compiling build/bdist.linux-x86_64/egg/object_detectionfutils/patch_ops_test.py to patch_ops_test.cpython-36.pyc

byte-compiling build/bdist.linux-xB6_64/egg/object_detection/utils/per_image_vrd_evalustion.py to per_image_vrd_evalustion.cpython-36.pyc
byte-compiling build/bdist.linux-xB6_64/egg/object_detection/utils/shape_utils test.py to shape utils test.cpython-36.pye

byte- iling build/bdist.linux-x86 84/eq/obiect d i ils/oer image evaluation test.ov to per image evalustion test.covthon-36.ove

Kaynak: Yazar tarafindan derlenmistir.

o Sekil 51 ile modelimiz test edilmistir.
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Sekil 51: Modelin Test Edilmesi

[ 1 !python object_detection/builders/model builder test.py

[ /use/local/1ib/pythan3.6/dist-packages/tensorflon/python/ Frameuork/dtypes. py: 526! Futuredarning: Passing (type, 1) or '"Itype’ 85 & synonym of type Ls deprecated; in & future versic

Mg qintd = np.dtype([("qintd", np.int8, 1)])

Juse/local/1ib/python3.6/dist -packages/tensorflow/python/ franework/dtypes. py:527: Futurebiarning: Passing (type, 1) or 'ltype' as a synonym of type 1s deprecated; in a future versic
_np_quintd = np.dtype([("quint8”, np.uint8, 1)])

Jusr/local/1ib/python3.6/dist -packages/ tansorflow/python/ franswork/dtypes py:526: Futurebarning: Passing (type, 1) or 'ltype' as a synonym of type 1s deprecated; in a future versic
Mp_qintlé = np.dtype([("qintld", np.intls, 1)])

Jusr/local /11b/python3.6/dist-packages,tensorflon/python/ frasework/dtypes .py:529: Futuredarning: Passing (type, 1) or 'Itype' as a synonym of type ls deprecated; in a future versic
_Mp_quintlé = np.dtype([( quint18”, np.uintlé, 1)])

Juse/local/1ib/python3.6/dist -packages/tansorflow/python/ franswark/deypes py:530: Futursbarning: Passing (type, 1) or 'ltype’ as a synonym of type ls deprecated; in a future versic
g qint32 « np.dtype([("qintd2", np.int22, 1)])

Juse/local/1ib/python3.6/dist -packages/ tansorflow/python/ franswark/dtypes oy :535: Futurebarning: Passing (typs, 1) or 'ltyps' as a synanym of type ls deprecated; in a future versic
np_resource = np.dtype([{ resource”, np.ubyte, 1)])

WARNING: The Tensorflow contrib module will not be included in Tensorflow 2.9,
For more information, plesss see:
* hitgs://github.con/tensorf low/ community blob/master/ rfcs/ 39180997 contrib- sunset . nd

If you depend on functionality not listed there, please file an issue.

Ran 17 tests in 0.096s5

0K (skippedsl)

Kaynak: Yazar tarafindan derlenmistir.

o Sekil 52’de goriildiigii gibi object detection klasoriine girilerek bu dosya

icerisinde yer alan xml dosyalar1 csv formatina doniistiiriiliir.

Sekil 52: Etiket Bilgilerinin XML-CSV Déniisimii

[ ] cd object_detection

[ /content/deive/My Drdve/tensorflon2/nodels/research/object detection

[ ] !python xal_to _csv.py

[ Successfully converted xal to csv.
Successfully converted xal to csv,

Kaynak: Yazar tarafindan derlenmistir.

o Sekil 53’te belirtilen islem ile CSV formatina doniistiiriilmiis olan resim

etiket verileri tensorflow record dosyalarina doniistiirtiliir.
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Sekil 53: CSV Dosyalarinin tfRecord Dosyalarina Doniistiiriilmesi

[1
C

4

C:

Ipython generate_tfrecord.py --esu_inputsinages/teain_labels.csy --image dir=images/train --cutput_pathetrain.record

Jusr/local/1ib/python3.6/dist-packages/tensorFlow/python/ framework /dtypes .py:526: Futurebarning: Passing (type, 1) or 'ltype' as a synonym of type
np_gint8 = np.dtype([("gint8", np.int8, 1}])
jusr!la(al/llb."pythﬂﬂ! &/dist-packages/tensorflow/py /dt: 15271 g: Passing (type, 1) or "ltype' as a synomym of type
p_quint8 = np.dtype([("quint8”, np.uints, 1)])
J'u!rd'ln(al.fl!h!pythﬂﬂ] 6/dist-packages/tensorflow/py fdtypes.py:528: Futurelarning: Passing (type, 1) or “1type’ as a synonym of type
_p_gintié = np.dtype([("gint1€", np.int1s, 1)])
Jusr/local/1ib/python3 . 6/dist-packages/ tensorflow/ python/ framework/dtypes. py :520: FutureWarning: Passing (type, 1) or "ltype’ as & synonym of type
_np_quint1s = np.dtype([("quintlé”, np.uintlé, 1)])
Jusr/local/1ib/pythond 6/ dist-packages/ tensorflow/ python/ framework/dtypes. py :530: Futurekarning: Passing (type, 1) or "ltype’ a3 a synomym of type
_np_qint32 = np.dtype([("gint32", np.int32, 1)])
Jusr/local/1ib/python3 .6/dist-packages/ tensorflow/ py /dtypes.py:535: Futurearning: Paszing (type, 1) or “ltype' as a synomym of type
np_resource = np.dtype{[{"resource”, np.ubyte, 1)])
Successfully created the TFRecords: ive/My Drive/tensorf 1s/researchiobject don/train.record
I ———
Ipython generate_tfrecord.py --csv_input=images/test_labels.csv --image dir=images/test --output_psthetest.record
Jusr/local/1ib/python3 6/di kages/ tensorflow/ py amework/dtypes .py:526: Futurewarning: Passing (type, 1) or “ltype’ as a synomym of type
_np_qints = np.dtype([{“qint8", np.ints, 1}]}
Jusrilocal/lib/pythond . 6/di oges/tensorflow/py framework/dt, :527: Futurebarning: Passing (type, 1) or "itype’ a5 a synomm of type

np_quints = np.dtype([("quints", np.uints, 1)])

