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ABSTRACT 

Finite element space discretization of heat conduction equation 

is briefly outlined, stability and convergence characteristics of 

relevant time integration methods are discussed. For the numerical 
I 

integration of the semidiscretized heat conduction equation, several 

computer programs implementing the adopted one and two step methods 

are developed. A series of experiments are made and overall nine 

different integration algorithms are compared on the basis of accuracy 

and computational efficiency. Based on the results of the experiments, 

it has been concluded that the Crank-Nicholson method in conjuction 

with the smoothing process proposed by Zienkiewicz and the two-step 

. Galerkin and Liniger methods with the starting procedure which involves 

starting the method with the known steady conditions prevailing for 

time less than zero are superior to the other methods investigated. 
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tJ Z E T 

IS1 iletimi denkleminin sonlu elemanlar yontemi ile uzayda 

ayr1klanmaS1 k1SaCa ozetlendi, uzayda ayr1klanm1S lSl iletimi denk­

leminin zamanda tUmlevlenmesi amac1yla kullan1lan yontemlerin karar­

llllk ve yak1nsakl1k ozellikleri tart1S1ld1. Yar1-ayrlklanm1S lSl 

iletimi denkleminin secilen yontemlerle zamanda tUmlevlenmesi icin 

bilgisayar programlar1 gelistirildi. Yap1lan deneylerle, toplam 

dokuz tUmlev alma algoritmas1, do§ruluk ve islemsel verimlilik teme­

linde karS1last1r1ld1. Deneyler sonucunda, slf1r an1n1n yar1m-zaman 

ad1m1 gerisinden baslat1lan Crank-Nicholson yontemi ile slf1r an1n1n 

bir zaman ad1m1 gerisinden baslat1lan iki ad1ml1 Galerkin ve Liniger 

. yontemlerinin, di§er . ...,yi:intemlere oranla daha iyf sonuc verdikleri 

gorUldU. 



/ 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS 

ABSTRACT 
II 

OZET 

LIST OF FIGURES 

LIST OF TABLES 

LIST OF SYMBOLS 

I. INTRODUCTION 

II. THE SEMIDISCRETIZATION OF LINEAR TRANSIENT HEAT 
CONDUCTION PROBLEM 

2.1 Classical Formulation of the Heat Conduction 
Problem 

2.2 Weak Formulation of the Heat Conduction 
Problem and the Galerkin Approach 

III. LINEAR MULTISTEP METHODS 

3.1 Preliminary Definitions 
, 

3.2 Convergence, Consistency, Zero-Stability 

3.3 Absolute Stability 

3.4 Problem of Stiffness 

IV. MULTISTEP DISCRETIZATION OF THESEMIDISCRETIZED 
HEAT CONDUCTION EQUATION 

4.1 The General Linear k-Step Method Applied 
to Heat Conduction Equation 

vi 

iii 

iv 

v 

vi 

vii 

xii 

1 

3 

3 

4 

9 

10 

16 

24 

31 

39 

39 



vii 

Page 

4.2 One-Step Methods 42 

4.3 Two-Step Methods 48 

4.4 The Problem Associated with the Interpretation 
of the Forcing Functions 56 

4.5 Smoothing Methods for Discontinuous Forcing 
Functions 

V. RESULTS 

VI. CONCLUSION 

APPENDICES 

APPENDIX 1 - LINEAR DIFFERENCE EQUATIONS WITH CONSTANT 

59 

64 

94 

COEFFICIENTS 96 

,APPENDIX 2 - DERIVATION DETAILS FOR ONE- AND TWO-STEP 
METHODS 100 

REFERENCES 104 

( 



viii 

LIST OF FIGURES 

Page 

FIGURE 3.1 Successive steplength halving. 17 

FIGURE 3.2 An absolute stabl1lty region. 33 

FIGURE 3.3 Absolute stability region of A-stable methods. 36 

FIGURE 3.4 Absolute stability region of A(a)-stable 
methods. 38 

FIGURE 4.1 Basis functions for one-step methods. 42 

FIGURE 4.2 Basis functions for two-step methods. 49 

FIGURE 4.3 Step change in ~ or a~. 60 

FIGURE 4.4 Ramp change in ~ or a~. 60 

FIGURE 4.5 Smoothing of h or a~ as proposed by Zienkiewicz. 60 

FIGURE 4.6 Smoothing of ~ or a~ by an exponential function. 61 

FIGURE 4.7 Interpolation of the forcing function. 62 

FIGURE 4.8 Interpolation of the forcing function. 62 

FIGURE 5.1 Test problem. 65 

FIGURE 5.2 10xlO Finite element mesh wi~h triangular 
elements. 66 



ix 

LIST OF TABLES 

TABLE 5.1 One-step Methods, solution obtained for 
discontinuous boundary temperature, 
x = ( ° . ° , ° . ° ), fI t = 0. 1 68 

TABLE 5.2 One-step Methods, solution obtained for 
discontinuous boundary temperature. 
x = (0.5,0.5), fit = 0.1 69 

TABLE 5.3 One-step Methods, solution obtained for 
discontinuous boundary temperature, 
x = (0.0,0.0), fit = 0.001 70 

TABLE 5.4 One-step Methods, solution obtained for 
discontinuous boundary temperature, 
x = (0.5,0.5), fit = 0.001 71 

TABLE 5.5 One-step Methods, solution obtained for 
ramp smoothed boundary temperature, 
x = (0.0,0.0), fit = 0.01 72 

TABLE 5.6 One-step Methods, solution obtained for 
ramp smoothed boundary temperature, 
x = (0.5,0.5), fit = 0.01 73 

TABLE 5.7 One-step Methods, solution obtained for 
ramp smoothed boundary temperature, 
x '" (0. 0, 0. 0), fit = 0.001 74 

TABLE 5.8 One-step Methods, solution obtained for 
ramp smoothed boundary temperature; 
x = (0.5,0.5), fit = 0.001 75 

TABLE 5.9 One-step Methods, solution obtained for 
smoothed boundary temperature as proposed 
by Zienkiewicz, x = (0.0,0.0), fit = 0.01 76 

TABLE 5.10 One-step Methods, solution obtained for 
smoothed boundary temperature as proposed 
by Zienkiewicz, x = (0.5,0.5), fit = 0.01 77 

TABLE '5.11 Crank-Nicholson Method, ~olution obtained 
for averaging first two successive 
temperatures, x = (0.0,0.0), fit = 0.01 78 -



TABLE 5.12 Crank-Nicholson Method, solution obtained 
for averaging first two successive 

x 

temperatures, x= (0.5,0.5), 6t = 0.01 79 

TABLE 5.13 Crank-Nicholson .Method, solution obtained 
for averaging first two successive 
temperatures, x = (0.0,0.0), 6t = 0.001 80 

TABLE 5.14 Crank-Nicholson Method, solution obtained 
for averaging first two successive 
temperatures, x = (0.5,0.5), 6t = 0.001 81 

TABLE 5.15 Crank-Nicholson method, solution obtained 
for exponential smoothed boundary temperature, 
x = (0.0,0.0), 6t = 0.01 82 

TABLE 5.16 Crank-Nicholson Method, solution obtained 
for exponential smoothed boundary 
temperature, x = (0.5,0~5), 6t = 0.01 83 

TABLE 5.17 Crank-Nicholson Method, sol~tion obtained 
for exponential smoothed boundary 
temperature, x = (0.0,0.0), 6t = 0.001 84 

TABLE 5.18 Crank-Nicholson Method, solution obtained 
for exponential smoothed boundary 
temperature, x = (0.5,0.5), 6t = 0.001 85 

TABLE 5.19 Two-step Methods, solution obtained by 
starting with the Crank-Nicholson Method, 
x = (0.0,0.0), 6t = 0.01 86 

TABLE 5.20 Two-step Methods, solution obtained by 
starting with the Crank-Nicholson Method, 
x = (0.5,0.5), 6t = 0.01 87 

TABLE 5.21 Two-step Methods, solution obtained by 
starting with the Crank-Nicholson Method, 
x = (0.0,0.0), 6t = 0.001 88 

TABLE 5.22 Two~step Methods, solution obtained by 
starting. with the Crank-Nicholson Method, 
x = (0.5,0.5),6t = 0.001 89 

TABLE 5.23 Two-step Methods, solution obtained by 
starting with known steady conditions, 
x = (0.0,0.0), 6t = 0.01 90 



TABLE 5.24 Two-step Methods, solution obtained by 
starting with known steady conditions, 
~ = (0.5,0.5), 6t = 0.01 

TABLE 5.25 Two-step Methods, solution obtained by 
starting with known steady conditions, 
x = (0.0,0.0), 6t = 0.001 ' 

TABLE 5.26 Two-step Methods, solution obtained by 
starting with known steady conditions, 
x = (0.5,0.5), 6t = 0.001 

xi 

91 

92 

93 



A 

A 

a 

c 

C 

C 

f 

f 

f 

g 

g 

h 

h 

I 

I ~t 

J 

LIST OF SYMBOLS 

Coefficient matrix of linear first order systems. 

Coefficient matrix in Eq. 4.2. 

Vector of unknown nodal parameters for temperature. 

Vector of all nodal parameter for temperature. 

Complex numbers. 

Modified heat capacity matrix. 

Heat capacity matrix. 

Coefficients in Eq. 3.7. 

xii 

Coefficient matrix of the derivative of specified nodal 
parameters. 

Global error at time tn. 

Truncation error at time tn. 

Modified forcing vector. 

Right-hand vector of first order systems. 

Forcing vector. 

Rate of heat generation per unit mass. 

Forcing vector in Eq. 4.2. 

Heat transfer coefficient. 

Condensated for~ing vector. 

Time interval. 

Discrete time interval. 

Jacobian matrix. 
, 



xiii 

K Modified heat conductivity matrix. 

K Heat conductivity. 

KN N-dimensional Euclidean space. 

k Step number of linear multistep methods. 

k. . Conductivity tensor. 
1J 

k Coefficient vector of specified nodal parameters. 
-£ 
L Lipschitz constant. 

L Difference operator associated with a linear multistep method. 

N. Basis functions for finite element time discretization. 
1 

n Time node. 

n Unit normal vector. 

q. Heat flux vector. 
-1 

gn Vector ~-l:n 
R Absolute stability region. 

R Local round-off error at time t n+k. -n+k 
R+ Positive real numbers. 

r Parameter of stability polynomial. 

~n Round-off error. 

S Boundary of the domain Q. 

S Similarity transformation matrix. 

Sl,S2,S3 Subboundaries of the boundary S. 

tn Time at nth time node. 

~i Eigenvectors of the matrix ~. 

x Point in three-dimensional Euclidean space. 

x,z Points in N~dimensional Euclidean space . 

. x Unknown vector of first order systems. 



n 

e 

e 

A. , 

TI 

p 

p 

a 

¢ 

¢~ 

~n+k 
Q 

~n+k 
~. 

Coefficients of linear multistep methods. 

Parameters of Zienkiewicz three-level schemes. 

Steplength. 

Initial vector of first-order systems. 

Starting vectors for linear multistep methods. 

Temperature distribution. 

Parameter of e-methods. 

Initial temperature distribution. 

Specified temperature on Sl. 

Ambient temperature. 

Diagonal form of of Jacobian matrix. 

Eigenvalue of the test equation. 

Eigenvalues of first-order systems. 

xiv 

Local parameters for finite element time discretization. 

Stability polynomial. 

Mass density. 

First characteristic polynomial. 

Second characteristic polynomial. 

Trial function. 

Basis functions for finite element space discretization. 

Local error at time t n+k. 

Bounded domain in three-dimensional Euclidean space. 

Local truncation error. 

Parameter of first and second characteristic polynomials. 



1 

I I I NTRODUCTI ON 

One of the ,exiting areas in heat transfer applications today 

is the digital simulation of the transient heat conduction problem. 

By means of digital simulation, it is possible to solve both linear 

and nonlinear problems with irregular geometries, which cannot be 

handled by the classical methods of analysis. In the modelling of 

the heat conduction problem for digital simulation, the governing 

equations are first discretized in space. This procedure is referred 

to as the semidiscretization and yields a system of first order dif­

ferential equations in time. Because of its flexibility with regard 

to geometry and specification of initial and boundary conditions, 

the finite element method has been the most widely used method for 

t~e semidiscretization of the heat conduction equation. 

The study of computational methods for the numerical integra­

tion of the semidiscrete systems has deepened considerably in recent 

years. In the mean time, several new approaches with greater perfor­

mance and computational efficiency have been developed. Being of 

considerable importance, transient heat conduction problem has been 

one of the focal points of this study for the first order systems. 
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Although much development has been achieved during the last 

two decades, effective engineering analysis of many important problems 

is still hindered by the large cost of time integration of computer 

models. Thus, further ~tudy for understanding and improving numerical 

integration algorithms is still a necessary and important task to be 

taken over. Present state of the art of the numerical integration 

methods for the semidiscretized heat conduction equation is given in 

the works of Zienkiewicz [1,2], Zlamal [3], Wood [4], and Hogge [5]. 

The application of the finite element method to heat conduction 

problems was first made by Wilson and Nickell [6] for. the linear tran­

sient case. The main development in the numerical integration of the 

semidiscretized heat conduction equation, on the other hand, is due to 

Zienkiewicz [1]. 

The purpose of this study is to discuss and compare several 

methods that have been proposed for the numerical integration of 

semidiscretized heat conduction equation with regard to com~utational 

efficiency and accuracy. 

The present work consists of mainly three parts. The first 

part briefly deals with the statement of the heat conduction problem 

and its finite element discretization, the subject of Chapter two. 

The second part is devoted to the study of the multistep methods and 

their application to heat conduction problem, the subject of the 

Chapters three and four. The third part deals with the results of the 

experiments made with the one step 8-methods and the Zienkiewicz three­

level methods, a brief summary of which can be found in Chapter four. 

I -



II. THE SEMIDISCRETIZATION OF LINEAR 
TRANSIENT HEAT CONDUCTION PROBLEM 

2.1 CLASSICAL FORMULATION OF THE HEAT CONDUCTION 

PROBLEM 

The initia1-boundary-va1ue. problem associated with linear 

transient heat conduction is to find a temperature distribution 

8 = 8(x,t) in nx[O,T), satisfying the heat conduction equation 

. a8 
( k .. 8, .) " + pg = c -- in 

lJ J 1 at 
nx[O,T) (2.1) 

subject to the initial condition 

8(~,O) = 8
0 

in n (2.2) 

and the boundary conditions 

8(~,t) = as on Sl x(O,T) (2.3) 

(k .. 8,. - q.)n. = 0 on S2x(O,T) (2.4) 
1 J J 1 1 

'k .. 8,. - h(a - a) = 0 on S3x(O,T) (2.5) 
lJ J 00 

wher'e n is a bounded domain in three-dimens i ana 1 Euclidean space; 

3 



S = SlUS2US 3 is the boundary of the domain n with subboundaries 

Sl' S2' S3; ~ = (xl ,x2,x3) is a point of the domain n; [O,T) is a 

4 

time interval where T is any positive scalar; k .. = k .. (x), i,j = 1,2,3 
lJ lJ ~ 

is the distribution of the conductivity tensor in n; p = p{x) is the 

distribution of the mass density in n; C = C(x) is the distribution 

of the specific heat capacity in n; e = e (x) is the initial tem-o 0 ~ 

perature distribution in n; g = g(x,t) is the distribution of the rate 

of heat generation per unit mass in n; es = es(~,t) is the specified 

temperature distribution on Slx(O,T); qi = qi(~,t), i = 1,2,3 is the 

heat flux distribution on S2x(0,T); h = h(x,t) is the heat transfer 

coefficient distribution and e = e (x,t) is the ambient temperature 
00 00 ~ 

distribution on S3x(0,T); ~ = (n l ,n2,n3) is the unit normal vector on 

boundary S. 

2.2 WEAK FORMULATION OF THE HEAT CONDUCTION PROBLEM 

AND THE GALERKIN APPROACH 

Many of the finite element ~ethods that have been developed 

for linear transient heat conduction problem are based on the method 

of weighted residuals. Among the various forms of this method, 

Galerkin approach (or the Galerkin weighting procedure) is the most 

popular one used for the finite element space discretization of the 

. heat conduction problem. The discretization of transient problems 

in space is called a semidiscretization and yields a set of ordinary 

differential equations in.time. 

In order to formulate the heat conduction problem in a weak 

form and to apply the Galerkin method, we introduce the space Hl. 
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Hl . th 1S e space of real functions which together with their first order 

derivatives are square integrable over Q. Now, we consider the space 

V of trial functions cp, consisting of elements cp £ Hl such that CP\Sl = O. 

Then the integral form of the heat conduction equation can be written as 

.r cp{(k .. 8,.),. + pg - pc ~}dn = J cp{(k .. 8,. - q.)n.}dS 
Q 1J J 1 at S 1J J 1 1 

2 

+ J cp{ (n. k .. 8,. - h (8 -8)} dS 
S 1 1J J 00 

3 (2.6) 

If we apply the Green-Gauss theorem to the first term of the 

first integral in Eq. (2.6), we get 

J cp ( k .. 8, .), . dQ = - J cp,. k .. 8, . dQ + J cp n . k .. 8 , . dS ( 2 . 7) 
Q 1J J 1 Q 1 1J J S US 1 1J J 

2 3 

Substituting Eq. (2.7) in Eq. (2.6) and, then, rearranging the terms 

in the resulting equation, we can write the weak form of the heat 

conduction problem as 

. a8 
J cp, .k .. 8, .dQ + J cppc -- dQ + J cp'h8dS = J cppgd 
Q 1 1J J Q at S Q 

3 

+ J cpn.q.dS + J cph8 dS (2.8) 
S 1 1 S 00 

2 3 

Now for any finite element partition of the domain of Q, let 

h be a positive number which characterizes this partition and is 

defined as the largest diameter of all elements. Let {cpt(~)} be a 

finite element CO basis such that each CPt(~) vanishes over all but 

a fixed number of elements and is continuous across the boundaries 

of any two adjacent elements, and one of the nodal parameters of each 
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$~(~) equals one at a node whereas the others are zero. Then we can 

approximate e as 

n 
e ::: e = L $ (x)a (t) = $ T-a 

~=l ~ - ~ - -
(2.9) 

where all or some of the -parameters a~(t) are unknowns depending on 

the existence of the specified temperature boundary condition. 

