

T.C.

DOKUZ EYLÜL ÜNİVERSİTESİ

SOSYAL BİLİMLER ENSTİTÜSÜ

YÖNETİM BİLİŞİM SİSTEMLERİ ANABİLİM DALI

YÖNETİM BİLİŞİM SİSTEMLERİ PROGRAMI

YÜKSEK LİSANS TEZİ

DERİN ÖĞRENME TEKNİKLERİ İLE ANOMALİ

İÇEREN METAL SOMUNLARIN

HATA TESPİT VE SINIFLANDIRILMASI

Hasan GÖKKAYA

Danışman

Doç. Dr. Can AYDIN

İZMİR – 2020

iii

YEMİN METNİ

Yüksek Lisans Tezi olarak sunduğum “Derin Öğrenme Teknikleri ile Anomali

İçeren Metal Somunların Hata Tespit ve Sınıflandırılması” adlı çalışmanın,

tarafımdan, akademik kurallara ve etik değerlere uygun olarak yazıldığını ve

yararlandığım eserlerin kaynakçada gösterilenlerden oluştuğunu, bunlara atıf

yapılarak yararlanılmış olduğunu belirtir ve bunu onurumla doğrularım.

... /... / ……

Hasan GÖKKAYA

iv

ÖZET

Yüksek Lisans Tezi

Derin Öğrenme Teknikleri ile Anomali İçeren Metal Somunların Hata Tespit ve

Sınıflandırılması

Hasan GÖKKAYA

Dokuz Eylül Üniversitesi

Sosyal Bilimler Enstitüsü

Yönetim Bilişim Sistemleri Anabilim Dalı

Yönetim Bilişim Sistemleri Programı

Bilişim ve iletişim sistemlerinde meydana gelen hızlı değişimler ve

gelişimler, teknolojinin temas ettiği her alanda ani bir paradigma değişimine

neden olmuştur. Bu paradigma değişimi eş zamanlı olarak endüstriyel alanda da

kendisini hissettirmiş, sektörün ihtiyaçları doğrultusunda karşılığını bulmuş ve

sektörün içinde Endüstri 4.0 olarak vücut bulmuştur. 4’üncü Sanayi Devrimi

olarak anılan bu paradigma, içerisinde yer alan nesnelerin interneti kavramıyla

birlikte birbirleriyle anlık iletişim halinde olan modern otomasyon sistemlerini,

üretim teknolojilerini ve nihayetinde de akıllı endüstriyel sistemleri hayata

geçirmiştir. Ortaya çıkan akıllı iletişim ağında, paylaşılan verilerin

raporlaştırılıp analiz edilmesi, maliyet-etkin bir biçimde yönetilebilmesi ve

verimli iş modellerinin geliştirilmesi işletmeler için büyük önem arz etmektedir.

Bu süreç, endüstriyel işletmelerin iş süreçlerini akıllı sistemler ile entegre ederek

geleceğe uyumlu modern otomasyon ve üretim birimlerine dönüştürmesini

zorunlu kılmaktadır.

Bilgisayarla görü uygulamaları, bu anlamda çağı yakalayan ve geleceğe

uzanan çözümlerin başında gelmektedir. Otomasyon ve üretim sürecinden geçen

işletmeler, makine öğrenmesi gibi teknikleri belirli operasyonlarına entegre

etmeye başlamışlardır. Üretim süreci, endüstriyel işletmelerin hammadde

kullanımı, kalite kontrol ve işletme verimliliği gibi ana başlıkları ile bir düğüm

noktası oluşturduğu için özellikle bu entegrasyonda önem arz etmektedir. Bu

v

çalışma, endüstriyel alanda, hatalı ürünleri tespit etmek ve üretim verimliliğini

optimize etmek için kullanılan akıllı bir yaklaşım önermektedir.

Bu çalışmanın amacı, vida ve somun üreten endüstriyel işletmelerde

bilgisayarla görü ile insan faktörünün yerini alarak, üretim esnasında meydana

gelen hatalı ürünleri tespit eden ve ayrıştırılmasını sağlayan, hata sebebinin

belirlenmesine yardımcı olan, hata oranının düşürülmesine ve kalitenin

artırılmasına katkıda bulunan, hammadde kullanımını optimize eden, üretim

verimliliğini artıran ve sürecin maliyet-etkin bir şekilde işlemesini sağlayan derin

öğrenmeye dayalı bir bilgisayarla görü uygulaması geliştirmektir. Bilgisayarla

görü uygulaması tasarlanırken Python, OpenCV, Tensorflow Object Detection

API, Tensorboard, GoogleColab, Visual Studio Code yazılım ve frameworkleri

kullanılmıştır.

Anahtar Kelimeler: Anomali , Hata, Bilgisayarla Görü, Derin Öğrenme, Nesne

Tespit, Sınıflandırma.

vi

ABSTRACT

Master’s Thesis

Fault Detection and Classification of Metal Nuts Containing Anomaly by Deep

Learning Techniques

Hasan GÖKKAYA

Dokuz Eylul University

Graduate School of Social Sciences

Department of Management Information Systems

Management Information Systems Program

Rapid changes and developments in information and communication

systems have caused a sudden paradigm shift in every field connected with

technology. This paradigm shift made its presence felt simultaneously in the

industrial field, has found its place in accordance with the needs of the sector and

embodied as Industry 4.0 within the sector. This paradigm, known as the 4th

Industrial Revolution, with the help of concept of the IoT, has implemented

modern automation systems, production technologies and intelligent industrial

systems, which are in instant communication with each other. In this smart

communication network, reporting, analysis and cost-effective management of

shared data and development of efficient business models are of great importance

for enterprises. This process requires industrial enterprises to transform their

business processes, into modern automation and production units that are

compatible with the future by integrating business processes with intelligent

systems.

In this sense, computer vision applications are the leading solutions that

capture the age and extend to the future. Businesses that have gone through

automation and production processes have begun to integrate techniques such as

machine learning into their specific operations. The production process is

particularly important in this integration since it forms a joint point with the

main headings of industrial enterprises such as raw material usage, quality

control and operational efficiency. This study proposes an intelligent approach

vii

used to detect faulty products and optimize production efficiency in the industrial

area.

The aim of this study is to develop a business intelligence application that

detects and separates the defective products that occur during production, helps

to determine the cause of the error, contributes to the reduction of the error rate

and increase the quality, optimizes the use of raw materials, increases production

efficiency and ensures low cost operation of the process by replacing the human

factor with computer vision in industrial enterprises producing screws and nuts.

Software and frameworks used to design this computer vision application are

Python, OpenCV, Tensorflow Object Detection API, Tensorboard, GoogleColab,

and Visual Studio Code.

Keywords: Anomaly , Fault, Computer Vision, Deep Learning, Object Detection,

Classification.

viii

DERİN ÖĞRENME TEKNİKLERİ İLE ANOMALİ İÇEREN METAL

SOMUNLARIN HATA TESPİT VE SINIFLANDIRILMASI

İÇİNDEKİLER

TEZ ONAY SAYFASI ii

YEMİN METNİ iii

ÖZET iv

ABSTRACT vi

İÇİNDEKİLER viii

KISALTMALAR xi

TABLOLAR LİSTESİ xii

ŞEKİLLER LİSTESİ xiii

EKLER LİSTESİ xvi

GİRİŞ 1

BİRİNCİ BÖLÜM

ENDÜSTRİYEL ALANDA BİLGİ SİSTEM GEREKSİNİMLERİ

1.1. PROBLEMİN TANIMI 3

1.2. LİTERATÜR TARAMASI 4

İKİNCİ BÖLÜM

YAPAY ZEKA VE DERİN ÖĞRENME

2.1. YAPAY ZEKA KAVRAMI 8

2.2. DERİN ÖĞRENME 10

2.2.1. Gözetimsiz Öğrenme 12

2.2.2. Hibrit Öğrenme 13

2.2.3. Gözetimli Öğrenme 13

2.2.4. Derin Öğrenme Kütüphane ve Yazılımları 13

ix

ÜÇÜNCÜ BÖLÜM

EVRİŞİMLİ SİNİR AĞLARI

3.1. EVRİŞİM VE EVRİŞİMLİ SİNİR AĞI KAVRAMI 16

3.2. FASTER R-CNN VE RPN (REGION PROPOSAL NETWORK) 25

3.2.1. Faster R-CNN ve RPN 25

3.2.2. Faster R-CNN ve ROI (İlgi Alanı) Katmanı 28

3.2.3. Faster R-CNN ve R-CNN Katmanı 29

3.2.4. Faster R-CNN ve Inception V2 Yapısı 30

3.2.5. MSCOCO ve Transfer Öğrenmesi 31

DÖRDÜNCÜ BÖLÜM

HATA TESPİT VE SINIFLANDIRMA SİSTEMİ

4.1. METODOLOJİ 34

4.2. YAPILAN HAZIRLIKLAR 36

4.2.1. İdeal Ortamın Hazırlanması 37

4.2.2. VLC Media Player Uygulamasının Yapılandırılması 39

4.2.3. Veri Artırma (Data Augmentation) İşlemi 41

4.2.4. Resim Boyutlarının Düzenlenmesi 43

4.2.4.1. Photoshop ile Resim Boyutlarının Düzenlenmesi 43

4.2.4.2. Python Kodu ile Resim Boyutlarının Düzenlenmesi: 45

4.2.5. Resimlerin Etiketlenmesi 45

4.2.5.1. LabelImg Resim Etiketleme Uygulaması 46

4.2.5.1.1. LabelImg Kurulumu 47

4.3. EĞİTİMDE KULLANILAN ARAÇLAR 51

4.3.1. Google Colaboratory 51

4.3.2. Tensorboard 52

4.3.3. Tensorflow Object Detection API 53

4.3.3.1. Tensör 54

4.3.3.2. Graph 54

4.3.3.3. Tensorflow 55

x

4.4. TENSORFLOW OBJECT DETECTION API İLE EĞİTİMİN

GERÇEKLEŞTİRİLMESİ 57

4.4.1. Veri Seti İşlemleri 57

4.4.2. Object Detection API Kurulumu ve Derin Öğrenme 58

4.4.3. Bilgisayarla Görü İşlemi 71

SONUÇ VE ÖNERİLER 77

KAYNAKÇA 79

EKLER

xi

KISALTMALAR

AI Artificial Intelligence (Yapay Zeka)

API Application Programming Interface (Uygulama Program Arayüzü)

CNN Convolutional Neural Network (Evrişimli Sinir Ağı)

ESA Evrişimli Sinir Ağı

tf Tensorflow

Mp Mega piksel

ms Milisaniye

px piksel

ROI Region Of Interest (İlgi Alanı)

RPN Region Proposal Network (Bölge Öneri Ağı)

s. Sayfa No

vb. Ve Benzeri

vd. Ve Diğerleri

YBS Yönetim Bilişim Sistemleri (Management Information Systems)

SGYD Sistem Geliştirme Yaşam Döngüsü

KNN K En Yakın Komşu

MLP Multilayer Perceptron (Çok Katmanlı Algılayıcı)

MLR Çoklu Lineer Regresyon

PR Polinomsal Regresyon

RF Rassal Orman

SVC Destek Vektör Makineleri

GB Gradient Boosting – Gradyan Artırma

RFC Random Forest Classifier

AdaBoost Adaptive Boosting – Adaptif Artırma

DT Decision Tree – Karar Ağaçları

IoU Intersection – over – Union

CHT Circular Hough Tranform – Dairesel Hough Dönüşümü

xii

TABLOLAR LİSTESİ

Tablo 1: Derin Öğrenme Kütüphaneleri s. 14

Tablo 2: Kütüphanelerin Çalışma Zamanı Performansının Karşılaştırılması s. 15

Tablo 3: CNN'in Gelişim Periyodu s. 17

Tablo 4: LabelImg Kısayol Tuşları s. 50

xiii

ŞEKİLLER LİSTESİ

Şekil 1: Akıllı Fabrika Süreci s. 1

Şekil 2: Yapay Zeka Tanımlamaları ve Sınıflandırılması s. 8

Şekil 3: Derin Öğrenme Yöntemlerinin Sınıflandırılması s. 12

Şekil 4: Bir Evrişimli Sinir Ağındaki Katmanlar s. 16

Şekil 5: LeNet Ağının Mimarisi s. 18

Şekil 6: Evrişimli Sinir Ağının Mimarisi s. 19

Şekil 7: CNN’e Giren Örnek Bir Resim Bilgisi s. 20

Şekil 8: Örnek Bir Evrişim İşlemi s. 21

Şekil 9: Görüntü ve Filtre Matrisleri s. 21

Şekil 10: Filtreleme İşlemi Sonucu Oluşan Evrişimli Özellik Haritası s. 22

Şekil 11: Zero Padding Uygulaması s. 22

Şekil 12: Max Pooling İşlemi s. 23

Şekil 13: CNN Akışı ve Sınıflandırma İşlemi s. 24

Şekil 14: Faster R-CNN Mimarisi s. 24

Şekil 15: RPN ve Faster R-CNN Mimarisi s. 26

Şekil 16: Anchor Üretimi s. 27

Şekil 17: RPN ile İşaretlenen Bir Metal Somun Resmi s. 30

Şekil 18: Inception V2 Modeli s. 30

Şekil 19: Transfer Öğrenme Şeması s. 31

Şekil 20: Uygulama Geliştirme Modeli s. 32

Şekil 21: Hata Tespit ve Sınıflandırma Uygulaması Geliştirme İş Akışı s. 33

Şekil 22: Hata Tespit ve Sınıflandırma Algoritması s. 34

Şekil 23: Sistem Geliştirme Yaşam Döngüsü s. 35

Şekil 24 : Oluşturulan Stüdyo Ortamı s. 37

Şekil 25: Step Motor Çalışma Sistemi s. 38

Şekil 26: VLC Player Konfigürasyon Ayarları s. 39

Şekil 27: VLC Player Görüntü Ayarları s. 40

Şekil 28: VLC Player Sahne Görüntü Süzgeci s. 40

Şekil 29: VLC Player Sahne Görüntü Süzgeci Konfigürasyonu s. 41

Şekil 30 : Veri Artırımı Sonucu Oluşan Resim Örnekleri s. 43

xiv

Şekil 31: Image Processor Penceresinin Açılması s. 44

Şekil 32: Resim Boyutlarının Düzenlenmesi s. 45

Şekil 33: LabelImg ile Bir Etiketleme İşlemi s. 46

Şekil 34: Komut Satırının Açılması s. 47

Şekil 35: Komut İstemi Üzerinden LabelImg Uygulaması Açılması s. 48

Şekil 36: LabelImg ile Etiketleme Örneği s. 48

Şekil 37: Oluşturulan XML Dosyaları s. 49

Şekil 38: Xml Dosyasının İçeriği s. 49

Şekil 40: Tensör Dizileri s. 54

Şekil 41: TensorFlow Yapısı s. 55

Şekil 43: Hesaplama Grafiğinin Çalıştırılması s. 57

Şekil 44: Etiketleme Örnekleri s. 58

Şekil 45: Google Colaboratory Dizinine Giriş s. 59

Şekil 46: Kütüphanelerin Yüklenmesi s. 59

Şekil 47: Kütüphanelerin Kontrol Edilmesi s. 60

Şekil 48: MS COCO Modelinin Yüklenmesi s. 60

Şekil 49: Modelin İnşa Edilmesi s. 61

Şekil 50: Modelin Yüklenmesi s. 61

Şekil 51: Modelin Test Edilmesi s. 62

Şekil 52: Etiket Bilgilerinin XML-CSV Dönüşümü s. 62

Şekil 53: CSV dosyalarının tfRecord Dosyalarına Dönüştürülmesi s. 63

Şekil 54: Tensorboard Kurulumu ve Dinlemeye Hazır Hale Getirilmesi s. 63

Şekil 55: Eğitimin Gerçekleştirilmesi s. 64

Şekil 56: Learning Rate Grafiği s. 64

Şekil 58: Loss/BoxClassifierLoss/classification_loss s. 65

Şekil 59: Loss/BoxClassifierLoss/localization_loss s. 66

Şekil 60: Loss/RPNLoss/localization_loss s. 67

Şekil 61: Loss/RPNLoss/objectness_loss s. 67

Şekil 62: Total Loss s. 68

Şekil 63: Clone Loss s. 69

Şekil 64: training Klasörünün İçeriği s. 70

Şekil 65: Inference Graph ile Eğitim Verilerinin Dondurulması s. 70

xv

Şekil 66 : Inference Graph Klasörü s. 71

Şekil 67: Komut İstemi Üzerinde Object_detection _image.py Modülü

Çalıştırılması s. 72

Şekil 68: Hatasız Metal Somunun Resim Üzerinde %99 Doğrulukla Tespit ve

Sınıflandırılması s. 73

Şekil 69: Hatalı Metal Somunun Resim Üzerinde %99 Doğrulukla Tespit ve

Sınıflandırılması s. 73

Şekil 70: Birden Fazla Nesne Hata Tespit ve Sınıflandırılması s. 74

Şekil 71: Uygun Koşullarda Nesne Tespit İşlemi Örnekleri s. 75

Şekil 72: RPN’in Farklı Açılardan Bounding Box Oluşturma İsteği s. 75

Şekil 73: Hatalı Sınıflandırma ve Bounding Box Örneği s. 76

xvi

EKLER LİSTESİ

Ek 1: Step Motor Kodları ek s. 2

Ek 2: Veri Artırım Kodları ek s. 3

Ek 3: Yeniden Boyutlandırma Kodları ek s. 4

Ek 4: Google Colaboratory Kodları ek s. 5

Ek 5: Uygulama Geliştirme Esnasında Yaşanan Hatalar ek s. 7

1

GİRİŞ

Günümüzde meydana gelen teknolojik gelişmeler ve dijital dünyada ardarda

meydana gelen değişimler serisi, insanlar arasındaki iletişimi ve bilgi paylaşımını

kolaylaştırdığı gibi benzer etkiyi endüstriyel alanda da hissettirmiştir. Sanayi

devriminden itibaren makineleşen dünya yarı iletken teknolojisinde meydana gelen

atılımla birlikte dijitalleşmiş ve otomasyon teknolojisinin gelişmesiyle de insanoğlu,

makinelerin iletişim ağındaki mevzilerini yavaş yavaş kaybetmeye başlamıştır. 1990’lı

yıllardan itibaren yaygınlaşan internet kavramı bu ağa yeni bir boyut getirmiş ve

internet, temas ettiği her nesneyi akıllı hale getirmeyi başarmıştır. Bu aşamadaki başarı

ile ortaya çıkan ve Kevin Ashton tarafından 1999 yılında ilk defa dile getirilen

“Nesnelerin İnterneti (IOT-Internet Of Things)” ifadesi (Ashton, 2009) ile insanlar

arasında var olan etkileşimin bir benzeri de makineler arasında oluşmaya başlamış, bu

gelişmelerin kaçınılmaz sonucu olarak da kendi içerisinde özelleşmiş akıllı süreçlerin

bileşiminden oluşan Şekil 1’de bir örneği gösterilen akıllı fabrikalar doğmuştur.