Jusr/local/1ib/python3 .€/dist-packages  tensarflow/ python/ framework/dtypes. py:528: Futuredarning: Passing (type, 1) or "ltype’ as a synonym of type

_np_qintls = np.ctype([("qirt1e”, np.intls, 1)])

Jusr/local/1ib/python3 .6/d1 ges/tensorflow/ python/ fr Pes.py:529: Futurewsrning: Passing (type, 1) or “ltype’ as a synomym of type

np_quintls = np.dtype([("quintle”, np.uintls, 1)])

twsriTocal/1ibipython3 6/ dist-packeges/ tensorflow/ python/ framework/diypes gy :530: Futurchiorning: Passing (type, 1) or “ltype’ as o synomm of type

_np_qint32 = np.deype([("aint32", np.int32, 1)])

Juse/local/lib/py .6/dist tensorflow/python/f 1535: FutureWarning: Passing (type, 1) or “ltype’ as a synonym of type

np_resource = np.dtype([(“rescurce”, np.ubyte, 1)])
successTully created the drive/Hy Drive/ten

Ject_detection/test. record

‘

Kaynak: Yazar tarafindan derlenmistir.

Sekil 54: Tensorboard Kurulumu ve Dinlemeye Hazir Hale Getirilmesi

[l

X

C

is

is

is

is

is

is

is

deprecated;
depracatad;
depracated;
deprecated;
depracstad;

deprecated;

deprecated;
deprecated;
deprecated;
deprecated;
depresated;

deprecated;

in a future
in a future
in a futurs
in a future
in a future

in a future

in a future
in a future
in a future
in a future
in a future

in a future

wersic

versic

verafe

wersic

versic

versfc

versic

wersic

versic

versic

versic

versic

e Sekil 54° de belirtilen kod dizisiyle birlikte Tensorboard kurulumu ve veri

geldiginde gorsellestirme islemini yapabilmesi i¢in 0.0.0.0 host’u

iizerinden siirekli olarak dinleme durumuna gegilmistir.

7] 1ve/ny Orive/tensor 1 Ject_setection

[eontent/drive/My Drive/tensorfloud/sodels/reseprch/cdiect detection

Ipip 1nstall -y tensorbosrdcolad

Requiresent already w-to-date: tensorboardcolad in Jusr/lecal/lib/pythond. d/cist-packages (0.9.22)

Ipip install ron

Collecting fpe
Counlonding Mes//4iles. DANECIRAd. 0

204 oo/ [48/58 /hanialSacc adasadsesasca RN FREERIITC SR T TS AATBAALS Faenn] S 4pna 2 1 3 SR 5
building mls 4« collected packages: rom, cptional-dango
Sullaing wheel for roe (setwp.py) one
Created wheel for nom: 7ileassestpn.0.1.1.¢p3s.n0ne.day. bl sizee3712
Stored 1n directory: /root/.cache/pip/wheels/12/a5/78/961e7¢oc 150400 100522148903 HONNATE 0004 104002
tuilaing wheel for cpticmal.sjango (setwp.py) ooe

Created wheel for cptional.cfangd: fileassescptionsl €18ng0.0.1.0-0p36-n000- 00y W01 5109900 3
Stored 1n directory: /root/.cache/pl 15/08/04 /04 /¢432745¢ 857 1eaedal 7
successfully dullt npa opticnal.django
Installing collected packages: optiondl.dfange, roe
successfully dnstalled npe-0.1.1 cpticnal-django-0.3.0

] fron tensorbosrdcolad ingort *

] # Load the Tensorficard notedook extension

Xload_ext tensorboard.notedook

The tensorboard.natedock extensicn is alreasy loased. To relead it, use:
Lrelosd_ext tensorboprd.notedook

tensorboard --logdiratraining/ --hosted.

TONS  MISTOGRAMS  PROJE

-

voQoN

Kaynak: Yazar tarafindan derlenmistir.

o Sekil 55’te egitim isleminin gerceklestirilmesi goriilmektedir.
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Sekil 55: Egitimin Gergeklestirilmesi

Ipython tradn.py --logtostderr --train dirstraining/ --pipeline_config pathatraining/faster_renn_Snception va_pets.config

ckages/eensorflou/python/ training/ saver . py:1266: checkpoint_sxists (frem tensorflow.python.training.checkpolnt managesent) is deprecated and will

thon/training/saver.py:1870: get_checkpolnt _mtimes (from tensorflow,python.training.checkpolnt_managesent) is deprecated and v

n/training/saver,py:1878: get_checkpoint_mtimes (from tensorflow.python.training.checkpolnt_managesent) is deprecated and &

Kaynak: Yazar tarafindan derlenmistir.

e Egitimin baslamasiyla birlikte Tensorboard’ta verileri okumaya
baslamistir. Aldig1 verileri gorsellestirerek grafik olarak okunabilir hale

getirmistir. Sekil 56 Modelimizin Learning Rate grafigini gostermektedir.

