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ABSTRACT

Fiﬁite element space discretization of heat conduction equation
is briefly outlined, stability and convergence characteristics of
relevant time integration methods are discussed. For the numerical
integration of the semidisc;etized heéf conduction equation, several
computer prbgrams implementing the adopted one and two step methods
are developed. A series of experiments are made and overall nine
different 1ntegration algorithms are compared on the basis of accuracy
and computational efficiency. Based on the results of the experiments,
it has been concluded that the Crank-Nicholson method in conjuction
with the smoothing process proposed by Zienkiewicz and the<two-step-

~Qa]erkin and Liniger methods with the-starting procedure which involves
starting the method with the known steady conditions prevailing for

time less than zero are superior to the other methods investigated.



OZET

Is1 iletimi denkleminin sonlu elemanlar yontemi ile uzayda
ayriklanmasi kisaca ozetlendi, uzayda ayriklanmis 1s1 iletimi denk-
Teminin zamanda tlimlevienmesi amac1y1a‘ku11an11an yontemlerin karar-
1111k ve yakinsaklik ozellikleri tartisildi. Yari-ayriklanmis 1si
iletimi denkleminin se¢ilen yontemlerle zamanda timlevlenmesi icin
_bilgisayar programlar: ge1istiri1di. Yapilan deneylerle, toplam
dokuz timlev alma algoritmasi, dogruluk ve islemsel verimlilik teme-
linde karsilastirildi. Deneyler sonucunda, sifir aninin yar1m-zaman
adim1 gerisinden baslatilan Crank-Nicholson yontemi ile sifir aninin
bir zaman adim1 gerisinden baslatilan iki adimli Galerkin ve Liniger
“yontemlerinin, digenqyﬁntem1ere oranla daha iyi sonuc verdikleri

gorildii.
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I. INTRODUCTION

One of the .exiting areas in heat transfer applications today
is the digital simulation of the transient heat conduction problem.
By means of digital simulation, it is possible to soTve both linear
and nonlinear problems with irregular geométries, which cannot be
handled by the classical methods of analysis. In the modelling of
the heat conduction problem for digital simulation, the governfng
equations are first discretized in space. This procedure is referred
to as the semidiscretization and yields a system of first order dif-
ferential equations in time. Because of its flexibility with regard
" to geometry and specification of initial and boundary conditions,
the finite element method has been the most widely used method for
the semidiscretization of the heat conduction eqﬁation.

The study of computationa1 methods for the numerica]'integra—
tion of the semidiscrete systems has deepened considerably in recent
years. In the mean time, sgvera] new approaches with greater perfor-
mance and computational efficiency have been developed. Being of
considerab]e importance, transient heat conduction problem has been

one of the focal points of this study for the first order systems. :



Alfhough much development has been—achievedvduring the last
two decades, effective engineering analysis of many important problems
is still hindered by the large cost of time integration of computer
models. Thuﬁ, further study for understanding and improving numerical
integration algorithms is still a necessary and important task to be
taken over. Present state of the art of the numerical integration
methods for the semidiscretized heat conduction equation is given in
the works of Zienkiewicz [1,2], Zlamal [3], Wood [4], and Hogge [5].

The application of the finite eiement method to heat conduction
problems was first made by Wilson and Nickell [6] for the Tinear tran-
sient case. The main development in the numerical integration of the
semidiscretized heat conduction equatioh; on the other hand, is due to
Zienkiewicz [1]. |

The purpose of this study is to discuss and compare several
methods that have been proposed for the numerical integration of
semidiscretized heat conduction equation with regard to computationaT
efficiency and accuracy.

The present work consists of mainly three parts. Thg first
part briefly deals with the statement of the heat conduction problem
and its finite element discretization, the subject of Chapter two.

The second part is devoted to the study of the multistep methods and
their app1itation to heat conduction problem, the subject of the
Chapters three and four. The third part deé]s with the re§u1ts of the
experiments made with the one step 8-methods and the Zienkiewicz three-

level ﬁethods, a brief summary of which can be found in Chapter four.