Şekil 1: Akıllı Fabrika Süreci

Kaynak: Metaverbis, 2019

http://metaverbis.com/computer-vision

2

İşletmelerde uygulanan akıllı süreçlerin denetiminin yapılması, analizinin

yapılması, kalitenin korunması ve verimliliğin artırılması için de yine akıllı sistemlerin

günümüzde kalite kontrol sorunları, ürün ve malların imalatında önemli bir rol

üstlenmektedir. Gittikçe daha fazla talepkâr olan pazarlarla birlikte şirketler, üretim

döngüsü sırasında küçük kusurları bile tespit edebilen daha verimli denetim

sistemlerine yatırım yapmak zorunda kalıyorlar. Bilgisayarla görme teknikleri, bu

arıza tespit sürecinde önemli bir anahtar sunmaktadır (Gonzalez ve Woods, 1992;

Russ,1995; Suetens ve diğerleri, 1992).

3

BİRİNCİ BÖLÜM

ENDÜSTRİYEL ALANDA BİLGİ SİSTEM GEREKSİNİMLERİ

Hayatın her alanında olduğu gibi, endüstriyel alanda da meydana gelen hızlı

paradigma değişimleri, işletmelerin de bu değişime bilgi ve iletişim teknolojilerini

yenileyerek eşlik etme gereksinimi duydukları hızlı çözüm bekleyen bir ortamın

doğmasına neden olmaktadır. İnsan yığınlarının etkisini kaybettiği makinelerin

yükselişini izlediğimiz bu ortamda, kullanıcı dostu arayüze sahip, işlevsel, ekonomik

ve akıllı çözümler sunan yenilikçi uygulamalara ihtiyaç duyulmaktadır.

Bu kapsamda incelendiğinde, bilgisayarla görü ile yapay zeka teknolojilerini

birlikte oluşturulan çözümlerin endüstriyel işletmelere, akıllı bir şekilde entegre

edilmesinin uygun olduğu değerlendirilmektedir. Çünkü üretimde kaynak yönetimi,

kalite yönetimi ve elde edilen çıktıların her kademedeki yöneticiye sağlayacağı karar

desteği işletmeler için stratejik anlamda büyük değer arz etmektedir.

Kısaca değinilen bu gereksinimleri doğuran problemleri ortaya koymak ve bu

aşamadan sonra problemlerin çözümüne yönelik öngörüleri hayata geçirmek yapısal

ve stratejik açıdan son derece önemlidir.

1.1. PROBLEMİN TANIMI

Günümüzde, nesnelerin interneti ile birlikte ortaya çıkan ve Endüstri 4.0 ile

endüstriyel alana yayılan yeni iletişim yapısı, işletmelerin varlığını sürdürebilmesi için

yapısal değişimleri zorunlu kılmış ve her alanda kendini kabul ettiren akıllı değişime

uyum sağlamasını da kaçınılmaz kılmıştır.

Akıllı sistemlerin birbirleriyle girdiği etkileşim sonucu doğan sınırsız verinin,

ana yakıtı veri olan siber dünya içerisinde kullanılmadan adeta bir siber çöp olarak

kaybolmasına izin vermek yerine, verinin anlamlı bir iş parçacığı haline

dönüştürülerek kullanılması, endüstriyel işletmelerin kendilerini geleceğe taşımaları

için hayati derecede öneme sahiptir.

Bu kapsamda, sektör içerisinde üretime yönelik çalışmalar yapan ve çağa uyum

sağlayamayan işletmelerin karşılaştığı:

 Öngörülemeyen ve önlenemeyen üretim hataları,

4

 Kalite denetiminde yetersizlik

 Üretim sürecinde gecikme,

 Hammadde tüketiminde artış,

 Verimsiz üretim ve kontrol süreciyle birlikte oluşan maliyet artışı,

 Oluşan bilgiden, elde edilmesi muhtemel potansiyel faydanın siber

çöplükte yerini alması gibi sorunlar, uygulamanın doğrudan ya da dolaylı

olarak katkı sağlayacağı problemler olarak belirlenmiştir.

1.2. LİTERATÜR TARAMASI

Literatür taraması yapılırken, gerçekleştirilen çalışmada uygulanan;

bilgisayarla görme, derin öğrenme, transfer öğrenmesi, hata tespiti ve nesne tespiti gibi

başlıklara odaklanılarak yapılan çalışmalar incelemeye alınmıştır. Endüstriyel

işletmelerin artan ihtiyaçları ve değişen bilgi ve iletişim teknolojilerinin zorunlu

kıldığı bu konularda birçok benzer çalışmanın yapıldığı görülmüştür.

Saurabh (2018), önerilen çalışmada makine öğrenmeye dayalı çelik levha

kusur algılama sistemi uygulanmıştır. Support vector classifier (SVC-Destek Vektör

Makineleri), random forest classifier, gradient boosting, k-nearest neighbours (KNN-

k En Yakın Komşuluk), decision trees (karar ağaçları) ve AdaBoost (adaptive

boosting) gibi farklı sınıflandırıcılar kullanmıştır. Gradyan Artırma Sınıflandırıcısı

(Gradient boosting classifier) uygulanması ve hiperparametre değerlerinin hassas bir

şekilde ayarlanmasıyla birlikte ezik, ek, yama, çukurlu yüzey ve çiziklerin %92,5

doğrulukla istenen sınıflandırma değeri elde edilmiştir.

Ferguson ve diğerleri (2018), yapılan çalışma ile metal dökümlerde ve

uygulanan kaynak işleminde, meydana gelen kusurların eşzamanlı olarak algılanma ve

bölütlenme (segmentasyon) yeteneği ile bir çeşit otomatik kalite kontrol uygulaması

önermiştir. Önerilen bu sistem makine öğrenimi için transfer öğrenmesi, veri kümesi

artırma (dataset augmentation) ve çok görevli öğrenme (multi-task learning) gibi bir

takım güçlü paradigmalar kullanılarak özellik çıkarıcı (feature exactor) olarak ön

eğitimli ImageNet ağırlıkları ve ön eğitimli Ms COCO veri seti ile 0.957’lik bir

ortalama hassasiyet (mean average precision – mAPbbox) ile geliştirilmiştir.

https://software.intel.com/en-us/user/1649054

5

Campos ve diğerleri (2018), otomotiv sektöründe kullanılan birkaç .çeşit metal

bileşen için bir bilgisayarla görme sistemi gerçekleştirmişlerdir. Delikli metal

parçalardaki merkezi delikte bulunan tam veya kısmi kapanıklık, civata dişlerinin

düzleşmesi ya da kaynak bağlantılarında çapak olması gibi üç tip kusur üzerinde kalite

kontrol işlemi gerçekleştirmişlerdir. Farklı gri skala resim analiz algoritmaları

birbirinden farklı kusurların her biri için test edilmiştir. Kapalı delik hatası için ilk

olarak resimdeki birçok daire şeklini bulan Dairesel Hough Dönüşümü (Circular

Hough Transformation) kullanılırken diğer bir yöntem olarak da kontur sınırlama

kutusu (bounding box) uygulanmıştır. Bozuk dişler ve çapakların belirlenmesi için ise,

iki resim arasındaki piksellerin karşılaştırılarak hatalı bölgenin başarılı bir şekilde

belirlenmesi sağlanmıştır.

Hajizadeh ve diğerleri (2016), Hollanda tren rayı ağında, kusurlu ray

yüzeylerinin tespit edilmesi için resim verilerinin uygulanabilirliğini test etmeye

yönelik bir çalışma yapmışlardır. Bu çalışmayı yaparken verilerdeki dengesizliği

engellenebilecek şekilde etiketsiz resimlerin de bulunduğu yarı gözetimli öğrenme

yöntemini (semi-supervised learning) uygulamış, hatalı ray resimlerinin bulunduğu bir

etiket ile çoğunlukla normal sağlıklı raydan oluşan aynı zamanda kaynaklar, yalıtımlı

bağlantılar, iyi huylu kusurlar, küçük çatlaklar gibi potansiyel diğer kusurları da

barındıran diğer ray bölümlerini de içeren bir veri seti kullanmıştır.

Xian ve diğerleri (2018), bu çalışmada, metalik bir yüzey için karmaşık

endüstriyel senaryolara karşı hem kusur tespit hem de sınıflandırma görevlerini doğru

bir şekilde gerçekleştirmek için CNN tabanlı yeni bir mimari sunulmaktadır. Arıza

incelemesi, önerilen metoda dayanarak segmentasyon ve sınıflandırma problemine

dönüştürülür. Kusurları segmentlere ayırmak ve lokalize etmek için tasarlanan

CASAE modülü, kusurlu bir görüntüyü yalnızca hatalı pikselleri ve arka plan

piksellerini içeren piksel biçiminde bir tahmin maskesine dönüştürebilir. Kusur

kategorisini gerçek muayene ortamlarında hızlı bir şekilde elde etmek için kompakt

bir CNN sunulur. Metodumuzun muayene sonucunun IoU puanı, endüstriyel veri seti

kullanılarak %89,60 olarak elde edilmiş olup, görsel ve nicel deneysel sonuçlar,

önerilen algılama algoritmasının karmaşık endüstriyel ortamın gereksinimlerini

karşılamak için yeterli olduğunu göstermiştir.

6

Staar ve diğerleri (2019), önerilen çalışmada yüzey anomalisi tespiti için ilk

defa uygulanan derin metrik öğrenmenin nasıl kullanılabileceğini göstermişlerdir.

Burada ilgili probleme, basit bir prototip çıkarım yöntemini derin öğrenme ile

güçlendirerek yaklaşılmıştır. Diğer bir deyişle doğrudan piksel şeklinde çıkarım

yerine, çıkarım, evrişimli sinir ağı (CNN) tarafından öğrenilen özellik uzayında

gerçekleştirilmiştir. Önceki CNN tabanlı yaklaşımların aksine, ağlar, derin metrik

öğrenme alanındaki gelişmeleri, yani üçlü ağları kullanarak yüzey dokuları için

benzerlik metriklerini açıkça öğrenmek için eğitilmiştir. Kylberg Texture, DAGM ve

CIFAR100 olmak üzere üç adet veri seti kullanılmış ve 10 sınıf üzerinden

sınıflandırma işlemi gerçekleştirilmiştir. Performansın yüzey tipine bağlı olduğu

görülmüştür. 1,3,5 ve 6’ncı sınıfların endüstriyel uygulamalar için kullanışlı olduğu

buna karşın önerilen yöntemin 2 ve 4’üncü sınıflar için hatalı ve hatasız alanları ayırt

edemediği belirlenmiştir. Ayrıca kullanılan veri setinin de sistem performansında

etkisinin yüksek olduğu, bu bağlamda CIFAR-100 veri setinden alınan örneklerin

DAGM veri setinden alınan örneklere göre daha performanslı olduğu görülmüştür.

Fernandez-Robles ve diğerleri (2017), yapılan çalışmada rüzgar kulelerinin

metal direklerinin işlenmesi için kullanılan freze makinelerinde, direkleri işleyen

sitemin milinde bulunan kesici uçları incelemiş, kırık ve kırık değil şeklinde

sınıflandırılmasını sağlayan bir sistem önermişlerdir. Uygulamayı gerçekleştirirlerken

görüntülerin kontrast kalitesini artırmak ve kenarların algılanmasını kolaylaştırmak

için kontrast sınırlı uyarlamalı histogram eşitleme (contrast-limited adaptive histogram

equalisation-CLAHE) yöntemini uygulamışlardır. Vidaların dairesel şekillerini tespit

etmek için iki aşamalı bir algoritma ile, düz çizgileri tespit etmeyi amaçlayan standart

Hough dönüşümünü (Standart Hough Tranform-SHT) temel alarak çevrelerin lokalize

edilmesini sağlayan bir özellik çıkarma tekniği olan, dairesel Hough dönüşümünü

kullanır (Circular Hough Tranform-CHT). 2 GHz işlemci ile 3 dakikadan daha kısa

sürede 1280 x 960px boyutlarında 24 adet görüntüyü analiz edebilen ve sağlam uçların

referans görüntüleri ile karşılaştırılmasına gerek duymayan ilk bilgisayarlı görme

uygulamasıdır.

Song ve diğerleri (2018), metal vidaların yüzeyindeki mikro seviyedeki

kusurları algılamak için derin evrişimli sinir ağı temelinde bir teknik önermiştir.

Algılanmaya çalışılan kusurlar arasında yüzey hasarı, yüzey kiri ve ezilmiş vidalar

7

üzerinde çalışılmıştır. Farklı türdeki kusurlara sahip metal vidaların görüntüleri,

tasarlanan derin CNN’leri eğitmek için kullanılan endüstriyel kameralar ile toplanarak

CNN modeline uygulanmaktadır. Uygulama sonuçlarına göre, resim başına 1,2 sn’lik

ortalama algılama süresi ile önerilen tekniğin %98’lik bir algılama doğruluğu

sağladığını göstermiştir. Bu sonuç, örneğin şablon eşleştirme ve LeNet-5 gibi

geleneksel makine görme tabanlı tekniklerle karşılaştırıldığında CNN’e dayalı

önerilen sistemin üstünlüğünü göstermektedir.

8

İKİNCİ BÖLÜM

YAPAY ZEKA VE DERİN ÖĞRENME

2.1. YAPAY ZEKA KAVRAMI

Yapay Zeka (Artificial Intelilgence-AI) ilk olarak 1955 (bazı görüşlere göre

1956) yılında Dartmouth kolejindeki iki aylık atölye çalışması çerçevesinde, yeni bir

araştırma disiplininin resmi adı olarak kabul edilmiştir. Yapay zeka terimini, 31

Ağustos 1955 tarihinde proje başvurusunda kullanan John McCarthy, yapay zekaya

ismini veren kişi olarak kabul edilir (Aydın ve diğerleri, 2019). Yapay Zeka insan gibi

düşünmek ve hareket etmek için bir makine sistemi tasarlamaktır. İnsan zekasını yapay

olarak taklit etmek ve genişletmek, insan gibi düşünmeyi ve davranmayı amaçlayan

makinede gerçekleştirilir (Russell ve Norvig, 2009). Russell ve Norvig (1995) yapay

zekayı, sekiz farklı tanımdan yola çıkarak iki ana boyuta göre Şekil 2’de görüldüğü

gibi sınıflandırır.

Şekil 2: Yapay Zeka Tanımlamaları ve Sınıflandırılması

Kaynak: Russell ve Norvig, 1995

Birinci boyut, düşünce süreçleri ve mantıkla ilgili, ikinci boyut ise

kişiler ve davranışları ele almakla ilgilidir. Derine inildiğinde;

9

 İnsan gibi davranmak; Turing test yaklaşımıyla,

 İnsan gibi düşünmek; Bilişsel modelleme yaklaşımıyla,

 Akılcı düşünmek; Düşünce kanunlarının yasalarıyla,

 Akılcı davranmak; Akılcı ajan yaklaşımıyla açıklanmaktadır.

Yapay zeka, insanlarda zeka ile ilgili zihinsel fonksiyonları bilgisayar

modelleri yardımıyla inceleyip bunları formel hale getirdikten sonra yapay sistemlere

uygulamayı amaçlayan bir araştırma alanıdır. “Yapay zeka terimi ilk olarak önemli

yapay zeka programlama dillerinden biri olan LISP’i geliştiren ve yapay zeka

alanındaki öncülerden biri olan John McCarthy tarafından 1956 yılında ortaya

atılmıştır (Russell ve Norvig, 1995: 17-18).

2.1.1. Yapay Zeka Amaçları

Yapay zeka uygulamalarının amacı, insan zekasını örnek alıp, insan zekası

olması gereken görevleri gerçekleştirebilecek makineler yapabilmektir. Sonuç olarak

insanların bilgisayarlardan daha iyi gerçekleştirdiği görevleri bilgisayarların daha üst

düzeyde gerçekleştirmesini sağlamaktır. Genel olarak yapay zeka amaçları üç başlık

altında sıralanabilir:

 Makineleri daha akıllı yapabilmek:

o Geleceğin bilgi toplumunun kurulmasında kilit rol olan “genel bilgi

sistemleri” geliştirebilmek.

o Öğrenme metotlarını formel hale getirmek ve bilgisayarlarda bilgi

sistemleri halinde uygulamak

o Özel bir uzmanlık alanındaki bilgileri, bir bilgi sistemi ya da uzman

sistem halinde toplamaktır.

 Zekanın ne olduğunu anlamak:

o İnsanların zihinsel yetenekleri, bilgi kazanma, öğrenme ve buluş

yapmada uyguladıkları strateji, metot ve teknikleri araştırmaktır.

 Makineleri daha faydalı hale getirmek:

o Yapay zeka iş yardımcıları ve zeki robot timleri geliştirmektir.