Sekil 56: Learning Rate Grafigi

Name Smocthed Value Step Time Relative

o4 2e4 2885k SunDec8 0B:1546 9hEm 57s

[ —
T
Y]

Kaynak: Yazar tarafindan derlenmistir.

e Sekil 57, Loss grafiklerini gostermektedir.
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Sekil 57: Loss Grafiklerinin Genel Goriiniimii

DISTRIBUTIONS ~ HISTOGRAMS  PROJECTOR INACTIVE M - O]
Loss/BoxClassifierLoss/classification_loss Loss/BoxClassifierLoss/localization_loss Loss/RPMNLoss/localization_loss
tag Losses/Loss/BoxClassifierl nss/classification_loss tar Losses/Loss/BoxClassifier nss/localization_loss ta Losses/Loss/RPNLoss/localization_loss
0.01
0.06 0.03
8e-3
0.04 002 )
423
0.02 001
2e-3
T " °
o 3 10k 15k 20k 25k o Sk 10k 15k 20k 25 o 5K 10k 15k 20k 25k
D=0
clone_loss

tag: Losses/clone_Joss

0 Sk 10k 15 20k 25k 0 Sk 10k 15k 20k 25 0 5k 10k 15k 20k 25k

iining/ --pipeline_config_path=training/faster_rcnn_inception_v2_pets.config

Kaynak: Yazar tarafindan derlenmistir.

e Sekil 58’de BoxClassifierLoss/classification loss grafigi goriilmektedir.
Bu grafik, tespit edilen nesnelerin cesitli siniflara smiflandirilmasi

asamasinda takip edilen loss degerini gosterir.

Sekil 58: Loss/BoxClassifierLoss/classification_loss

DISTRIBUTIONS  HISTOGRAMS  PROJECTOR INACTIVE o E ¢ @

Name Smoothed Value Step Time

E—
= -

Kaynak: Yazar tarafindan derlenmistir.

65



Sekil 59, BoxClassifierLoss/localization loss grafigini gosterir. Bu grafik,
Yerellestirme Kayb1 veya Sinirlayict Kutu regresoriiniin - Kaybini

gorsellestirmektedir.

Sekil 59: Loss/BoxClassifierLoss/localization_loss

Name Smoothed Value Step  Time Relative

58174e3 5.4863e3 2885k SunDec8 081546 9h8m 57s

\
0.35 |
I|
A
] p' 1|
I"\I
0.025 |
ll
\
\
02 \
\
MM
L e
0.015 )
\.;\.‘»-‘\u"“u
1 VWA '
MM A, ~ - A
\v W \ W \_\__,n‘\\_\ AN -"'\\"\f\"«'- b A
- v ' YV, AU AA e
0
0 L 10k 15k 20 26k
HEQ

Kaynak: Yazar tarafindan derlenmistir.

Sekil 60, RPNLoss/localization loss grafigini gosterir. Bu kayip RPN i¢in

Yerellestirme Kayb1 veya Smurlayict Kutu regresoriiniin - kaybini

gostermektedir.
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Sekil 60: Loss/RPNLoss/localization_loss

Name Smoothed Value Step Time Relative

o 27761e3 2502e-3 2885k SunDec8,08:1546 9h8m57s

M
J

ining/ --pipeline_config_path=training/faster_rcnn_inception_v2_pets.config

2317
L ADZD 505m

Kaynak: Yazar tarafindan derlenmistir.

e Sekil 61, Sinirlayici bir kutunun ilgi alan1 veya arka plan nesnesi olup

olmadigini siiflandiran simiflandirici'nin kaybini gosteren grafigi icerir.

Sekil 61: Loss/RPNLoss/objectness_loss

Loss/RPNLoss/objectness_loss
tag Losses/Loss/RPNLoss/objectness_loss

2e-3

MName Smoothed Value Step Time Relative

1.8836e4 3.5094e4 2885k SunDec8 08:15:46 9hBm57s v

Kaynak: Yazar tarafindan derlenmistir.
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Sekil 62 Total Loss degerini gostermektedir. Bu deger modelimiz igin takip
edilmesi gereken en onemli loss grafigidir. Bu grafigi takip ederek modelin
en uygun noktasinda egitimi durdurma ve dondurma ya da bir hata
durumunda egitimi durdurup hatay1 diizeltme gibi islemleri yaparak zaman

kazanmamizi saglar.

Sekil 62: Total Loss

Totalloss
tag Losses/TotalLoss

10k 15 20k 28k

Name Smoothed Value Step Time Redative
O . 0.01602 001455 2885 SunDec8, 081546 9%h8m57s

Kaynak: Yazar tarafindan derlenmistir.

Sekil 63 Clone Loss grafigini gostermektedir. Clone Loss degeri eger
birden fazla GPU kullanilirsa bir anlam ifade etmektedir. clone loss 1
yalnizca birden fazla GPU iizerinde egitim veriyorsaniz gecerlidir:
Tensorflow, her GPU iizerinde egitim almak ve her bir klondaki kaybi
bildirmek i¢in modelin bir kopyasini olusturur. Modeli tek bir GPU /
CPU'da egitiyorsaniz, TotalLoss ile ayni olan clone loss 1 0gesini
goriirsiiniiz.  Biz egitimimizde bir adet GPU kullandigimiz igin

degerlerimiz Total Loss degerleriyle ayni olmustur.

68



Sekil 63: Clone Loss

clone_loss
tag Losses/clone_Joss

Name Smoothed Value Step Time Relative

001602 001455 2885k SunDec8, 081546 9h8mS7e

Kaynak: Yazar tarafindan derlenmistir.