It is important to note that the choice of basis functions 

are restricted to be from the space V of trial functions $ consisting 

of elements $ E Hl such that $\Sl = O. On the other hand, the 

approximation 

requires that none of the basis functions vanish on the boundary Sl' 

Therefore, approximation for e must be in number equal only to the 

unknown nodal values. However, we will agree to form all the equa-

tions for all the nodal values, and subsequently to constrain the 

resulting equations such that the specified temperature boundary . 
condition is satisfied. The reason for adopting this approach is 

that it is much easier to insert specified boundary temperatures at 

the end of discretization. 

Substituting Eq. (2.9) in Eq. (2.8) and using the basis 

functions $ ,$ , ... ,$ for $, we obtain 
1 2 n 

f$pgd~ + f $n.q.dS 
~- S - , , 

2 

+ f $he dS _ co 

S3 
(2.10) 



or, in matrix form, we get 

Ca + Ka = f - (2.11) 

-
where C is the heat capacity matrix defined as 

C = fpc<jJ<jJ T dr2 
- Sl --

- f 
K is the heat conductivity matrix defi'ned as 

- _ T T K - f<jJ, .k .. s ,.dS"2 + f h<jJ<jJ dS 
- Sl-" J- J S--

2 

and f is the forcing function defined as 

f = f pg<jJdSl + f <jJn.q.dS + f <jJhS dS 
- Sl - S-" S_co 

2 3 

The initial condition S(x,O) = So(x) on Sl gives the initial 

condition for a(t) 

a(o) = a 
- -0 

where a is the vector determined asso (x) = <jJ T a . 
-0. - -0 

So far we have obtained the semidiscretized equation (2.11) 

7 

of the heat conduction problem in space for all the nodal values. If 

the number of specified nodal parameters is m and the number of all 

nodal parameters is n, then the effect of modification for specified 

nodal parameters yields the system of first order differential equa­

tions for (n-m) free nodal parameters defined as 

. Ca + Ka = f (2.12) - -' 

where a is the vector of (n-m) unknown nodal parameters, C and- K are 



condensated form of the matrices of ~ and g by simply deleting the 

rows and columns of C and K that corresponds to the specified nodal 

parameters. In this case the vector f takes of the form 

8 

f = h - a c - an~n 
- - R,-R, N-_N 

R, = 1,2, ... ,m (2.13) 

-where h is the condensated form of the forcing function f by simply 

deleting the rows of f that corresponds to specified nodal parameters, 

cR, and kR, are, respectively, the relevant partitions of the £'th 
- -columns of the matrices C and K. 
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III. LINEAR MULTISTEP METHODS 

A large class of algorithms commonly used for the numerical 

integration of initial value problems is the class of linear multi­

step methods. In this work, we have employed a subclass of such 

methods for the solution of finite element semidiscretized heat con-

duction equation. It therefore seems appropriate to give a brief 

review of the properties of this class of methods, rather than dealing 

with specific properties of any member of it. 

This chapter is intended to provide a summary of the funda­

mental concepts in the theory of linear multistep methods. The dis­

cussion is mainly based on the celebrated works of Henrici [ 7,8 J, 

Lambert [9J and Gear [lOJ. We begin, in Section 3.1, by introducing 

the preliminary definitions necessary for later considerations. In 

Section 3.2, we discuss the concepts of convergence, consistency and 

zero-stability. This enables the presentation of the fundamental 

theorem of Dahlquist [llJ, which establishes the necessary and suffi­

cient conditions for convergence. The main subject of Seciion 3.3 is 

absolute stability. The study of absolute stability provides an answer 
~ 

for the question of accuracy, when the method is applied with a fixed 

iteplength. Finally Section 3.4 deals with stiffness problem that 

arises in forcing the absolute stability criterion to be satisfied. 



3.1 PRELIMINARY DEFINITIONS 

Let KN be the complex N-dimensional Euclidean space, z be a 

point in KN where ~ = [zl,z2, ... ,zNJT. We set 

10 

Also let I = [a,bJ be a closed finite time interval where -00 < a < b < 00 

and t be a typical point in I. 

Consider the initial value problem for a system of first 

order differential equations 

x = f(t,x) - - - (

0 d 
:: crt) 

( 3.1) 

x (a) = n - -
where x and f are functions from IxKN to KN· 

THEOREM 1 (Henrici [7 J): Let f( t ,x) be defi ned and conti nuous for 

all points (t,~) in IxKN and let there exists a constant L, called 

the Lipschitz constant of f. For every t,x,z such that (t,x) and 

(t,z) are both in IxKN, if 

Ilf(t,x) - f(t,z) II < Lllx-zll - - - - - -- (3.2) 

then, for all ~ E KN there exists a unique solution ~(t) of the 

initial value problem (3.1) where ~(t) is continuous and di"fferen­

tiable.for all (t,~) in IxKN: 

Consider now the sequence of points 

+ I t = {t = a + n~t I n = O.l, ... ,(b-a)/~t, ~t E R } 
~ n 



on which we seek an approximate solution to ~(t) .. The parameter ~t 

is called steplength and assumed to be constant throughout. Let us 

define ~n as an approximation to ~(tn) and let !n = f(tn'~n). 

Definition 1: A computational method of the form 

k k 
~ a·x 0 = ~t ~ S f 

j=O J-n+J j=O j-n+j 
(3.3) 

to which the sequence {x lis a solution is called a linear k-step -n 
method or linear multistep method of step number k, where a. and S. 

J J 

are constants. We shall assume that a k t 0 and a o and So are not 

both zero. 

The polynomials p(s) and a(s) defined as 

p(s) 
k . 

= ~ a ·sJ 
j=O J 

k 
= ~ S osj 

j=O J 

(3.4) 

are called respectively, the first and second characteristic poly­

nomials of the linear multistep method. A linear multistep method 

is called explicit if Sk = 0 and implicit if Sk ~ O. 

11 

In order to compute the sequence {~n} through Eq.(3.3), we 

need a set of starting vectors ~o'~l' ... '~k-l. Given any set of 

arbitrary starting vectors ~o'~l' ... '~k-l for Eq. (3.3) Henrici [7] 

prove~ that there' exists a unique solution {~n} if ~t satisfies the 

condition 

-1 -1\ o ~ ~t ~ ~kSk L = tto 

. where L denotes the Lipschitz constant of f. 
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Methods for obtaining starting vectors for the linear multi­

step method (3.3) are called starting algorithms. Formally, starting 

procedures ~re defined as done in Henrici [7] as follows: 

Definition 2: A starting procedure L ;s a set of vector-valued 

functiansno(6t),nl(6t), ... ,nk_l(6t) defined for sufficiently small 

6t > O. The starting algorithm then consists of setting 

(m = O,l, ... ,k-l). 

It should be noted that the above definition does not neces-

sarily require to choose ~o as ~, namely the initial vector of the 

problem (3.1). However, in practice, the starting algorithm is fre­

quently realized by setting ~o = n and calculating ~1'~2""'~k-l by 

some one-step method. 

Let us define a vector-valued difference operator associated 

with a given multistep method as 

k 
L{y(t);6t} = L [a.y(t+j6t) - 6tS·Y(t + j6t)] (3.5) 
~ ~ j=O J~ J-

where y(t) is an arbitrary vector-valued function that is continuously 

differentiable on I. Expanding ~(t + j6t) and ~(t +j6t) into Taylor's 

Series about t, substituting the results in Eq. (3.5) and collecting 

the like terms, we get 

< • 

where 

~{~(t);6t} = Co~(t) + C16ty(1)(t) + ... + Cq6tq~(q)(t) + ... 

(3.6) 



k 
Co = L:. a. 

j=O J 

k 
Cl = L: ja. 

j=O J 

k 
L: S. 

j=O J 

k C = _1_ L: jqa. __ -,-1 __ 
q q! j=O J (q - l)! 

(3.7) 

Definition 3: The order of the difference operator L{y(t);~t} and - -

13 

its associated linear multistep method is the largest integer p such 

that for all t 

It can be shown that the difference operator (3.5) and its 

associated linear multistep method is of order p if and only if 

Co = C
l 

= ... = Cp = 0, and Cp+l ~ O. Thus if the method (3.3) is of 

order p, then 

L{y( t) ;~t} (3.8) 

Let us reconsider the difference equation 

k k 
L: a·X . = ~t E SJ·!n+J· . 0 J-n+J . 0 J= J= 

. (3.3) 

Since Eq. (3.3) can be multiplied on both sides by the same constant 

without altering the relationship, the coefficients aj and'Sj are 

arbitrary to the extent of a constant multiplier. Thus by multiplying 

across Eq. (3.3) by an arbitrary constant, which will not alter the j 

performance the linear multistep method, it is possible arbitrarily 
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to change the value of Cp+l in Eq. (3.8) and thus rob it of its signi­

ficance. Fortunately, this arbitrariness can be removed by fixing ak 

as 1 which is equivalent to divide a,cross Eq. (3.3) bYa k which is 

normally different than, one. The Cp+l term to be obtained from the 

resulting equation does not saffer from the arbitrariness discussed 

above, since the coefficients are not arbitrary anymore. On the 

other hand, it is also possible to leave the coefficients a· and 8· 
J J 

arbitrary to the extent of a constant multiplier and consider the 

ratio 

Cp+l 
k 
L: 8· 

j=O J 

where Cp+l is the first nonvanishing term obtained from Eq. (3.3) 

without any restricti~n on the coefficients, rather than the co-

efficient Cp+litself. It should be noted that although Cptl is 

arbitrary to the extent of a constant multiplier, the ratio 
k k 

C +1/ L: 8· is invariant since L: 8j is also arbitrary to the extent 
p j=O J j=O 

of the same constant multiplier. 

Still another way of removing the arbitrariness of the 

coefficients in Eq. (3.3), is to agree to divide the Eq. (3.3) by 
. k 

L: S .. Then the resulting coefficients Sj' j = O,l, ... ,k will 
j=O J 
satisfy the condition 

and 

L:S. = 1 
J 

k 
L: S·=l 

j=O J .' 

coefficients arbitrar = ____ L..::..:::.:=...;-:...:..:::...:...=.:.:...:.;=--.:;~~~>L-
k 
L: S· 

j=O J 
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Depending on the way in which the arbitrariness of the C
p
+

l 
term is removed, either the coefficient involved in 

k 
the ratio C +1/ L S· is called the error constant. 

p j=O J k 

this term or 

The error constant 

in the case of uk = 1 or L S" 
j=O J 

obtained from the modified Eq. 

= 1 will simply be the coefficient C +1 
k P 

(3.3) such that either uk = 1 or L S· = 1. 
j=O J 

The error constant in the case in which the coefficients are left ar-

bitrary is 

Cp+l 
k 
L S. 

j=O J 

where Cp+l is the coefficient associated with Eq. (3.3) in which the 

coefficients are arbitrary. 

Let 

e = x- x(t ) -n _n - n 

be the global error at tn £ I where x is the computed solution and _n 

~(tn) is the exact solution at tn' For a given multistep method, it 

can be shown that 

i.e. the error approaches to zero with order ~tP, where p is the order 

of the method. Thus, p may also be referred to as the order of accuracy 

or rate of convergence. Thus, the order of a multistep method give 

the functional dependence of error on ~t. The error constant, on 

the other hand, as discussed "in Lambert [9 ], provides a measure for 

( comparing the error in two different methods of the same order. 
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3.2 CONVERGENCE, CONSISTENCY, ZERO-STABILITY 

Definition 4: The linear multistpe method (3.3) is called 

convergent if, for all initial value problems (3.1) subjected to the 

hypothesis of Theorem 1, we have that 

lim lI~n - ~(tn)1I = 0 
Ll t-+O 
Mt=t-a 

holds for all t·£ I and for all solutions {x } of the Eq. (3.3) satis­_n 

fying the starting conditions 

for which lim nm(Llt) = n, m = O,l, .•. ,k-l. 
Ll t-+O -

Lambert [9 ] exp 1 a ins the above def; nit i on by the fo 11 owi ng 

argument: 

"It is inappropriate to consider n as remaining fixed while 

Llt -+ O. For example, consider a fixed point t = T, and let .the initial 

choice of steplength Llt. be such that T = a + 2Llt.. In the special 
l l 

case when the steplength is successively halved, the situation illus-

trated by Fig. 3.1 holds. 

If we use the notation x (Llt) to denote the value x given by _n _n 

the linear multistep method (3.3) when the step length is Llt, then we 

are interested not in the convergence of the sequence :2(Llti )':2(Llt i /2), 

x2(Llt./4), ..• , _ l but m the convergence of the sequence x2(Llt.),x4(Llt./2), 
- l _ l 

( At /4) to X(T) Thus the limit Xs LJ.. , •••• , • 
- l 

lim 
Llt-+O 
nLlt=t-a 

means, n -+ 00 as Llt -+ 0 and nLlt = t-a remains fixed." 



17 

t = a t = T 

.6.t·= .6.t. 
1 

to t1 t2 

.6.t = .6.t;l2.---------------------
to t1 

.6.t = .6.t. /4~. --0------------------'-..--------
1 to t1 

FIGURE 3.1 - Successive step1ength halving. 

Definition 5:A linear k-step method is called consistent if for any 

solution x(t) of the initial value problem (3.1) subjected to the 

hypothesis of Theorem 1 we have that 

max IIL{x(t);t}ll=o(t) 
o 1 - - n n= , , .. , no 

where n = [(b-a)/6t-k]. o 
The following theorem given in Henrici [7] proves that the 

consistency of a linear multistep method is equivalent to purely 

algebraic conditions imposed on the first and second characteristic 

polynomials of the method. 
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THEOREM 2: A linear multistep method is 'consistent if and only if the 

polynomials p(~) and o(~) satisfy the following conditions 

p(l) = 0 

or more explicitly, 

k 
L cx

J
" = 0 , 

j=O 

pi (1) = 0(1) 

k 
L: ja. = 

j=O J 

k 
L (3" 

j=O J 

(
I _ d ) 
=~ , 

(3.9) 

Therefore, the condition (3.9) is equivalent to say that 

Co = Cl = 0 where Co and Cl are the constants given by the identities 

(3.7). Hence, any consistent linear multistep method is of order at 

least one. 

In order to clarify the concept of consistency, let us continue 

with the following argument; 

Assume that the linear multistep method (3.3) is convergent. 

i) Consider the scalar initial value problem x(t) = 0, x(O) = 1, 

whose exact solution is x(t) = 1. If we apply the method (3.3) to this 

problem we get the following difference equation; 

(3.10) 

Let us choose the starting values xm = 1, m = O,l, ... ,k-l, which 

automatically satisfy the condition lim nm(nt) = 1, m = O,l, ... ,k-l. 
nt+O 

As the method is convergent, we must have 

1 im xn = 1 
nt+O 
nnt=t 

holds for all t > O. Since the solution,xn, of the difference 
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Eq. (3.10) does not depend on ~t, for any ~t, xn = 1 for all t. Thus 

for any ~t, at any stage of computation x = x k 1 = •.. = x = 1 n+k n+ - n 
which in turn requires that 

the first condition of consistency. 

ii) Consider the scalar initial value problem x(t) = 1, x(O) = 0, 

whose exact solution is x(t) = t. Then the Eq. (3.3) takes the form 

akxn+k + ak-lxn+k-l + ... + aoxn = ~t(Sk + Sk-l + ... + So) 

(3.11) 

Since the method (3.3) is assumed to be convergent, every solu­

tion started with x = n (~t) such that m m 

lim nm(~t) = 0 , 
6t~0 . 

must also satisfy 

lim x = t 
6t~0 n 
n6t=t 

m = O,l, ... ,k-l (3.12) 

(3.13) 

Let the sequence {xn} be a solution of Eq. (3.11) defined as 

xn = Kn6t, where K > 0 is a constant. The starting condition (3.12) 

is immediately satisfied by xm = nm(6t) = Km~t, m = 0,1, ... ,k-1, since 

lim Km~t = 0 for all m = O,l, ... ,k-l. 
6t~0 

If we substitute xn+j = K(n+j)6t, j 

we get 

= O,l, ... ,k in Eq. (3.11) 



or equivalently 

+ Ci } o 

(3.14) 

As it was shown in part (i), for any convergent linear multistep 

method, Ci k + Cik-l + ... + CiQ = O. Therefore, Eq. (3.14) reduces to 

20 

Assume that kCik + (k-l)Cik_l + ... + Cil = O. Then, the equality (3.15) 

holds if and only if Sk + Sk-l + ... + So = O. In this case, the 

sequence {xn} defined as xn = Kn6t will. be the solution of (3.11) for 

every K > O. This is a contradiction since, 

1 i m Knll t = K t 1 t 
llt+O 
Mt=t 

unless K = 1. Therefore we must have that kCi k + (k-l)Cik_l + ... + Ci l f O. 

If we solve K from Eq. (3.15) we obtain 

and the condition (3.13) is satisfied if and only if K = 1. Hence, 

we reach the identity 

k k 
l: jCi. = l: S· 

j=O J j=O J 

which is· the second condition of consistency. 

We can conclude from the above argument that any convergent 

linear multistep method is necessarily consistent. However, as it 
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will become clear later, consistency alone is not a sufficient condition 

for convergence. 

Definition 6: A linear "multistep method is called zero-stable if, for 

all functions, f subjected to the condition of Theorem 1, the following 

statement holds: 

Let ~o(6t)'~l(6t)' ... '~k_l(6t) denote k functions from the 

( ) ( -1 -1 interval 0,6to where 6to is previously defined as 6to = lakSk L I) 

to KN such that 

o < 6t < 6to' m = O,l, ... ,k-l 

for some constant M, and denote, for each 6t £ (O,~to)' the solution 

of Eq. (3.3) having the starting values 

m = 0,1, ... , k- 1 

by {~n(6t)}. Then the family of these solutions is uniformly bounded 

as 6t + 0,n6t = t there exists a constant M' such that 

max Ilxn(6t) II < M' 
0<6t<6to 

n=O,l, .. ,(b-a)/6t 

A zero-stable linear multistep method is frequently called 

simply IIstable". The word IIzero" was suggested by Lambert [9], since 

zero-st~bility is related with the limiting process as 6t + o. Some 

,authors also call zero-stability as Dahlquist- (or shorty D-)stability 

since it was originally defined by Dahlquist. 
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By the following theorem, Henrici [7] proves that the zero­

stability of a linear multistep method is equivalent to the purely 

algebraic property of the first characteristic polynomial of the 

method. 