Birçok davranış biçimi, zekanın belirtileri olarak kabul edilebilir.

Aşağıda ise bunun tipik örnekleri belirtilmektedir.

10

 Tecrübelerden öğrenmek,

 İnsan beyninin fonksiyonlarını bilgisayar modelleri yardımıyla anlamaya

çalışmak,

 İnsanların bilgisayar kullanımını kolaylaştırmaya yardımcı insan/bilgisayar

ara geçiş birimleri geliştirmek,

 Karışık ve zıt mesajlardan bir anlam çıkartmak,

 Yeni bir duruma başarılı ve hızlı bir şekilde yanıt vermek

 Problemlerin çözümünde muhakeme yeteneğini kullanmak,

 Standart olmayan şaşırtıcı durumlar karşısında, bu durumların üstesinden

gelebilmek,

 Bilgiyi anlamak ve kullanmak,

 Düşünmek ve muhakeme etmek.

Yapay zeka programları sürekli gelişmekte ve insan zekası gerektiren

durumlara rehberlik etmekte faydalı hale gelmektedir (Reis, 2017:14).

2.2. DERİN ÖĞRENME

Makine öğrenmesi yapay zekanın bir parçasıdır. Makine öğrenmesi veri ile

eğitilebilir. Daha sonra ise verilerden elde ettiği bilgi ile alakalı tahminlerde

bulunabilir. Derin öğrenme ise makine öğrenmesinin bir parçasıdır. Büyük veri

üzerinde çalışan ön eğitimli (farklı işler için özelleşmiş) çok sayıda yapay zekadan

oluşan, çok sayıda düğüme sahip ağlar derin öğrenme olarak isimlendirilir. Derin

öğrenme uygulamaları büyük ve etiketsiz veri üzerinde çalışırken öğretmensiz ön

eğitim (pre-unsupervised trained), sonrasında öğretmenli öğrenme süreçlerinin

çalıştırıldığı sistemlerdir. Bu uygulamaların temel özelliklerinden biri de ağdaki

düğüm miktarının çok büyük olmasıdır (Alpaydın, 2011). Derin öğrenme, çoklu işlem

seviyelerinden oluşan hesaplama modellerinin, birden fazla soyutlama seviyesine

sahip verilerin gösterimini öğrenmesini sağlar. Bu yöntemler nesne tanıma, konuşma

tanıma, nesne algılama, görsel nesne tanıma, genomik ve ilaç keşfi gibi diğer birçok

alanda son teknolojiyi önemli ölçüde geliştirmiştir. Derin öğrenme, makinenin her

katmandaki gösterimini bir önceki katmanda oluşturulan gösterimden hesaplamak için

kullanılan dahili parametrelerinin nasıl değiştirilmesi gerektiğinin gösterilmesi için

11

geri yayılma (back propagation) algoritmasını kullanarak büyük veri kümelerinde

karmaşık yapıyı araştırmaktadır (LeCun ve diğerleri, 2015). Derin öğrenme

sistemlerinin hem öğrenme hem de karar verme aşamasında çıkarılan özelliklerden

yakın olanların bütünleştirilmesi aşaması alt küme (Pooling) oluşturmadır.

Milyonlarca farklı verinin (görüntü, ses ve bunun gibi) tüm özellikleri birebir aynı

olmayacağı için bu aşama önemlidir. Oluşturulan alt kümelerin stokastik olarak

elenmesine silme (drop out) denir. Bu sayede genellikle zayıf ilişkiye ait olan bağlar

koparılır. Silme katmanları sadece kıvrımlı ağ için kullanılmazlar, diğer ağlar için

kullanılabilir. (Zocca ve diğerleri, 2017). Yapılan işlem gürültü giderme işlemine

benzemektedir. Verideki gürültü ise girdi sayısı ile çıktı sayısına eşit olan yapay sinir

ağlarıyla (autoencoder) sağlanır. Derin öğrenme sistemlerinde öğrenme ve karar

verme süreçleri göz önünde bulundurulduğunda aşağıdaki bileşenlerin her derin

öğrenme ağında bulunduğu anlaşılmaktadır.

 Parametreler

 Katmanlar

 Aktivasyon fonksiyonları

 Zarar fonksiyonları

 Optimizasyon yöntemleri

 Hiper parametreler (Patterson ve diğerleri, 2017).

Derin öğrenme başlangıçta sinir ağı algoritmasının ilerlemesinden gelir.

Sadece bir sinir ağındaki gizli bir katmanın sınırlamalarının üstesinden gelmek için

çeşitli yöntemler uygulanmıştır. Bu yöntemler, hiyerarşik olarak basamaklandırılmış

ardışık gizli katmanları kullanır. Derin öğrenmeye ait çeşitli modellerden dolayı,

Aminanto ve Kim (2016) derin öğrenmeyi üç alt gruba ayıran, üretici, ayırt edici ve

melez olan Deng (2014) tarafından yönlendirilen yaklaşımlara dayanarak birçok derin

öğrenme modelini sınıflandırdılar. Sınıflandırma, mimarlık ve tekniklerin (örneğin

sentez / üretim veya tanıma / sınıflandırma) amacına dayanmaktadır. Derin öğrenme

yöntemlerinin sınıflandırması Şekil 3’te gösterilmektedir.

12

Şekil 3: Derin Öğrenme Yöntemlerinin Sınıflandırılması

Kaynak: Aminanto ve Kim, 2016

2.2.1. Gözetimsiz Öğrenme

Denetimsiz öğrenme veya sözde üretici model, etiketlenmemiş verileri

kullanır. Üretken mimarileri örüntü tanımaya uygulayan temel kavram denetimsiz

öğrenme veya ön eğitimdir (Deng, 2014). Daha sonraki ağların daha düşük seviyelerini

öğrenmek zor olduğundan, derin üretken yapılara ihtiyaç vardır. Bu nedenle, sınırlı

eğitim verilerinden, her bir alt tabakayı, tüm üst tabakalara dayanmadan, tabaka

bazında yaklaşımda öğrenmek esastır. Üretken modeller aynı zamanda verilen

verilerin ortak istatistiksel dağılımlarını da öğrenmeyi amaçlamaktadır (Deng ve

diğerleri, 2014) Bu modeller girdi verilen bağlantı ihtimalini hesaplar ve en yüksek

olasılık olan sınıf etiketini seçer (Zang, 2015). Denetimsiz öğrenme olarak

sınıflandırılan birçok yöntemler vardır.

13

2.2.2. Hibrit Öğrenme

Hibrit derin mimari hem üretken hem de ayırt edici mimarileri birleştiriyor.

Hibrit yapı, veri ile ayrımcı yaklaşımı ayırt etmeyi amaçlamaktadır. Bununla birlikte,

ilk adımda, üretici mimarilerin sonuçları ile önemli ölçüde yardımcı olmuştur. Hibrit

mimarinin bir örneği, Derin Sinir Ağıdır (DNN) (Deng, 2014). Deng ve diğerlerine

göre (2014), basamaklandırılmış tamamen birbirine bağlı gizli katmanlara sahip çok

katmanlı bir ağ olarak tanımlanan DNN, eğitim öncesi bir aşama olarak istiflenmiş bir

stokastik tekrarlayan sinir ağı olan Restricted Boltzman Machine (RBM) kullanır.

Diğer birçok üretici model, sınıflandırma görevi sınıf etiketleriyle eklendiğinde, ayırt

edici veya karma modeller olarak düşünülebilir.

2.2.3. Gözetimli Öğrenme

Denetimli öğrenme veya ayırt edici model, model sınıflandırması için verilerin

bazı bölümlerini etiketli verilerle ayırt etmeyi amaçlar (Deng, 2014) Ayrımcı

mimarinin bir örneği, özellikle görüntü tanıma için uygun olan özel bir mimariyi

kullanan Evrişimli Sinir Ağı olan (CNN)’dir. CNN'nin temel avantajı, el yapımı

özellik çıkarımının gerekli olmamasıdır. CNN, çok sayıda veri topluluğundan

karmaşık, yüksek boyutlu, doğrusal olmayan eşlemeleri öğrenmek için çok katmanlı

ağları eğitebilir (LeCun ve diğerleri, 1998). CNN üç temel kavram kullanır: yerel alıcı

alanlar, paylaşılan ağırlıklar ve havuzlama (Nielsen, 2015). CNN kullanılarak

başarıyla dağıtılan kapsamlı bir araştırma, Google'dan AlphaGo’dur (Silver ve

diğerleri, 2018). Ayrımcı modellerin diğer örnekleri doğrusal ve lojistik

regresyonlardır (Wang, 2015).

2.2.4. Derin Öğrenme Kütüphane ve Yazılımları

Derin öğrenme alananda kullanılması amacıyla geliştirilen bir çok kütüphane

ve yazılım bulunmaktadır. Tablo 1’de bu kütüphanelerden bazıları hakkında temel

bilgilere değinilmiştir.

14

Tablo 1: Derin Öğrenme Kütüphaneleri

Kütüphane
Yazıldığı

Dil
Geliştirici Öne Çıkan Özellikleri

Theano Python MILA Lab

Öğreticileri (tutorial) çok etkili. - Keras,

Blocks gibi API sayesinde matematiksel

hesaplar kolaylaştırması.

GPU desteği

Caffe Python

Berkeley

Vision and

Learning

Center

(BVLC)

Caffe Model Zoo üzerinden indirilebilecek

ve hemen kullanılacak önceden eğitimli

ağların bulunması.

GPU desteği.

Torch Lua

Ronan

Collobert,

Clement

Farabet,

Algoritmaları oluşturma konusunda

maksimum esnekliğe ve hıza sahip olması.

GPU desteği. (CUDA)

Kullanıcı dostu arayüz

Digits C++ NVIDIA

Çoklu GPU sistemleri üzerinde sinir ağları

tasarımı ve eğitimi,

Gelişmiş görselleştirmelerle performansı

gerçek zamanlı olarak izleme

Tamamen etkileşimli

TensorFlow Python Google

Tek bir API ile bir masaüstü, sunucu veya

mobil cihazdaki bir veya daha fazla CPU’ya

veya GPU’ya dağıtma olanağı.

DeepLearni

ng
Java

Adam

Gibson
JVM tabanlı

KNET Julia Deniz Yuret
Kolay anlaşılır, kısa kodlama yeteneği.

İfade gücü. - GPU Desteği

Kaynak: Cirean ve diğerleri, 2012

Bu kütüphanelerden TensorFlow , Torch, Knet, Caffe ve Theano için bazı veri

kümeleri ve modeller üzerinden tek GPU ile çalışma zamanı performansının

karşılaştırması Tablo 3’te belirtilmiştir.

15

Tablo 2: Kütüphanelerin Çalışma Zamanı Performansının Karşılaştırılması

Model
Veri

Kümesi
Knet Theano Torch Caffe TensorFlow

LinReg Housing 2.84 1.88 2.66 2.35 5.92

Softmax MNIST 2.35 1.40 2.88 2.45 5.57

MLP MNIST 3.68 2.31 4.03 3.69 6.94

LeNet MNIST 3.59 3.03 1.69 3.54 8.77

CharLM Hiawatha 2.25 2.42 2.23 1.43 2.86

Kaynak: Cirean ve diğerleri, 2012

Verilen tablo incelendiğinde , en yavaş çalışan kütüphanenin TensorFlow, en

hızlı çalışan kütüphanenin ise Theano olduğu görülmektedir (Cirean ve diğerleri,

2012).

16

ÜÇÜNCÜ BÖLÜM

EVRİŞİMLİ SİNİR AĞLARI

3.1. EVRİŞİM VE EVRİŞİMLİ SİNİR AĞI KAVRAMI

Evrişim, bir giriş görüntüsünden özellikleri ayıklayan ilk katmandır. Giriş

verisinin küçük karelerini kullanarak görüntü özelliklerini öğrenerek pikseller

arasındaki ilişkiyi korur. Görüntü matrisi ve filtre veya çekirdek gibi iki giriş alan

matematiksel bir işlemdir (Gopikrishna, 2018).

Bir evrişimli sinir ağı (ESA-CNN-Convolutional Neural Network), sinir

ağının, iç özellik sunumlarını öğrenerek ve nesne tanıma ve diğer bilgisayarlı görme

sorunları gibi ortak görüntü problemlerindeki özellikleri genelleştirerek, hiyerarşik

yapıyı koruduğu ileri beslemeli, yapay bir ağdır. Resimlerle sınırlı değildir; aynı

zamanda doğal dil işleme problemlerinde ve konuşma tanımada son teknoloji sonuçlar

elde etmektedir (Manaswi, 2018). Bir CNN, Şekil 4’te gösterildiği gibi çoklu

katmanlardan oluşmaktadır.

Şekil 4: Bir Evrişimli Sinir Ağındaki Katmanlar

Kaynak: Manaswi, 2018

Beyin ağlarını modelleme fikri, bilgisayarların ortaya çıkmasından önce bile

bir araştırma sorusu olarak değerlendirilmekteydi. İlk aşamalarda, sinir ağları önerme

mantığı ile değerlendirilmekte olup ardından sinir ağlarına uygulanan evrişim ve geri

yayılımı gibi kavramların keşfi ile sinir ağları daha iyi sonuç verir hale gelmiştir.

GPU'ların ortaya çıkmasına kadar, bilgisayarlar çok katmanlı sinir ağlarını

17

uygulayacak kadar hızlı değildi. Yani ticari olarak uygun değildi. GPU'ların gücü ve

daha verimli algoritmalar sayesinde, CNN'ler gerçek hayattaki uygulamalara hale

gelmiştir (Mane ve diğerleri, 2020). CNN’lerin tarihsel gelişimi Tablo 3’te

gösterilmiştir.

Tablo 3: CNN'in Gelişim Periyodu

Dönem Süreç Yıl Eylem

1940 - 1979
Sinir Ağının

Ortaya Çıkışı

1943
McCulloch, Pits sinirsel aktiviteyi önerme

mantığıyla karşılaştırdı.

1949 Hebb hücre montaj teorisini önerdi.

1962
Hubel ve Wiesel, kedi beynindeki görsel sistemi

modelledi.

1980 – 1998
Evrişim

Konsepti

1980
Fukushima, içsel geometrik temsili koruyan kendi

kendine öğrenen bir NN önerdi.

1989

LeCun ve arkadaşları, gerçek hayat uygulamaları

için geri yayılımlı (back propagation) CNN

kullanımını gösterdi.

1999 - 2010
Daha Etkili

CNN’ler

1999 Poggio ve arkadaşları max. Pooling’i önerdi.

2006
Ranzato ve arkadaşları CNN için maxpooling’i

önerdi.

2011

Günümüz

CNN’in

GPGPU

ivmelenmesi

2011
Ciresan ve arkadaşları GPU’larda CNN kavramını

ortaya koydu.

2012
Hinton ve arkadaşları CNN için Drop Out

kullanımını gösterdi.

2013
LeCun ve arkadaşları daha iyi CNN için Drop

Connect’i önerdi.

2014
Min Lin ve arkadaşları CNN için Ağ içinde Ağ

konseptini önerdi.

2015
Google, CNN için farklı açık kaynak kütüphaneleri

yayımladı.

Kaynak: Yazar tarafından derlenmiştir.

Görüntü analizi işlemlerinde en yaygın kullanım alanına sahip derin öğrenme

mimarisi olan CNN’ler, bir veya birden fazla evrişim katmanından oluşan ve bu

katmanlarda doğrusal olmayan fonksiyonların bulunduğu yapılardır. CNN, bir grup

nöronun belirli bir özelliği tanımak ve bunları kategorilere ayırmaktan sorumlu olduğu

denetimli bir makine öğrenme algoritmasıdır. Bu algoritmalar, çıktıyı olumsuz

etkilemeden girdi özelliklerinin boyutunu azaltmak için girdi üzerinde evrişim

gerçekleştirir. Bu özellik görüntüdeki bir kenar veya konuşma alt örneği olabilir.

Belirli evrişim çekirdekleri, özellikle görüntülerde, herhangi bir özelliği temsil

18

etmeyen çok fazla gereksiz pikselin bulunduğu durumlarda, girişin özünü vurgulamak

için kullanılır. CNN’in avantajı zengin kusurlu görüntü özelliklerini otomatik olarak

çıkarabilmesidir (Chuncheng ve diğerleri., 2019). Bir CNN, elle tasarlanan özelliklere

ihtiyaç duymak yerine, eğitim sürecinde otomatik olarak çalışan bir özellik çıkarıcı

içerir. CNN özellik çıkarıcısı, eğitim aşamasında ağırlıkları belirlenen özel tür sinir

ağlarından oluşur ve aynı boyutta katmanlara sahip standart ileri beslemeli sinir ağları

ile karşılaştırıldığında, CNN’lerin çok daha az bağlantı ve parametreye sahip olduğu

ve bu sayede eğitilmesinin daha kolay olduğu görülür (Krizhevsky ve diğerleri, 2012).

Şekil 5’te verilen LeNet mimarisi, 1988 yılında Yann LeCun tarafından ortaya atılan,

ve 1998’lere kadar iyileştirmeleri devam eden ilk CNN ağıdır. LeNet ağında, alt

katmanlar art arda yerleştirilmiş konvolüsyon ve maksimum havuzlama

katmanlarından oluşur. Sonraki üst katmanlar ise tamamen bağlı geleneksel MLP

(Multilayer Perceptron)’ye karşılık gelmektedir.

Şekil 5: LeNet Ağının Mimarisi

Kaynak: Cirean ve diğerleri, 2012

Tipik bir CNN mimarisi, Şekil 6'da gösterildiği gibi (LeCun ve diğerleri, 2010),

sırasıyla girdi, evrişim, havuzlama, aktivasyon ve sınıflama katmanlarından

oluşmaktadır (Chen ve diğerleri, 2018).