Egitimimiz 28.850’nci adima kadar gergeklestirilmistir. COCO modeli ile
egitim yapildigi i¢in loss degeri 0,05 ve altinda bir degere kadar istikrarli bir sekilde
diismesi gerekmektedir. Biz 28.850 adim egittikten sonra loss degerimiz 0,01
degerlerinde seyretmeye baslamistir. Loss degeri istedigimiz ¢ercevede oldugu igin
modelin ezberlemesini (overfitting) engellemek amaciyla egitimimiz 28.850’nci
adimda sonlandirilmgtir.

e Egitim esnasinda periyodik olarak yedeklenen egitim verileri training

klasorii igerisine otomatik olarak kaydedilir.
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Sekil 64: training Klasoriiniin Igerigi

<« models > research > object_detection > training v O Ara: traini... 0O
~
o~ Ad Degistirme tarihi Tar -
| ] checkpoint 5.12.2019 16:16 Dosya
_J events.out.tfevents.1575568801.bf41e3fb... 5.12.2019 10:00 BF41E3FB9105 Dos...
_j events.out.tfevents.1575577584.bf41e3fb...  5.12.201916:22 BF41E3FB9105 Dos...
| | faster_rcnn_inception_v2_coco.config 4.12.2019 19:18 CONFIG Dosyasi
_j graph.pbbd 5.12.2019 12:26 PBTXT Dosyasi
_j labelmap.pbbd PBTXT Dosyasi
_j model.ckpt-7088.data-00000-of-00001 DATA-00000-OF-0

|| model.ckpt-7088.index
_J model.ckpt-7088.meta
|| model.ckpt-7312.data-00000-of-00001
| ] model.ckpt-7312.index
j model.ckpt-7312.meta

INDEX Dosyasi
META Dosyasi
DATA-00000-OF-0...
INDEX Dosyasi
META Dosyasi

| | model.ckpt-7535.data-00000-0f-00001 5.12.2019 15:56 DATA-00000-OF-0...

_j model.ckpt-7535.index 5.12.2019 15:56 INDEX Dosyasi

| ] model.ckpt-7535.meta 5.12.2019 15:56 META Dosyast

|| model.ckpt-7759.data-00000-of-00001 5.12.2019 16:06 DATA-00000-OF-0... W
v < >

Kaynak: Yazar tarafindan derlenmistir.

e Egitimin tamamlanmasinin ardindan elde edilen verilerin hata tespit ve
simiflandirma isleminde kullanilmast i¢in dondurulmasi gereklidir.
Dondurma islemi agagida belirtilen Sekil 65°te gosterilen kod vasitasiyla

yapilir.

Sekil 65: Inference Graph ile Egitim Verilerinin Dondurulmasi
Ipython export_inference_gragh.py --ingut_type image_tensor -.pipeline_config path tradning/faster_rcnn_inception vi_pets.config
--trafned_checkpoint_prefix training/model. ckot-20850 --output_directory inference_graph

G

Kaynak: Yazar tarafindan derlenmistir.

Dondurma isleminden sonra Object detection klasoriinde Inferece graph
klasorii olusur ve 28.350°nci adimda dondurulan egitim verileri, hata tespit ve
simiflandirma isleminde kullanilmak {izere buraya kaydedilir. Sekil 66’da

inference graph klasoriiniin igerigi gosterilmistir.
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Sekil 66 : Inference Graph Klasorii

« research » object_detection > inference_graph > vl Aainfere. 0

saved_ model
| checkpoint
| | frozen_inference_graph.pb
| model.ckpt.data-00000-of-00001
: | model.ckpt.index
3 | model.ckpt.meta

| pipeline.config

Kaynak: Yazar tarafindan derlenmistir.
4.4.3. Bilgisayarla Gorii Islemi

Egitimimiz basarili bir sekilde gerceklestikten sonra artik hata tespit ve
siniflandirma islemi yapan bilgisayarla gorii adim1 uygulanabilir hale gelmistir.

Ama Once tensorflow 2.0 gilincellemesinden kaynaklanan uyumsuzluk
sorunundan dolayr Google Drive iizerinde bulunan dosyalarin tamami yerel
bilgisayarin C:\ siiriiciisiine tensorflow1 adiyla kaydedilmistir. Ve bilgisayarla gorii
islemi  bu klasor igerisinde yer alan Object detection image.py ve
Object detection webcam.py modiilleri komut penceresi iizerinden calistirilarak

gerceklestirilmistir.
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Sekil 67: Komut Istemi Uzerinde Object_detection _image.py Modiilii Caligtiriimasi

B Komut Istemi - python Object_detection_image.py o ] X

Kaynak: Yazar tarafindan derlenmistir.

e Object detection image.py modiilii ¢alistirildiktan sonra, yerel dosyada
yer alan test resimleri lizerinde hata tespit ve simiflandirma islemi
gerceklestirilmis, ardindan  Object detection webcam.py  modiilii
calistirilarak gercek zamanli goriintiiler {izerinde hatali ve hatasiz metal

somunlar {izerinde tespit ve siniflandirma islemi gerceklestirilmistir.
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Sekil 68: Hatasiz Metal Somunun Resim Uzerinde %99 Dogrulukla Tespit ve

Smiflandirilmasi

7 Object detector - 0 X

Kaynak: Yazar tarafindan derlenmistir.