THE 0 REl-l 3: A linear multistep method is zero-stable if and only if 

the roots of the polynomial 

satisfy ISil.2. 1, i = 1,2, ... ,k, and the roots satisfying ISi l = 1 

have multiplicity one. The above condition is frequently called as 

the root condition. 

In order to show the significance of zero-stability, we will 

proceed with the following discussion: 

Again assume that the linear multistpe method (3.3) is conver­

gent. Consider the scalar initial value problem x(t) = 0, x(O) = 0, 

whose exact solution is x(t) = O. If we apply the method (3.3) to 

that problem, we get the difference equation with constant coeffi-

cients 

(3.16) 

As the method (3.3) is convergent, for all solutions of Eq. (3.10) 

started with x = n (~t) such that m m 

. 1 im n (~t) = 0 
~t~O m 

must also satisfy 

m=O,l, .... ,k-l (3.17) 
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1 im x = 0 
b. t-+O m 

(3.18) 

nb.t=t 

for a 11 t > O. 

A detailed discussion on the solution of linear difference 

equations with constant coefficients is given in Appendix 1. In view 

of the analysis given in Appendix 1, let us examine the following two 

cases; 

i) Let ~r be a real root of p(~) with multiplicity one. Then 

the sequence {x } defined as x = b.t~n is a solution of 
n n r 

Eq. (3.16). The condition (3.17) is also satisfied by xm = nm(b.t) = 

b.t~~, m = O,l, ... ,k-l, since lim b.t~m = 0 for all m = O,l, ... ,k-l. 
b.t-+O r 

Note that 

lim b.t~n = t lim (~~/n) = 0 
b.t-+O r n~ 

iff I ~ I < l. r -

Mt=t 

Hence the condition (3.18) holds if and only if I~rl < 1. 

ii) Let ~ be a real root of p(~) with multiplicity greater 
r . 

than one. Then the sequence {xn} defined as xn = b.tn~~ 

is a solution of Eq. (3.16). Again the condition (3.17) is satisfied 

by x = n (b.t) = b.tm~mr' m = O,l, ... ,k-l, since lim b.tm~m = 0 for all 
m m b.t-+O r 

m = 0,1, ... ,k-l. Note that, in this case 

lim b.tn~~ = t lim ~n = 0 
b.t-+O n~ r 
nb.t=t 

Hence, the condition (3.18) holds if and only if I~rl < 1. 
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It'can be,found in Henriei [8] that, for a convergent linear 

multistep method, the root condition is also satisfied when the roots 

of p(z;;) are complex. Hence, zero-stability is a necessary condition 

for convergence. 

We will complete Section (3.2) by stating the fundamental theorem 

of Dahlquist, whose proof is also given in Henrici [7]. 

THEOREM 4: A linear multistep method is convergent if and only if 

it is consistent and zero-stable. 

3.3 ABSOLUTE STABILITY 

Upto this point, we have only dealt with the behaviour of the 

approximate solutions obtained by linear multistpe methods as 6t + O. 

However, in practice, we compute approximate solutions with a fixed 

positive 6t. In order to decide on the accuracy of computed solu­

tions when the steplength is fixed, we have to get some information 

about the error. 

There are mainly two types of errors in any method of approxi-

mate solution. The first is the truncation error, and the second is 

the round-off error. 

The truncation error of the linear multistep method is de-

fined by 

e_-
n 

= x - x(tn) 
-n -

,This error is unique for the initial value problem, the linear multi-­

step method and the starting procedure. 
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The round-off error is that kind of error originating from dis­

cretizing the number system, hence depends also on the computer and 

the details ~f the programs used. It is defined by 

r = x - x -n -n -n 

where ~n is the computed solution at tn. Therefore, we can define the 

global error as 

e = e + r = x - x(t ) -n -n -n -n _ n 

Let us assume that we have no round-off error and no previous 

truncation errors have been made. Then the expression ~{~(tn);~t} 

given by Eq. (3.5) will be the local truncation error of the associated 

linear multistpe method at t +k' when x(t) is the theoretical solution. n _ 

We put 

(3.19) 

for the local truncation error. 

Let us assume that we have no truncation error and no previous 

round-off errors have been made. Then the expression L{x ;~t} given - _n 

by Eq. (3.5) will be the local round-off error of the associated 

linear multistpe method at t n+k, when {~n} is the computed solution. 

We put 

k 
R +k =L{xn;~t} = ~ {aJoxn+Jo - ~t8of(x +o,t +.)} 
-n - - j=O - J- -n J n J 

(3.20) 

, Rewriting the Eqs. (3.19) and (3.20) as 

k k 
~ aox(t +0) = ~t o~O 8j!(tn+Jo,~(tn+j)) + ~n+k 

j=O J- n J J= 
(3.21) 
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k ' k 
}: aJ.xn+J· = t.t }: fLf(t "x .) + R k 

j=O - j=O J- n+J -n+J -n+ 
(3.22) 

and subtracting Eq. (3.21) from Eq. (3.22) we get 

k k 
}: a.e +' = t.t L 8.{f(t .,x .) - i(tn+J,,~(tn+J'))} + ~n+k j=O J-n J j=O J - n+J -n+J ~- ! 

(3.23) 

where ~n+j = ~n+j - ~(tn+j) and 2n+k = ~n+k - ~n+k' If we apply the 

mean value theorem for a function of several variables to f in Eq. 

(3.23) (See Lambert [9], page 220), we obtain 

k k 
}: a.e . = t.t }: 8,(af/ax)e +' + ¢ 

j=O J-n+J j=O J - - -n J -n+k 
(3.24) 

where af/ax is the NxN Jacobian matrix of f. 

Let us assume that af/ax = J is a constant NxN matrix. Then 

we can revlrite Eq. (3.24) as 

k 
L (a.! ~ t.tQ.J)e +' = ~ k 

J ~J n J !n+ j=O - - --
(3.25) 

where I is the NxN unit matrix. If we further assume that the eigen-

values of the matrix J are distinct, then there exists a similarity 
. -

transformation which reduces J to diagonal form such that 

Al 0 ...... 0 0 

S-lJS = A = 0 A2 ...... 0 0 

. 
o O. . • • •. 0 AN 

,where A.R.'.R.= 1,2, ... ,N are the eigenvalues of~. 
-1 _ -1 

Defining 9n by 9n = ~ . ~n and ~n+k by ~n+k - ~ 2n+k' we get 
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k, 
L: (a

J
. I -6 ts .1\) q . = H k 

j=O - J- -n+J -n+ (3.26) 

Since! and ~ are diagonal matrices, the components of Eq. (3.26) are 

uncoupled, hence we may "write Eq. (3.26) as 

k 
j:o{aj - 6tSjA~)qn+j,~ = hn+k,~ , ~ = 1,2, ... ,N (3.27) 

where qn,~ and hn+k,~ are the components of 9n and ~n+k respectively. 

At this point, it is convenient to define the polynomial 

'IT{r,6tA) as 

k . 
'IT{r,6tA) = L: (a

J
. - 6ts.A)rJ 

j=O J 
(3.28) 

or, in terms of the first and second characteristic polynomials of the 

linear multistep method, as 

n{r,6tA) = p{r) - 6tAo{r) (3.29) 

The polynomial n{r,6tA) is frequently called as the stability poly-

nomial. 

The solution of Eq. (2.27) is, then 

s Pj-l 
q = L: L: c"+l[n!/{n-i}!Jr~.+dn,~, ~=1,2, ... ,N 
n,~ j=l i=O J,l ;v,J 

(3.30) 

where r ., j = 1,2, ... ,s are the roots of polynomial 'IT{r~,6tA~), 
~,J s 

each root r . being a root of multiplicity pJ' where L: pJ' = k, 
~,J j=l " 

and" d is some particular solution of Eq. (3.27). Here CJ' i' 
n ,~. ", 

i = 1,2, .... ,Pj' j = i,2, ... ,s are arbitrary constants (See Appendix 1). 

If the system (3.1) is linear i.e., 

x = Ax + ~(t) - -- -
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then, we can replace Eqs. (3.21) and (3.22) by 

k k 

J
.E=O aJ.~(tn+J·) = ~t E 8J.[Ax(t +.) + ~(t +.)] + $ k (3.31) 

j=O -- n J - n J -n+ 

k k 
E a.x . = ~t E 8.[Ax +' + ~(t .)] + R k (3.32) 

j=O J-n+J j=O J --n J - n+J -n+ 

Subtracting Eq. (3.31) from Eq. (3.32) we get 

k k 
E a·e . = ~t E 8.Ae . + ~ 

j=O J-n+J . j=O J--n+J -n+k 
(3.33) 

or 

k 
E (a

J
. - ~t8.A)e +' = ~ k 

J n J ~n+ j=O - --
(3.3 L j 

where Pn+k = ~n+k - ~n+k 

Let us assume that the eigenvalues of A are distinct. The~ 

we can diagonolize A by a similarity transformation such as 

Al 0 ..... 0 0 

S-l AS = A = 0 A2 ..... 0 0 

0 0 ..... 0 AN 

where At' t = 1,2, ... ,N are the eigenvalues of~. 

-1· -S-l;); 9n = ~ ~n and ~n+k by ~n+k - _ !n+k' we get 

k 
E {a.I - ~t8J.A)qn+J· = ~n+k 

j=O J- - -

or in the component form 

Defining q by 
-n 

. (3.3:) 

(3.3~) 
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where qn,i and hn+k,i are the components of 9n and ~n+k respectively. 

The solution of Eq. (3.36) is then 

s Pj-l 
. - . n 

qn i -.E E C
J
. n+l[nl/(n-l)l]rn . + d n , i = 1,2, ... ,N 

. ' J=l i=O. ,.x, .x"J n,.x, 
(3.37) 

where r i,j' j = 

root ri,:j being 

1,2, ... ,s are the roots of polynomial n(r~,~tA~), each 
s 

a root of polynomial n(r~,~v.i) where E p. = k, and 
j=l J 

dn n is some particular solution. Here C .. , i = 1,2, ... ,p., j = 1,2, ... ,s ,.x, J,l J 

are arbitrary constants. 

Note that, in both cases, if q grows or decays with n, then -n 
:n does and vice versa. We therefore define a linear multistep abso-

lutely stable if, for a given initial value problem and a given 

positive ~t, the global error remains bounded as the computation proceeds. 

It is evident from Eqs. (3.30) and (3.37) that, in both cases, 

if any Irn ·1 > 1, then the global error will grow as increases. Hence, 
.-v,J -

the method will be absolutely unstable for that ~tAi' Thus absolute 

stability can formally be defined as follows. 

Definition 7: A linear multistep method is said to be absolutely 

stable for A~t, such that A is any eigenvalue of the Jacobian of the 

function f or in the linear case is any eigenvalue of the coefficient 

matrix A, if all roots of the stability polynomial n(r'A~~t) associated 

with the method satisfy 

1 r n ·1 < 1 .x"J 
j = 1,2, ... ,k, 2 = 1,2, ... ,N 

Obviously, the above definition is strictly dependent on the­

initial value problem to which we apply the linear multistep method. 
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Let us now consider the differential equation 

~ = A~ (3.38) 

where A is a complex constant. For this Eqs.(3.l9) and (3.20) reduces 

to 
k k 
L a .x( t +.) = Ll t L 8 .AX( t +.) + 1jJ 

j=O J- n J j=O J - n J -n+k 
(3.39) 

k k 
L a.x . = Llt L 8J.AX +' + R +k 

j=O J-n+J j=O -n J -n 
(3.40) 

respectively. Subtracting Eq. (3.39) from Eq. (3.40), we get 

k k 
L a·e . = Llt L 8·Ae +' + ~. k 

j=O J-n+J j=O J -n J -n+ 
(3.41) 

or, in component form, 

k k 
j=O ajen+j,i = Llt j=O 8jAen+j,i + ~n+k,i ' i = i,2, ... ,N 

Thus 
k 
I (a. - 6tA8J.)en+j i = ~n+k,i 

j=O J , 
i = 1,2, ... ,N 

which gives us the stability polynomial 

k . 
L (a. -LltA8.)rJ = 0 

j=O J. J 

The region R cC defined as 

. R ={XLlt e: cllrj l < 1, rj being a root of the stability 

polynomial, j = 1,2, ... ,k} 

(3. L2) 

is called the absolute stability region of the employed multistep method. 
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Clearly,' if the method is absolutely stable in the region R, then the 

region 

RI :: {AJI,l'.t E C, JI, = 1,2, ... ,Nl l r .1 < 1, rQ . being a root 
. JI"J J,J 

of the stability polynomial, JI, = 1,2, ... ,N, 

j = 1,2, ... ,k} 

is a subset of R. It should be noted that the absolute stability 

region of the multistep is defined in term of the differential equation 

(3.38). This may give the false impression that the definition of the 

region is in terms of a specific problem. That this is not the case, 

it follows from the fact that both A and l'.t arbitrary. It should be 

kept in mind that though A and l'.t are arbitrary Al'.t is not. 

We could have defined the absolute stability region of the 

method in terms of the region RI. This however will restrict the 

region to the specific initial value problem involved and therefore 

this approach is deliberatly avoided. The equation 

x = AX - -
is referred to as the "test equation". 

3.4 THE PROBLEM OF STIFFNESS 

Let us consider the NxN linear system of equations 

x = Ax + p(t) (3.4~) 

and assu~e that the matrix ~has distinct eigenvalues Ai' i = 1,2, ... ,N. 

Let ~i be the corresponding eigenvector of the eigenvalue Ai' Then, 

{t can be shown that Eq. (3.44) has a general solution of the form 



N 
x(t) = ~ k.eAitc. + ~(t) 

i=l 1 -1 -

where ki , i - 1,2, ... ,N are constants and ~(t) is the particular 

solution. If 

ReA. < 0 
1 

then the term 

i = 1 2 N , , ... , 

N A.t 
~ k.e 1 C. -+ 0 

i=l 1 -1 
as 
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N 
It is for this reason that the term ~ k.eAitC. is called the transient 

. 1 1 -1 1= 

term and the particular is called the steady-state term. It is impor-

tant that the steady-state term should not be confused with the steady­

state solution. The later is the limiting value of the former as t -+ 00. 

Let A and A be two eigenvalues of A such that 
m n -

\ReA \ < \ReA.\"< \ReA \ m - 1 - n i = 1,2, ... ,N. 

If our aim is to find numerically the steady-state solution, then we 

must pursue the numerical solution of Eq. (3.44) at least until the 

slowest decaying exponential in the transient term, namely eAmt , is 

negligible. Thus the smaller \ReAm\, the longer will be the range of 

integration. On the other hand, in the case of a method with absolute 

stability region as shown in Fig. 3.2, the presence of eigenvalues of 

A far out to the left in the complex plane, i.e. far away from the 

imaginary axis, will force us to use excessively small steplength in 

order that Ai6t, i = 1,2, ... ,N, will lie within the region of absolute 

stability region of the method of our choice (unless, of course, the 
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FIGURE 3.2 - An absolute stability region. 

region is infinite and includes the left-hand half plane) .. In the 

case of the specified absolute stability region, a precise measure 
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of this difficulty is the magnitude of IRe~nl. If IRe~ I »IReA ,. n ~ 

we are forced into the highly undesirable computational situation ~~ 

having to integrate numerically over a long range using a stepleng:~ 

which is everywhere excessively small relative to the interval inv~lved. 

The difficulty of being forced to integrate numerically over a lon~ 

range using a steplength which is excessively small relative to th~ 

interval involved is the problem of stiffness. 

It should be emphasized that the magnitude of IReAnl is no~ 

in general a precise measure of the difficulty involved in the stiffness 

. problem, but only a rough measure. That this is the case, can bes: be 
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seen if a multistep method with an arbitrary absolute stability region 

is considered. In such cases, the identification of a ~t such that all 

Ai~t, i = 1,2, ... ,N fall into the stability region is governed by the 

real parts as well as the imaginary parts of the eigenvalues and the 

geometry of the stability region. In view of this fact, the magnitude 

of the IReAnl, in general, can only be regarded as a rough rather than 

a precise measure of the difficulty involved in the stiffness problem. 

In view of the above discussion, we focus our attention to a 

class of problems called stiff problems that can be rather defined as 

foll ows. 

Definition 8: The linear system x = ~~ + ~(x) is said to be stiff if 

i) ReA. <0, i=1,2, ... ,N 
1 

ii) ~ax IReAil 
1=1,2, ... ,N 

~in IReAil ' 
1=1,2, ... ,N 

where Ai' i = 1,2, ... ,N, are the eigenvalues of A. The 

ratio 

[max IReAil]:[m~n IReAil] 
i=1,2, ... ,N 1=1,2, ... ,N 

is called the stiffness ratio. 

Non-linear systems ~ = !(~,t) exhibit stiffness if the eigen­

values of the Jacobian a!ja~ behave in a similar fashion. The eigen­

values are no longer constant but depend on the solution, and there­

fore vary with t. Accordingly we say that the system ~ = !(~,t) is 

stiff in an interval I of t if, for t £ I, the eigenvalues A;(t) of 

afjax satisfy (i) a~d (ii) above. - -



,. 
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Note that if the partial derivatives appearing in the Jacobian 

df/dx are continuous and bounded in an appropriate region, then the 

Lipschitz c~nstant L of the system ~ = !(t,~) may be taken to be 

L = 1\ df/dxll for any matrix A, IIAII > p(A), where p(A), the spectral -- ..... - - - ..... 

radius, is defined to be 

max IA.I 
i=1,2, ... ,N 1 

Ai' i = 1,2, ... ,N, being the eigenvalues of A. I f max I ReA.; »0 
i=1,2, ..• ,N 1 

it follows that L » O. Thus stiff systems are occasionally referred 

to as "systems with large Lipschitz constants". 