19

Şekil 6: Evrişimli Sinir Ağının Mimarisi

Kaynak: Mane ve diğerleri, 2020

Son yıllarda yapay zeka, bilgisayarla görü ve derin öğrenme alanlarındaki

olağanüstü gelişmeler, özellikle de evrişimli sinir ağlarının kullanıldığı, görüntü

sınıflandırma ve görü uygulamalarında (Russakovsky, 2015) dikkate değer bir

performans artışına yol açmıştır (LeCun, 1989). Bu gelişmeler sonucunda bilgisayarla

görü alanı istatistiksel yöntemlerden derin öğrenme yöntemlerine doğru kaymıştır.

Derin öğrenme, nesne algılama, hareket izleme, eylem tanıma, insan pozu tahmini ve

semantik bölümlendirme gibi çeşitli bilgisayarlı görme problemlerinde büyük adımlar

atılmıştır (Volulodimos ve diğerleri, 2018). CNN’ler, yüz tanıma, nesne algılama,

otonom araçlar gibi bilgisayarlı görme uygulamalarında son derece başarılı olmuştur.

Ancak önemli bir dezavantajı vardır. Nesne tanıma konusunda evrişimli sinir

ağları ile başarılı olunsa da, bazı sorunları da içermektedir. Eğitilmiş bir evrişimli sinir

ağı, ilgili nesneye farklı bir açıdan bakıldığında tanıma işlemini farklı başarı oranı ile

gerçekleştirmektedir. Evrişimli sinir ağının bir nesneyi oluşturan parçaların arasındaki

hiyerarşiyi (örneğin bir yüzün göz, ağız, burun vb. organlardan oluşması)

anlayamadığı bilinmektedir. Yapay genel zekaya (artificial general intelligence) giden

yolda nesnelerin konum, yönelim ve açısal durumdan bağımsız olarak tanınabilmesi

için farklı parametrelerle temsil edilmesi gerekmektedir (Beşer ve diğerleri, 2018).

Sinir ağlarından farklı olarak, CNN’lerde girdi Şekil 7’deki gibi çok kanallı bir

görüntüye sahip bir vektördür (bu durumda 3 kanallı-RGB).

20

Şekil 7: CNN’e Giren Örnek Bir Resim Bilgisi

Kaynak: Gopikrishna, 2018

Şekil 8’de, 32 * 32 boyutlarında 3 kanallı, yani renkli bir giriş resmi olarak

kullanıldığı görülmektedir. Bu görüntünün düzleştirilerek vektör hale getirilmesi

gerekmektedir, fakat bu işlem esnasında resimdeki köşeler ve resim derinliği

kaybedilmektedir. Buna engel olmak için CNN kullanılmaktadır. CNN ile resmi

düzleştirip vektör haline getirmek yerine resmin 3 boyutlu yapısının korunması yoluna

gidilir. Ve ağırlık (weight) olarak küçük filtreler kullanılır. Bu örnekte 5x5x3 filtre

kullanılmakta ve resmin tüm piksellerine uygulanmaktadır. Filtrenin bize verdiği

değer o bölgenin çıkış değeri olacaktır. Şekil 8’de görüldüğü gibi filtre uygulandıktan

sonra yalnızca bir çıktı alınmış ve çıktı olarak 28 * 28 * 1 boyutunda bir aktivasyon

haritası elde edilmiştir. Layer içinde kaç adet filtre varsa bu filtrelerin hepsi tek tek

uygulanır ve sonunda kaç adet filtre uygulandıysa çıkış derinliği de o kadar olacaktır.

Ayrıca filtre derinliğinin uygulandığı layer derinliğiyle aynı olmak zorunda olduğuna

dikkat edilir.

21

Şekil 8: Örnek Bir Evrişim İşlemi

Kaynak: Gopikrishna, 2018

Şekil 9’da görüntü piksel değerleri 0, 1 değerlerinden oluşan 5 x 5 görüntü

matrisi ile 3 x 3 filtre matrisinin çarpımı görülmektedir.

Şekil 9: Görüntü ve Filtre Matrisleri

Kaynak: Gopikrishna, 2018

Filtreleme işleminin ardından Şekil 10’da görüldüğü gibi, 3 x 3 boyutlarında

bir “Özellik Haritası” oluşur.

https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------
https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------

22

Şekil 10: Filtreleme İşlemi Sonucu Oluşan Evrişimli Özellik Haritası

Kaynak: Gopikrishna, 2018

Adım (stride): Adım, giriş matrisine uygulanan filtrenin kaydırıldığı piksel

sayısıdır. Adım değeri 1 olduğunda, filtreler tek seferde 1 piksel kaydırılır. Adım

değeri 2 olduğunda filtreler tek seferde 2 piksel kaydırılır.

Zero Padding (Sıfır Doldurma): Filtre uygulandığında boyutlar her zaman

küçülür. Boyutların her katmanda düşmesini engellemek için zero padding (sıfır

doldurma) işlemi uygulanır. Kaybolan her piksele 0 değeri verilirse küçülme

engellenmiş olur.

Şekil 11’de, filtreleme uygulanan görüntüden, sıfırlarla doldurma işlemi

uygulandıktan sonra görüntünün boyutunun korunduğu gözlemlenebilir.

Şekil 11: Zero Padding Uygulaması

Kaynak: Gopikrishna, 2018

ReLU Aktivasyon Fonksiyonu: ReLU doğrusal olmayan bir operasyon için

Doğrultulmuş Doğrusal Ünite (Rectified Lineaar Unit) anlamına gelir. Amacı,

doğrusal olmayan gerçek dünya özelliklerini tanıtmaktır ki, bu da hataları kolayca geri

https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------
https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------

23

yayabildiğimiz (back propagation) ve ConvNet (Evrişimsel Ağ)’deki ReLU

fonksiyonu tarafından etkinleştirilen birden fazla nöron katmanına sahip

olabileceğimiz anlamına gelir. Çünkü gerçek dünya verileri, ConvNet’imizin

öğrenmesini etkileyen negatif olmayan doğrusal değerler olacaktır.

Havuzlama (Pooling): Havuzlama katmanının amacı, giriş görüntüleri çok

büyük olduğunda modeli küçültmek ve parametre sayısını azaltmaktır. Genellikle

pooling işlemi ile layer boyutu yarı yarıya indirilir. Daha sonra, sonraki evrişim

katmanları arasına düzenli olarak havuzlama katmanlarının eklenmesi arzu edilir.

Havuzlama, yalnızca görüntünün uzamsal boyutunu azaltmak amacıyla yapılır.

Havuzlama her derinlik boyutunda bağımsız olarak yapılır, yani derinlik boyutunu

etkilemez. Bu nedenle görüntünün derinliği değişmeden kalır. Genel olarak uygulanan

havuzlama katmanının en yaygın şekli maksimum havuzlamadır (max pooling).

Şekil 12: Max Pooling İşlemi

Kaynak: Gopikrishna, 2018

Yukarıda verilen Şekil 12’de, 4 * 4 evrişimli çıkış değeri maksimum

havuzlama işleminden sonra 2 * 2 olduğu görülmektedir. 2’şer adım atarken, boyutu

da 2 olarak birleştirdik. Maksimum havuzlama işlemi, evrişimli çıktının her derinlik

boyutuna uygulanır. Bu katmanda yapılan işlem aşağı örnekleme olarak da

adlandırılır. Bu katmanda yapılan işlemler sonucu boyuttaki azalma veri kaybına

neden olur. Bunun faydası ise bir sonraki ağ katmanı için hesaplama yükünü azaltmak

ve sistemin ezberlemesini engellemektir.

Şekil 13, bir giriş görüntüsünü işlemek için tam bir CNN akışını ve nesnelerin

değerlere göre sınıflandırıldığını gösterir.

https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------

24

Şekil 13: CNN Akışı ve Sınıflandırma İşlemi

Kaynak: Gopikrishna, 2018

Tamamen Bağlı Katman (Fully Connected Layer) / Çıkış Katmanı: Havuzlama

katmanından sonraki özellik eşleme matrisi, vektör (x1, x2, x3…) olarak düzleştirilmiş

olacaktır. Bir model oluşturmak için bu özellikleri, fully connected katmanlarla bir

araya getirilir. Konvolüsyon katmanları, 3B aktivasyon haritaları oluştururken,

görüntünün belirli bir sınıfa ait olup olmadığı gibi çıktıya ihtiyaç duyulur. Çıktı

katmanı, tahmindeki hatayı hesaplamak için kategorik çapraz-entropi (cross-entropy)

gibi bir kayıp fonksiyonuna (loss function) sahiptir. İleri geçiş tamamlandığında, geri

yayılım (back propagation), hata ve kayıp azaltma için ağırlığı (weight) ve önyargıları

(biases) güncellemeye başlar. Bu andan itibaren CNN'den bir özellik haritası

alındıktan sonra, ilginç bölgeler bulmak için Bölge Öneri Ağı’na (RPN) geçirilmesi

gerekir. Bölge Öneri Ağları, bir nesneyi bulup bulmadığına ilişkin kaybı ve nesnenin

bulunduğu yere ilişkin kaybı verir.

Şekil 14’te, RPN kullanan ve çalışmamızda uyguladığımız Faster-RCNN için

yüksek düzeyli mimari görülmektedir.

Şekil 14: Faster R-CNN Mimarisi

Kaynak: Gopikrishna, 2018

https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------
https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------

25

CNN'den giriş görüntüsü için özellikler elde edildikten sonra, Bölge Öneri Ağı

(RPN-Region Proposal Network) katmanı ile bölge önerilerinin oluşturulması

(Anchors (Çapalar) / Bounding Box (Sınırlayıcı Kutu)) yapılabilir. Öngörülen bölge

önerileri daha sonra görüntüyü önerilen bölge içinde sınıflandırmak ve sınırlama

kutuları için R-CNN ile offset değerlerini tahmin etmek amacıyla kullanılan bir İlgi

Alanı Havuzlama (RoIP-Reigon of Interested Pooling) katmanı kullanılarak yeniden

şekillendirilir.

3.2. FASTER R-CNN VE RPN (REGION PROPOSAL NETWORK)

3.2.1. Faster R-CNN ve RPN

Faster R-CNN Nesne algılama yapan bir ağdır. Adından da anlaşılacağı gibi,

temelini oluşturan RCNN ve FastRCNN'den daha hızlıdır. Bu, otonom araçlarda,

üretimde, güvenlikte kullanım alanına sahiptir.

Faster R-CNN ağı aşağıdaki temel adımlar çizgisinde çalışır:

 Bir Özellik Haritası (Feature Map) almak için görüntü CNN üzerinden

çalıştırılır,

 Etkinleştirme Haritası (Activation Map), Bölge Öneri Ağı (Region

Proposal Network - RPN) adı verilen ve ilginç kutular / bölgeler üreten ayrı

bir ağ üzerinden çalıştırılır,

 RPN'den gelen ilginç kutular / bölgeler için sınıf + Sınırlayıcı Kutu (class

+ bounding box) koordinatlarını çıkarmak için birkaç tam bağlantılı katman

kullanılır.

Şekil 15’te RPN ve Faster R-CNN Mimarisi gösterilmektedir.

26

Şekil 15: RPN ve Faster R-CNN Mimarisi

Kaynak: Gopikrishna, 2018

Faster R-CNN’in hızlı olmasının sebebi, bölge önerilerini tahmin etmek

amacıyla özellik haritası (future map)’nda seçici arama (selective search) algoritması

kullanmak yerine, bölge önerilerini belirlemek için farklı bir ağ kullanmasıdır.

Giriş görüntüsü CNN den geçirilip özellik haritası çıkarıldıktan sonra bu

aşamada selective search (seçici arama) ile bölge önerisi almak yerine, bu önerileri ağ

içerisinde yapılır. Artık bölge önerileri bu ağ üzerinde yapılır ve hız kazanımı sağlanır.

Bundan sonrası Fast R-CNN gibi çalışır.

Sınıflandırma işlemi yapıldıktan sonra 4 farklı parametre ortaya çıkar. Hem

bölge önerisi veren ağın hem de normal evrişim işlemlerinin yapıldığı ağın eğitilmesi

gerekir.

https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------

27

Burada, RPN’in iki görevi vardır:

 Her öneri için orada “nesne var mı yok mu?” karar vermek,

 Aynı zamanda önerilerin pencere büyüklüğünü belirlemek.

Asıl Ağımızda yapılacak iki görev vardır:

 Sınıflandırma yaparak baktığı bölge içinde “nesne var mı yok mu?”

belirlemek,

 Bulduğu nesnenin sınırlarını belirlemek (Cebeci, 2019).

Son evrişimli katmanda bir dizi evrişimli özellik haritası (özellik matrisi) elde

edildikten sonra, bu özellik haritalarında uzamsal olarak kayan bir pencere çalıştırılır.

Kayan pencerenin boyutu n × n'dir (burada 3 × 3). Her bir kayan pencere için, hepsi

aynı merkeze (xa, ya) sahip, ancak Şekil 16’da gösterildiği gibi 3 farklı en boy oranına

ve 3 farklı ölçeğe sahip bir dizi (9) anchor (çapa) üretilir.

Şekil 16: Anchor Üretimi

Kaynak: Gopikrishna, 2018

Daha yakından bakılırsa:

 Üç renk üç ölçeği veya boyutu temsil eder: 128x128, 256x256 ve 512x512.

https://medium.com/@gopikrishnayadam?source=post_page-----5d8386019a8----------------------

28

 Kırmızı kutuları (boxes) / çapaları (anchors) seçelim. Üç kutucuk sırasıyla

1: 1, 1: 2 ve 2: 1 yükseklik genişlik oranlarına sahiptir.

Bu anchor’lar, Pascal VOC veri kümesi ve COCO veri kümesi için iyi çalışır.

Ancak, farklı anchor / box tasarımı yapılabilmektedir. Örneğin, yolcuları / yayaları

saymak için bir ağ tasarımı yapıldığı varsayılırsa, çok kısa, çok büyük veya kare

kutuların düşünülmesi gerekmeyebilir. Düzgün bir anchor seti, hızı ve doğruluğu

artırabilir.

Ayrıca, bu anchorların her biri için, bu anchorların yer-doğruluk sınırlama

kutuları (GTBox-Ground Truth Box) ile ne kadar örtüştüğünü gösteren bir p ∗ değeri

hesaplanır.

Son olarak, bu evrişim özellik haritalarından çıkarılan 3 × 3 uzamsal özellikler,

iki görevi olan daha küçük bir ağı besler: sınıflandırma ve regresyon. Regresörün

çıktısı, tahmin edilen bir sınırlama kutusu (x, y, w, h) belirler, sınıflandırma alt ağının

çıktısı, tahmin edilen kutunun bir nesne (1) içerip içermediğini veya arka plandan (0

için obje yok) olduğunu gösteren bir p olasılığıdır.

3.2.2. Faster R-CNN ve ROI (İlgi Alanı) Katmanı

RPN'den sonra, farklı boyutlarda önerilen bölgeler elde edilir. Farklı boyutlu

bölgeler, farklı boyutlu CNN özellik haritaları anlamına gelir. Farklı boyutlardaki

özellikler üzerinde çalışmak için verimli bir yapı oluşturmak kolay değildir. ROI

Pooling, özellik haritalarını aynı boyuta indirerek sorunu basitleştirebilir.

Sonuç olarak, farklı boyutlardaki dikdörtgen listesinden, sabit boyuttaki

karşılık gelen özellik haritalarının bir listesi hızlı bir şekilde alınabilir.

ROI havuzu oluşturmanın faydalarından biri işlem hızıdır. Çerçevede birden

fazla nesne öneri varsa (ve genellikle birçoğu varsa), yine de hepsi için aynı giriş

özelliği haritası kullanılabilir. Evrişimleri işlemenin erken aşamalarında hesaplamak

çok pahalı olduğundan, bu yaklaşım bize çok zaman kazandırabilir.

29

3.2.3. Faster R-CNN ve R-CNN Katmanı

Son katman olan bölge tabanlı evrişimli sinir ağı (R-CNN), Faster R-CNN’in

boru hattındaki (pipeline) son adımdır. Görüntüden evrişimli bir özellik haritası

aldıktan sonra, bunu RPN ile nesne önerileri almak için kullandıktan ve son olarak bu

tekliflerin her biri için (RoI Pooling aracılığıyla) özellikleri ayıkladıktan sonra, bu

özelliklerin sınıflandırma için kullanılması gerekir. R-CNN, mümkün olan her nesne

sınıfı için bir puan çıkarmak için tam olarak bağlı bir katmanın kullanıldığı CNN'lerin

sınıflandırılmasının son aşamalarını taklit etmeye çalışır.

R-CNN'nin iki farklı hedefi vardır:

 Önerileri sınıflardan birine ve bir arka plan sınıfına (kötü teklifleri

kaldırmak için) sınıflandırır,

 Önerinin sınırlayıcı kutusunu öngörülen sınıfa göre daha iyi ayarlar.

Nesne tespit uygulamalarındaki son gelişmeler, Bölge öneri yöntemleri

(Region Proposal Methods-RPN) ve bölgesel tabanlı evrişimli sinir ağları (R-CNN)

başarısıyla meydana gelmiştir (Shaoqing ve diğerleri, 2016).

RPN, belirli nesne türlerini tanımlamak yerine resimlerdeki ilgi bölgelerini

(ROI'ler) tanımladığı için transfer öğreniminin uygulanması için ideal bir adaydır

(Ferguson ve diğerleri, 2018).

RPN, birçok sınıfa sahip büyük bir veri kümesi üzerinde bir nesne algılama

ağını eğitirken, RPN, nesne sınıfına göre ayrım yapmadan, muhtemelen nesne içeren

görüntünün alt bölümlerini tanımlamayı öğrenir. Bu özellik, ilk olarak nesne algılama

sisteminin Micrososft Common Objects in Context (COCO) veri seti gibi çok sayıda

nesne sınıfı olan büyük bir veri setinde ön eğtimiyle geliştirilir. İlginç bir şekilde,

eğitilmiş nesne algılama sisteminden gelen RPN hatalı bir metal somun görüntüsüne

uygulandığında, görüntünün diğer ilginç bölgeleri arasındaki döküm kusurlarını

hemen tespit eder.