IT. THE SEMIDISCRETIZATION OF LiNEAR
TRANSTENT HEAT CONDUCTION PROBLEM

2.1 CLASSICAL FORMULATION OF THE HEAT CONDUCTION
PROBLEM

The initial-boundary-value. problem associated with linear

transient heat conduction is to find a temperature distribution

~

6 = 6(x,t) in ax[0,T), satisfying the heat conduction equation

-)}5 +pg = ¢ LR ox[0,T) - (2.1)

(k. .8,
1377 3t

subject to the initial condition

8(x,0) = 6 in 0 | . » ' '(2.2)

e(é,t) =0, ~on S]x(O,T) (2.3)
(kije’j - qi)ni =0 on SZX(O,T) . (2.4)
k055 - h(e, - 8) =0 on $4x(0,T) (2-5)

where 2 is a bounded domain in three-dimensional Euclidean space;



f

S = S]USZUS3 is the boundary of the domain Q with/subboundaries

Sy 52, S3; X = (x],xz,x3) is a point of the domain Q; [O;T) is a

time 1hterva] where T i; any positive scalar; ky; = kij(f)’ i, = 1,2,3
is the distribution of the conductivity tensor in Q; p = p(§) is the
distribution of the mass density inQ; C = C(f) is the distribution

of the specific heat capacity in Q; eo = 60(5) is the initial tem-
perature distribution in Q; g = g(g,t) is the distribution of the rate
of heat generation pér unit mass in Q; es = es(f,t) is the specified
temperature distribution on S]x(O,T); q; = q{(f,t), i=1,2,3 is the
heat flux distribution on Szx(O,T); h = h(§,t) is the heat transfer
coefficient disfribution and 6 = Q”(f,t)‘is the ambient‘temperature

distribution on S3x(0,T); n = (n],nz,n3) is the unit normal vector on

boundary S.

2.2 WEAK FORMULATION OF THE HEAT CONDUCTION PROBLEM
AND THE GALERKIN APPROACH

Many of the finite element methods that have been developed
for linear transient heat conduction prob]em»are based on the‘method
of Qeighted residuals. Among the various fprms of this method,
Galerkin approach (or the Galerkin weighting procedure) is the most

popular one used for the finite element space discretization of the

" heat conduction problem. The discretization of transient problems

in space is called a semidiscretization and yieidS’a set of ordinary

differential equations in time.

In order to formulate the heat conduction problem in a weak

form and to apply the Galerkin method, we introduce the space H].



1. o , . :
H" is the space of real functions which together with their first order
derivatives are square integrable over Q. Now, we consider the space
V of trial funct1ons ¢, consisting of elements ¢ € H] such that ¢|S = 0.
1

Then the integral form of the heat conduct1on equation can be written as

- qi)ni}dS

q i3

Fol(ky38,:)55 + 0g - pc 98 340 = f oL (k;
P e 23

+ -
g q>{(n1kue,J h(e_-6)1}dS
3 (2.6)
If we apply the Greeh-Gauss theorem to the first term of the
first integral in Eq. (2.6), we get

é ¢(kije’j) -f ¢,]k1Je Jdg + £2U53¢n’k136 st (2.7)

Substituting Eq. (2.7) in Eq. (2.6) and, then, rearranging the terms
in the resulting equation, we can write the weak form of the heat

conduction problem as '

f $sy.K:s6,.d0 + f op c dQ + f ¢'hedS = J ¢pgd
171377 ot S, Q

+ ¢niqidS + [ ¢he _dS  (2.8)
i 53

Now for any finite element partition of the domain of @, Tet
h be a positive number which characterizes this partition and is
defined as the largest diameter of all e1ements.r Let {¢£(§)} be a
finité element C° basis such that each ¢2(§) vanishes over all but
a fixed number}of e]ements,and is continuous across the boundaries

of‘any two adjacent elements, and one of the nodal parameters of each



¢2(5) equals one atva node whereas the others are zero. Then we can

approximate o as

o ~8 =

a0 (0) = ¢

IQJZ

(2.9)

noets

1

where all or some of the -parameters a, (t) are unknowns depending on

2
the existence of the specified temperature boundary condition.