The basic difficulty, but not the only one, in the numerical 

solution of stiff systems is the satisfaction of the requirement of ab-

solute stability with an integrationwise economically feasible time 

step. To overcome this difficult several definitions, which require 

for the method to possess some "adequate" region of absolute stability, 

have been proposed. The following is a brief account of such defini­

ti ons gi ven by Lambert [9 J. 

Definition 9: (Dahlquist [12J). A linear multi~tep method is called 

A-stable if all solutions of (3.3) tend to zero as n + 00, when the 

method is applied with a fixed steplength ~t to any differential equa-

tion of the form 

. 
x = AX 

where A is a complex constant with a negative real part. In other words s 

" a linear multistep method is A-stable if its region of absolute" stabi­

lity contains the whole of the left-hand complex plane. 
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FIGURE 3.3 - Absolute stability region of A-stable methods. 

If an A-stable method is applied to a stiff system, then the 

difficulties associated with the stiffness problem disappear, sincE, 
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no matter how large ~ax IReAil, no stability restriction on ~t 
1=1,2, ... ,N 

can result. However, A-stability is a severe requirement to ask.of 

an~merical method, as the following somewhat depressing theorem 07 

Dahlquist [12J shows. 

THEOREM 5:i)An explicit linear multistep method cannot be A-stable. 

ii The order of an A-stable implicit linear multistep method 

cannot exceed two. 

iii) The second-order A-stable implicit l'inear multistep m~thod 

with smallest error constant is the Crank-Nicholson method. 
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The rest'riction on order implied by (ii) is a severe one (Note 

that the Crank-Nicholson method is the one-step method with coefficients 

so that 

Then 

a l = 1, a = -1, o . 

c=c=c=O o 1 2 

131 = 1/2, 

and 

c3 = (1/31)al - (1/21)131 

c = (1/6) - (1/4) = -1/12. 3 

for a stiff system, we can expect the components ~(3)(t) to be very 

large, at least in an interval on which the transient solution is not 

negligible). In view of this, several less demanding stability defi-

nitions have been proposed; we present two here. 

Definition·IO: (Windlund D3J). A linear multistep method is A(a)­

stable, a£(0,rr/2), if all solutions of (3.3) tend to zero as n ~ 00 

when the method is app 1 i ed with a fixed positive 6t to any differen-

tial equation of the form 

. 
X = AX - -

where A is a complex constant which 1 i es in the set. 

Sa = {zl-a < rr - arg(z) < a, z ~ O} 

A method is A(rr/2)-stable if it is A(a)-stable for all a £ (0,n/2) 

.and A(O)-stable if it is A(a)-stable for some sufficiently small a £ (0,n/2) 
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The above ~efinition is equivalent to say that a linear multi­

step method is A(a}-stable, a £ (0,n/2), if its region of absolute 

stability contains the infinite wedge. 

Sa = {zl -a < n - arg(z} <.a, z t O} 

1m z 

FIGURE 3.4 - Absolute stability region of A(a}-stable methods. 

An alternative weakening of A-stability defined by Cryer [14J 

is Ao-stability. 

Definition 11: (Cryer [14J). A linear multistep method is called 
I 

Ao-stab1e if all solutions of (3.3) tend to zero as n + 00, when the 

method is applied with a fixed positive ~t to any differential equation 

of the fprm 

x = AX 

whereAE (0,+00). Hence, the absolute stability region of an Ao-·stable 

method contains the open negative real axis. 

,;" 



VI, MULTISTEP DISCRETIZATION OF THE 
SEMIDISCRETIZED HEAT CONDUCTION 

EQUATION 

4.1 THE GENERAL LINEAR k-STEP METHOD APPLIED TO 

HEAT CONDUCTION EQUATION 

In the second chapter we have shown that the finite element 

semidiscretized heat conduction equation is of the form 

Ca + Ka ~ f ( 4.1) 

where 

~(o) = ~o 

The semidiscretized heat conduction equation (4.1) can be 

expressed in the form of (3.1) as 

a = -Aa + g (4.2) - -
. -1 -1 

where A = C K and 9 = C f. Since C and K are symmetric positive _. -
,definite matrices, ~ has real positive eigenvalues. The eigenvalue 

spectrum of ~ is usually very 1 arge (Zl ama 1 [3, 15J, Hood [16]) and 

(hence, system (4.2) is a stiff system. 

39 
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The general form of the linear k-step method applied to semi­

discretized heat conduction is therefore 

k k 
E (~J"I + BJo~tA)an+Jo = ~t JoE=oBJo~n+Jo 

j=O - ---
(4.3) 

If we multiply Eq. (4.3) by C from left, we obtain 

k k 
E (aoC + Bo~tK)a +0 = ~t JoE=O SJ"!n+Jo 

j=O J- J - _n J --
(4.4) 

Since Eqs. (4.3) and (4.4) are identical, they can be used inter­

changeably. On the other hand, the form of Eq. (4.4) is much more 

preferable for computational purposes as far as core requirement and 

computation time is concerned. This is because of the fact that the 

matrices C and K are symmetric and banded whereas A is not. 

In this chapter we will introduce some of the methods proposed 

for the numerical integration of problem (4.1). The most well-known 

and commonly used algorithms for this purpose are linear multistep 

methods upto step number two. 

If a linear multistep method has a bounded region of absolute 

stability, then the absolute stability requirement-will impose a step­

length restriction. Such methods are called conditionally stable in the 

sense of absolute stability. Due to the excessively small steplength 

with respect to the range of numerical integration, these method, in 

general, yields a highly undesirable computational situation in the 

case of stiff systems. Therefore, we should restrict the choice of 

linear multistep methods to those for which there is no steplength 



restriction imposed by absolute stability i.e. to unconditionally 

stable ones. 

In the case of semidiscretized heat conduction equation the 
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eigenvalues of A are real and positive, and, therefore, linear multi­

step methods with the region of absolute stability (-00,0) be general 

enough and impose no restriction on the size of the steplength to be 

used. Hence we will restrict the choice of a linear multistep method 

to be from the set of Ao-stable ones. It should be clear that once 

we decide for such a method, in order to assure convergence we should 

fUrther restrict it to meet the requirements of consistency and zero-

stability. 

4.2 ONE-STEP METHODS 

It is possible to derive any specific multistep method in a 

number of different ways. One possible way, as proposed by Zienkiewicz, 

is to use the finite element time discretization technique. This 

technique yields the most popular methods used for the solution of the 

semidiscretized heat conduction equation. The following is a brief 

account of the derivation of such methods. 

Let us approximate the vector a as 

a - ~ = ~ N.a. - . ,-, , 
where a. is the vector of unknown nodal parameters at tim~ t,. and -, 
{Ni(t)l is a finite element CO basis .. 

For one-step discretization, we will use a time element of / 

length bt with nodal points identified as nand n+l. A typical 
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element is shown in Fig. 4.1. The basis functions in terms of local 

variables are then given as 

where 

Then 

N = 1 - ~ n 

n 

~ = t/6t 

. 
Nn+1 = 1/6t 

n+1 
t----+- ~ = t/6t 

6t . ..I 

FIGURE 4.1 - Basis functions for one-step methods. 

(4.5) 

With the assumption that f can be expanded in terms of the , 
same basis functions Ni' we get 

'" fzf=i:N.f. 
- - . 1-1 . 1 

where f. is the value of the function f at time t.. For the time 
-1 - 1 

element shown in Fig. 4.1, the weighted residual equation associated 
I 

with the syst~m of equations 4.1 can be written as 



- (!n+1Nn+l + !nNn)}d~ = 0 (4.6) 

(j = 1) 

If we substitute the expressions for the basis functions given by 

Eqs. (4.5) in Eq. (4.6) and multiply the result by l',t,we obtain 

1 1 1 1 
{C f w.d~ + l',tKf w.~d~}a +1 + {-Cf w.d~ + l',tKf w.(l-e)d~}a 

- 0 J -0 J -n -0 J -0 J -n 

1 1 
= l',t{!n+1 f w.~ds + fn f w.(l-e)d~J (j=l) (4.7) 

o J - 0 J 

1 
Dividing Eq. (4.7) by f wjds and defining e as 

o 

we get 

1 1 
e = f w.~ds/f w.ds 

o J 0 J 
(4.8) 

{~ + 8l',t~}~n+1 + {-C + (1-8)l',t~}~n = tt{8!n+1 + (1-8)!n)} 

(4.9) 

( ) -,1 If we premu1tip1y Eq. 4.8 by C ,we can put it in the form of 

Eq. (4.3) as 
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{! + 8l',t~}~n+1 + {-I + (1-8)l',t~}an = l',t{8gn+1 + (1-8)9n} 

(4.10) 

Eq. (4.10) defines a class of one-step methods with coefficients 

a l = 1 

a =-1 o 

, s = e 1 

S = 1 - e. o 

f A member of this class is frequently referred to as the 8-method. 



The first characteristic polynomial of a e-method is 

p(rJ = r; - 1 

so that its root is r; = 1. Thus, any e-method is necessarily zero-
1 

stable. Since 

1 
l: a· = 0 , 

j=O J 

1 
l: ja. = 1 , 

j=O J 

1 . 
l: S· = 1 

j=O J 
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any e-method is also necessarily consistent. Therefore, any e-method 

is consistent and zero-stable, thus convergent. 

For the study of Ao-stability, it will be convenient to reduce 

system (4.2) to a typical single degree of freedom model equation which 

can be achieved with the application of the modal analysis technique. 

Let ,us assume that A has a complete set of normalized ortho­

gonal eigenvectors. Then, the vector a can be written as 

n 
a = l: u.y. . (4.11) 

. 1 - 1 1 1= 

where u. are normalized eigenvectors of A and y. are modal participa-. _ 1 - 1 

tion variables. If expression (4.11) is substituted into Eq. (4.2) 
T and the result is premultiplied by ~i (i = 1,2, ... ,n) we get 

y. = -A.y. + g. (4.12) 
1 1 1 1 

where g. = u.Tg and A. are the eigenvalues of A. For notational 
1 -1 - 1 

simplicity, we will drop the i'th modal subscript in Eq. (4.12) and 

continue our analysis with the following single degree of freedom 

model equation 

Y = -AY + g (4. 13) 



where A represents an eigenvalue of the matrix A. Application of 

the 8-method to Eq. (4.13) yields 

(1 + A~t8)Yn+l + (-1 + A~t(l-8))Yn = ~t{8gn+l + (l-8)gn) 

(4.14) 

The stability polynomial of the 8-method is then 

TI{r,A~t) = (l + A~t6)r - 1 + A~t{l - 6) (4. 15) 

If we set polynomial (4.15) equal to zero and solve r, we obtain 

r = 1 - {1-6)A~t 

1 + 6Mt 
(4.16) 
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Hence, a 6-method is Ao-stable if and only if r has modulus less than 

one for all A~t > O. The requirement Irl < 1 implies 

-1 - 6A~t < 1 - (1-6)A~t < 1 + 6A~t 

or 

A~t( 26-1) > -2 
(4.17) 

A~t > 0 

Condition (4.17) is always satisfied when 6 ~ 1/2. Therefore, a 

6-method is Ao-stable if and only if e ~ 1/2. 

With the proper choice of weight functions in Eq. (4.8) we 

can obtain the following Ao-stable e-methods: 

1 = 1 6 = 1/2 (Crank-Nicholson) w· = aU: --) or w. 
J 2 J 

w. = S e = 2/3 (Galerkin) 
J 

w. = a( s - 1) 6 = 1 (Backward-difference) 
J 
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Here 8(~ - ~~) is the Dirac function. The derivation of the above 

e-values are given in Appendix 2. 

With the intention of stating another 6-method, let us assume 

that the term g in Eq. (4.13) is zero. Then Eq. (4.14) yields the 

recurrence relation 

= ry r = 1 - (1 - e)A~t 
n' (4.18) 

The homogeneous solution of Eq. (4.13), on the other hand ;s 

yet) = y(O)e- At (4.19) 

and satisfies the recurrence relation 

(4.20) 

Comparing the Eqs. (4.18) and (4.20) we conclude that r approximates 

e-A~t. It is proposed by Liniger [17J to choose e in such a way that 

rna x I e -A~ t _ ..;...1_--->.(...:..1 _----:::.e.t...:.) A.!!:~::..:t_ I 
O<A~t<OO 1 + eA~t 

is mi~imum, and this happens when a = 0.878. Here on, the a-method 

corresponding to the value e = 0.878 will be considered as the fourth 

6-method and referred to as the Liniger method. 
. I 

Let us rewrite the recurrence re1at;on(4.18) as 

y .= rny r = 1 - (1 - a)A~t 
n. 0' 1 + eAL1t 

(4.21) 

\ 
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We have shown that when e ~ 1/2, the method> (4. 10) is Ao-stable so that 

\r\ < 1 for all A~t > O. Note that if e ~ 1, then r will be positive 

for all values of A~t > 0 and produce no oscillation. On the other 

hand, for 1/2 2 e < 1 positiveness of r is conditional and if -1 < r < 0, 

the recurrence relation (4.21) produces an oscillatory solution. One 

possible approach to prevent this oscillation is to choose ~t in such a 

way that for 1/2 < e < l,r stays positive. If we write this requirement 

as 

~l _-->-.( 1:...--....::e-L.:.) A=~:.::.t - > 0 , 1/2 < e < 1 (4.22) 
1 + eA~t 

we get the condition 

1 
~t < --'--- 1/2 < e < 1 (4.23) 

(1 e) A 

Since A stands for any eigenvalue of the matrix A, the condition (4.23) 

is equivalent to 

. (4.24) 



It should further be noted that 

lim r = (a - l)/a 
A.6t-+oo 

48 

is less than zero for all 1/2 < e < 1 and approaches to the value -1 

for a = 1/2. Therefore, the a-method with the value a = 1/2, which 

is known as the Crank-Nicholson scheme, is inaccurate for larger values 

of A.6t and only marginally stable (Liniger D7J). On the other hand, 

it is proved by Cryer U4J that the Crank-Nicholson scheme with p = 2, 

k = 1 is the only Ao-stable linear k-step method of order p ~ k+l. 

For this reason, it is of great importance and special precautions 

should be taken in using it for the solution of stiff systems. 

4.3 TWO-STEP METHODS 

We will adopt the finite element time discretization technique 

to Eq. (4.1) to obtain a class of two-step methods proposed by Zienkie­

wicz [ 2J for the numerical integration of first order systems. 

Let us approximate the vector a as 

a '" ~ = L N.a. 
- - . 1-1 

1 

where a. is the vector of unknown nodal parameters at time t
1
· and 

-1 

{Ni(t)} is a finite element Cl basis. 
I 

For two-step discretization we will use a time element of 

length A.6t with nodal points identified as n, n+l, n+2. A typ·ical 

element is shown in Fig. 4.2. The standard parabolic basis functions 

in,terms of local variables can then be written as 

Nn+l = (l-~)(l+~), Nn+2 = ~(1+~)/2 (4.25) 
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where 

-1<~2.1 ~ = t/f:Jt 

Therefore 

. . . 
N = (-(1/2) + ~)/f:Jt n Nn+l = -2~/f:Jt, Nn+2 = ((1/2) + ~)/bt 

1 

~ = t/bt 
f:J1 

n+l n+2 

FIGURE 4.2 - Basis functions for two-step methods. 

Assuming further that the same approximation as that of a can 

I be applied to the function f, we get . _. 



A 

f ",' f = l: N. f . 
- - i· 1-1 

for the element shown in Fig. 4.2, the weighted residual equation 

associated with the system of equations (4.1) can be written as 

1 

50 

_{ Wj{~(~n+2~n+2 + ~n+l~n+l + ~n~n) + ~(~n+2Nn+2 + ~n+1Nn+l + ~nNn) 

- (!n+2 Nn+2 + !n+1Nn+l + !nNn)}ds = 0 

(j = 1) (4.26) 

Substituting the expressions for the basis functions given by Eqs. 

(4.25), we get 

1 
_{ Wj{~[~n+2((1/~)+s)/~t +.~n+l(~2s)/~t + ~n((-1/2)+s)/~t] 

+ ~[~n+2S(1+s)/2 + ~n+l(l-s)(l+s) + ~ns(s-1)/2] 

- [!n+2s(1+s)/2 + !n+l(l-s)(l+s) + !ns (s-1)/2] = 0 

(j = 1) (4.27) 

Let us define y and S as follows: 

1 1 
y = f w.((1/2) + s)ds/ f w.ds 

-1 J . -1 J 
(4.28) 

1 1 
8 = f w·s(l + s)ds/ f w.ds 

-1 J -1 J 

1 
If we divide Eq. (4.27) by (l/~t) f w.ds and rearrange the terms, we 

-1 J 
get 

{y£ + 8~t~}~n+2 + {(l - 2y)£ + ((1/2) - 28 + y)~t~}~n+l 

+ {(y - 1)£ + ((1/2) + 8 - y)~t~}~n 

= ~t{8fn+2 + ((l/2)-28+y)fn+l + ((l/2)+8-y)fn} (4.29) 
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Premultiplying Eq. (4.29) by C- l , we can put it in the form of Eq. (4.3) 

as 

{y!+ B~t~}~n+2 + {(l-2y)! + ((l/2-2B+y)~t~}~n+l + {(y-l)! 

+ ((l/2)+B-y)~t~}~n = ~t{B~n+2 + ((l/2)-2B+Y)~n+l 

((1/2)+s-y)g } -n (4.30) 

Eq. (4.30) defines a class of two step methods with coefficients 

a2 = y 

al = 1 - 2y 

ao = y - 1 

, B2 = S 

, Bl = ((1/2) - 28 + y). 

, Bo = ((1/2) + 8 - y) 

This class of two-step methods are commonly referred to as Zienkiewicz 

three-level schemes. 