Sekil 69: Hatali Metal Somunun Resim Uzerinde %99 Dogrulukla Tespit ve Siniflandiriimasi

7 Object detector - o X

Kaynak: Yazar tarafindan derlenmistir.
Yukarida Sekil 68 ve Sekil 69°da verilen resimlerden de goriilecegi iizere

gerceklestirilen sistem ile bir tek metal somunun bulundugu ve uygun ortam

kosullarinda veri setine uygun agilardan alinan goriintiilerde nesne tespit isleminin
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kolayca yapildigi ve aym1 zamanda da %99 gibi oranlarda dogru siniflandirma

isleminin yapildig: anlasilmaktadir.

Sekil 70: Birden Fazla Nesne Hata Tespit ve Siniflandiriimasi

7 Object detector - o x

hatasiz: 98%

ihatasiz: 90% Natasl

IwiLtAlIl. TWwW /v

Kaynak: Yazar tarafindan derlenmistir.

Sekil 70°te gorildiigl gibi, farkli agilardan birden fazla nesnenin yer aldigi
goriintli izerinde yapilan islemde ise veri setine uygun agilarda bulunan somunlarin
tespit isleminin yapildigi ve smiflandirma oraninin da %90’lar seviyesinde bir
dogrulukta oldugu anlasilmaktadir. Ancak, uyumsuz acilardan gelen goriintiilerde
nesne tespit isleminde sorun yagsanmadigi, bunun yaninda siniflandirma isleminde
hatalar meydana geldigi belirlenmistir.

Veri setimizdeki resimlerin tamami iistten ve yandan olmak iizere
yalnizca iki agidan alinan goriintiiler ile olusturuldugu i¢in resim iizerinde yapilan hata
tespit ve siniflandirma uygulamasinda iist ve yan agilardan alinan metal somun

goriintiilerinin tespit ve siniflandirma dogrulugu %99 seviyelerine kadar ¢cikmaktadir.
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Sekil 71: Uygun Kosullarda Nesne Tespit islemi Ornekleri

¥ Chject detector

—

Kaynak: Yazar tarafindan derlenmistir.

Veri setinde belirlenen iist ve yan agilardaki goriintiiler haricinde farkli
acilardan gelen goriintiiler lizerinde de RPN (bdlge Oneri ag1) sinirlandirma kutular
(bounding box) olusturarak tespit ve lokalizasyon gerceklestirmeye calismaktadir. Bu
nedenle resimdeki metal somunlarin farkli bolgelerinde hatali ya da hatasiz etiketleme

islemi gerceklestigi goriilmektedir.

Sekil 72: RPN’in Farkli Agilardan Bounding Box Olusturma Istegi

hatasiz: 92%

Kaynak: Yazar tarafindan derlenmistir.
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Sekil 73: Hatali Siiflandirma ve Bounding Box Ornegi

;2 N
>< hatasiz: 99%
P

hatasiz: 89%

"
Kaynak: Yazar tarafindan derlenmistir.

Benzer bir islem de somun resimlerinin webcam iizerinden alinan gergek
zamanl gorintiiller {izerinde de meydana gelmistir. Dik veya yan metal somun
goriintlilerinde, aydinlatma yeterli ise %90 - %99 araliginda bir dogrulukla hata tespit
ve smiflandirma isleminin gerceklestigi, ancak 15181n yetersiz oldugu durumlarda
sistemin dogruluk oraninin distiigli, 6zellikle yan acilardan gelen metal somun
goriintlilerinde yetersiz aydinlatmadan dolay1 hatali siniflandirmalar meydana geldigi
anlasilmistir. Ayrica, aynit metal somunlarin arka zemin renginde degisim meydana
geldiginde, goriintiiniin farkli bolgelerinde de bounding boxlarin gériilmeye baslandig:

belirlenmistir.

76



SONUC VE ONERILER

Gergeklestirilen uygulama ile, dnerilen sistemin ¢alismanin basinda belirtilen
amaglarina uygun olarak endiistriyel alanda saglayacagi ¢oziimlere yonelik umut
verici sonuglar alindig1 diistiniilmektedir.

Operasyonel agidan bakildiginda, uygulama bilgisayarla gorii vasitasiyla insan
faktoriiniin yerini alarak, akilli bir otomasyon siireci olusturmus, kalite kontrol
isleminin minimum hata ile siirdiiriilmesine yardimci1 olmus, hataya neden olan siirecin
tespit edilmesine katkida bulunarak siireg iyilestirmelerinin belirlenmesinde etkin rol
oynayacagi goriillmiistiir.

Yapilan denemelerde, {ist ve yan taraflarindan elde edilen goriintiilerde yer alan
metal somunlarin durus acilarinin 6nemli oldugu goriilmistiir. Veri setine uygun
olmayan agilarda alinan goriintiilerde, bolge oneri agmin siirlandirma kutusu
olusturma isteginden dolayr farkli acilarda birden c¢ok simirlandirma kutusu
olusturdugu ve siniflandirma isleminde basarinin diistiigii goriilmistiir.

Derin 6grenme yontemi ile metal somun resimlerine ait {ist ve yan agilardan
cekilmis resimlerden olusan veri setine uygulanan egitimler ile webcam iizerinden
gercek zamanli olarak elde edilen ya da yerel bilgisayarda bulunan test resimleri
tizerinden alinan goriintiiler ile yapilan tespit ve hata siiflandirma islemlerinde, veri
setine uygun aydinlatma ve acgilarda gergeklestirilen islem, %90-%99 oranlar1 arasinda
tespit ve siniflandirma dogruluguyla basarili sonuglar vermistir.

Derin 6grenme ve bilgisayarla gorii ¢oziimlerine duyulan ihtiyag¢ ve ilginin
artarak devam ettigi giiniimiizde, bilgisayarla gorii uygulamalarinin iretim ve denetim
siireclerine entegre edilmesinin kacginilmaz oldugu acik¢a goriilmektedir.