It is important to note that the choice of basis functions
are restricted to be from the space V of trial functions ¢ consisting
of elements ¢ ¢ H] such that ¢ 5. 0. On the other hand, the

1
approximation

~

8 ~ 6 =z¢2(x)a£(t)
)

requires that none of the basis functions vanish on the boundary S].
Therefore, approximation for 6 must be in number equal only to tne
unknown nodal values. However, we will agree fo form all the equa-
tions for all the nodal values, and subsequently to constrain the
resulting equations such that the specified temperature boundary
condition is satisfied. The reason for adopting this approach {s
ntnat it is much easier to insert specified boundary temperatures at
the end of discretization.

Substituting Eq. (2.9) in Eq. (2.8) and using the basis

functions L SRR for ¢, we obtain

T aa

I9pCco i+ 14k, ¢, ada + ! ¢ho'adS = SgpgdR + S ¢n.q.ds
Q ot LRNEEY o s, v 17
| >3 | 2
+ [ ¢he_dS (2.10)
¢

3



or, in matrix form, we get

Ca + Ka =

t—h?

(2.11)

where E is the heat capacify matrix defined as

T

= Jocod dq
Toces

> - N
K is the heat conductivity matrix defined as

IR

= f¢,iki.eT,.dQ + 1 hoo'ds
229032 2 4
R

and f is the forcing function defined as

2 =h?

=/ pgpda + / ¢n.q.dS + J ¢he dS
Q 7 S, 7 S,

2 3
The initial condition 6(x,0) = eo(x) on @ gives the initial

condition for a(t)

where EO is the vector determinedaseo(x) =,¢T5 .

So far we have obtained thé semidiscretized equation (2.11)
.of the heat conduction problem in space for a]]ithe nodal values. If
the number of specified nodal parameters is m and the number of all
nodal parameters is n, then the effect of modification for specified
“nodal parameteré yields the system of first order differential equa-

tions for (n-m) free nodal parameters defined as

Cchitka=f (2.12)

~n

‘where a is the vector of (n-m) unknown nodal parameters, C andJE are



condensated form of the matrices of C and K by simply deleting the
rows and columns of § and g that corresponds to the spécified nodal

parémeters. In this case the vector f takes of the form
f=h-ac;-ak , 2=1,2,...,m (2.13)

where Q is the condensated form of the forcing function f by simply
deleting the rows of f that corresponds to specified nodal parameters,
Cy and kz are, respectively, the relevant partitions of the £'th

columns of the matrices § and E.



ITT. LINEAR MULTISTEP METHODS

A large class of algorithms commonly used for the numerical
integration of initial value problems is the class of linear multi-
step methods. In this work, we have employed a subclass of such
methods for the solution of finite element semidiscretized heat con-
duction equation. It therefore seems appropriate to give a brief
review of the properties of this class of methods, rather than dealing
with specific properties of any member of it.

This chépter is intended to provide a §ummary of the funda-
mental concepts in the theory of lTinear multistep methods. The dis-
Cussion is mainly based on the celebrated works of Henrici [ 7.8 1,
Lambert [ 9] and Gear [10]. We begin, in Sectibn_3.1, by infroducing
the preliminary definitions necessary for later considerations. In
Section 3.2, we discuss the concepts of convergence, consistehcy and
zero-stability. This enables the presentation of the fundamental
theorem of Dahlquist [11], which establishes the necessary and suffi-
cient conditions for convergence. The main subject of Section 3.3 is

absolute stability. The study of absolute stability provides an answer

" for the question of accuracy, when the method is applied with a fixea

steplength. Finally Section 3.4 deals with stiffness problem that

arises in forcing the absolute stability criterion to be satisfied.
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3.1 PRELIMINARY DEFINITIONS

Let KN be the complex N-dimensional Euclidean space, z be a

point in Ky where z = [z],zz,...,zN]T. We set
Nzl = lzq] + [zy] + .o+ [z

Also let I = [a,b] be a closed finite time interval where -» < a < b <o
and t be a typical point in I.