Application of the two-step method (4.30) to Eq. (4.13) gives 

[Y+A6tB]Yn+2 + [(l-2y) + A6t((l/2)-28+Y)]Yn+l + [(y~l) 

+ A6t((l/2)+8-y)]Yn = 6t{89n+2 + ((1/2)-28+y)gn+l 

+ ((1/2)+8-y)9 } n 

The first and second characteristic polynomials of the method 

(4.30) are 

p(~) = y~2 + (1 - 2y)~ + ~ - 1 

~(~) = B~2 + ((1/2) - 2B + y)~ + ((1/2) + B ~ y) 

(4.31) 

(4.32) 



Since 

2 
L Ct. = 0 , 

j=O, J 

2 
L jCt. = 1 , 

j=O J 

2 
L S· = 1 

j=O J 
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or equivalently p(l) = 0, and pl(l) = a(l), then the method is con-

sistent. The requirement of zero-stability is fulfilled if the roots 

of first characteristic polynomial p(~) have modulus less than or 

equal to one. These roots are 

r = 1 
"'I ' 

~ = (l-y)/y 
2 

and the condition I~il < 1, i = 1,2, is always satisfied if y ~ 1/2. 

To get the conditions for Ao-stability, we require that modulus 

of the roots of the stability polynomial 

n(r,A6t) = [y + A6tsJr2 + [(1 - 2y) + A6t((1/2) - 2S + y)Jr 

+ [(y - 1) + A6t((1/2) + S - y)J 

(4.33) 

is less than one for all A6t. Application of the transformation 

r = (l+z)/(l-z), which maps the.interior of th~ unit circle into 

left-half complex plane, makes it possible to use the well-known 

RoutlrHurwitz criterion that gives the necessary and sufficient condi-

tions for the roots of a polynomial to have negative real parts. 
j 

Under this transformation, we obtain the following polynomial equa-

tion for the stability polynomial (4.33); 

{4y - 2 + A6t(4B-2y)} Z2 + {2 - A6t(1-2y)}z + Mt = 0 (4.34) 
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The necessary and sufficient conditions for 'the roots of Eq. (4.34) to 

have negative real parts as given by Routh-Hurwitz criterion are as 

foll ows. 

4y - 2 + A~t(4S - 2y) > 0 

2 - A~t(l - 2y) > 0 

Mt > 0 

These conditions are satisfied for all A~t > 0 if and only if y ~ 1/2 

and S > y/2. 

We conclude that the method (4.30) is consistent, zero-stable 

if y ~ 1/2 and, Ao-stable if y ~ 1/2 and S > y/2. Two popular Ao-stable 

methods of type (4.30) are obtained from Eqs. (4.28) with the following 

specific choices of weight functions: 

w.=o{~-l) 
J 

w. = tJ~ + 1)/2 
J 

y = 3/2 

y = 3/2 

O'erivation details are given in Appendix 2. 

s = 1 ( Full y imp 1 i cit) 

s = 4/5 (Galerkin) 

Note that the homogeneous solution of the difference equation 

(4.31) is 

(4.35) 

I 
where r l r 2 are the roots of the stability polynomial (4.33) and Cl , 

C2 are constants. It should be clear that Cl and C2 are to be deter­

mined from the starting values y and Yl' It is evident that a nega-. 0 

tive root or complex roots can produce oscillation. In this case, some 

. 'artificial smoothing techniques may reduce oscillation and improve 
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accuracy. Lambert [9 J shows that for one of the roots of stabi 1 i ty 

polynomial, say r l , 

as Ab.t + 0 

where p is the order of the linear multistep method. Therefore the 

value e-Ab.t is being approximated here by the root r l , which is called 

the principal root, whereas the other root is spurious. Liniger [17J 
\ 

suggests an exponential fitting by demanding that r l = e-Ab.t, r2 = 0 

for some parti c·ul ar AD. t = C > 0 and shows that fitti ng is compati b 1 e 

with A -stability if Ab.t > 2. If we choose Ab.t = 3, then r l = e- 3 

o -
and r2 = 0 will satisfy the polynomial equation n(r13) = 0, i.e., 

{y + 36}r 2 + {(l - 2y) + 3((1/2) - 26 + y)}r 

+ {(y - 1) + 3((1/2) + 6 - y)} = 0 (4.36) 

For one of the roots to be zero, we should have 

y - 1 + 3((1/2) + S - y) = 0 

.and therefore 

e- 6 {y + 36} + e- 3{(1 - 2y) + 3((1/2) - 26 + y)} = 0 

From above equations it follows that y = 1.2184,6 = 0.646. The 

method with these y and 6 values will referr~d to as the Liniger's 

two-step method. Two other useful Ao-stable two-step methods are 

y = 1/2 , 6 = 1/3 

proposed by Lees [18] and called the Lees' algorithm and 
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y = .1 S = 3/4 

due to Dupont [19] and referred to as the Dupont scheme. 

If one demands to make the roots of the stability polynomial 

(4.33) real, then any probable oscillation because of the complex 

roots can be prevented. The roots will be real, if the discreminant 

of the polynomial (4.33) satisfies the condition 

(A~t)2{(1 + 2y)2 - 16S} + 4A6t(1 - 2y) + 4 ~ 0 (4.37) 

Condition (4.37) is satisfied for all A6t if S ~ y/2. Therefore, 

any Ao-stable Zienkiewicz three-level scheme has complex roots for 

some interval of A~t and oscillation can be expected in this interval. 

In order to have real roots for all A6t, we may.accept marginal stabi-

lity (Wood [4]) with S = y/2. For example the method 

y = 1/2 S = 1/4 

which is known as the method of average acceleration may be u~ed for 

this purpose. However, any method with S = y/2 is equivalent to the 

.well-known Crank-Nicholson method so that the benefit from using a 

two-step method diminishes. 

As we have discussed in Chapter three, two-step methods require 

the determination of starting values a , al and it is desirable that _0 _ 

these values be calculated to an accuracy as high as the order of 

accuracy of the two-step method. Defining the coefficients Co' Cl , ... 

as in Chapter three, we have for the Zienkiewicz three level schemes 

C = C = C = 0 and 012 
C = 6y - 12S - 1 

3 12 
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It is clear that none of the methods we have given in this section make 

C3 = 0 so that they are all second order accurate. Therefore, it is 

possible to start these methods by setting ~o = a(O) (the initial 

vector of the problem (4.1)) and calculating ~1 by the second order 

accurate Crank-Nicholson method. An alternative way of starting 

multistep methods is to translate the problem to that of an initially 

steady system to which a perturbation is applied. 

4.4 THE PROBLEM ASSOCIATED WITH THE INTERPOLATION OF THE 

FORCING FUNCTIONS 

As we have stated in Chapter two, the forcing function f is 

of the form 

~ = 1,2, ... ,m 

where m is the number of specified nodal parameters, h is the conden-
-sated form of the function f defined as 

- T f = f pc~~ dn + f ~q.n.ds + f ~he ds 
- . n -- s2 - 1 1 S3 - 00 

by ?imp1y deleting the correspondant rows of f to·specified nodal 

parameters ~~ and ~~ are, respectively, the partition of the ~'th 

columns of the ~ and ·R matrices assembled with the assumption that - -
I 

the specified nodal parameters are free and the partitioning consists 

of the condensation of the re1avant column vectors by simply omitting 
. 

th~ m rows corresponding to the specified nodal parameters a1 and a£ 

,respectively. 
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With the intention of deriving multistep methods, in sections 

4.2 and 4.3 we have interpolated the forcing function f as 

.A 

f:::; f=L: N.f. 
~ ~ i ,~,. 

where N,. is the i'th basis function and f. is the value of the function 
~, 

! at time t i . Clearly, the above interpolation requires the knowledge 

of fat each t .. 
~ , If the functions a~(t) are discontinuous at some ti' 

then the function f will be undefined for this t i . In order to over-

come this difficulty, it should be preferred to interpolate the func­

tions a~ and ~ separately. 

Defining the function f as in Zienkiewicz, we have 

tn+k 
A 

J w.fdS 
t /b,t J~ 

f = n (j = 1) 

tn+k 
J w.ds 

tn/b,t J 

where k is the stepnumber of the method applied to the heat conduction 

equation. We can therefore rewrite Eqs. (4.9) and (4.29) as 

{~ + 8b,t ~}an+l + {-C + (1 - 8)b,t ~}an = 6t f (4.38) 

where 1 
A 

J w.fdS 
0 

J~ 

f = 
1 

J w.ds 
0 J 

and 



where 

and h as 

{YE'+ l3b.t~}~n+2 + {(l - 2y)E + ((1/2) - 213 + y)b.t ~}~n+l 

+ {(y - l)C + ((1/2) - 13 + Y)b.t K}a = b.t f - -n _ 

1 
J 

- -1 
f = ----

1 
J 

-1 
w.ds J 

Let us interpolate a~ as 

an ~ an = ~ N.a n . 
>V >V i 1>v,1 

A 

h ::: h = ~ N.h. _ _ . 1_1 
1 

(4.39) 
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where a~,i and hi are the values of the functions a~ and ~ at time t i . 

In this case the approximation of f will be 

A • 

f ~ f = ~ N.h. - ~ N.Cna n . - ~ N.knan . 
__ .1-1 .1->v>v,1 .1->v>v,l 

111 

With the above interpolation we can obtain f for Eq. (4.38) as 

and for Eq. (4.39) as 

+ ((1/2)+I3-Y)[~n + ~~a~,n] 

1 . 
-~ f~[ya~,n+2 + (1-2y)a~,n+l + (Y-l)a~,nJ 
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It ~an be seen that the above interpolation is completely 

equivalent to, first, to treat the specified nodal variables as free 

and assemble the matrix equation associated with the multistep methods, 

and, then, modify the resulting equation such that specified nodal 

variable conditions hold. 

4.5 SMOOTHING METHODS FOR DISCONTINUOUS FORCING FUNCTIONS 

We have shown that the forcing function f is of the form 

(4.40) 

It should immediately be noted that f will be of a singular form if 

discontinuous jumps of boundary values at occur or if impulsive heat 

fluxes or heat generation are imposed. 

In finite difference approximations, or in finite element 

formulation in which the matrix C is lumped (diagonal), the second 

term of Eq. (4.40) does not occur. f then becomes discontinuous when 

merely step changes of boundary values are specified. 

Both types of variation of the forcing term are deleterious 

to the performance of time integration schemes derived for the solu­

tion of semidiscretized heat conduction equation, and result in violent 

oscillation of the solution for which artificial smoothing methods have 

to be devised. The following is a brief summary of the smoothing 

methods that have been incorporated for one-step methods. 

The first possible method to smooth discontinuity is to re­

place the step function shown in Fig. 4.3 with a ramp function in the· 

first time interval as shown in Fig. 4.4. 
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-2l1t -lit lit 2l1t 

FIGURE 4.3 - Step change in ~ or a~. 

-2l1t -lit 2l1t 

FIGURE 4.4 - Ramp change in ~ or a~. 

An alternative method of smoothing as proposed by ZienkieVlicz [2 ] 

is to start numerical integration from -llt/2 and to assume a ramp func-

tion variation in the first interval. The method is illustrated in 

Fiq. 4.5. 

-~t/2 lIt/2 3l1t/2 
FIGURE 4.5 - Smoothing of ~ or a~ as proposed by ZienkieVlicz. 



Two other smoothing methods, particularly proposed for the 

Crank-Nicholson method, are 

61 

a) the smoothing of the discontinuity with an exponential 

function~ (i_e-at ), as shown in Fig. 4.6 [16], and 

b) the averaging the values of the variable at the 

beginning and the end of the first interval and 

continuing numerical integration from there [20]. 

Based on numerical experiments, it is found that for exponential 

smoothing the values a = 2/~t and a = 4/~t, improves the performance 

of the Crank-Nicholson method considerably. 

FIGURE 4.6 - Smoothing of ~ or a9, by an· exponential function. 

In the case of two-step methods there exist two different 

methods of smoothing the discontinuity, and are illustrated by Fig. 4.7 
I 

and Fig. 4.8. 

It should be noted that in the case of the smoothing method 

illustrated in Fig. 4.7, the forcing function is interpolated in terms 

of the functional values at -~t, 0, ~t values with the same inter-~ 

'polating function that are used for the interpolation of the nodal 
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~t o ~t 

FIGURE 4.7 - Interpolation of the forcing function. 

3~t/2 

FIGURE 4.8 - Interpolation of the forcing function. 

variables. Since the functional value of the function is zero at -~t 

the interpolation functions used are Nlt=o'and Nlt=~t. 

In the case of the smoothing illustrated in Fig. 4.8, the­

forcing function is interpolated in terms of the functional values 

at -3~t/2,-~t/2 with the same interpolating functions that are used 

for the interpolation of the nodal variables. Since the functional· 
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-
values of. the forcing function is zero at -3~t/2 and -~t/2, the only 

interpolation function used is Nlt=~t/2. 

In the case of the smoothing methods, Fig. 4.7 and Fig. 4.8, 

it is natural to start the method with the values of the nodal 

variables at -~t and 0 and with the values at -3~t/2 and -~t/2, 

respectively. 
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V, RESULTS 

The test problem we have considered for the comparison of numerical 

integration methods discussed is given by the equation 

a2e a2e ae --+ ---
aX 2 ay2 at 

O<x<l, 02- y <l, t>O (5.1) 

subject to the initial condition 

e(x,y,O) = 0 (5.2) 

and the boundary conditions 

(a/ay)e(x,y,t) = 0 at x = 0, e(x,y,t) = 100 at x = 1 (5.3) 

(a/ax)e(x,y,t) = 0 at y = 0, e(x,y,t) = 100 at y = 1 (5.4) 

The analytic solution of this problem is given in Arpaci [21J as 

where 

e(x,y,t) 

A = (2n+l)n/2 n 
n= 0,1,2, .. 



y 

e = lOa 

1 

ae/ax = a e = lOa 

x 

ae/ay = a 

FIGURE 5.1 - Test problem. 

The finite element mest used for the solution of the problem 

(5.1)-{5.4) is shown in Fig. 5.2. The elements used are linear plane 

triangular elements. 
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The test problem is first solved by the following four e-methods: 

i) e = 1/2 Crank-Nicholson 

ii) e = 2/3 Galerkin 

iii) e = 0.878 Lini ger 

iv) e = 1 Backward-Difference. 

For smoothing the discontinuity resulting from the suddenly applied 

boundary temperature, the following techniques are employed for all 

, the e-methods listed above: 
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1. 

FIGURE 5.2 - lOxlO Finite Element Mesh with Triangular Elements. 

a) Smoothing the suddenly applied boundary temperature with 

a ramp function in the first time interval. 

b) Smoothing the suddenly applied boundary. temperature 

with the procedure proposed by Zienkiewicz. 

The following procedures are particularly adopted for the Crank­
I 

Nicholson method in order to eliminate the difficulties associated 

with discontinuous surface temperature. 

a) . Averaging the value of the variable at the beginning and 

end of the first time step and continuing with Crank-Nicholson 

from there. 



b) Smoothing the suddenly applied boundary temperature with 

an exponential function. 
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The test problem is then solved by the following five Zienkiewicz 

three-level methods: 

i) y = 3/2 , f3 = 4/5 Galerkin 

ii) y = 3/2 , f3 = 1 Fully implicit 

iii) y = 1.218, f3 = 0.646 Liniger 

iv) y = 1 f3 = 3/4 Dupont 

v) y = 1/2 f3 = 1/3 Lees 

The starting procedures employed are 

a) ca1culating~.R, by Crank-Nicholson method. 

b) starting the method with the known steady conditions for 

time less than zero, as shown in Fig. 4.7. 

Results of the numerical experiments are given in the following 

tables for points (0,0) and (0.5,0.5). The error given in these 

. tables is defined as 

[error] = [numerical solution] - [analytical solution]. 



TABLE 5.3 ONE-STEP METHODS, SOLUTION OBTAINED FOR DISCONTINUOUS BOUNDARY TEMPERATURE, 

X = (D.O,O.O), 6t = 0.001 

G= 1/2 G= 2/3 G= 0.0878 G= 1 

Analytic Numeric Numeri c Numeric Numeric 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.62 E-9 0.39 E-5 0.39 E-5 -0.30 E-6 -0.30 E-6 -0.75 E-7 -0.76 E-7 -0.14E-5 

0.02 0.23 E-3 -0.?7 E-3 -0.50 E-3 -0.44 E-3 -0.67 E-3 -0.29 E-3 -0.52 E-3 -0.17 E-4 

0.03 0.18 E-l 0.50 E-2 -0.13 E-l 0.12 E-l 0.61 E-2 -0.21 E-1 -0.33 E-2 0.27 E-l 

0.04 0.16 0.15 -0.15 E-l 0.17 0.98 E-2 0.20 0.41 E-l 0.22 
, 

0.05 0.63 0.66 0.03 0.70 0.75 E-l 0.75 0.13 0.79 

0.06 1.55 1.68 0.13 1. 74 0.18 1.80 0.25 1.84 

0.07 2.99 3.25 0.26 3.30 0.32 3.38 0.39 3.42 

0.08 4.91 5.30 0.40 5.36 0.45 5.42 0.52 5.46 

0.09 7.23 7.76 0.53 7.81 0.58 7.87 0.64 7.90 

0.10 9.88 10.53 0.65 10.57 0.69 10.62 0.73 10.64 

0.20 40.35 41.38 1.03 41.34 0.99 41 .30 0.95 '11 .28 

0.30 63.18 64.00 0.82 63.96 0.78 63.90 0.72 63.87 

0.40 77 .49 78.08 0.59 78.04 0.56 78.00 0.51 77.97 
\ 

0.50 86.25 86.67 0.41 86.64 0.39 86.60 0.35 86.58 

Error 

-0.14 E-5 

-0.25 E-3 

0.92 E-2 

0.06 

O. 16 

0.29 

0.43 

0.56 

0.67 

0.76 

0.92 

0.69 

0.49 

0.33 

0"1 
OJ 



TABLE 5.1 ONE-STEP METHODS, SOLUTION OBTAINED FOR DISCONTINUOUS BOUNDARY TEMPERATURE, 

x = (0.0,0.0),' 6t = 0.01 

0= 1/2. 0= 2/3 0= 0.878 0= 1 
•.. - ~ . 