30

COCO veri setiyle gerçekleştirilmiş bir eğitimden sonra RPN’in çıktısı

Şekil 17’de gösterilmektedir.

Şekil 17: RPN ile İşaretlenen Bir Metal Somun Resmi

Kaynak: Yazar tarafından derlenmiştir.

3.2.4. Faster R-CNN ve Inception V2 Yapısı

Inception V2, evrişim ağının karmaşıklığını azaltmak için tasarlanmış bir

modüldür. Bu modül, evrişim ağının daha derinden geniş olmasını sağlar. Inception

V2, A, B, C olarak adlandırılan üç farklı tip modüle sahiptir. Şekil 18 ile gösterilmiştir.

Şekil 18 (a) ile gösterilen yumruk modülü (A), 5x5 konvolüsyonun 3x3 konvolüsyon

olması yerine değiştirildi. Bu, prensipleri takip ederek, mekansal toplanmanın, temsil

gücünde çok fazla veya herhangi bir kayıp olmadan daha düşük boyutlu gömme

üzerinde yapılabileceğini gösterdi. 3x3 evrişimi gerçekleştirilerek, evrişim

performansı artırılmıştır (C. Szegedy ve diğerleri, 2016).

31

Şekil 18: Inception V2 Modeli

Kaynak: Alamsyah ve diğerleri, 2019

Filtre boyutunun N x n, 1 x n ve n x 1 evrişimleriyle çarpanlara ayrılması ile,

bu yöntemin tekli 3x3 konvolüsyondan %33 daha ucuz olduğu görülmüştür. Bu, modül

B olarak Şekil 18 (b) ile gösterilmiştir.

Dahası, filtre genişletilerek daha yüksek boyutlu gösterimler ilkesinin bir ağ

içinde yerel olarak işlenmesi daha kolaydır. Genişletilmiş modül, Şekil 18 (c) ile

gösterilmiştir (Alamsyah ve diğerleri, 2019).

3.2.5. MSCOCO ve Transfer Öğrenmesi

Transfer öğrenmesi, bir ortamda öğrenilen bilgilerin başka bir ortamda

genelleştirmeyi geliştirmek için kullanıldığı bir makine öğrenme tekniğidir (Ferguson

ve diğerleri, 2018).

Transfer öğrenme, bir sınıflandırma senaryosunda eğitilmiş bir modeli, basit

yapısal düzenlemeler yoluyla yeni bir sınıflandırma senaryosuna uyarlar

(Gopalakrishnan ve diğerleri, 2017).

(Kolar ve diğerleri, 2018; Gao ve Mosalam, 2018) çalışmaları ile transfer

öğreniminin sınırlı eğitim verisi olan alana özgü görevler için özellikle uygulanabilir

olduğu gösterilmiştir.

Bu çalışmalardan da anlaşılacağı gibi transfer öğreniminin avantajı, mevcut

eğitim veri seti küçük olduğunda bile tespit doğruluğunu artırabilmesidir. Şekil 19,

transfer öğrenmesi ilkesini gösterir. Faster RCNN tabanlı yapısal visual inspection

metodu çoklu hata tiplerini tespit etmek için önerilmiştir (Cha ve diğerleri, 2018).

32

Şekil 19: Transfer Öğrenme Şeması

Kaynak: MissingLink, 2016

33

DÖRDÜNCÜ BÖLÜM

HATA TESPİT VE SINIFLANDIRMA SİSTEMİ

Bu bölümde, derin öğrenme ile resim, video ve gerçek zamanlı kamera

görüntüleri üzerinden anomali içeren metal somunlar üzerinde hata tespit ve

sınıflandırma işlemi gerçekleştiren bir sistem uygulanmıştır.

Uygulama geliştirilirken Şekil 20’de belirtilen model kullanılmıştır.

Şekil 20: Uygulama Geliştirme Modeli

Kaynak: Yazar tarafından derlenmiştir.

Önerilen sistem, metal somunlar üzerinde anomali tespit ve sınıflandırma

işlemleriyle bir resim lokalizasyon ve nesne algılama sistemi gibi çalışır. Anomali

tespit sisteminin tasarımı, diğer CNN mimarilerine göre doğruluğunun daha yüksek

olması nedeniyle Faster R-CNN modeline dayanmakta ve COCO veri seti ile eğitilmiş

olan Faster-RCNN Inception V2 modeli kullanılarak transfer öğrenmesi ile sistemin

eğitimi gerçekleştirilmiştir.

34

4.1. METODOLOJİ

Anomali içeren metal somunların hata tespit ve sınıflandırma uygulamasının

gerçekleştirilmesi için Şekil 21’de belirtilen iş akışı uygulanmıştır.

Şekil 21: Hata Tespit ve Sınıflandırma Uygulaması Geliştirme İş Akışı

Kaynak: Yazar tarafından derlenmiştir.

Uygulamanın test aşamasında ve kullanımında ise Şekil 22’de verilen

algoritma uygulanmıştır.

Şekil 22: Hata Tespit ve Sınıflandırma Algoritması

Kaynak: Yazar tarafından derlenmiştir.

35

Veri hazırlama aşamasında, çalışmamıza uygun veri olmadığı için özgün bir

veri seti hazırlanmıştır. Veri setindeki veri sayısının artırıması ve modelimizin başarısı

için veri artırım işlemi gerçekleştirilmiştir. Bu işlemden sonra veri setinin

tamamlanmasıyla birlikte metal somunları “hatalı” ve “hatasız” olacak şekilde

etiketleme işlemi yapılmıştır.

Derin öğrenme aşamasında, Tensorflow Object Detection API kurulumu, bu

API’ye ait transfer öğrenmesi gerçekleştireceğimiz, Micrososft Common Objects in

Context (COCO) veri setiyle eğitilmiş olan Faster-RCNN-Inception-V2 modelinin

yüklemesi ve konfigürasyonu, etiketleme işleminin ardından oluşan etiket bilgilerinin

tensorflow’u anlayacağı tfrecord dosyalarına dönüştürülme işlemi ve ardından

modelin özgün veri setiyle eğitimi gerçekleştirilmiştir.

Bilgisayarla görü aşamasında, nesne tespit yazılımlarımız çalıştırılarak resim

ve video dosyaları üzerinden ya da gerçek zamanlı kamera görüntüleri üzerinden

görüntü alma işlemi gerçekleştirilmiştir.

Cevap aşamasında ise uygulamamız gördüğü metal somunları tespit ederek

“hatalı” veya “hatasız” olarak sınıflandırma işlemini başarmıştır.

Hata tespit ve sınıflandırma uygulaması geliştirilirken, Şekil 23’te belirtilen ve

bir disiplin içeren Sistem Geliştirme Yaşam Döngüsü (SGYD) adımlarına bağlı

kalmaya özen gösterilmiştir.

Şekil 23: Sistem Geliştirme Yaşam Döngüsü

Kaynak: Tecim, 2015: 3.

36

Problemin ve amaçların tanımlanması aşamasında, hedef sektörün iş akışları

incelenmiştir.

Belirlenen eksiklere yönelik gereksinimler ortaya konmuştur.

İhtiyaçların analizi kapsamında ise ihtiyaç duyulduğu düşünülen geliştirme

süreçleri ve yöntemler ile ihtiyaç duyulan veriler belirlenmiştir.

Sistem tasarımında, hata tespit ve sınıflandırma işleminin sorunsuz

yapılabilmesi için, metal somunların konveyörde ilerleyiş biçimleri, kullanılacak

kamera sayısı ve yakalanacak görüntü açısına uygun bir veri seti ile uygun bir

uygulama tasarımına gidilmiştir.

Yazılım geliştirme aşamasında ise derin öğrenme uygulamaları için en uygun

dillerden Python kullanılmıştır. Ayrıca, ihtiyaç duyulan kütüphaneler ve frameworkler

kullanılarak özellikle, ücretsiz GPU desteği sağlaması sebebi ile, Google’ın bulut

hizmeti olan Colaboratory kullanılmıştır.

Sistem geliştirilirken, eğitim aşamasına kadar uygulanan yapılandırmaların

doğru olup olmadığı ve eğitim ardından uygulamanın sınıflandırma işlemini doğru

yapıp yapmadığı test edilmiştir. Alınan hatalar sonucunda, konfigürasyon işlemleri

tekrar düzenlenerek yeniden eğitim sağlanmış ve başarı oranı artırılmıştır.

Sistemin gerçekleştirilmesi ve değerlendirilmesi aşamasında, sistemin

işletmenin kullanımına hazır hale getirilmesi hedeflenmiştir.

4.2. YAPILAN HAZIRLIKLAR

Çalışmaya başlanmadan önce içerisinde metal somunların yer aldığı bir veri

seti olmadığı için model üzerinde istenilen eğitimi yapabilmek amacıyla özgün bir veri

seti hazırlama gereği duyulmuştur.

Hatalı ve hatasız somunların yer aldığı bir veri seti oluştururken uygun nitelikte

görüntüler elde etmek için uygun ortamın hazırlanması yapılması gereken ilk iş olarak

ele alınmıştır.

37

4.2.1. İdeal Ortamın Hazırlanması

Veri setini hazırlarken alınan görüntülerin ihtiyaç duyulan ideal ortam, bir

plastik kabın şerit ledlerle aydınlatılması ve görüntü alınması için yan ve üst

taraflarından delik açılmasıyla birlikte Şekil 24’te görüldüğü gibi adeta küçük bir

stüdyo şeklinde oluşturulmuştur.

Şekil 24 : Oluşturulan Stüdyo Ortamı

Kaynak: Yazar tarafından derlenmiştir.

Ardından ihtiyaç duyulan açılardan el değmeden ve zaman kaybetmeden

ardarda seri görüntüler alınabilmesi için oluşturulan stüdyoya step motor devresi

eklenmiştir. Step motor, step motor sürücü kartı ve Arduino nano kartı kullanılarak

oluşturulan Şekil 25’te görülen sistem ile step motorun 200 ms gecikmelerle adım

adım dönmesi sağlanmış olup, step motor üzerine eklenen bir stand ile de somunların

hareketli olarak her açıdan görüntülerinin alınması sağlanmıştır. Step motor bilgileri

ve kullanılan kod parçası Ek 1’de belirtilmiştir.

38

Şekil 25: Step Motor Çalışma Sistemi

Kaynak: Yazar tarafından derlenmiştir.

İdeal ortamın sağlanmasının ardından, öncelikle 13 Mp kamera çözünürlüğe

sahip Lenovo K5 Note akıllı telefon ile 1080 px video çözünürlükte videolar çekilmiş

ve VLC medya oynatıcı uygulaması ile bu videolardan, belirtilen frame aralıklarında

farklı açılardan hatalı ve hatasız görüntülerin yer aldığı 360 adet resim hazırlanmıştır.

Bu veri setinde yer alan 360 adet resim 72 adet test ve 288 adet train olacak şekilde

ayrıştırılmıştır. Elde edilen bu resimler, derin öğrenme modeline verildiğinde harcanan

eğitim süresinin kısaltılması için Photoshop CS2 Extended grafik tasarım uygulaması

kullanılarak en/boy oranları 100x76 px çözünürlüğüne indirgenmiştir. Daha sonra,

kullanılan derin öğrenme modellerinin veri giriş değerlerine uyum sağlaması ve

herhangi bir veri kaybına mani olmak amacıyla bu değerler Python ile yazılmış olan

ve Ek-2’de belirtilen kodlar kullanılarak 600x600 px çözünürlükte standart boyutlara

getirilmiştir.

Ardından veri setinin yetersiz olduğu düşünülerek 12 Mp kamera

çözünürlüğüne sahip LG G7 ThinQ akıllı telefon kullanılarak, 1:1 görüntü oranında,

3492x3492 px çözünürlüğünde resimler çekilerek, aralarında nesne algılama

uygulamamıza uygun olduğu değerlendirilen yalnızca üst ve yan açılardan alınmış

olan resimler seçilmiş, somun resimlerinin sayısını artırmak amacıyla hatasız somun

resimlerine veri artırım (data augmentation) işlemi uygulanarak toplam 2000 adet

39

resimden oluşan özgün veri setimiz hazırlanmıştır. Veri setimizdeki 2000 adet resim

400 adet test ve 1600 adet train olmak üzere iki gruba ayrılmıştır.

4.2.2. VLC Media Player Uygulamasının Yapılandırılması

Video üzerinden istenilen frame aralıklarında resim alınabilmesi için VLC

Media Player’ın, aşağıdaki adımlarda belirtildiği gibi yapılandırılması sağlanmıştır:

 VLC ortam oynatıcısının arayüzü açılır ve Araçlar menüsünden Ayarlar

sekmesi seçilir.

Şekil 26: VLC Player Konfigürasyon Ayarları

Kaynak: Yazar tarafından derlenmiştir.

 Video ve resim işlemleriyle ilgilendiğimiz için Açılan Basit Ayarlar

penceresinden “Görüntü” menüsü seçilir.

40

Şekil 27: VLC Player Görüntü Ayarları

Kaynak: Yazar tarafından derlenmiştir.

 Görüntü alma işlemlerine giriş yapabilmek için pencerenin sol alt tarafında

yer alan “Ayrıntılı” seçeneği seçilerek açılan “Gelişmiş Ayarlar”

penceresinden Görüntü” menüsü ve bu menü içerisinden de “Sahne

Görüntü Süzgeci” işaretlenir.

Şekil 28: VLC Player Sahne Görüntü Süzgeci

Kaynak: Yazar tarafından derlenmiştir.

41

Şekil 29: VLC Player Sahne Görüntü Süzgeci Konfigürasyonu

Kaynak: Yazar tarafından derlenmiştir.

 Sahne Süzgeci Ayarlarından “Sahne Görüntü Süzgeci” değerleri

girilmelidir.

Buradan kayıt edilecek resmin formatı, boyutları, görüntü alınması istenen

videonun bulunduğu klasör uzantısı, kaydedilecek olan resmin kaydedilmesi istenen

klasör yolu ve Videonun frame değerine göre istenen kayıt periyodu girilir.

Kullandığımız videonun frame değeri 25 olduğu için biz burada 25 değerini kullandık

ve her saniyede 1 kare resim kaydedilmesini sağladık.

4.2.3. Veri Artırma (Data Augmentation) İşlemi

Sinir ağlarının derin öğrenme performansı, mevcut veri miktarının sık sık

artırılmasıyla iyileşme kaydeder. Veri artırımı, mevcut eğitim verilerinden yapay

olarak yeni bir eğitim verisi oluşturmak için kullanılan bir tekniktir. Bu, yeni ve farklı

eğitim örnekleri oluşturan eğitim verilerinden örneklere alana özgü teknikler

uygulanarak yapılır.

42

Resim veri artırma işlemi, belki de en iyi bilinen veri artırma türüdür ve orijinal

görüntüyle aynı sınıfa ait eğitim veri seti içindeki görüntülerin dönüştürülmüş

versiyonlarını oluşturmayı içerir.

Bu dönüşümler, kaydırma, çevirme, yakınlaştırma ve çok daha fazlası gibi

görüntü işleme alanındaki birçok işlemi içerisinde barındırır.

Amaç, eğitim veri setini yeni ve makul örneklerle genişletmektir. Bu, eğitim

seti görüntülerinin model tarafından görülmesi muhtemel olan varyasyonları anlamına

gelir. Örneğin, bir kedi resminin yatay bir şekilde çevrilmesi, fotoğrafın soldan veya

sağdan çekildiği için mantıklı gelebilir. Bir kedi fotoğrafının dikey olarak çevrilmesi

anlamsızdır ve muhtemelen modelin baş aşağı bir kedinin fotoğrafını görmesi pek

mümkün olmadığından uygun olmayabilir.

Bu nedenle, bir eğitim veri seti için kullanılan özel veri artırma tekniklerinin

seçiminin dikkatli bir şekilde ve eğitim veri seti bağlamında ve problemin alanı bilgisi

dahilinde seçilmesi gerektiği açıktır.

Evrişimli sinir ağı veya CNN gibi modern derin öğrenme algoritmaları,

görüntüdeki konumlarına göre değişmeyen özellikleri öğrenebilir. Bununla birlikte,

veri artırma bu dönüşüme daha fazla yardımcı olabilir ve öğrenmeye karşı değişmez

yaklaşımı destekleyebilir ve sıralama, fotoğraflardaki ışık seviyeleri ve daha fazlası

gibi dönüşümler için değişmeyen öğrenme özelliklerinde modele yardımcı olabilir.

Görüntü veri büyütme işlemi genellikle eğitim veri setine uygulanır, doğrulama

veya test veri setine uygulanmaz. Bu, görüntü yeniden boyutlandırma ve piksel

ölçeklendirme gibi veri hazırlığından farklıdır; modelle etkileşime giren tüm veri

kümelerinde tutarlı bir şekilde gerçekleştirilmeleri gerekir (Brownlee, 2019).

43

Şekil 30 : Veri Artırımı Sonucu Oluşan Resim Örnekleri

Kaynak: Yazar tarafından derlenmiştir.

Veri artırma işlemi, keras kütüphanesinin ImageDataGenerator() sınıfına ait

bazı metotlar kullanılarak gerçekleştirilmiştir.

Amacımız yetersiz olduğu düşünülen hatasız somun resimlerinin sayısının ve

çeşitliliğinin artırılarak eğitim doğruluğunun artırılmasını sağlamaktır.

Data augmentation için Ek-3’te belitilen kodlar kullanılmıştır.