Consider the initial value problem for a system of first
order differential equations

X ("= —)

1o
1l
t=h
—
-+
“
<
~—

(3.1)

X
—
o}
~—
I
3

where x and f are functions from IxKN to KN.

THEOREM 1 (Henrici [7 ]): Let f(t,x) be defined and continuous for

all points (t,x) in IxKy and let there exists a constant L, called

~

~

the Lipschitz constant of f. For every t,x,z such that (t,x) and

(t,z) are both in IxKy, if
|| £(t,x) - f(t,2)]] < Lx-z]] (3.2)

then, for all n e Ky there exists a unique solution §(t) of the

~

initial value problem (3.1) where x(t) is continuous and differen-
tiable.for all (t,g) in IXKNT

Consider now the séquence of points

I, = {t =a+nat|n=0.1,...,(b-a)/at, ot e R")

At



/

11

on which we seek an approximate solution to x(t). The parameter At
is called steplength and assumed to be constant throughout. Let us

).

define X, 8s an approximation to §(tn) and let = f(tn,§n

Definition 1: A computational method of the form

4 k
L 0sX = At T B.f

j=0 I~ j=0 I~ (3:3)

to which the sequence {gn}ris a so]utidn is éa]]ed a linear k-step
method or Tinear multistep method of step number k, where o and Bj
are constants. We shall assume that Oy f 0 and a, and BO are not
both zero. |

The polynomials p(z) and o(z) defined as

K .
p(z) = ¢ ocij
j=0
(3.4)
K .
olz) = = Bij
i J=0

are ca]]ed respectively, the first and second characteristic poly-
homia]s of the linear multistep method. A linear multistep method
is called explicit if g, = 0 and implicit if g, # 0.

In order to compute the sequence {fn} through Eq.(3.3), we
need a set of stérting vectofs 56’51""’§k—1’ Given any set of
arbitrary starting vectbrs 80’51""’5k-1 for Eq. (3.3) Henrici [ 7]
pfoves.that there exists a unique solution {§n} if At satisfies the

condition , - p

0 <At < th;]L_]l = bty

“where L denotes the Lipschitz constant of f.



12

Methods for obtaining starting vectors for the Tinear multi-
step method (3.3) are called starting algorithms. Formally, starting

procedures are defined as done in Henrici [ 7] as follows:

Definition 2: A starting procedure & is a set of vector-valued

functionsno(At),nl(At),...,nk_](At) defined for sufficiently smalil

At > 0. The starting algorithm then consists of setting

Xo = gm(At) (m = 0,1,3..,k-1).

It should be noted that the above definition does not neces-

sarily require to choose x

o 35 M name]y the initial vector of the

problem (3.1). However, in practice, the starting algorithm is fre-
quently realized by setting Xo =N and calculating XyoXoseeesXy g by
some one-steb method.

Let us define a vector-valued difference operator associated
with a given multistep method as

k .

Liy(t)sat} = j‘io[ajx(ﬁjl\t) - at8y(t + jat)] (3.5)
‘where Z(t) is an arbitrary vector-valued function that is continuously
differentiable on I. Expanding y(t + jAt) and g(t + jAt) into Taylor's
Series-about t, substituting the results in Eq. (3.5) and collecting

the 1ike terms, we get

L{y(t)sat} = Cy(t) + C-lAt_y(])(t) ot chth(q)(t) .
(3.6)

where
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ok

C = I o

0 J=0 J

K k
C, = I ja.- I B, (3.7)
Vo073 4= 3
kK k-
¢, =— £ %, -—1 z j(q'])sj

@ q j=0 I (g-1) j=0

Definition 3: The order of the difference operator L{y(t);At} and

its associated linear multistep method is the largest integer p such

that for all t
|ILiy(t)satd]| = o(at™*).