Analytic Numeric Numeri c Numeric Numeric 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.62 E-9 0.39 E-3 0.39 E-3 0.25 E-2 0.25 E-2 O.lOE-l 0.10E-l 0.18E-l 

0.02 0.23 E-3 0.64 E-2 0.62 E-1 0.26 E-l 0.26 E-l 0.74 E-l 0.73 E-l 0.11 

0.03 0.18E-1 0.48 E-l 0.31 E-l 0.13 0.11 0.28 0.26 0.37 

0.04 0.16 0.22 0.59 E-1 0.44 0.28 0.73 0.57 0.90 

0.05 0.63 0.70 0.77 E-1 1.09 0.47 1.54 0.91 1.77 

0.06. 1.55 1.67 0.12 2.18 0.63 2.74 1. 19 3.03 

0.07 2.99 3.20 0.21 3.75 0.77 4.36 1.37 4.67 

0.08 4.91 5.24 0.33 5.77 0.86 6.36 1.45 6.66 

0.09 7.23 7.69 0.46 8.15 0.92 8.68 1.45 8.96 

0.10 9.88 10.46 0.58 10.83 0.95 11 .26 1.38 11 .50 

0.20 40 . .35 41.37 1.02 41.83 0.68 40.63 0.28 40.42 

0.30 63.18 64.01 0.83 63.58 0.40 63.05 -0.13 62.75 

0.40 77 .49 78.08 0.60 77.73 0.24 77 .27 -0.21 77 .01 
, 

0.50 86.25 86.67 0.42 86.40 0.15 86.05 -0.20 85.85 
-

Error 

0.18E-l 

0.11 

0.36 

0.79 

1.14 

1.48 

1.68 

1.76 

1. 72 

1.62 

0.06 

-0.43 

-0.47 

-0.41 

I 

I 

0'1 
'.0 



TABLE 5.2 ONE-STEP METHODS, SOLUTION OBTAINED FOR DISCONTINUOUS BOUNDARY TEMPERATURE. 

, -.;. 

8= 1/2 8= 2/3 8= 0.878 8= 1 
ft..nalytic Numeric Numeric Numeric Numeric 

time . Solution Solution Error Solution Error Solution Error Solution Error 

0.01 0.81 E-l 0.23 O.lS 0.S4. 0.46 0.99 0.91 1. 24 1. 16 

0.02 2.47 2.06 -0.41 3.12 0.65 4.09 1.62 4.S3 2.06 

0.03 8.08 7.S0 -0.S7 8.42 0.34 9.14 1.07 9.46 1.39 

0.04 14.83 lS .41 -0.58 15. 12 0.29 15. 15 0.32 15.21 0.38 

0.05 21.47 23.31 -0.84 21.73 0.25 21.26 -0.21 21.09 -0.39 

0.06 27.57 28.36 -0.79 27.77 0.20 27.05 -0.52 26.71 -0.86 

0.07 33.01 31.03 1.02 33.17 O. 17 32.33 -0.68 31.90 -0.11 

0.08 37.82 38.61 0.79 37.96 0.14 37.09 -0.79 36.62 -1.20 

0.09 42.09 43.00 0.91 42.21 O. 13 41.35 -0.79 40.88 -0.12 

0.10 45.88 46.60 0.72 46.00 O. 12 45.18 -0.71 44.72 -1. 17 

0.20 69.40 69.82 0.42 69.50 0.10 69.08 -0.32 68.83 -0.57 

0.30 81.52 81.83 0.30 81.59 0.07 81.29 -0.23 81.12 -0.40 

0.40 88.74 88.96 0.23 88.78 0.04 88.55 -0.19 88.41 -0.33 

0.50 93. 13 93.29 O. 16 93.15 0.03 92.97 -0.15 92.87 -0.25 
- - -- ----------

'-l 
o 



, TABLE 5.4 ONE-STEP METHODS, SOLUTION OBTAINED FOR DISCONTINUOUS BOUNDARY TEMPERATURE, 

x = (0.5) 0 . 5) ) .6 t : 0.001 

8= 1/2 8= 2/3 8= 0.878 8= 1 
. 

Ana lyti c Numeric Numeric Numeric Numeric 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.08 -0.19 -0.28 -0; 13 -0.21 -0.51 E-l -0.13 -0.85 E-2 

0.02 2.47 2.25 -0.22 2.38 -0.09 2.53 0.06 2.61 

0.03 8.08 8.41 0.33 8.45 0.37 8.50 0.42 8.53 

0.04 14.83 15.50 0.68 15.48 0.65 15.46 0.63 15.44 

0.05 21 .47 22.30 0.83 22.25 0.78 22.18 0.71 22.14 

0.06 27.57 28.44 0.87 28.37 0.80 28.28 0.71 28.23 

0.07 33.01 33.87 0.86 33.79 0.78 33.70 0.69 33.64 

0.08 37.82 38.64 0.82 38.57 0.75 38.47 0.65 38.42 

0.09 42.09 42.86 0.77 42.79 0.70 42.70 0.61 42.64 

0.10 45.88 46.60 0.72 46.53 0.65 46.45 0.57 46.40 

0.20 69.40 69.80 0.40 69.77 0.37 69.73 0.33 69.71 

0.30 81.52 81 .82 0.30 81.80 0.27 81.77 0.25 81.75 

0.40 88.74 88.96 0.22 88.94 0.20 88.92 0.18 88.90 

0.50 93.13 93.29 0.16 93.27 0.14 93.25 0.12 93.24 
---_._-

Error 

-0.09 

0.14 

0.45 

0.61 

0.67 

0.66 

0.64 

0.60 

0.56 

. 0.52 

0.31 

0.23 
-....I 

0.16 

0.12 



TABLE 5.5 ONE-STEP METHODS, SOLUTION OBTAINED FOR RAMP SMOOTHED BOUNDARY TEMPERATURE, 

x = (0.0,0.0), 6t = 0.01 

. 8= 1/2 8= 2/3 8= 0.878 8= 1 

Analytic Numeric Numeric Numeric Numeric 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.62 E-9 0.13 E-3 0.13 [-3 0.13 E-2 0.13 E::2 0.73 E-2 0.73 E-2 0.15 E-1 

0.02 0.23 E-3 0.25 E-2 0.22 E-2 0.15 E-l O.lA E-l 0.56 E-l 0.56 E-l 0.97 E-l 

0.03 0.18E-1 0.21 E-l 0.30 E:-2 0.81 E-l 0.63 E-l 0.22 0.20 0.33 

0.04 0.16 0.11 -0.05 0.29 0.13 0.61 0.44 0.82 

0.05 0.63 0.39 -0.24 0.77 0.15 1. 31 0.69 1.64 

0.06 1.55 1 .04 -0.52 1.65 0.10 2.41 0.85 2.83 

0.07 2.99 2.20 -0.79 2.98 -0.01 3.91 0.92 4.41 

0.08 4.91 3.90 -1 .01 4.78 -0.13 5.80 0.89 6.35 

0.09 7.23 6.08 -1. 16 6.98 -0.26 8.03 0.79 8.59 

0.10 9.88 8.64 -1.24 9.51 -0.37 10.54 0.66 n.10 

0.20 40.35 35.50 -0.85 39.65 -0.70 39.85 -0.50 39.98 

0.30 63.18 62.81 -0.37 62.68 -0.50 62.54 ~0.64 62.46 

0.40 77 .49 77 .35 -0.14 77 .17 -0.31 76.95 -0.53 76.83 

0.50 86.25 86.23 -0.03 86.06 -0.19 85.85 -0.40 85.73 

Error 

0.15 E-l 

0.97 E-l 

0.31 

0.66 

1. 01 

1.28 

1.42 

1.44 

1.36 

1. 21 

-0.35 

-0.72 

-0.66 

-0.60 

'-I 
N 



, TABLE 5.6 ONE-STEP METHODS, SOLUTION OBTAINED FOR RAMP SMOOTHED BOUNDARY TEMPERATURE, 

x = (0.5,0.5),6t = 0.01 

. 0= 1/2 0= 2/3 0= 0.878 0= 1 

Analytic Numeric Numeric Numeric Numeric 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.08 0.78 E-l 0.31 E-2 0.27 0.19 0.70 0.62 1.04 

0.02 2.47 0.84 -1.62 1.83 -0.69 3.20 0.73 3.98 

0.03 . 8.08 3.88 -4.20 5.77 -2.31 7.69 -0.38 8.65 

0.04. 14.83 10.15 -4.68 11.78 -3.05 13.43 -1.40 14.26 

0.05 21.47 17.73 -3.74 18.44 -3.03 19.52 -1.96 20.12 

0.06 27.57 24.35 -3.21 24.77 -2.80 25.40 -2.17 25.79 

0.07 33.01 30.27 -2.73 30.49 -2.52 30.83 -2.18 31.06 

0.08 37.82 35.58 -2.24 35.59 -2.23 35.73 -2.09 35.86 

0.09 42.09 40.09 -: 1 .99 40.11 -1.98 40.14 -1 .95 40.19 

O. 10 45.88 44.22 -1.66 44.13 -1.76 44.09 -1. 79 44.10 

0.20 69.40 68.75 -0.65 68.69 -0.71 68.61 -0.79 68.56 

0.30 81.52 81.21 -0.31 81.13 -0.39 81.02 -0.50 80.97 

0040 88.74 88.59 -0.15 88.50 -0.24 88.38 "-0.35 88.32 

0.50 93.13 93.06 -0.06 92.98 -0.15 92.87 -0.25 92.81 
-

Error 

0.95 

1. 51 

0.57 

-0.56 

-1.35 

-1.78 

-1.95 

-1.97 

-1.90 

-1 .79 

-0.84 

-0.56 

-0.42 

-0.31 

'-J 
W 



TABLE 5.7 ONE-STEP METHODS, SOLUTION OBTAINED FOR RAMP SMOOTHED BOUNDARY TEMPERATURE, 

X : (0.0,0.0), 6t :0.001 

0= 1/2 8= 2/3 8= 0.878 8: 1 
. . 

Analytic Numeric Numeric Numeric Numeric 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.62 E-9 0.21 E-7 0.20 E-7 0.33 E-6 0.33 E-6 0.44 E-7 0.44 E-7 -0.16 E-6 

0.02 0.23 E-3 0.77 E-4 -0.15E-3 -0.18E-3 -0.41 E-3 -0.32 E-3 -0.55 E-3 -0.25 E-3 

0.03 0.18E-l -0.13 E-2 -0.19 E-l 0.34 E-2 -0. 14 E-l 0.11 E-l -0.68 E-2 0.16 E-l 

0.04 0.16 0.92 E-l -0.71 E-l 0.12 -0.45 E-l 0.15 -0.12 E-l 0.17 

0.05 0.63 0.51 -0.12 0.56 -0.65 E-l 0.63 0.98 E-3 0.66 

0.06 1.55 1.42 -0.13 1.49 -0.59 E-l 1.59 0.34 E-1 1.64 

0.07 2.99 2.87 -0.11 2.96 -0.27 E-1· 3.07 0.08 3.13 

0.08 4.91 4.83 -0.07 4.93 0.21 E-l 5.04 0.14 5.11 

0.09 7.23 7.22 :-0.13 E-1 7.31 0.-78 E-1 7.43 0.19 7.49 

0.10 9.88 . 9.93 0.05 10.02 0.14 10.13 0.25 10.19 

0.20 40-.35 40.79 0.44 40.81 0.45 40.82 0.47 40.83 

0.30 63.18 63.63 0.45 63.61 0.43 63.60 0.42 63.59 

0.40 77 .49 77 .85 0.36 77.83 0.35 77 .81 0.32 77 .80 

0.50 86.25 86.53 0.27 86.51 0.26 86.49 0.24 86.48 

Error 

-0.16 E-6 

-0.48 E-3 

-0.17 E-2 

0.83 E-2 

0.39 E-1 

0.88 E-1 

0.14 

0.20 

0.26 

0.31 

0.48 . 

0.41 

0.31 

0.23 

I 
I 

I 

....... 

.j::> 



TABLE 5.8 ONE-STEP METHODS, SOLUTION OBTAINED FOR RAMP SMOOTHED BOUNDARY TEMPERATURE, 

x = (0.5,0.5) ~t = 0.001 -
8= 1/2 8= 2/3 8=0.878 8= 1 

. Ana lyti c Numeric Numeric Numeric Numeric 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.08 -0.11 -0.19 -0.10 -0.18 -0.77 E-l -0.16 -0.56 E-l 

0.02 2.47 1.23 -1.23 1.45 -1.02 1. 71 -0.76 1.85 

0.03 8.08 6.92 -1. 15 7.09 -0.98 7.31 -0.77 7.43 

0.04 14.83 13.99 -0.84 14.09 -0.73 14.23 -0.60 14.30 

0.05 21.47 20.91 -0.56 20.97 -0.50 21.04 -0.43 21.09 

0.06 27.57 27.21 -D.36 27.23 -0.33 27.27 -0.30 27.29 

0.07 33.01 32.78 -0.22 32.79 -0.21 32.80 -0.20 32.81 

0.08 37.82 37.69 -0.13 37.69 -0.13 37.69 -0.13 37.69 

0.09 42.09 42.01 -0.74 E-1 42.01 -0.08 42.00 -0.09 42.00 

0.10 45.88 45.85 -0.34 E-1 45.84 -0.04 45.83 -0.05 45.83 

0.20 69.40 69.47 -0.74 E-1 69.47 0.07 69.46 -0.06 69.46 

0.30 81.52 81.63 0.10 81.62 0.10 81.61 -0.09 81 .60 

0.40 88.74 88.84 0.10 88.83 0.09 88.82 -0.08 88.81 

0.50 93.13 93.22 0.09 93.21 0.08 93.20 -0.07 93.19 

Error 

-0.14 

-0.61 

-0.64 

-0.52 

-0.39 

-0.28 

-0.19 

-0.13 

-0.09 

-0.56 E-l 

0.56 E-l 

0.79 E-1 

0.77 E-1 

0.65 E-1 
........ 
U1 



, TABLE 5.9 ONE-STEP METHODS, SOLUTION OBTAINED FOR SMOOTHED BOUNDARY TEMPERATURE AS PROPOSED BY ZIENKIEWICZ, 

x = (0.0,0.0), tt = 0.01 '-
0= 1/2 8= 2/3 8= 0.878 8= 1 

Analytic Numeric Numeri c Numeric Numerjc 
time Solution Solution Error Solution Error Solution Error Solutjon Error 

0.005 0.64 E-ll 0.13 E-3 0.13 E-3 0.13 E-2 ·0.13 E-2 0.73 E-2 0.73 E-2 0.15 E-l 0.15 E-l 

0.015 0.31 E-5 0.25 E-2 0.25 E-2 0.15 E-l 0.15 E-l 0.56 E-l 0.56 E-1 0.97 E-l 0.97 E-l 

0.025 0.31 E-2 0.21 E-l 0.18E-l 0.81 E-l 0.78 E-l 0.22 0.22 0.33. 0.33 

0.035 0.63 E-l 0.11 0.47 E-l 0.29 0.23 0.61 0.55 0.82 0.76 

0.045 0.34 0.39 0.05 0.77 0.43 1.31 0.97 1.64 1.30 

0.055 1.02 1.04 0.02 1.65 0.63 2.41 1.39 2.83 1.81 

0.065 2.21 2.2Q -0.01 2.98 0.77 3.91 1. 70 4.41 2.20 

0.075 3.89 3.90 0.01 4.78 0.89 .5.80 1. 91 6.35 2.46 

0.085 6.02 6.08 0.06 6.98 0.96 8.03 2.01 8.59 2.57 

0.095 8.52 8.64 0.12 9.51 0.99 10.54 2.02 11 .10 2.58 

0.195 38.95 39.50 0.55 39.65 0.70 39.85 -0.10 39.98 1.03 I 

0.295 62.27 02.80 0.53 62.68 0.41 62.54 0.27 62.46 0.19 

0.395 76.92 77 .35 0.43 77 .17 0.25 76.95 O.OJ 76.83 -0.09 

0.495 85.91 86.23 0.32 86.06 0.15 85.85 -0.06 85.73 -0.18 j 
-

'-J 
0"1 



TABLE 5.10 ONE-STEP METHODS, SOLUTION OBTAINED FOR SMOOTHED BOUNDARY TEMPERATURE AS PROPOSED BY ZIENKIEWICZ, 

x = (0.5,0.5), 6t = 0.01 

8: 1/2 8= 2/3 8= 0.878 8= 1 . 