Onerilen ydntemin bir smirlamasi, derin bir agin egitiminin, cok zaman ve
masraf gerektiren, elle etiketlenmis verileri gerektirmesidir. Gelistirilen sistem su anda
prototip asamasindadir. Tez kapsaminda gelistirilen uygulamanin endiistriyel alana
katkisinin siireklilik arz edebilmesi i¢in, gelecek caligmalarda,

e Veri setindeki veri sayisinin artirilmast,

e Verilerin tamami lizerinde veri artirim isleminin uygulanmast,

e Mask RCNN kullanilarak hata tiplerine gore siniflandirmanin yapilmasi,
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Kapsiil aglarinin kullanilarak Faster RCNN in gerektirdigi agisal goriiniim
zorluklarindan kurtularak, herhangi bir agida dogru tespit ve siniflandirma
avantaj1 saglanmasi,

Uygulamanin Raspberry Pi gibi mini bilgisayarlar iizerinde ¢aligabilir hale
getirilmesi,

Birden fazla kameralar {izerinden elde edilen es zamanli goriintiiler
kullanilmasi,

Kendi kendine 6grenen bir tasarim uygulanmasi

Kullaniciya ikaz ve 6neri sunan bir yazilimin entegre edilmesi gibi onemli
gelistirmelerle basarim oraninin artirilmasi, sistem kararliliginin ve

kullanilabilirliginin artirilmasi saglanabilir.
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Ek 1: Step Motor Kodlari

€® FullStepSweep | Arduino 1.8.9 - O X

Dosya Dizenle Taslak Araglar Yardim

]

FullStepSweep

|

| Y&

vold setup()
// set the speed in rpm:
myStepper.setSpeed (4) ;

void loop() {

{

finclude <X113647S5tepper.h> A
static const int STEPS_PER_REVOLUTION = 32 + &£4;

static const int PIH_IM1 BLUE = 3;

static const int PIH_IM2 PINKE = 5;

static const int PIN_IN3 YELLOW = 10;

static const int PIN_IN4_ ORANGE = 11;

/f initialize the stepper library
tardate:-:X1136475tepper myStepper |

SIEPS_PER REVOLUTION,

PIN_IN1 BLUE, PIN_INZ_PINK, PIN_IN3_YELLOW, PIN_IN4 ORANGE

ff step one revoluticn in one direction:
myS5tepper. step (STEPS_PER DEVOLUTION) ;

delay {200} ;

S/ step one revolution in the other direction:
myStepper.step (-STIEFS_FER_REVOLUTION) ;
delay(1000);

Arduine Nano, ATmega32EP (Old Bootloader) an COMS
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Ek 2: Veri Artirim Kodlari

| File Edit Selection View Go Debug Terminal

aug.py DA\ \cvdefdet ®

PIL i t Image

keras.preprocessin
0s, sys

t numpy

path =
pathaugmentedimg =

augmentation():
dirs = os.listdir(path)
item dirs:
item ==

os.path.isfile(path+item):

datagen = ImageDataGeneratory(
rotati
width_
height_shift_range=@
shear_ran

zoom_range

featurewise_std_normalization=
samplewise_std_norsalization=
ghtness_range 8.8),

node=

= load_img(path+item)
img to_array(img)
x.reshape((1,) + x.shape)

P
X datagen.flow(x, batch_:
save_to_dir=

augmentation()

img to_array, load_img

format=
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Ek 3: Yeniden Boyutlandirma Kodlari

| File Edit Selecion View Go Debug Terminal Help

path =

pathresizedimg =

resize_aspect_fit():
dirs = os.listdir(path)
item dirs:
item ==

os.path.isfile(path+item):

image = Image.open(path+item)
pathresized, extension = os.path.splitext(pathresizedimg+item)

imageresized = image.resize((600, 608), Image.ANTIALIAS)
imageresized.save(pathresized + extension)

resize_aspect_fit()
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Ek 4: Google Colaboratory Kodlar1

pip uninstall tensorflow

pip3 install tensorflow—1.13.2
pip3 install tensorflow-gpu==1.13.2
pip3 install tensorboard

apt-get install protobuf-compiler python-pil python-lmaml python-tk
pip2 install Cython

pip3 install contextlibz

pip3 install jupyter

pip3 install matplotlib

pip3 install pandas

pip3 install opencwv-python

pip3 install tensorboardcolab==1.13

pip3 list | grep tensorflow

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapif/PythonAPI; make; cp -r pycocotools fcontent/drivesMyh

od fcontent/drive/My Drive/tensorflow2/models/research

mkdir train eval

protoc object_detection/protos/*.proto --python_out=.

python setup.py build

python setup.py install

python object_detection/builders/model_builder test.py

cd object_detection

python xml to csv.py

python generate tfrecord.py --csv_input=images/train_ labels.csv image dir=images/train
output path=train.record

python generate_tfrecord.py --csv_input=images/test labels.csv image dir=imapes/test
output_path=test.record

cd fcontent/drive/My Drive/tensorflow2/models/research/object_detection

pip install -U tensorboardcolab

pip install npm

tensorboardcolab impor
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tensorboard --logdir=training/ --host-8.8.8.8

python train.py --logtostderr --train_dir-training/
pipeline_config path=training/faster_rcnn_inception_v2_pets.config

python exporti_inference_graph.py --input_type image tensor
pipeline config path training/faster rcnn_inception_wv2 pets.config
trained checkpoint prefix training/model.ckpt-28327 --output directory inference graph

python object_detection_image.py #Test resmi izerinden detection islemi.
python object_detection webcam.py ##ebcam ile alinan ger¢ek zamanli gbrimtid idzerinden detection islemi.
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Ek 5: Uygulama Gelistirme Esnasinda Yasanan Hatalar

Hata 1: Tensorboard, Google Colab iizerinde calistirildiginda hata alintyordu

ve pencere agilmiyordu.