It can be shown that the difference operator (3.5) and its
associated linear multistep method is of order p if and only if
Co = C] = ... = Cp = 0, and Cp+] # 0. Thus if the method (3.3) is of
order p, then

c ]Atp+]y(p+])(t) + 0(8tP*?) (3.8)

Liy(t)sat} = Cpy y

Let us reconsider the difference equation

k k

Eoax = At T Bf
2o et jog J=ntd

(3.3)
Since Eq. (3.3) can be multiplied on both sides by the same constant
without altering the relationship, the coefficients oy and~Bj are
arbitrary to the extent of a constant multiplier. Thus by multiplying

across Ed. (3.3) by an arbitrary constant, which will not alter the -

performance the linear multistep method, it is possible arbitrarily
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to change the value of Cp+] in Eq. (3.8) énd thus rob it of its signi-
ficance. Fortunately, this arbitrariness can be removed by fixing Oy
as 1 which is equivalent to divide across Eq. (3.3) bya K which is
normally different than one. The Cp+] term to be obtained from the
resulting equation does not saffer from the arbitrariness discussed
above, since the coefficients are not arbitrary anymore. On the

other hand, it is also possible to leave the coefficients o and Bj
arbitrary to the extent of a constant multiplier and consider the

ratio

S
k

T B
=0 7

where Cp+1 is the first nonvanishing term obtained from Eq. (3.3)

without any restriction on the coefficients, rather than the co-

efficient C +]-itse1f. It should be noted that although Cp+] is

p
arbitrary to the extent of a constant multiplier, the ratio
. k k -
C ../ L B:; is invariant since I B. is also arbitrary to the extent
P g 520 9.

of the same constant multiplier.
Still another way of removing the arbitrariness of the

coefficients in Eq. (3.3), is to agree to divide the Eq. (3.3) by
-k

z B,
§=0 7
satisfy the condition

Then the resulting coefficients Bj, j=0,1,...,k will

.= 1
ZBJ
and
C +1[ :
C - P |coefficients arbitrary
COptl) ok k .
z B:=1 I B
3=0 J . 520 J
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Depending on the way in which the arbitrarfness of the C

p+1
term is removed,keither the coefficient involved in this ferm or
the ratio Cp4]/ ZOBj is called the error constant. The error constant
- Tk
in the case of ay = Tor 1 B,=1will simply be the coefficient C
3=0 J K p+]
obtained from the modified Eq. (3.3) such that either a = lor I Bj =
j=0
The error constant in the case in which the coefficients are left ar-
bitrary is
C
_—ptl
k
T B
j=0 7

where Cp+] is the coefficient associated with Eq. (3.3) in which the
coefficients are arbitrary.

Let

be the global error at tn e I where in is the computed solution and
x(tn) is the exact solution at t- For a given multistep method, it

can be shown that

- p
e, 0(At")

i.e. the erkor approaches to zero with order Atp, where p is the order

of the method. Thus, p may also be referred to as the order of accuracy
or rate of convergence. Thus, the order of a multistep method give
the fuéctionai dependence of error on At. The error constant, on

the other hand, as diséussed.in Lambert [9 ], provides a measure. for

. comparing the error in two different methods of the same order.
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3.2 CONVERGENCE, CONSISTENCY, ZERO-STABILITY

Definition 4: The linear multistpe method (3.3) is called

convergent if, for all initial value problems (3.1) subjected to the
hypothesis of Theorem 1, we have that
MRS CHIRE
nAt=t-a
holds for all t € I and for all solutions {fn} of the Eq. (3.3) satis-
fying the starting conditions |
X = Qm(At) for which 1im nm(At) =n, m=0,1,...,k-1.
At>0
Lambert [ 9] explains the above definition by the following
argument:
"It is inappropriate to consider n as remaining fixed while
At - 0. TFor example, consider a fixed point t = T, and let the initial
choice of steplength Ati be such that T = a + 2Ati. In the special
case when the steplength is successively halved, the situation illus- .
trated by Fig. 3.1 holds. |
If we use the notation fn(At) to denote the value X given by
the linear multistep method (3.3) when the steplength is At, then we
are interested nqt in the convergence of the sequence X (Ati),§2(Ati/2),
§2(Ati/4),..., but m the cgnvergence of the sequence X (Ati)’fu(Ati/Q)’
§8(Ati/u),...., to 5(1). Thus the limit
lim
At>0
nAt=t-a

means, n = © as At + 0 and nAt = t-a remains fixed."
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t=a t=r1
At '
t
(o} t] t2
At /4 . A ) N
t t L, t3 i tg 1t tg

FIGURE 3.1 - Successive steplength halving.