Analytic Numeric Numeric Numeric Numeric 
time Solution Solution Error Solution Error Solution Error Solution Error 

0.005 0.11 E-l 0.78 E-1 0.67 E-1 0.27 0.26 0.70 0.69 1.04 1.03 

0.015 0.78 0.84 0.06 1.83 1.05 3.20 2.42 3.98 3.20 

0.025 5.01 3.88 -1. 13 5.77 0.76 7.69 2.68 8.65 3.64 
, 

0.035 11 .41 10.15 -1 .36 11.78 0.37 13.43 2.02 14.26 
- 2.75 I 

0.045 18.20 17.73 -0.47 18.44 0.24 ' 19.52 1.32 20.12 1.92 

0.055. 24.60 24.35 -0.25 24.77 0.17 25.46 0.86 25.79 1.19 

0.065 30.37 30.27 -0.10 30.49 0.12 30.83 0.46 31.06 0.69 

0.075 35.49 35.58 0.09 35.59 0.10 35.73 0.24 35.86 0.37 

0.085 40.02 40.09 0.07 40.11 0.09 40.14 0.12 40.19 0.17 

0.095 44.04 44.22 0.18 44.13 0.09 44.09 0.05 44.10 0.06 

0.195 68.~9 68.75 0.16 68.69 0.10 68.01 0.42 68.56 -0.03 

0.295 81.06 81. 21 O. 15 81.13 0.07 81.02 -0.04 80.97 -0.09 -....J 
-....J 

0.395 88.46 8.59 0.14 88.50 0.04 88.38 -0.08 88.32 -0.14 
, 

0.495 92.95 93.06 0.11 92.98 0.03 92.87 -0.08 92.81 -0.14 



TABLE 5.11 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR 

AVERAGING FIRST TWO SUCCESSIVE TEMPERATURES, 

x = (0.0,0.0)" lit = 0.01 

AVERAGING 
Analytic Numeric 

time Solution Solution Error 

0.005 ().64 E-ll 0.66 E-4 0.66 E-4 

0.015 0.31 E-5 0.13 E-2 0.13 E-2 

0.025 0.31 E-2 0.11 E-1 0.08 E-2 

0.035 0.62 E-1 0.64 E-1 0.02 E'-l 

0.045 0.34 0.25 -0.09 

0.055 1.02 0.71 -0.31 

0.065 2.21 1.62 -0.59 

0.075 3.89 3.05 -0.84 

0.085 6.02 4.99 -2.03 

0.095 8.52 7.36 -l.16 

0.195 38.95 38.05 -0.90 

0.295 62.27 61.87 -0.40 

0.395 76.92 76.77 -0.15 

0.495 85.91 85.87 -0.04 

78 



TABLE 5.12 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR 

AVERAGING FIRST TWO SUCCESSIVE TEMPERATURES, 

x - (0.5,0.5), ~t = 0.01 

AVERAGING 
Analytic Numed c 

time Solution Solution Error 

0.005 0.11 E-3 0.39 E-l 0.39 E-1 

0.015 0.78 0.46 -0.32 

0.025 5.01 2.36 -2.65 

0.035 11.41 7.01 -4.40 

0.045 18.20 13.94 -4.26 

0.055 24.60 21.04 -4.56 

0.065 30.37 27.31 -3.06 

0.075 36.49 32.93 -3.56 

0.085 40.02 37.84 -2.18 

0.095 44.04 42.15 -1.89 

0.195 68.59 67.91 -0.68 

0.295 81.06 80.73 -0.33 

0.395 88.46 88.30 -0.16 

0.495 92.95 92.88 -0.07 

79 



fABLE 5.13 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR 

AVERAGING FIRST TWO SUCCESSIVE TEMPERATURES, 

x = (0.0,0.0), 6t = 0.001 

AVERAGING 

Ana lyti c Numeric 
time Solution Solution Error 

0.0095 0.17 E-9 -0.19 [-5 -0.19 E-5 

0.0195 0.16 E-3 0.93 E-4 -0.7 E-4 

0.0295 0.15 E-1 -0.17 E-2 -0.17 E-l 

0.0395 0.15 0.08 -0.07 

0.0495 0.59 0.48 -0. 11 

0.0595 1.49 1.36 -0.13 

0.0695 2.90 2.79 -0.11 

0.0795 4.80 4.73 -0.07 

0.0895 7 . 11 7.09 -0.02 

0.0995 9.74 9.79 0.05 

0.1995 40.21 40.65 0.44 

0.2995 63.09 63.54 0.45 

0.3995 77 .43 77.79 0.36 

0.4995 86.21 86.49 0.20 

80 



TABLE 5.14 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR 

AVERAGING FIRST TWO SUCCESSIVE TEMPERATURES, 

x = (0.5,0.5), 6t = 0.001 

AVERAGING 
Analytic Numeric 

time Solution Solution Error 

0.0095 0.57 E-1 -0.60 E-1 -0.11 

0.0195 2.26 1.04 -1 .22 

0.0295 7.75 6.59 -1. 16 

0.0395 14.48 13.63 -0.85 

0.0495 21. 15 20.58 -0.57 

0.0595 27.27 26.91 -0.36 

0.0695 32.75 32.52 -0.23 

0.0795 37.60 37.48 -0.12 

0.0895 41.89 41 .81 -0.08 

0.0995 45.70 45.66 -0.04 

0.1995 69.32 69.37 0.05 

0.2995 81.48 81.58 0.10 

0.3995 88.71 88.81 .0.10 

0.4995 93.11 93.20 0.09 

81 



TABLE 5.15 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR 

EXPONENTIAL SMOOTHED BOUNDARY TEMPERATURE, 

~ = (0.0,0.0), ~t = 0.01 

l-e -4t/ ~t 1 -2t/6t -e 

Analytic Numeric Numeric 
time Solution Solution Error Solution Error 

0.01 .62 E-9 .13 E-3 .13 E-3 0.11 E-3 0.11 E-3 

0.02 .23 E-3 .24 E-2 .21 E-2 0.21 E-2 0.19 E-2 

0.03 .18 E-1 .21 E-l .27 E-2 0.18E-1 0.50 E-3 

0.04 . 16 .11 -.06 0.96 E-1 0.67 E-l 

0.05 .63 .38 -.24 0.35 -0.28 

0.06 1. 55 1.02 -.53 0.94 -0.61 

0.07 2.99 2.17 -.81 2.03 -0.96 

0.08 4.91 3.87 -1.04 3.65 -1.26 

0.09 7.23 6.04 -1.20 5.75 -1.48 

0.10 9.88 8.59 -1 .29 8.25 -1.63 

0.20 40.35 39.45 -0.91 39.05 -1.31 

0.30 63.18 62.77 -0.41 62.51 -0.67 

0.40 77 .49 77 .33 -0.16 77 .17 -0 .. 32 

0.50 86.25 86.21 -0.04 86.11 -0.14 

82 



TABLE 5.16 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR 

EXPONENTIAL SMOOTHED BOUNDARY T~MPERATURE, 

~ = (0.5,0.5), 6t = 0.01 

1 -4t/llt -e l_e-2t/ llt 

Analysis Numeric Numeric 
time Solution Solution Error Solution Error 

0.01 0.08 0.77 E-l -0.46 E-2 0.07 -0.01 

0.02 2.47 0.83 -1.64 0.74 -1.73 

0.03 8.08 3.82 -4.25 3.45 -4.62 

0.04 14.83 10.03 -4.79 9.29 -5.58 

0.05 21 .47 17.59 -3.88 16.58 -4.89 

0.06 27.57 24.23 -3.34 23.30 -4.27 

0.07 33.01 30.16 -2.84· 29.33 -3.68 

0.08 37.82 35.48 -2.34 34.79 -3.09 

0.09 42.09 40.01 -2.08 39.37 -2.72 

0.10 45.88 . 44.14 -1.74 43.56 -2.32 

0.20 69.40 68.72 -0.68 68.48 -0.91 

0.30 81.52 81.19 -0.33 81.06 -0.47 

0.40 88.7i 88.58 -0.16 88.50 -0.29 

0.50 93.13 93.06 -0.07 93.01 -0.12 

83 



.. -TABLE 5.17 CRACK-NICHOLSON METHOD, SOLUTION OBTAINED FOR 

EXPONENTIAL SMOOTHED BOUNDARY TEMPERATURE, 

x = (0.0,0.0), 6t = 0.001 

1_e-4t / 6t 1 -2t/6t -e 

Analytic Numeric i~umeri c 
time Solution Solution Error Solution Error 

0.01 0.62 E-9 -0.49 E-7 -50 E-7 -0.42 E-6 -0.42 E-6 

0.02 0.23 E-3 -0.77 E-4 -0.15 E-3 0.81 E-4 -0.15 E-3 

0.03 0.18E-1 -0.13 E-2 -0.19 E-1 -0.14 E-2 -0.02 

0.04 O. 16 0.91 E-1 -0.07 0.88 E-1 -0.07 

0.05 0.63 0.51 -0.1·2 0.50· -0.13 

0.06 1.55 1.42 -0.14 1.40 -0.15 

0.07 2.99 2.87 -0.12 2.85 -0.14 

0.08 4.91 4.83 -0.08 4.80 -0.10 

0.09 7.23 7.21 -0.02 7.18 -0.05 

0.10 9.88 9.93 0.05 9.89 0.01 

0.20 40.35 40.79 0.44 40.75 0.40 

0.30 63.18 63.62 0.44 63.60 0.42 

0.40 77 .49 77 .85 0.36 77 .83 0.35 

0.50 86.25 86.53 0.27 86.52 0.26 

84 



TABLE 5.18 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR 

EXPONENTIAL SMOOTHED BOUNDARY TEMPERATURE, 

~ = (0.5,0.5), ~t = 0.001 

1 -4t/ ~t -e 1 -2t/ ~t -e 
Analytic Numeric Numeric 

time Solution Solution Error Solution Error 

0.01 0.81 E-l -0.11 -0.19 -0.95.E-l -0.18 

0.02 2.47 1.23 -1.24 1. 18 -1.29 

0.03 8.08 6.91 -1. 17 6.82 -1 .26 

0.04 14.83 . 13.98 -0.85 13.88 -0.95 

0.05 21 .47 20.90 -0.57 20.31 -0.66 

0.06 27.57 27.20 -0.37 27.11 -0.46 

0.07 33.01 32.77 -0.23 32.70 -0.31 

0.08 37.82 37.68 -0.14 37.62 -0.20 

0.09 42.09 42.01 -0.08 41.95 -0.14 

0.10 45.88 45.84 -0.04 45.79 -0.09 

0.20 69.40 69.47 0.07 69.45 0.05 . 
0.30 81.52 81 .62 0.10 81.61 0.09 

0.40 88.74 88·.84 0.10 88.83 0 .. 09 

0.50 93.13 93.22 0.09 93.21 0.08 

85 



,TABLE-5.19 TWO-STEP METHODS, SOLUTION OBTAINED BY STARTING WITH THE CRANK-NICHOLSON METHOD, 

~ = (0.0,0.0), ~t = 0.01 

y= 3/2 B= 4/5 y= 3/2 B= 1 y= 1.2184 B= 0.646 y= 1 

Analytic Numeric Numeric Numeric Numeric 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.62 E-9 0.39 E-3 0.30 E-3 0.39 E-3 0.39 E-3 0.39 E-3 0.39 E-3 0.39 E-3 

0.02 0.23E-3 0.75 E-2 0.73 E-2 0.13 E-1 0.13 E-1 0.74 E-2 0.72 E-2 0.18E-1 

0.03 0.18E-1 0.55 E-l 0.37 E-1 0.85 E-1 0.67 E-1 0.55 E-1 0.37 E-l 0.99 E-1 

0.04 0.16 0.24 0.08 0.31 0.15 0.24 0.08 0.33 

0.05 0.63 0.73 0.10 0.83 0.20 0.73 0.10 0.85 

0.06 1.55 1.69 0.14 1.77 0.22 1.69 0.14 1.77 

0.07 2.99 3.20 0.21 3.21 0.22 3.20 0.21 3.18 

0.08 4.91 5.22 0.31 5.15 0.24 5.22 0.31 5.11 

0.09 7.23 7.66 0.43 7.53 0.30 7.66 0.43 7.49 

0.10 9.88 10.43 0.56 10.27 0.49 10.43 0.56 10.24 

0.20 40.35 41.3) l.02 41.34 0~99 41.37 1.02 41.35 

0.30 63.18 64.02 0.84 64.04 0.86 64.02 0.84 64.04 

0.40 77 .49 , 78.09 0.60 78.11 0.62 78.09 0.60 78.11 

0.50 86.25 86.68 0.43 86.69 0.44 86.88 0.43 86.69 

B= 3/4 y= 1/2 
Numeri c 

Error Solution 

0.39 E-3 0.39 E-3 

0.18 E-1 0.13 E-l 

0.81 E-l 0.73 E-l 

0.17 0.28 

0.22 0.76 

0.22 1.69 

0.19 3.15 

0.20 5.17 

0.26 7.61 

0.46 10.40 

1.00 41.37 

0.86 ' 64.02 

0.62 78.09 

0.41 86.68 

'B= 1/3 
\ 

Error 

0.39 E-3 

0.13 E-1 

0.55 E-1 

0.12 

0.13 

0.14 

0.16 

0.26 

0.38 

0.53 

1.02 

0.84 

0.60 

0.43 
OJ 
~ 



TABLE 5.20 TWO-STEP METHODS, SOLUTION OBTAlNED BY STARTING WITH THE CRANK-NICHOLSON METHOD, 

x = (0.5 j O.5), ~t = 0.01 
. 

y= 3/2 6= 4/5 y= 3/2 6= 1 y= 1.2184 6= 0.646 y= 1 

Analytic Numeric Numeric Numeric Numeric 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.81 E-1 0.23 0.15 0.23 0.15 0.23 0.15 0.23 

0.02 2.47 2.13 -0.34 2.32 -0.15 2.12 -0.33 2.39 

0.03 8.08 7.45 -0.63 7.21 -0.87 7.44 -0.62 7.03 
>.-

0.04 14.83 15.07 0.24 14.13 0.70 15.11 0.74 13.82 

0.05 21 .47 22.19 0.72 21.46 -0.01 22.24 0.77 21.38 

0.06 25.57 28.38 0.81 28.16 0.59 28.41 0.83 28.37 

0.07 33.01 33.95 . 0.94 33.93 0.92 33.96 0.95 34.20 

0.08 37.82 38.71 0.89 38.85 1.03 38.71 0.89 39.00 

0.09 42.08 42.97 0.89 43.11 1.03 42.96 0.88 43.13 

0.10 45.88 46.69 0.81 46.85 0.97 46.68 0.80 46.82 

0.20 69.40 69.83 0.43 69.87 0.47 69.83 0.43 69.87 

0.30 81.52 81.83 0.31 81.85 0.33 81.83 0.31 81 .85 

0.40 88.74 88.97 0.23 88.98 0.24 88.96 0.22 88.98 

0.50 93.13 93.29 0.16 93.30 0.17 93.29 0.16 93.30 
_. __ ._-

6= 3/4 y= 1/2 - \ 6= 1/3 
Numeric 

Error Solution Error 

0.15 0.23 0.15 

-0.08 2.32 -0.15 

-1.05 6.97 -1.11 

::.1 .01 14.61 -0.22 

-0.09 22.37 0.90 

0.80 28.77 1.20 

1. 19 33.90 0.89 

1. 18 38.50 0.68 

1.05 43.26 1. 18 

0.94 46.61 0.73 
I 

0.47 69.86 0.46 

0.33 81. 79 0.27 

0.24 88.99 0.25 

0.17 93.29 0.16 
( 



'TABLl 5.21 TWO-STEP METHODS, SOLUTION OBTAINED BY STARTING WITH THE CRANK-NICHOLSON METHOD, 

x = (0.0,0.0), 6t = 0.001 

y= 3/2 B= 4/5 y= 3/2 B= 1 y= 1.2184 B= 0.646 y= 1 

Analytic Numeric Numeric Numeric Numeric 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.62 E-9 0.24 E-5 0.24 E-5 0.14E-6 0.14 E-6 0.26 E-5 0.26 E-5 0.15 E-7 

0.02 0.23 E-3 -0.27 E-3 -0.50 E-3 -0.29 E-3 -0.52 E-3 -0.27 E-3 0.50 E-3 -0.27 E-3 

0.03 0.18E-l 0.53 E-2 -0.12 E-l 0.66 E-2 -0.01 0.53 E-2 -0.13 E-l 0.67 E-2 

0.04 0.16 0.15 -0.01 0.15 -0.01 0.15 -0.01 0.15 

0.05 0.63 0.66 0.03 0.66 0.03 0.66 0.03 0.66 

0.06 1. 55 1.68 O. 13 1.68 0.13 1.68 . 0.13 1. 68 

0.07 2.99 3.25 , 0.26 3.25 0.26 3.25 0.26 3.25 

0.08 4.91 5.30 0.40 5.30 0.39 5.30 0.39 5.30 

0.09 7.23 7.76 0.53 7.76 0.53 7.76 0.53 7.76 

0.10 9.88 10.53 0.65 10.53 0.65 10.53 0.65 10.53 

0.20 40.35 41.38 1.03 41.38 1.03 41.38 1.03 41.38 

0.30 63..18 64.00 0.82 64.00 0.82 64.00 0.82 64.00 

0.40 77 .49 78.08 0.59 78.08 0.59 78.08 0.59 78.08 

0.50 86.25 86.67 0.41 86.67 0.41 86.67 0.41 86.67 

B= 3/4 y= 1/2 ' 
Numeric 

Error Solution 

0.14 E-7 -0.97 E-8 

-0.50 E-3 -0.25 E-3 

-0.01 0.56 E-2 

-0.01 0.15 

0.03 0.66 

0.13 1.68 

0.26 3.25 

0.40 5.30 

0.53 7.76 

0.65 10.53 

1.03 41.38 

0.82 64.00 

0.59 78.08 

0.41 86.67 

B=' 1/3 

Error 

-0.10 E-7 

-0.48 E-3 

-0.12 E-l 

-0.15 E-l 

0.03 

0.13 

0.26 

0.40 . 

0.53 

0.65 

1.03 

0.82 

0.59 

0.41 

c 
c 
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TABLE 5.22 TWO-STEP METHODS, SOLUTION OBTAINED BY STARTING WITH THE CRANK-NICHOLSON METHOD, 

x = (0.5,0.5), ~t = 0.001 -
'y= 3/2 B= 4/5 y= 3/2 B= 1 y= 1.2184 B= 0.646 y= 1 B= 3/4 y= 1/2 s= 1/3 

Analytic Numeric Numeric Numeric Numeri c Numeric \ 

time Solution Solution Error Solution Error Solution Error Solution Error Solution Error 

0.01 0.81 E-1 -0.19 -0.27 -0.16 -0.24 -0.19 -0.27 -0.16 -0.24 -0. 19 -0.27 

0.02 2.47 2.25 -0.22 2.23 -0.24 2.25 -0.22 2.23 -0.24 2.25 -0.22 

0.03 8.08 8.41 0.33 8.39 0.32 8.41 0.33 8.39 0.32 8.41 0.33 

0.04 14.83 15.50 0.67 15.50 0.67 15.50 0.67 15.50 0.67 15.50 0.68 . 