Asagidaki kod ile host adresi 0.0.0.0. olarak diizenlendikten sonra tensorboard

googlecolab iizerinden bizim server url’'mize ve portumuzla baglanmis ve sorunsuz

calismaya baslamistir.

tensorboard --host 0.0.0.0 <other args here>

--host 0.0.0.0 host’u tensorflow’a, yerel makinedeki tiim Ipv4 adresleri

tizerindeki baglantilar1 dinlemesini soyler.

Hata 2: Tensorboard’ un, runtime siiresi 12 saat gegince dondugu ve sayfadan

att1g1 goriilmiis olup, boyle bir durumla karsilasildiginda asagidaki yontemle kolayca

¢oziildiigi tespit edilmistir.

coO & traincoco.ipynb

File Edit View

+ Code + Text

C»

ENL L
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
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INFO:
INFO:
INFO:
INFO:
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INFO:
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N -

LS U LuW.
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
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tensorflow:
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tensorflow:
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tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:
tensorflow:

B o, PP

Insert

!python train.py -

Y
gl
gl
gl
gl
gl

Run all

Run before

Runtime Tools Help

Run the focused cell

Run selection

Run after

Interrupt execution

Restart runtime...

Restart and run all...

Reset all runtimes. ..

Change runtime type
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gl View runtime logs
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Active sessions 6Py .

Title Last execution

Current session

L traincoco.ipynb 0 minutes ago

CLOSE

Hata 3: Tensorflow 2.0 kurulundan sonra, model_builder_test.py python

modili calistirildiginda asagidaki hata alinmistir.

(0] B | & moceis -Goo: x| [Hlsnifteait X | €O trainigynb- C. X | G content/drive X | & Howte X | ) Using Tut X | G transiate X x |+ T _ 8 X
< C & - google.com D [ L wm =
1 CNN Part 3: Setting.. [ The cat Command () hub/object detecti.. [[)] Bockingcom & Milliyet & GittiGidiyor Aliexpress [ Facebook () GitHub - grohith32.. B (15) Accessing goo. »
® & train.ipynb _ B comment A% Share XA o
File Edit View Insert Runtime Tools Help All changes saved
+ Code + Text v v  JSEdtng | A

T ocOg @

° Ipython object_detection/builders/model_builder_test.py

v

[+ Traceback (most recent call last):

File “object_detection/builders/model_builder_test.py”, line 23, in <module>
from object_detection.builders import model_builder

File "/content/drive/My Drive/somuntez/models/research/object_detection/builders/model_builder.py”, line 22, in <module>
from object_detection.builders import box_predictor_builder

File "/content/drive/My Drive/somuntez/models/research/object_detection/builders/box_predictor_builder.py”, line 20, in <module>
from object_detection.predictors import convolutional_box_predictor

File “/content/drive/My Drive/somuntez/models/research/object_detection/predictors/convelutional box_predictor.py”, line 23, in <module>
slim = tf.contrib.slim

ttributeError: module ‘tensorflow' has no attribute ‘contrib’

8

©@ B Q

Tensorflow 2.0 ile Tensorflow1.x versiyonlarinda kullanilan Contrib modiilii

kullanimina son verildigi tespit edilmistir

(https://stackoverflow.com/questions/55870127/module-tensorflow-has-no-attribute-
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contrib). Tensorflow 2.0 kurulumu kaldirilmig ve yerine Tensorflow1.13.2 versiyonu

kurularak bu hata ¢ozlilmiistiir.

Hata 4: Egtim esnasinda loss degerlerinde bliyiik sapmalar meydana gelmistir.
3000’inci adimdan sonra yavas yavas loss degeri 4-6-7-9 goriilmeye baslanmis ve
adim sayist arttikca bu deger 9’lara kadar sik sik ¢ikmigtir. 35500 adim egitilmis ama

loss degeri 1’in altina hi¢ diigmemistir.

L training.ipynb 17
File Edit View Insert Runtime Teeols Help Lastsavedat12:03 AM

+ Text

I1832 29:36:09.482108 1359841438224864 basic_session_run_hooks.py:
1 InFo:tensorflow:global_step/sec: 3.48182
I183@ 29:36:35.11924% 139841432404054 basic_session_run_hooks.p
INFO:tensorflow: loss = 3.23447=-85, step = 33809 (28.638 seC)
11838 28:35:30,120484 139841438424064 basic_sessian_run_hooks.
InNFOitensorflow:global_step/sec: 23.5153%
T183@ 28137:06.560756 139841428524064 basle_session_run_hooks.
nFO:tensorflowiloss = $.657522.85, step = 34909 (28,331 sec)
11938 28:37:86.561929 139841435222054 basic_session_run_hooks.py:lé
INFQriensorfloutglobal _step/sec: 3.299
I1e3@ 2@:27:35.140332 13984143c222p54 basic_session_run_hocks.py:é92] global_step/sec: 3.as9
INFO:tensorflow:10ss = 2.35974352-86, step = 350090 (28.582 sec)
T1838 28:37:35.141567 133B21236224p54 besic_session_run_hooks.py:1&
INFO:tenserflow: global_step/sec: 3.47195
11838 28:35:03,942581 133841435224964 basic_session_run_hooks.py:s92] global_step/sec: 3.47195