4.2.4. Resim Boyutlarının Düzenlenmesi

4.2.4.1. Photoshop ile Resim Boyutlarının Düzenlenmesi

Eğitimin daha hızlı gerçekleştirilebilmesi için oluşturulan ilk veri setinde

kullanılması düşünülen 360 adet resmin boyutlarının düşürülmesi için Photoshop CS3

Extended uygulaması aşağıdaki adımlar kullanılarak yapılandırılmıştır :

 Photoshop programından File -> Scripts -> İmage Processor adımları

izlenerek Image Processor penceresi açılır.

44

Şekil 31: Image Processor Penceresinin Açılması

Kaynak: Yazar tarafından derlenmiştir.

 Açılan Image Processor penceresinde sırasıyla :

o İşlem yapılacak resimlerin bulunduğu klasör seçilir.

o İşlem yapılan resimlerin kaydedileceği klasör seçilir.

o Kaydedilecek dosya uzantısı seçilir. Nesne tespit işlemlerinde .jpeg

ya da .jpg uzantılı dosyaların kullanılması gerektiği için burada

JPEG seçilir.

o Oluşan yeni resim dosyasının ölçülerinin ne olması gerektiği

yazılır.

 Run butonuna basarak resim işleme adımı uygulanır.

45

Şekil 32: Resim Boyutlarının Düzenlenmesi

Kaynak: Yazar tarafından derlenmiştir.

4.2.4.2. Python Kodu ile Resim Boyutlarının Düzenlenmesi:

Modelimizin girdi olarak kullanacağı resimlerin standart boyutlarda olması,

katmanlar arasında filtreleme işlemlerinden geçirilirken veri kaybının engellenmesi ve

3492 x 3492 px boyutundaki resimlerin eğitilirken eğitim süresini uzatabileceği

düşünüldüğünde eğitim süresinin kısaltılması için resim boyutları 600 x 600 px

değerlerine indirgenmiştir. Hatalı ve hatasız resimler için kullanılan Python kodu Ek-

2’de belirtilmiştir.

4.2.5. Resimlerin Etiketlenmesi

Gerçekleştirdiğimiz sistemin hatalı ve hatasız metal somunları tespit ederek

onları sınıflandırması için “hatalı” ve “hatasız” olmak üzere iki adet sınıf

oluşturulmuştur. Tespit ve sınıflandırma işleminin başarılı bir şekilde

gerçekleştirilebilmesi için modelimizin bunu öğrenecek şekilde eğitilmesi

46

gerekmektedir. Bu da hatalı ve hatasız metal somun resimlerinin doğru olarak

etiketlenerek modele verilmesi ile mümkün olmaktadır. Etiketleme işlemi aşağıda

verilen Şekil 33’te görüldüğü gibi yapılmıştır.

4.2.5.1. LabelImg Resim Etiketleme Uygulaması

Şekil 33: LabelImg ile Bir Etiketleme İşlemi

Kaynak: Yazar tarafından derlenmiştir.

LabelImg, grafik resim etiketleme aracıdır. Python ile yazılmış ve grafik

arayüz olarak Qt kullanır.

Etiketlenen resimlere ait etiket bilgileri, ImageNet tarafından kullanılan

PASCAL VOC formatında, .xml dosyaları olarak kaydedilir. Bunun haricinde, etiket

bilgileri YOLO formatında desteklemektedir.

Biz etiketleme işlemini PASCAL VOC formatında yaptığımız için bu adımlara

göre ilerleyeceğiz.

 Windows işletim sistemine sahip bir laptop üzerinde etiketleme işlemi

gerçekleştirildiği için Windows üzerinde uygulanan kurulum ve etiketleme adımları

aşağıdaki gibi uygulanmıştır.

47

4.2.5.1.1. LabelImg Kurulumu

 LabelImg dosyaları indirilerek, indirilen zip dosyası kök dizine (C:\) açılır.

 Aşağıdaki Şekil 34’te belirtildiği gibi cmd komutu ile komut satırı

penceresi açılır.

Şekil 34: Komut Satırının Açılması

Kaynak: Yazar tarafından derlenmiştir.

 Kök dizin içerisinde (C:\) C:\>cd LabelImg-master komutuyla etiketleme

aracımızın setup klasörüne girilir.

 C:\LabelImg-master> dizininde C:\LabelImg-master>python LabelImg.py

komutu ile uygulamamız açılır.

1

48

Şekil 35: Komut İstemi Üzerinden LabelImg Uygulaması Açılması

Kaynak: Yazar tarafından derlenmiştir.

4.2.5.1.2. Etiketleme

Şekil 36: LabelImg ile Etiketleme Örneği

Kaynak: Yazar tarafından derlenmiştir.

 Açılan pencerede “Open Dir” menüsü seçilerek etiketleme yapılması

istenen resimlerin bulunduğu klasör seçilir ve resimler getirilir

 Etiket ismi belirtilir.

 Crete RectBox menüsü seçilir.

 Fare tuşuna basılı tutarak etiketlenmesi istenen alan sürükleyerek seçilir.

 Ctrl+S ile koordinatları içeren etiket bilgilerini saklayan .xml uzantılı dosya

oluşturulmuş olur.

49

Şekil 37: Oluşturulan XML Dosyaları

Kaynak: Yazar tarafından derlenmiştir.

 Oluşan .xml dosyasının içeriği aşağıdaki şekilde gösterilmektedir.

Şekil 38: Xml Dosyasının İçeriği

Kaynak: Yazar tarafından derlenmiştir.

LabelImg Kısayol Tuşları Tablo 4’te gösterildiği gibidir:

50

Tablo 4: LabelImg Kısayol Tuşları

Kısayol İşlevi

Ctrl + u Resimlerin tamamını klasörden yükler

Ctrl + r Varsayılan etiket hedef dosyasını değiştirir

Ctrl + s Kaydet

Ctrl + d Mevcut etiket ve kare kutuyu kopyalar

Space Geçerli görüntüyü doğrulanmış olarak işaretler

w Bir kare kutu oluşturur

d Sonraki resme geçiş yapar

a Önceki resme geçiş yapar

del Seçili kare kutuyu siler

Ctrl++ Yakınlaştırır

Ctrl-- Uzaklaştırır

↑→↓← Klavye okları seçili olan kare kutuyu hareket ettirir

Kaynak: Yazar tarafından derlenmiştir.

Verify Image (Resim Doğrulama), boşluğa basıldığında, kullanıcı görüntüyü

doğrulandığı gibi işaretleyebilir, yeşil bir arka plan görünecektir. Bu, otomatik olarak

veri kümesi oluştururken kullanılır, kullanıcı daha sonra tüm resimlerden sonra bunları

ek açıklama yerine işaretleyebilir.

Difficult (Zor) ise, 1 olarak ayarlanır, nesnenin "zor" olarak açıklandığı,

örneğin bağlamı büyük ölçüde kullanmadan açıkça görülebilen ancak tanınması zor

bir nesne olarak belirlendiği belirtilir. Derin sinir ağı uygulamanıza göre, eğitim

sırasında zor nesneler dahil edilebilir veya hariç tutulabilir. (Lin, 2015).

Etiketleme işlemi tamamlandıktan sonra derin öğrenme işlemini

gerçekleştirmek için tensorflow nesne tespit API (Object Detection API)

kullanılmıştır.

51

4.3. EĞİTİMDE KULLANILAN ARAÇLAR

Metal somun hata tespit sisteminin geliştirilmesi esnasında, derin öğrenme

modelimizin eğitiminin yapılması için ihtiyaç duyulan donanım gereksinimleri

Google’ın bulut hizmeti olarak sunmuş olduğu Colaboratory hizmeti kullanılmıştır.

Yoğun işlem gücü gerektiren modelin eğitim aşaması, Google Colab’in sunmuş

olduğu GPU ile hızlı bir şekilde gerçekleştirilmiştir.

Eğitim için TensorFlow kütüphanesinin Object Detection API’si kullanılarak,

bu API içerisinde önceden hazırlanmış ve eğitilmiş olan başarılı modeller kullanılarak

transfer öğrenmesi ve hazırladığımız veri seti ile bu modellerin yeniden eğitilmesi

sağlanmıştır.

Eğitim aşamasında elde edilen verilerin görselleştirilmesi için yine Google

Colab üzerinde çalıştırılabilen tensorboard platformu kullanılmıştır. Tensorboard

üzerinden, eğitimin loss değerleri takip edilerek eğitimin başarılı olup olmadığına

karar verilmiştir.

4.3.1. Google Colaboratory

Colaboratory, kurulum gerektirmeyen ve tamamen bulutta çalışan ücretsiz bir

Jupyter dizüstü bilgisayar ortamıdır.

Colaboratory ile tarayıcınızdan ücretsiz olarak kod yazabilir ve yürütebilir,

analizlerinizi kaydedebilir ve paylaşabilir ve güçlü bilgi işlem kaynaklarına

erişebilirsiniz.

Google Colaboratory çalışma sayfaları (notebooks), Google Drive üzerinde

açık kaynak Jupyter Notebook formatında yani .ipynb formatında depolanır. Yapılan

çalışmalar, Google Drive dosya paylaşım adımları kullanılarak paylaşılabilir.

Colaboratory Python 2.7 ve Python 3.6 versiyonlarını destekler. Ancak 2020

yılından itibaren 2.7 desteği kesilecektir.

Colab ile Python programlama dilinde uygulama geliştirilebilir.

Keras, TensorFlow, PyTorch ve OpenCV gibi kütüphaneleri kullanılarak derin

öğrenme (deep learning) uygulamaları geliştirilebilir.

52

Colab’ı,, ücretsiz hizmet veren diğer bulut hizmetlerinden ayıran en önemli

özellik; GPU kullanımını ücretsiz olarak sağlamasıdır.

Hizmet verdiği Tesla K80 GPU ile derin öğrenme uygulamalarında modelin

eğitilmesi için oldukça hızlıdır. Çalışma zamanı 12 saat sonunda sonlanmaktadır ve

yeniden giriş yapılarak işlemlere devam edilebilmektedir. Bitcoin madenciliği

uygulamalarını desteklememektedir.

4.3.2. Tensorboard

Tensorboard Tensorflow Geliştirme Ekibinin 2017 yılında ortaya attığı bir

görselleştirme aracıdır.

Tensorboard ile eğitim parametreleri, metrikleri, hiper parametreler ya da sinir

ağının herhangi bir istatistiği görselleştirilebilmektedir. Bu sayede yapılan anlık takip

ile modele doğrudan anında müdahale yapma imkanı elde edilebilmektedir.

Histogram olarak veri koleksiyonu ya da vektörleri görselleştirilebilmektedir.

Öğrenme süresince sinir ağının ağırlık güncellemelerinin sinir ağlarına olan

etkilerinin ağırlık yüklemeleriyle nasıl karşılaştırıldığı görülür.

Aşağıdaki başlıklarda görselleştirme işlemleri takip edilebilir:

 Scalars ile, sınıflandırma doğruluğu gibi skaler değerleri görselleştirir,

 Graph ile, sinir ağı modeli gibi, modelin grafik hesaplama değeri

görselleştirilir.

 Distributions ile, sinir ağı ağırlıklarının zaman içerisinde nasıl değişim

gösterdiği görselleştirilir.

 Histogramlar ile dağılımları 3 boyutlu perspektifte gösteren daha ince bir

görünüm elde edilir.

 Projektör ile, Kelime gömülmelerini görselleştirmek için kullanılabilir

(kelime gömülmeleri, onların anlamsal ilişkilerini yakalayan kelimelerin

sayısal temsilidir)

 Görüntü ile, Görüntü verileri görselleştirilir.

 Ses ile, Ses verileri görselleştirilir.

 Metin ile, Metin (dize) verileri görselleştirilir.

53

4.3.3. Tensorflow Object Detection API

Tensorflow Nesne Algılama API’si, transfer öğrenme yöntemini kullanarak

önceden eğitilmiş nesne algılama modellerinin kullanılmasını veya yeni modeller

oluşturulmasını ve eğitilmesini sağlayan açık kaynaklı bir çerçevedir. Son derece

kullanışlıdır, çünkü sıfırdan bir nesne algılama modeli oluşturmak zor olabilir ve çok

fazla bilgi işlem gücü alabilir.

API, iNaturalist Tür Tespit Veri Kümesinde 4 milyon yineleme için eğitilmiş

ResNet-50 ve ResNet-101 özellik çıkarıcılarını kullanarak nesneleri algılar.

Tensorflow Object Detection API, tensorflow1.x versiyonları ile oldukça

başarılı uygulamalar geliştirilmesine yardımcı olmuş ve tensorflow2.0 ile birlikte

yapısal bazı değişikliklere gitmiştir. Modüllerde yapılan güncellemeler ile birlikte 1.x

versiyonlarında kullanılan bazı metotların kullanımı sona erdirilmiştir.

Çalışmamızda bu konuda sorun yaşanmış ve Google Colab üzerinde yapılan

eğitim esnasında ve nesne tespit modülünün çalıştırılması esnasında çözümü mümkün

olmayan ya da uzun süren oldukça fazla sayıda hata ile karşılaşılmıştır.

Modelimiz eğitilirken Tensorflow Nesne Algılama API kullanılmış ve

ModelZoo üzerinden ulaşılan, nesne tespit için kullanılan MS COCO veri seti ile

eğitilmiş olan Faster RCNN Inception V2 modeli üzerinden transfer öğrenmesi

gerçekleştirilerek eğitim işlemi tamamlanmıştır.

Şekil 39: Tensorflow Logosu

Kaynak: Tensorflow, 2015

54

4.3.3.1. Tensör

Tensör, derin öğrenmede verileri temsil eden soyut bir kavramdır, fiili bir

kavram değildir.

Şekil 40: Tensör Dizileri

Kaynak: Bakshi, 2019

Derin öğrenmede, yüksek boyutlu veri kümeleriyle uğraşılır. Şekil 40’da

görüleceği üzere, tensörler yalnızca yüksek boyutlu olan verilerin temsil edilmesine

izin veren çok boyutlu dizilerdir ve herhangi bir boyutta olan bir dizi içinde tutulan

ilkel (integer, float) verilerden oluşan veri setidir. “TensorFlow” ismi, sinir ağlarının

tensörler üzerinde gerçekleştirdiği işlemlerden ortaya çıkmıştır..

4.3.3.2. Graph

 TensorFlow’da tüm işlemler bir grafik (graph) içerisinde gerçekleştirilir.

Graph art arda gerçekleşen bir hesaplama kümesidir. Graph, bir eğitim sırasında

yapılan tüm hesaplamaları tanımlar. Graph’ın bir çok avantajı vardır:

Birden fazla CPU veya GPU üzerinde ve hatta mobil işletim sisteminde

çalışmak için geliştirilmiştir.

Graph’ın taşınabilirliği, derhal veya daha sonra kullanım için hesaplamaları

korumaya izin verir. Graph gelecekte çalıştırılmak üzere kaydedilebilir.

Graph’ta bulunan tüm hesaplamalar, tensörleri birbirine bağlayarak yapılır.

55

Bir tensörün bir düğümü ve bir kenarı vardır. Düğüm matematiksel işlemi taşır

ve bir uç nokta çıktısı üretir. Kenarlar, düğümler arasındaki giriş / çıkış ilişkilerini

açıklar (Bakshi, A., 2019).

4.3.3.3. Tensorflow

Tensorflow, Google tarafından, yeni başlayanların ve uzmanların makine

öğrenimi modelleri oluşturmasını kolaylaştıran, makine öğrenmesi uygulamaları için

geliştirilmiş uçtan uca açık kaynaklı bir kütüphanedir

(https://www.tensorflow.org/overview/).

TensorFlow terimi iki terimden oluşur Tensor & Flow.

TensorFlow’da tensör (tensor) terimi, verilerin çok boyutlu dizi olarak temsil

edilmesine karşılık gelirken, akış (flow)terimi, Şekil 41’de gösterildiği gibi bir tensör

üzerinde gerçekleştirilen işlem serilerini ifade eder.

Şekil 41: TensorFlow Yapısı

Kaynak: Bakshi, 2019

Bir tensorflow programı yazma işlemi genellikle iki adımdan oluşur:

 Hesaplamalı grafik oluşturmak: Bir hesaplama grafiği, grafikte düğümler

olarak düzenlenmiş bir dizi TensorFlow işlemini ifade eder. Her düğüm,

giriş olarak 0 veya daha fazla tensörü alır ve çıkış olarak bir tensör üretir.

Üç düğümden oluşan (a, b ve c) örnek bir hesaplama grafiği Şekil 42’de

görülmektedir.

https://www.tensorflow.org/overview/

56

Şekil 42: Tensorflow Computational Graph

Kaynak: Bakshi, 2019

Sabit düğümler, sabit değerleri sıfır giriş olarak saklamak için kullanılır, ancak

kayıtlı değerleri çıktı olarak üretir. Şekil 42’deki örnekte a ve b, sırasıyla 5 ve 6

değerlerine sahip sabit düğümlerdir. c düğümü, sabit a düğümünün b düğümü ile

çarpılması işlemini temsil eder. Bu nedenle, c düğümünün yürütülmesi, a ve b sabit

düğümlerinin çoğaltılmasına neden olur.

Bir hesaplama grafiği, TensorFlow programında yer alan matematiksel

hesaplamaları kavramsallaştırmanın alternatif bir yolu olarak düşünülebilir.

Hesaplamalı grafiğin farklı düğümlerine atanan işlemler paralel olarak

gerçekleştirilebilir, böylece hesaplamalar açısından daha iyi bir performans sağlanır.

 Hesaplamalı grafik çalıştırmak: c düğümünün çıktısını almak için,

hesaplama grafiğini bir oturumda çalıştırmamız gerekiyor. Oturum, grafik

işlemlerini CPU veya GPU gibi aygıtlara yerleştirir ve bunları yürütmek

için yöntemler sağlar.

Bir oturum, TensorFlow çalışma zamanının kontrolünü ve durumunu

kapsüllemekte, yani, tüm işlemlerin gerçekleştirileceği sırayla ilgili bilgileri

saklamakta ve önceden hesaplanmış işlemin sonucunu akış hattındaki bir sonraki

işleme geçirmektedir. Hesaplama grafiğinin bir oturumda çalıştıran kod Şekil 43’te

gösterilmiştir.