0.05 21.47 22.31 0.84 22.30 0.83 22.31 0.84 22.30 0.83 22.31 0.83 

0.06 27.57 ·28.44 . 0.88 28.44 0.88 28.44 0.88 28.44 0.88 28.44 0.88 

0.07 33. 01 33.87 .. 0.86 33.87 0.86 33.87 0.86 33.87 0.86 33.87 6.86 

0.08 37.82 38.64 0.82 38.65 0.81 38.64 0.82 38.65 0.81 38.64 0.82 

0.09 42.09 42.86 . 0.77 42.86 0.77 42.86 0.77 42.86 0.77 42.86 0.77' 

0.10 45.88 46.60 0.72 46.60 0.72 46.60 0.72 46.60 0.72 46.60 0.72 

0.20 69.40 69.81 0.41 69.81 0.41 69.81 0.41 69.81 0.41 69.81 0.41 

0.30 81.52 81.82 0.30 81.82 0.30 81.82 0.30 81.82 0.30 81 .82 0.30 

0.40 88.74 88.96 0.22 88.96 0.22 88.96 0.22 88.96 0.22 88.96 0.22 

" 
0.50 93.13 93.29 0.16 93.29 ' 0.16 93.29 0.16 93.29 0.16 93.29 0.16 

------ .. _--------



, 
TABLE 5.23 TWO-STEP METHODS, SOLUTION OBTAINED BY STARTING WITH KNOWN STEADY CONDITIONS, 

x = (0.0,0.0), 6t = 0.01 
~ 

.y": 3/2 s: 4/5 y= 3/2 13= 1 y= 1.2184 B= 0.646 y= 1 

Analytic Numeric Numeric Numeric Numen c 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.62 E-9 0.52 E-3 0.52 E-3 0.17 E-2 0.17 E-2 0.53 E-3 0.53 E-3 0.35 E-2 

0.02 0.23 E-3 0.77 E-2 0.75 E-2 0.18E-l 0.17 E-l 0.79 E-2 0.77 E-2 0.27 E-l 

0.03 0.18 E-l 0.52 E-1 0.36 E-l 0.87 E-l 0.69 E-l 0.54 E-l 0.36 E-l 0.11 

0.04 0.16 0.22 0.59 E-l 0.29 0.13 0.23 0.07 0.34 

0.05 0.63 0.66 0.03 0.74 0.12 0.'69 0.06 0.81 

0.06 1.55 1.55 -0.38 E-2 1.56 0.01 1.60 0.05 1.66 

0.07 2.99 2.95 -0.04 2.82 0.17 3.06 0.07 2.95 

0.08 4.91 4.85 -0.06 4.55 -0.35 5.02 0.11 4.74 

0.09 7.23 7. 18 -0.04 6.73 -0.50 7.41 0.18 6.99 

: 0.10 9.88 9.87 -0.01 9.28 -0.60 10.14 0.26 9.62 

0.20 40.35 40.73 . 0.38 40.10 -0.25 . 41.05 0.70 40.61 

0.30 63.18 63.59 0.41 63.22 0.04 63.80 0.62 63.55 

0.40 77 .49 77 .84 0.36 77 .62 0.13 77 .96 0.48 77 .82 

0.50 86.25 86.52 0.27 86.39 0.14 86.60 0.35 86.51 

13= 3/4 If= 1/2 
NumerlC 

Errl(~iT" Solution 

0.35 E-2 0.29 E-2 

0.26 E-1 0.22 E-l 

0.94 E-1 0.10 

0.18 0.33 

0.18 0.87 

0.11 1.83 

-0.04 3.36 

-0.16 5.38 

-0.24 7.89 
. 

-0.26 10.13 

0.26 41.41 

0.38 63.9 

0.33 77 .90 

0.26 86.47 

0= ,-1 /3 

! 
: Error 

0.29 E-2 

0.21 E-1 

0.84 

0.17 

0.24 

0.28 

0.34 

0.47 

0.66 

0.75 

1.06 

0.72 

0.42 

0.22 

I 

U) 

o 
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TABLE 5.24 TWo'-STEP METHODS, .SOLUTION OBTAINED BY STARTING WITH KNOWN STEADY CONDITIONS, 

x = (0.5,0.5), ~t = 0.01 ... 

y= 3/2 B= 4/5 y= 3/2 B= 1 y= 1.2184 B= 0.646 y:: 1 

Analytic Numeric Numeric Numeri c Numeric 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.81 E-1 0.25 0.16 0.39 0.31 0.26 0.18 0.54 

0.02 2.46 1. 96 -0.50 2.19 -0.27 2.05 -0.45 2.44 

0.03 8.08 6.70 -1.38 6.16 -1 .92 7.02 -0.15 6.43 

0.04 14.82 13.71 -1.11 12.00 -2.82 14.34 -0.49 12.40 

0.05 21.47 20.67 -0.80 18.68 -2.79 21 .43 -0.04 19.43 

0.06 27.57 26.96 -0.61 25.25 -0.23 27.69 0.12 26.37 

0.07 33.01 32.64 -0.37 31 .21 -1. 79 33.31 0.30 32.48 

0.08 37.82 37.56 -0.26 36.46 -1.37 38.15 0.33 37.61 

0.09 42.09 41.94 -0.15 41.03 -1.06 42.45 0.36 41.97 

0.10 45.88 45.79 -0.09 45.03 -0.85 46.24 0.36 45.80 

0.20 69.40 69.46· 0.06 69.16 -0.25 69.64 0.24 69.44 

0.30 81.52 81.61 0.09 81.43 -0.09 81.72 0.20 81.40 

0.40 88.74 
\ 

88.84 0.10 88.73 -0.01 88.90 0.16 88.93 

0.50 93.13 93.21 0.08 93.15 0.02 93.25 0.12 93.21 
---- -_._---

B= 3/4 y= 1/2 B= 1/3 
\ 

Numeric • 
Error Solution Error 

0.45 0.63 0.55 

-0.02 2.66 0.20 

-0.17 7.95 -0.13 

-2.42 14.82 0.00 

-2.04 23.33 1.86 

1.20 28.61 1.05 

-0.52 34.95 1.95 

-0.21 38.19 0.37 
i 

-0.12 44.21 2.12 I 
i 
I 

-0.08 46.29 0.41 

0.04 69.60 0.20 

0.08 81.60 0.08 

0.09 88.82 0.08 

0.08 93.16 0.03 ~ ..... 
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TABL~ 5~25 tWO-STEP METHODS, SOLUTION OBTAINED BY STARTING WITH KNOWN STEADY CONDITIONS. 

x = (O.O,O~O), 6t = 0.001 

. 
--.-

y= 3/2 6= 4/5 y= 3/2. 6= 1 y= 1.2184 B= 0.646 y= 1 

Analytic Numeric Numeric Numeric Numeric 

time Solution Solution Error Solution Error Solution Error solution 

0.01 '0.62 E-9 0.27 E-5 0.27 E-5 0.64 E-7 0.64 E-7 0.27 E-5 0.27 E-5 0.37 E-9 

0.02 0.23 E~3 0.33 E-3 -0.56 E-3 -0.32 E-3 -0.54 E~3 -0.29 E-3 -0.52 E-3 -0.25 E-3 

0.03 0.18E-l 0.67 E-2 -0.11 E-l 0.77 E-2 -0.10E-l 0.59 E-2 -0.01 0.62 E-2 

0.04 0.16 0.16 -0.24 E-2 0.16 -0.50 E-2 0.15 -0.01 0.14 

0.05 0.63 0.69 0.66 E-l 0.68 0.05 0.67 0.04 0.64 

0.06 1.55 1.74 0.19 1. 72 0.17 1. 71 0.16 1.65 

0.07 2.99 3.33 0.35 3.30 0.31 3.28 0.29 3.20 

0.08 4.91 5.41 0.51 5.37 0.46 5.35 0.44 5.25 

0.09 7.23 7.89 0.66 7.84 0.61 7.82 0.58 7.70 

0.10 9.88 10.68 0.79 10.62 0.73 10.59 0.71 10.46 

0.20 40.35 41.52' 1. 17 41.46 1.11 41.44 1.08 41.31 

0.30 63.18 64.09 0.91 64.05 0.88 64.04 0.86 63.96 

0.40 77 .49 78.13 0.65 78.11 0.63 78.10 0.61 78.05 
\ 

0.50 86.25 86.70 0.45 86.89 0.43 86.68 0.43 86.61 

6= 3/4 iY= 1/2 
Numeric 

Error Solution 

-0.25 E-I -0.76 E-7 

-0.48 E-~ -0.17 E-3 

-0.12 E-l 0.34 E-2 

-0.02 0.13 

0.01 0.61 

0.10 1.60 

0.21 3.13 

0.34 5.16 

0.47 7.60 

0.58 10.36 

0.96 41.31 

0.78 69.07 

0.57 78.21 

0.40 86.82 

/3=, 1/3 

Error 

-0.76 E-7 

-0.40 E-3 

-0.14 E-l 

-0.03 

-0.14E-l 

0.05 

0.14 

0.25 

0.37 

0.48 

0.95 

0.89 

0.73 

0.57 1.0 
N 



TAB~E 5.26 TWO-STEP METHODS, SOLUTION OBTAINED BY STARTING WITH KNOWN STEADY CONDITIONS, 

x = (0.5,0.5), 6t = 0.001 -
. y= 3/2 s: 4/5 y= 3/2 S: 1 y= 1.2184 S= 1 y= 3/4 

Analytic Numeric Numeric Numeric Numeric 
time Solution Solution Error Solution Error Solution Error Solution 

0.01 0.81 E-l -0.21 -0.29 -0.17 -0.25 -0.20 -0.28 -0.14 

0.02 2.47 2.49 0.02 2.39 -0.07 2.35 -0.12 2.13 

0.03 8.08 8.77 0.69 8.62 0.55 8.56 0.48 8.22 

0.04 14.83 15.87 1.05 15.72 0.90 15.65 0.83 15.32 

0.05 21.47 22.64 1. 17 22.51 1. 04 22.44 0.97 22.14 

0.06 27.57 28.74 1. 17 28.62 1.06 28.56 0.99 28.30 

10.07 33.01 34.43 1. 12 34.03 1.02 33.98 0.97 33.74 

0.08 37.82 38.87 1. 05 38.78 0.96 38.74 0.91 38.53 

0.09 42.09 43.06 . 0.97 42.98 0.89 42.94 ' 0.85 42.76 

0.10 45.88 46.78 0.90 46.71 0.83 46.67 0.79 46.51 

0.20 69.40 69.88 0.48 69.85 0.45 . 69.84 0.44 69.77 

0.30 81.52 81.86 0.34 81.85 0.32 81.84 0.32 "81.80 

0.40 88.74 88.99 0.25 88.97 0.24 88.97 0.23 88.94 
\ 

0.50 93.13 93.30 0.17 93.30 0.17 93.29 0.17 93.28 

S= 1/2 y= 1/2 
Numeric 

Error Solution 

-0.22 -0.12 

-0.34 1.88 

0.15 7.93 

0.49 15.14 

0.67 22.11 

0.73 28.39 

0.73 33.93 

0.71 38.79 

0.67- 43.06 

0.63 46.84 

0.37 70.05 

0.27 81.99 

0.21 89.09 

0.15 93.39 

S= 1/3 
\ 

Error 

-0.20 

-0.59 

-0.15 

0.32 

0.64 

0.83 

0.92 

0.97 

0.97 

0.96 

0.65 

0.47 

0.35 

0.26 

I 

I 

lO 
W 
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VI. CONCLUSIONS 

A. One-Step Methods 

1. Whether discontinuous or ramp smoothed, Liniger and Backward­

difference methods give comperatively inaccurate results. 

Crank-Nicholson and Galerkin methods are of acceptable accuracy 

in the discontinuous case. 

2. In the case of larger steplengths, averaging and exponential 

smoothing techniques reduce the accuracy of the Crank-Nicholson 

method. Accuracy is improved by reducing the steplength. On 

the other hand, computation time increases considerably. 

3. Galerkin method when applied with smoothing the discontinuity 

by a ramp function gives better results than do all the above 

methods. 

4. Crank-Nicholson method when applied with smoothing as proposed 

by Zienkiewicz gives excellent results. 
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B. Two-Step Methods 

1. Irrespective of the method of starting, Lees, Dupont and fully 

implicit methods give less accurate results than Liniger and 

Galerkin methods. Galerkin and Liniger methods show acceptable 

accuracy in the case of Crank-Nicholson starting. 

2. Liniger method shows better performance in the case of starting 

from an initially steady state. Galerkin method with this 

starting technique gives excellent results. 



APPENDIX 1 

LINEAR KTH ORDER DIFFERENCE 

EQUATIONS WITH CONSTANT COEFFICIENTS 
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A'linear kth order dif~erence equation with constant coefficfents 

is of the form' 

(A.,l .1) 

Solv1ng the above equation consists of finding a sequence of numbers 

{yn}, where ak, ak- l ', ••• ,ao are constants and bn+ka~e given functions 

of n defined for ri ,=, 0,1,2, ••• ,. It will be assumed Ithat ak to and 
i 

ao 1 0.
1 
I 

The general solution (ynlcan be written of t~e form {Yn+$n}' 
,., , 

where {Yn} is the solution of the homogeneous equation 

akYn~k ~ ak-1Yn+k-l + ••. + aoYn = 0 

, j 
and {tPn} is same particular solution of the nonhomogeneous equ'ation. 

A possible method of finding a particularsolJtion {tPn}, is 
! 

to solve the ·nonhomogeneous equation with the st~rti~g values 
I 

tPo = tPl = •• ~ = tPk- l '= O. For m = O,1,2,~ •• l.et th,e sequence 

{y } satisfy the conditions n,m ' 

y' = 0 n,m ,n < m 
Y = m,m, l/a. , n l 

i 
! 

and let it be a solution of homogeneous equation for n > m. It ,is 

,proved in,Henrici [B)'that, the particular solution of the difference 

'equation (A.l.l) is 

n 
tP = 1: b v ,n m=k wn,m. 

, n > k 



, , 
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The next step is to find.the homogeneous solution of Eq. (A.l.l). 

One can easily verify that, y = ~n is a homogeneous' solution of the' '. n . . . 

difference equation if and only if t is a root of the polynomial 

+ ••• + a . . 0 

It is ilear that ~ = 0 is not a root of P(~}, since ~o ~ 0 [8]. 
. . 

If the polynomial P(~) has k distinct roots, (,~ , ..• '~k' 
. 1 2 . 

then it can be proved that the solutions ~re linearly independent, 

thus form a fundamental system [8]. Hence the homogeneous solution 

" k n y = l:c.~. 
. n j=l JJ 

and, therefore, the general solutfon is 

k n 
Yn = l: c '~J' + 1/J j=l J n 

where c " j = 1,2, ••. ,k are arbitrary constants. 
. J 

.1 . 

If the polynomial P(~) has a root, say t , of multiplicity p, 
.1 '. 

then it can be shown that (n!/(n-i)O~~, i = 1,2, .•. ,p-l are al~o 

solutions of the homogeneou~,equation and the set.of solutions 

{(n'!/(n-i)!)~~}; i=O,l, ... ,p-l and {~j}' j = p+l, p+2, ... ,kform· 

a fundamental system [8J. The homogenerous solution' in this case 

will be 

k . 
~n + l: c,~~ 

1 j=p+1J J 

and, therefore, the general ~olution will be 

p-l n,' n k n 
~ --'-- /:' + ~ C ,/:', + ", Yn = ,~ ci +l ~I ~ J~J o/n 

. 1=0 (n-i)! j=p+l 
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where c., j = 1,2, ••. ,k are arbitrary constants. 
J 

For the most general case, where the polynomial P(~) has roots 
- , 

~j' j = 1,2, .•• ,r and each root ~j is a root' of multiplic,ity Pj , 
r 
I P. = k, then the 'general solution will be 

j";l J 

r PJ·-l n.' n 
y = I I c·· +1 ~. + '" 

n j=l i=O J,l (n-i)1 J n 

where c .. , i = 1,2, ••• ,PJ" j = 1~2, ••• ,r are arbitrary constants [8]. J,l 



APPENDIX 2 

DERIVATION DETAILS FOR a-METHODS AND 

ZIENKIEWICZ THREE-LEVEL SCHEMES 
, , 



, f 

a Values for· the a-Methods 

We have shown that 

1 1 
. a = 1 w .t"dt,,/I w .dt" 

oJ· 0 J 

For the weight function Wj = o(t,,-(1/2», we get 

. Thus 

1 1 
. 1 wjdt" =1 o(t"-(1/2»dt,, = 1 
o 0" . . 

1 
a = 1 o(t"-(1/2»t"dt,, = 1/2 

o 

which corresponds to the Crank~Nicholson method. For the weight 

function w. = 1, we get J . 

1 1 
1 wjdt" = 1 t"dt" = 1 
o 0 

Thus 

1 . 1 1-
a = 1 w.t"dt" = 1 t"dt" = (l/2)t,,2 . 

o J o. 0 
= 1/2 
I 

which also corresponds to the Crank-Nicholson method. For the 

weight function Wj=~' we get 

. .1 1 1 
1 w.dt" = j ~d~ = (1/2)t,,2 = 112 J .. o . 0 0 . I 
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Thus 

1 1 1 
e = 2 f w.~d~ = 2 f ~2d~ = 2(l/3)t3 '= 2/3 

oJ. o· 0 . 

which corresponds to the Ga1erkin method. 

Thus 

For the weight function Wj = cS(~-l}, we get 

1 ' 1 
r wjd~ =.1 cS(~-l )d~ = ,1 
0,0 

1 
e = f cS(~-l)~d~ = 1 

o 

',which corresponds to 'the Backward-difference method. 

y and B Values for the Zienkiewicz'Three-leve1 Schemes' 

. We have shown that 

1 1 
y = f wj «1/2) + ~)d~/f 'wjd~ 

. -1 -1 

, 1 1 
a = (1/2) f w.~(l+ ~)d~/ f wJ.d~ 

-1 ' J -1 ' 

For the weight function Wj ', = cS(~-l), we get 

Thus 

1 1 
f Wjd~ = f cS(~~l)d~ = 1 

-1 -1 ., 

1 ' . 
y = f cS(~-1)«1/2)+~)d~ = (1/2) + 1 = 3/2 

, ';'1 
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1 
B = (1/~) f 5(~~1)~(1+~)d~ = (1/2)(1+1) = 1 

":" 1 . 

which corresponds to the fully-implicit two-:step method. 

For the weight function w. = 5(~+1)/2, we get . J 

1 1 
f w.d~ = (112) f ~(~+l}d~ = (1/2)«~3/3) + (~2/2) 

-1 J. -1 

Thus 

1 , 1 

1 
= 1/3 

-1 

.y = 3 f (1/2)~(~+1)«1/2)+~)d~ = (3/2) f (~3+(3/2)~2+~)d~ 
-1 . -1 

1 
y = (3/2)«~-j4) + (~3/2) + (~2/4) = 3/2 

.;.1 

1 . 1 
B = (3/2) f (1/2)~(~+1)~{~+1)d~ = (3/4) f (~_+2~3+~2)d~ 

-1 -1 

1 
B = (3/4)«~5/5) + (~-/2)'+ (s3/3» = 4/5 

-1 

which corresponds to Ga1erkin two-step method. 

103 
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