THEG tensorflow: 1088 = $.2274122-85, Step = 35100 (22.882 sec)
Iigza 23:33:93.9:3522 1388414238424064 hasic_session_run_hooks.py:2e@L loss = $.237412e-85, step = 25100 (299882 s&c)
InNFOtenserflow: global_step/sec: 3.58827

T1838 20!138:32.462934 129841426424064 basic_session_run_hooks.py:692] global_step/sec: =.58527
INFO:tenserflon: loss « 2.432391e.95, step « 35200 (22,522 sed)

I183@ 20:38:32.464275 129821436323064 basie_session_run_hooks.py:2é

INFQ:tensorflowiglobal _step/ssc: 2.5Q806

11038 20:39:00.988672 139841436472854 basfc_session_run_hooks.py:692] glebal_step/ssc: 3.52386
INFOriensorflow: loss = 6. 55:—51:;—97 step = 35382 (28.585 s=C)

I1838 28:39:00.955778 133821435224054 basic_session_run_hooks.py:2é

INFo:tensorflow: global_step/sec: 3 teres

I1838 28:39:20,452786 1328214228222p524 basic_séssion_run_hooks.py:692] global stepssec:
INFO:tensorflow: 1oss = 2.91473%2-06, step = 35498 (28.51% =&c)

INFO: H - '
T183¢ 28:39:29,483051 139841425424064 basic_session_run_hooks.py:26@Q 1oss = 2.91473%2-05, step = 25400 14 s2c)
inFaitensorflow: global_step/sec: 2.50322

I1P3@ 20:39:53.027024 129E31438324064 basic_sessien_run_heooks.py:é52] global_step/secs

INFOrtensorflow:loss = 3.2737952-26, step = 35500 (22.545 sec)
I183¢ 29:39:58.029915 139821435424054 basic_session_run_hooks.py:lé " 4% sec)
Traceback (most recent call last):
File "model_main.py®, line 1e2, in «<module>
tf.epp.run(}
File "fusr/flocal/lib/pythons.e/dist-packages/tenserilow_core/python/platfera/app.py”, line 42, in run
_run(mainsmain, argv=argv, Tlags_parser=_parse_flags tolerate_undef)
File *fusr/flocal/lib/pyThend.s/dist-packages/absl/app.py™, line 299, in run

miim mmdeimed e mmmat

g

$55 = 2.36574352-85, step = 35000 Lg

.388 s=C)

1055 = 2,48330912-25, step » 35202 @ sec)

055 = £.8532013=2-85, step = 35388 (J).585 sS&C)

Bu sapmalarin nedeninin ezberleme (overfitting) mi oldugu yoksa kodlarla
ilgili konfiglirasyonunda mi1 sorun oldugu arastirilmistir. Bu noktada sorunun, siif
sayisinin 2 yazilarak yalnizca 1 etiket belirtilmesinden kaynaklandigi diistintilmustiir.
Ardindan hatasiz fotolarin da etiketlenmesi, label img.pbtx ve config dosyalarinin 2
sinif 2 etiket olacak sekilde yeniden diizenlenerek egitilmesiyle sorun ¢oziilmiistiir.

Hata 5: Object detection image.py modiilii ¢alistirildiginda : cannot connect

to X server hatasi alinmasi.
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<« c @ colab.research.google.com/drive/11Gt TIbYm|pbGBMZPz_iLyMRhOGKIMQS h##scrollTo = U7iZiDmWe5KX ma & @ :
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used). |
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Egitim isleminin tensorflow 1.13.2 versiyonunda yapilmasina ragmen, nesne
tespit modiiliiniin tensorflow 2.0 versiyonu iizerinde ¢alistirildigr anlasilmistir. Nesne
tespit modiilii tensorflow 1.13.2 tizerinde tekrar ¢alistirilinca hata alinmamustir.

Hata 6: ModuleNotFoundError: No module named 'deployment' hatasi.

Bu hatanin sebebinin PYTHONPATH'in dogru yazilmadiginda ortaya ¢iktigi
gOriilmiistir.

Hata 7: TypeError: __init_ () got an unexpected keyword argument
‘dct_method'

Bu hatay1 diizeltmek i¢in /object detection/data_decoders/tf example decoder.py
dosyasi agilarak 110’uncu satirda "dct_ method=dct method" argiimani silinmistir.

Hata 8: ImportError: cannot import name ‘preprocessor_pb2' (ve pb2 ile ilgili
diger hatalar)

Bu hatanin derlenmeyen .proto dosyasi oldugunda meydana geldigi anlasilmistir.
/object_detection/protos klasorii kontrol edilmis ve eksik olan proto dosyasinin
protobuflar1 derledigimiz komuta eklenmis ve kod tekrar ¢alistirilmastir.

Hata 9: Unsuccessful TensorSliceReader constructor: Failed to get "file path"
The filename, directory name, or volume label syntax is incorrect.

Bu hatanin, config dosyasinin yanlis diizenlediginde alindigi goriismiistiir. Doya
uzantilan diizeltilerek ve diiz slash(/) kullanilarak sorun ¢oziilmiistiir.

Hata 10: ModuleNotFoundError: No module named
‘object_detection.legacy'Tensorflow Object Detection API''n en son giincellenmis

versiyonu indirilmis ve bu versiyonda legacy klasorii yliklenmistir.
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Hata 11: TypeError: a bytes-like object is required, not 'str'
labelmap.pbtxt UTF-8'e gevrilerek diizeltilmistir.
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