57

Şekil 43: Hesaplama Grafiğinin Çalıştırılması

Kaynak: Bakshi, 2019

4.4. TENSORFLOW OBJECT DETECTION API İLE EĞİTİMİN

GERÇEKLEŞTİRİLMESİ

Tensorflow, görüntüleri otomatik olarak tespit etmek için CNN gibi sinir ağı

modelleri oluşturmamıza yardımcı olur. Bu kapsamda Tensorflow görüntü tanıma için

iki yaklaşım ortaya koyar;

 Sınıflandırma: CNN’i kedi, köpek, araba vb. gibi nesne kategorilerini

tanıyacak şekilde eğitilir. Eğitilen sistem bu kategorilere göre görüntüyü

bir bütün olarak sınıflandırır.

 Nesne Algılama: sınıflandırmadan daha güçlüdür ve aynı görüntü içinde

birçok nesneyi algılar. Ayrıca algıladığı nesneleri etiketlerve görüntü

üzerinde nesnelerin yerlerini gösterir.

Bu çalışmada, her iki adım da uygulanarak metal somunların hata tespit ve

sınıflandırma işlemleri gerçekleştirilmiştir.

4.4.1. Veri Seti İşlemleri

Tez dokümanımızın “4.2. VERİLERİN HAZIRLANMASI” başlığı

kapsamında veri seti hazırlanmış, veri artırım işlemleri uygulanmış, yeniden

boyutlandırma gerçekleştirilmiş, 2000 adet resimden oluşan veri setindeki resimler

58

%80 train (1600) ve %20 test (400) verisi olacak şekilde ayrılmış ve resimlerin “hatalı”

ve “hatasız” olarak etiketleme işlemi Şekil 44’te görüldüğü gibi tamamlanmıştır.

Şekil 44: Etiketleme Örnekleri

Kaynak: Yazar tarafından derlenmiştir.

4.4.2. Object Detection API Kurulumu ve Derin Öğrenme

Bu aşamada Tensorflow Object Detection API kurulumu yapılmış,

kullandığımız model olan Faster R-CNN Inception V2 modelimiz yüklenmiş, train ve

test klasörlerinde yer alan etiket bilgileri öncelikle CSV formatına ve ardından da CSV

formatından tensorflow’un anlayacağı tfRecord dosyasına dönüştürülmüştür.

Model konfigürasyonumuz modele ait config dosyası içerisinde yapılmış,

etiket atamalarının yapıldığı label.pbxt dosyası yapılandırılmış ve transfer

öğrenmesiyle birlikte eğitim işlemi bize ait olan veri setiyle yeniden yapılmıştır.

Inference Graph’la birlikte modelimiz en uygun eğitim adımında dondurularak

kullanıma hazır hale getirilmiştir.

Bu aşamada aşağıdaki adımlar sırasıyla uygulanmıştır:

 Google Colaboratory kullanıcı giriş işlemleri Şekil 45’te olduğu gibi

yapılmıştır. Gelen linke tıklanarak elde edilen kullanıcı yetki anahtarı

girilerek Colab üzerindeki klasörümüze giriş yapılmıştır.

59

Şekil 45: Google Colaboratory Dizinine Giriş

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 46’da görülen adım ile gerekli olan kütüphaneler yüklenmiştir.

Burada tensorflow 2.0 güncellemesiyle yapılan değişikliklerden meydana

gelen hatalardan kaçınmak ve GPU üzerinde işlem yapabilmek için

tensorflow-gpu= = 1.13.2 versiyonu kullanılmıştır.

Şekil 46: Kütüphanelerin Yüklenmesi

Kaynak: Yazar tarafından derlenmiştir.

60

 Şekil 47’de belirtilen kodun çalıştırılmasıyla yüklenen kütüphaneler

kontrol edilmiştir.

Şekil 47: Kütüphanelerin Kontrol Edilmesi

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 48’de gösterilen yöntemle birlikte MS COCO modelimiz

uygulamamıza yüklenmiştir.

Şekil 48: MS COCO Modelinin Yüklenmesi

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 49 ile modelimiz inşa edilmiştir.

61

Şekil 49: Modelin İnşa Edilmesi

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 50 ile, hazırlanan modelimiz yüklenmiştir.

Şekil 50: Modelin Yüklenmesi

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 51 ile modelimiz test edilmiştir.

62

Şekil 51: Modelin Test Edilmesi

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 52’de görüldüğü gibi object detection klasörüne girilerek bu dosya

içerisinde yer alan xml dosyaları csv formatına dönüştürülür.

Şekil 52: Etiket Bilgilerinin XML-CSV Dönüşümü

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 53’te belirtilen işlem ile CSV formatına dönüştürülmüş olan resim

etiket verileri tensorflow record dosyalarına dönüştürülür.

63

Şekil 53: CSV Dosyalarının tfRecord Dosyalarına Dönüştürülmesi

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 54’ de belirtilen kod dizisiyle birlikte Tensorboard kurulumu ve veri

geldiğinde görselleştirme işlemini yapabilmesi için 0.0.0.0 host’u

üzerinden sürekli olarak dinleme durumuna geçilmiştir.

Şekil 54: Tensorboard Kurulumu ve Dinlemeye Hazır Hale Getirilmesi

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 55’te eğitim işleminin gerçekleştirilmesi görülmektedir.

64

Şekil 55: Eğitimin Gerçekleştirilmesi

Kaynak: Yazar tarafından derlenmiştir.

 Eğitimin başlamasıyla birlikte Tensorboard’ta verileri okumaya

başlamıştır. Aldığı verileri görselleştirerek grafik olarak okunabilir hale

getirmiştir. Şekil 56 Modelimizin Learning Rate grafiğini göstermektedir.

Şekil 56: Learning Rate Grafiği

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 57, Loss grafiklerini göstermektedir.

65

Şekil 57: Loss Grafiklerinin Genel Görünümü

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 58’de BoxClassifierLoss/classification_loss grafiği görülmektedir.

Bu grafik, tespit edilen nesnelerin çeşitli sınıflara sınıflandırılması

aşamasında takip edilen loss değerini gösterir.

Şekil 58: Loss/BoxClassifierLoss/classification_loss

Kaynak: Yazar tarafından derlenmiştir.

66

 Şekil 59, BoxClassifierLoss/localization_loss grafiğini gösterir. Bu grafik,

Yerelleştirme Kaybı veya Sınırlayıcı Kutu regresörünün Kaybını

görselleştirmektedir.

Şekil 59: Loss/BoxClassifierLoss/localization_loss

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 60, RPNLoss/localization_loss grafiğini gösterir. Bu kayıp RPN için

Yerelleştirme Kaybı veya Sınırlayıcı Kutu regresörünün kaybını

göstermektedir.

67

Şekil 60: Loss/RPNLoss/localization_loss

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 61, Sınırlayıcı bir kutunun ilgi alanı veya arka plan nesnesi olup

olmadığını sınıflandıran sınıflandırıcı'nın kaybını gösteren grafiği içerir.

Şekil 61: Loss/RPNLoss/objectness_loss

Kaynak: Yazar tarafından derlenmiştir.

68

 Şekil 62 Total Loss değerini göstermektedir. Bu değer modelimiz için takip

edilmesi gereken en önemli loss grafiğidir. Bu grafiği takip ederek modelin

en uygun noktasında eğitimi durdurma ve dondurma ya da bir hata

durumunda eğitimi durdurup hatayı düzeltme gibi işlemleri yaparak zaman

kazanmamızı sağlar.

Şekil 62: Total Loss

Kaynak: Yazar tarafından derlenmiştir.

 Şekil 63 Clone Loss grafiğini göstermektedir. Clone Loss değeri eğer

birden fazla GPU kullanılırsa bir anlam ifade etmektedir. clone_loss_1

yalnızca birden fazla GPU üzerinde eğitim veriyorsanız geçerlidir:

Tensorflow, her GPU üzerinde eğitim almak ve her bir klondaki kaybı

bildirmek için modelin bir kopyasını oluşturur. Modeli tek bir GPU /

CPU'da eğitiyorsanız, TotalLoss ile aynı olan clone_loss_1 öğesini

görürsünüz. Biz eğitimimizde bir adet GPU kullandığımız için

değerlerimiz Total Loss değerleriyle aynı olmuştur.

69

Şekil 63: Clone Loss

Kaynak: Yazar tarafından derlenmiştir.

Eğitimimiz 28.850’nci adıma kadar gerçekleştirilmiştir. COCO modeli ile

eğitim yapıldığı için loss değeri 0,05 ve altında bir değere kadar istikrarlı bir şekilde

düşmesi gerekmektedir. Biz 28.850 adım eğittikten sonra loss değerimiz 0,01

değerlerinde seyretmeye başlamıştır. Loss değeri istediğimiz çerçevede olduğu için

modelin ezberlemesini (overfitting) engellemek amacıyla eğitimimiz 28.850’nci

adımda sonlandırılmıştır.

 Eğitim esnasında periyodik olarak yedeklenen eğitim verileri training

klasörü içerisine otomatik olarak kaydedilir.

70

Şekil 64: training Klasörünün İçeriği

Kaynak: Yazar tarafından derlenmiştir.

 Eğitimin tamamlanmasının ardından elde edilen verilerin hata tespit ve

sınıflandırma işleminde kullanılması için dondurulması gereklidir.

Dondurma işlemi aşağıda belirtilen Şekil 65’te gösterilen kod vasıtasıyla

yapılır.

Şekil 65: Inference Graph ile Eğitim Verilerinin Dondurulması

Kaynak: Yazar tarafından derlenmiştir.

Dondurma işleminden sonra Object_detection klasöründe Inferece_graph

klasörü oluşur ve 28.350’nci adımda dondurulan eğitim verileri, hata tespit ve

sınıflandırma işleminde kullanılmak üzere buraya kaydedilir. Şekil 66’da

inference_graph klasörünün içeriği gösterilmiştir.

71

Şekil 66 : Inference Graph Klasörü

Kaynak: Yazar tarafından derlenmiştir.

4.4.3. Bilgisayarla Görü İşlemi

Eğitimimiz başarılı bir şekilde gerçekleştikten sonra artık hata tespit ve

sınıflandırma işlemi yapan bilgisayarla görü adımı uygulanabilir hale gelmiştir.

Ama önce tensorflow 2.0 güncellemesinden kaynaklanan uyumsuzluk

sorunundan dolayı Google Drive üzerinde bulunan dosyaların tamamı yerel

bilgisayarın C:\ sürücüsüne tensorflow1 adıyla kaydedilmiştir. Ve bilgisayarla görü

işlemi bu klasör içerisinde yer alan Object_detection_image.py ve

Object_detection_webcam.py modülleri komut penceresi üzerinden çalıştırılarak

gerçekleştirilmiştir.

72

Şekil 67: Komut İstemi Üzerinde Object_detection _image.py Modülü Çalıştırılması

Kaynak: Yazar tarafından derlenmiştir.

 Object_detection_image.py modülü çalıştırıldıktan sonra, yerel dosyada

yer alan test resimleri üzerinde hata tespit ve sınıflandırma işlemi

gerçekleştirilmiş, ardından Object_detection_webcam.py modülü

çalıştırılarak gerçek zamanlı görüntüler üzerinde hatalı ve hatasız metal

somunlar üzerinde tespit ve sınıflandırma işlemi gerçekleştirilmiştir.

73

Şekil 68: Hatasız Metal Somunun Resim Üzerinde %99 Doğrulukla Tespit ve

Sınıflandırılması

Kaynak: Yazar tarafından derlenmiştir.

Şekil 69: Hatalı Metal Somunun Resim Üzerinde %99 Doğrulukla Tespit ve Sınıflandırılması

Kaynak: Yazar tarafından derlenmiştir.

Yukarıda Şekil 68 ve Şekil 69’da verilen resimlerden de görüleceği üzere

gerçekleştirilen sistem ile bir tek metal somunun bulunduğu ve uygun ortam

koşullarında veri setine uygun açılardan alınan görüntülerde nesne tespit işleminin

74

kolayca yapıldığı ve aynı zamanda da %99 gibi oranlarda doğru sınıflandırma

işleminin yapıldığı anlaşılmaktadır.

Şekil 70: Birden Fazla Nesne Hata Tespit ve Sınıflandırılması

Kaynak: Yazar tarafından derlenmiştir.

Şekil 70’te görüldüğü gibi, farklı açılardan birden fazla nesnenin yer aldığı

görüntü üzerinde yapılan işlemde ise veri setine uygun açılarda bulunan somunların

tespit işleminin yapıldığı ve sınıflandırma oranının da %90’lar seviyesinde bir

doğrulukta olduğu anlaşılmaktadır. Ancak, uyumsuz açılardan gelen görüntülerde

nesne tespit işleminde sorun yaşanmadığı, bunun yanında sınıflandırma işleminde

hatalar meydana geldiği belirlenmiştir.

 Veri setimizdeki resimlerin tamamı üstten ve yandan olmak üzere

yalnızca iki açıdan alınan görüntüler ile oluşturulduğu için resim üzerinde yapılan hata

tespit ve sınıflandırma uygulamasında üst ve yan açılardan alınan metal somun

görüntülerinin tespit ve sınıflandırma doğruluğu %99 seviyelerine kadar çıkmaktadır.

75

Şekil 71: Uygun Koşullarda Nesne Tespit İşlemi Örnekleri

Kaynak: Yazar tarafından derlenmiştir.

Veri setinde belirlenen üst ve yan açılardaki görüntüler haricinde farklı

açılardan gelen görüntüler üzerinde de RPN (bölge öneri ağı) sınırlandırma kutuları

(bounding box) oluşturarak tespit ve lokalizasyon gerçekleştirmeye çalışmaktadır. Bu

nedenle resimdeki metal somunların farklı bölgelerinde hatalı ya da hatasız etiketleme

işlemi gerçekleştiği görülmektedir.

Şekil 72: RPN’in Farklı Açılardan Bounding Box Oluşturma İsteği

Kaynak: Yazar tarafından derlenmiştir.

76

Şekil 73: Hatalı Sınıflandırma ve Bounding Box Örneği

Kaynak: Yazar tarafından derlenmiştir.

Benzer bir işlem de somun resimlerinin webcam üzerinden alınan gerçek

zamanlı görüntüler üzerinde de meydana gelmiştir. Dik veya yan metal somun

görüntülerinde, aydınlatma yeterli ise %90 - %99 aralığında bir doğrulukla hata tespit

ve sınıflandırma işleminin gerçekleştiği, ancak ışığın yetersiz olduğu durumlarda

sistemin doğruluk oranının düştüğü, özellikle yan açılardan gelen metal somun

görüntülerinde yetersiz aydınlatmadan dolayı hatalı sınıflandırmalar meydana geldiği

anlaşılmıştır. Ayrıca, aynı metal somunların arka zemin renginde değişim meydana

geldiğinde, görüntünün farklı bölgelerinde de bounding boxların görülmeye başlandığı

belirlenmiştir.

77

SONUÇ VE ÖNERİLER

Gerçekleştirilen uygulama ile, önerilen sistemin çalışmanın başında belirtilen

amaçlarına uygun olarak endüstriyel alanda sağlayacağı çözümlere yönelik umut

verici sonuçlar alındığı düşünülmektedir.

Operasyonel açıdan bakıldığında, uygulama bilgisayarla görü vasıtasıyla insan

faktörünün yerini alarak, akıllı bir otomasyon süreci oluşturmuş, kalite kontrol

işleminin minimum hata ile sürdürülmesine yardımcı olmuş, hataya neden olan sürecin

tespit edilmesine katkıda bulunarak süreç iyileştirmelerinin belirlenmesinde etkin rol

oynayacağı görülmüştür.

Yapılan denemelerde, üst ve yan taraflarından elde edilen görüntülerde yer alan

metal somunların duruş açılarının önemli olduğu görülmüştür. Veri setine uygun

olmayan açılarda alınan görüntülerde, bölge öneri ağının sınırlandırma kutusu

oluşturma isteğinden dolayı farklı açılarda birden çok sınırlandırma kutusu

oluşturduğu ve sınıflandırma işleminde başarının düştüğü görülmüştür.

Derin öğrenme yöntemi ile metal somun resimlerine ait üst ve yan açılardan

çekilmiş resimlerden oluşan veri setine uygulanan eğitimler ile webcam üzerinden

gerçek zamanlı olarak elde edilen ya da yerel bilgisayarda bulunan test resimleri

üzerinden alınan görüntüler ile yapılan tespit ve hata sınıflandırma işlemlerinde, veri

setine uygun aydınlatma ve açılarda gerçekleştirilen işlem, %90-%99 oranları arasında

tespit ve sınıflandırma doğruluğuyla başarılı sonuçlar vermiştir.

Derin öğrenme ve bilgisayarla görü çözümlerine duyulan ihtiyaç ve ilginin

artarak devam ettiği günümüzde, bilgisayarla görü uygulamalarının üretim ve denetim

süreçlerine entegre edilmesinin kaçınılmaz olduğu açıkça görülmektedir.

Önerilen yöntemin bir sınırlaması, derin bir ağın eğitiminin, çok zaman ve

masraf gerektiren, elle etiketlenmiş verileri gerektirmesidir. Geliştirilen sistem şu anda

prototip aşamasındadır. Tez kapsamında geliştirilen uygulamanın endüstriyel alana

katkısının süreklilik arz edebilmesi için, gelecek çalışmalarda,

 Veri setindeki veri sayısının artırılması,

 Verilerin tamamı üzerinde veri artırım işleminin uygulanması,

 Mask RCNN kullanılarak hata tiplerine göre sınıflandırmanın yapılması,

78

 Kapsül ağlarının kullanılarak Faster RCNN in gerektirdiği açısal görünüm

zorluklarından kurtularak, herhangi bir açıda doğru tespit ve sınıflandırma

avantajı sağlanması,

 Uygulamanın Raspberry Pi gibi mini bilgisayarlar üzerinde çalışabilir hale

getirilmesi,

 Birden fazla kameralar üzerinden elde edilen eş zamanlı görüntüler

kullanılması,

 Kendi kendine öğrenen bir tasarım uygulanması

 Kullanıcıya ikaz ve öneri sunan bir yazılımın entegre edilmesi gibi önemli

geliştirmelerle başarım oranının artırılması, sistem kararlılığının ve

kullanılabilirliğinin artırılması sağlanabilir.

79

KAYNAKÇA

Alamsyah, D. ve Fachrurrozi, M. (2019). Faster R-CNN with Inception V2 for

Fingertip Detection in Homogenous Background Image. Journal of Physics

Conference Series. 1196(1): 2-3.

Alpaydın, E. (2011). Yapay Öğrenme. İstanbul: Boğaziçi Üniversitesi Yayınevi.

Aminanto, M.E. ve Kim, K. (2016). Deep Learning in Intrusion Detection System: An

Overview. Computer Science. 2016: 4-6.

Aydın, İ.H. ve Değirmenci, C.H. (2018). Yapay Zekâ. İstanbul: Girdap Yayınevi

Ashton, K. (2009). That ‘Internet of Things’ Thing, RFID Journal.

https://www.rfidjournal.com/articles/pdf?4986: 1, (26.12.2019).

Bakshi, A. (2019). TensorFlow Tutorial – Deep Learning Using TensorFlow.

https://www.edureka.co/blog/tensorflow-tutorial/, (26.12.2019).

Beşer, F., Kızrak, M.A., Bolat, B. ve Yıldırım, T. (2018). Kapsül Ağları ile İşaret Dili

Tanıma. IEEE 26. Sinyal İşleme ve İletişim Uygulamaları (SİU) Konferansı,

Düzenleyen: İzmir Katip Çelebi Üniversitesi, İzmir. 2-5 Mayıs 2018.

Brownlee, J. (2019). How to Configure Image Data Augmentation in Keras.

https://machinelearningmastery.com/how-to-configure-image-data-augmentation-

when-training-deep-learning-neural-networks/, (26.12.2019).

Campos, M., Martins, T., Ferreira, M. ve Santos, C. (2008). Detection of Defects in

Automotive Metal Components Through Computer Vision. IEEE International

Symposium on Industrial Electronics (ss. 860-865), Düzenleyen Elektrik ve Elektronik

Mühendisleri Enstitüsü (IEEE) Cambridge, Birleşik Krallık. 30 Haziran-2 Temmuz

2008.

80

Cebeci, H.İ. (2019). Bilgisayar Görüşü ile Yüz ve Nesne Tanıma | R-CNN, SSD,

GANs. https://www.udemy.com/course/bilgisayar-gorusu/, (16.10.2019).

Cha, Y. J., Choi, W., Suh, G., Mahmoudkhani, S., ve Büyüköztürk, O. (2018).

Autonomous Structural Visual Inspection using Regionbased Deep Learning for

Detecting Multiple Damage Types, Computer-Aided Civil and Infrastructure

Engineering. 33(9): 731-747.

Cirean, D.C., Meier, U., Masci, J. ve Gambardella, L. M. (2012). Flexible, High

Performance Convolutional Neural Networks for Image Classification. Twenty-

Second International Joint Conference On Artificial Intelligence (1237–1242),

Barselona, İspanya. 19-22 Temmuz 2011.

Ferguson, M., Ak, R., Lee, Y. ve Law, K.H. (2018). Detection and Segmentation of

Manufacturing Defects with Convolutional Neural Networks and Transfer Learning.

Smart and Sustainable Manufacturing Systems. 2(1): 137-164.

Gao, Y. and Mosalam, K. M. (2018). Deep Transfer Learning for ImageBased

Structural Damage Recognition. Computer-Aided Civil and Infrastructure

Engineering. 33: 748–768.

Feng, C., Zhang, H., Wang, S., Li, Y., Wang, H., Yan, F. (2019). Structural Damage

Detection using Deep Convolutional Neural Network and Transfer Learning. KSCE

Journal of Civil Engineering. 23(10): 4493–4502.

Gonzalez, R.C., Woods, R.E. (1992). Digital Image Processing. New Jersey: Prentice

Hall.

Gopalakrishnan, K., Khaitan: K., Choudhary, A. and Agrawal, A. (2017). Deep

Convolutional Neural Networks with Transfer Learning For Computer Vision-Based

81

Data-Driven Pavement Distress Detection. Construction and Building Materials. 157:

322-330.

Deng, L. (2014). A Tutorial Survey Of Architectures, Algorithms and Applications for

Deep Learning. APSIPA Transactions on Signal and Information Processing. 3(2014):

3-8.

Deng, L., Yu, D. ve diğerleri. (2014). Deep Learning: Methods and Applications.

Foundations and Trends R in Signal Processing. 7(3–4): 197–387.

Gopalakrishnan, K., Khaitan, S.K., Choudhary, A. Ve Agrawal, A. (2017). Deep

Convolutional Neural Networks with transfer learning for computer vision-based data-

driven pavement distress detection. Construction and Building Materials. 157(1): 322-

330.

Gopikrishna, Y. (2018). Object Detection Using TensorFlow and COCO Pre-Trained

Models. https://medium.com/object-detection-using-tensorflow-and-coco-

pre/object-detection-using-tensorflow-and-coco-pre-trained-models-5d8386019a8,

(20.12.2019).

Hajizadeh, S., N´u˜nez, A., Tax, D.M.J. (2016). Semi-supervised Rail Defect

Detection from Imbalanced Image Data. IFAC (International Federation of Automatic

Control), 49(3): 78-83.

Hinton, G.E., Osindero, S., Teh, Y.W. (2006). A Fast Learning Algorithm For Deep

Belief Nets. Neural Computation. 18(7): 1527-1554.

Kolar, Z., Chen, H. ve Luo, X. (2018). Transfer Learning and Deep Convolutional

Neural Networks for Safety Guardrail Detection in 2d Images. Automation in

Construction. 89: 58–70.

Krizhevsky, A., Sutskever, I. ve Hinton, G. E. (2012). Imagenet Classification with

Deep Convolutional Neural Networks. Advances in Neural Information Processing

82

Systems 25 (NIPS 2012) (ss. 1097- 1105), Düzenleyen: Neural Information Processing

Systems Foundation Inc., Tahoe Gölü, Amerika Birleşik Devletleri. 3-8 Aralık 2012.

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W. ve

diğerleri. (1989). Backpropagation Applied to Handwritten Zip Code Recognition.

Neural Computation. 1: 541-551.

LeCun, Y., Bottou, L., Bengio, Y. ve Haffner, P. (1998). Gradient-Based Learning

Applied To Document Recognition. Proceedings of the IEEE. 86(11): 2278–2324.

LeCun, Y., Kavukcuoglu, K. ve Farabet, C. (2010). Convolutional Networks and

Applications in Vision. Proceedings of 2010 IEEE International Symposium on In

Circuits and Systems (ss. 253–256), Düzenleyen: Elektrik ve Elektronik Mühendisleri

Enstitüsü (IEEE) Paris, Fransa. 30 Mayıs-2 Haziran 2010.

LeCun, Y., Bengio, Y. ve Hinton, G. (2015). Deep Learning. Nature. 521(2015): 436-

444.

Lin, T. (2015). LabelImg. https://github.com/tzutalin/labelImg, (26.12.2019).

Manaswi, N.K. (2018). Convolutional Neural Networks. Deep Learning With

Applications Using Python (ss. 91-96). Kaliforniya: Apress.

Mane, D. T. ve Kulkarni, U. V. (2019). A Survey on Supervised Convolutional Neural

Network and Its Major Applications. Deep Learning and Neural Networks: Concepts,

Methodologies, Tools, and Applications (ss. 1058-1071). Amerika Birleşik Devletleri:

IGI Global.

Metaverbis (2019). Computer Vısıon And Image Processıng Solutions.

http://metaverbis.com/computer-vision, (26.12.2019).

83

MissingLink (2016). Convolutional Neural Network Tutorial: From Basic to

Advanced. https://missinglink.ai/guides/convolutional-neural-

networks/convolutional-neural-network-tutorial-basic-advanced/, (25.12.2019).

Nielsen, M.A. (2015). Neural Networks and Deep Learning.

http://neuralnetworksanddeeplearning.com/, (20.12.2019).

Patterson, J., Gibson, A. (2017). Deep Learning. Kaliforniya: O’Reilly Media, Inc.

Reis, Z.A. (2017). Yapay Zeka. Mühendislikte Yapay Zeka Uygulamaları (ss. 11-23).

Sakarya: Sakarya Üniversitesi Kütüphanesi Yayınevi.

Robles, L.F., Azzopardi, G., Alegrea, E., Petkov, N. (2017). Machine-Vision-Based

Identification of Broken Inserts in Edge Profile Milling Heads. Robotics and

Computer-Integrated Manufacturing. 44(2017): 276-283.

Russ, J.C. (1995). The Image Processing Handbook 2dh edition. Florida: CRC Press.

Russakovsky, O., . Deng, j., · Su, H., · Krause, J., Satheesh, S., · Ma, S., · Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., · Fei, L.F. (2015). ImageNet

Large Scale Visual Recognition Challenge. International Journal of Computer Vision.

115(3): 211-252.

Russell, S.J., Norvig, P. (1995). Artificial Intelligence a Modern Approach.

Contributing Writers: John F. Canny, Jitendra M. Malik, Douglas D. Edwards. New

Jersey: Prentice Hall, Englewood Cliffs.

Russell, B.S. J., Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd

edition). New Jersey: Prentice Hall.

84

Saurabh, G. (2018). Use Machine Learning to Detect Defects on the Steel Surface.

https://software.intel.com/en-us/articles/use-machine-learning-to-detect-defects-on-

the-steel-surface, (24.12.2019).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Driessche, Schrittwieser,

G. V. D. J., Antonoglou, I., Panneershelvam, V., Lanctot, M. ve diğerleri (2016),

Mastering The Game of Go with Deep Neural Networks And Tree Search. Nature.

529(7587): 484–489.

Song, L., Li, X., Yang, Y., Zhu , X., Guo, Q. ve Yang, H. (2018). Detection of Micro-

Defects on Metal Screw Surfaces Based on Deep Convolutional Neural Networks.

Sensors. 18(11): 3709.

Staar, B., Lütjen, M., Freitag,M. (2019). Anomaly Detection with Convolutional

Neural Networks for İndustrial Surface Inspection. 12th CIRP Conference on

Intelligent Computation in Manufacturing Engineering (ss. 484-489), Düzenleyen

CIRP, Napoli Körfezi, İtalya. 18-20 Temmuz 2018.

Stackoverflow (2019). Module 'tensorflow' Has No Attribute 'contrib'.

https://stackoverflow.com/questions/55870127/module-tensorflow-has-no-attribute-

contrib, (26.12.2019).

Suetens, P., Fua, P., Hanson, A.J. (1992). Computational Strategies for Object

Recognition. ACM Computing Surveys. 24(1): 5-61.

Szegedy, C., Vanhoucke, V., Ioffe: ve Shlens, J. (2016). Rethinking the Inception

Architecture for Computer Vision. IEEE conference on Computer Vision and Pattern

Recognition (ss. 2818-2826), Düzenleyen Elektrik ve Elektronik Mühendisleri

Enstitüsü (IEEE), Las Vegas.

https://software.intel.com/en-us/articles/use-machine-learning-to-detect-defects-on-the-steel-surface
https://software.intel.com/en-us/articles/use-machine-learning-to-detect-defects-on-the-steel-surface

85

Tao, X., Zhang, D., Ma, W., Liu, X. ve Xu, D. (2018). Automatic Metallic Surface

Defect Detection and Recognition with Convolutional Neural Networks. Applied

Science. 8(9): 1575.

Tecim, V. (2015). Sistem Geliştirme Yaşam Döngüsü.

http://debis.deu.edu.tr/userweb/vahap.tecim/dosyalar/sgyd.pdf , (19.12.2019).

Tensorflow (2017). TensorFlow Core. https://www.tensorflow.org/, (20.12.2019).

Voulodimos, A., Doulamis, N., Doulamis A. ve Protopapadakis, E. (2018). Deep

Learning for Computer Vision: A Brief Review. Computational Intelligence and

Neuroscience. 2018: 1-13.

Wang, Z. (2015). The Applications Of Deep Learning On Traffic Identification.

https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Applications-Of-

Deep-Learning-On-Traffic-Identification.pdf, (26.12.2019).

Zocca, V., Spacagna, G., Slater, D., Roelants, P. (2017). Python Deep Learning.

Birleşik Krallık: Packt Publishing.

http://debis.deu.edu.tr/userweb/vahap.tecim/dosyalar/sgyd.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-Identification.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-Identification.pdf

EKLER

ek s. 2

Ek 1: Step Motor Kodları

ek s. 3

Ek 2: Veri Artırım Kodları

ek s. 4

Ek 3: Yeniden Boyutlandırma Kodları

ek s. 5

Ek 4: Google Colaboratory Kodları

ek s. 6

ek s. 7

Ek 5: Uygulama Geliştirme Esnasında Yaşanan Hatalar

Hata 1: Tensorboard, Google Colab üzerinde çalıştırıldığında hata alınıyordu

ve pencere açılmıyordu.

Aşağıdaki kod ile host adresi 0.0.0.0. olarak düzenlendikten sonra tensorboard

googlecolab üzerinden bizim server url’mize ve portumuzla bağlanmış ve sorunsuz

çalışmaya başlamıştır.

tensorboard --host 0.0.0.0 <other args here>

--host 0.0.0.0 host’u tensorflow’a, yerel makinedeki tüm Ipv4 adresleri

üzerindeki bağlantıları dinlemesini söyler.

Hata 2: Tensorboard’un, runtime süresi 12 saat geçince donduğu ve sayfadan

attığı görülmüş olup, böyle bir durumla karşılaşıldığında aşağıdaki yöntemle kolayca

çözüldüğü tespit edilmiştir.

ek s. 8

Hata 3: Tensorflow 2.0 kurulundan sonra, model_builder_test.py python

modülü çalıştırıldığında aşağıdaki hata alınmıştır.

Tensorflow 2.0 ile Tensorflow1.x versiyonlarında kullanılan Contrib modülü

kullanımına son verildiği tespit edilmiştir

(https://stackoverflow.com/questions/55870127/module-tensorflow-has-no-attribute-

https://stackoverflow.com/questions/55870127/module-tensorflow-has-no-attribute-contrib

ek s. 9

contrib). Tensorflow 2.0 kurulumu kaldırılmış ve yerine Tensorflow1.13.2 versiyonu

kurularak bu hata çözülmüştür.

Hata 4: Eğtim esnasında loss değerlerinde büyük sapmalar meydana gelmiştir.

3000’inci adımdan sonra yavaş yavaş loss değeri 4-6-7-9 görülmeye başlanmış ve

adım sayısı arttıkça bu değer 9’lara kadar sık sık çıkmıştır. 35500 adım eğitilmiş ama

loss değeri 1’in altına hiç düşmemiştir.

Bu sapmaların nedeninin ezberleme (overfitting) mi olduğu yoksa kodlarla

ilgili konfigürasyonunda mı sorun olduğu araştırılmıştır. Bu noktada sorunun, sınıf

sayısının 2 yazılarak yalnızca 1 etiket belirtilmesinden kaynaklandığı düşünülmüştür.

Ardından hatasiz fotoların da etiketlenmesi, label_img.pbtx ve config dosyalarının 2

sınıf 2 etiket olacak şekilde yeniden düzenlenerek eğitilmesiyle sorun çözülmüştür.

Hata 5: Object_detection_image.py modülü çalıştırıldığında : cannot connect

to X server hatası alınması.

https://stackoverflow.com/questions/55870127/module-tensorflow-has-no-attribute-contrib

ek s. 10

Eğitim işleminin tensorflow 1.13.2 versiyonunda yapılmasına rağmen, nesne

tespit modülünün tensorflow 2.0 versiyonu üzerinde çalıştırıldığı anlaşılmıştır. Nesne

tespit modülü tensorflow 1.13.2 üzerinde tekrar çalıştırılınca hata alınmamıştır.

Hata 6: ModuleNotFoundError: No module named 'deployment' hatası.

Bu hatanın sebebinin PYTHONPATH'in doğru yazılmadığında ortaya çıktığı

görülmüştür.

Hata 7: TypeError: __init__() got an unexpected keyword argument

'dct_method'

Bu hatayı düzeltmek için /object_detection/data_decoders/tf_example_decoder.py

dosyası açılarak 110’uncu satırda "dct_method=dct_method" argümanı silinmiştir.

Hata 8: ImportError: cannot import name 'preprocessor_pb2' (ve pb2 ile ilgili

diğer hatalar)

Bu hatanın derlenmeyen .proto dosyası olduğunda meydana geldiği anlaşılmıştır.

/object_detection/protos klasörü kontrol edilmiş ve eksik olan proto dosyasının

protobufları derlediğimiz komuta eklenmiş ve kod tekrar çalıştırılmıştır.

Hata 9: Unsuccessful TensorSliceReader constructor: Failed to get "file path"

The filename, directory name, or volume label syntax is incorrect.

Bu hatanın, config dosyasının yanlış düzenlediğinde alındığı görüşmüştür. Doya

uzantıları düzeltilerek ve düz slash(/) kullanılarak sorun çözülmüştür.

Hata 10: ModuleNotFoundError: No module named

'object_detection.legacy'Tensorflow Object Detection API'ın en son güncellenmiş

versiyonu indirilmiş ve bu versiyonda legacy klasörü yüklenmiştir.

ek s. 11

Hata 11: TypeError: a bytes-like object is required, not 'str'

labelmap.pbtxt UTF-8'e çevrilerek düzeltilmiştir.