Definition 5: A linear k-step method is called consistent if for any

solution x(t) of the initial value probiem (3.1) subjected to the
hypothesis of Theorem 1 we have that

max ]|L{x(tn); t}|| = o( t)
=O,1,..,nO -

where n, = [(b-a)/At-k].
The following theorem given in Henrici [ 7] proves that the
consistency of a linear multistep method is equivalent to purely

algebraic conditions imposed on the first and second characteristic

polynomials of the method.
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THEOREM 2: A linear multistep method is consistent if and only if the

polynomials p(z) and o(c) satisfy the following conditions -

o() =0 , ') =0(1) (r=-4,

(=R
Y

k k k
T a: =0, L jas = I B. (3.9)

Therefore, the condition (3.9) is equivalent to say that
C0 = C] = 0 where C0 and C] are the constants given by the identities
(3.7). Hence, any consistent Tinear multistep method is of order at
least one.

In ordef to clarify the cpncepfiof consistency, let us continue
with the following argument; |

Assume that the linear multistep method (3.3) is convergent.

i) Consider the scalar initial value problem X(t) = 0, x(0) = 1,
whose exact solution is x(t) = 1. If we apply the method (3.3) to this

problem we get the following difference equation;

% Xk oy Xpeke T tax, = 0 - (3.10)

Let us choose the starting values x = 1, m = 0,1,...,k-1, which

automatically satisfy the condition lig nm(At) =1, m=0,1,...,k-1.
As the method is convergent, we must have

1im xn =1
. At-0
nAt=t

holds for all t > O. Since the solution, x , of the difference .
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Eq. (3.10) does not depend on At, for any At, x, = 1 for all t. Thus
for any At, at any stage of computation Xtk = *nek-1 cen n
which- in turn requires that

ap toyg gt ta =0,

the first condition of consistency.

i1) Consider the scalar initial value problem i(t) =1, x(0) = 0,

whose exact solution is x(t) = t. Then the Eq. (3.3) takes the form

Utk Xkl T Fagky = AE(B * By g e ¥ B)
(3.11)
Since the method (3.3) is-assumed to be convergent, every solu-
tion started with X = nm(At) such that
Timn (at) =0, m= 0,1,...,k-1 (3.12)
At=0 : ; '
must also satisfy
Tim x_ = t v (3.13)

a0 "
nat=t

Let the sequence {x } be a solution of Eq. (3.11) defined as

*n

is immediately satisfied by x ='nm(At) = KmAt, m = 0,1,...,k-1, since

Knat, where K > 0 is a constant. The starting condition (3.12)

1im Kmat = 0 for all m = 0,1,...,k-1.
At~0 . . -
If we substitute X . = K(n+j)at, j = 0,1,...,k in Eq. (3.11)

we get

)

Kat{(n+k)a, + (n+k-1)ak_] t ... tno} o= At(Bk * B q + ...+ B,
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or equivalently

K{kock +‘(k-1)ak;] + ...+ aqd + Kn{ak toag gt .. o)

=B tBpyt . tB (3.14)

o

As it was shown in part (i), for any convergent linear multistep

method, ap Fayp_ gt ..t Gy = 0. Therefore, Eq. (3.14) reduces to

(3.15)

K{kay + (k=-T)ay 4 + ... ol =B FB gt ...+ B

Assume that kuk + (k-])uk_] *...+a; = 0. Then, the equality (3.15)
holds if and only if By ¥ Bk—l +...0+ Bo = 0. In this case, the
sequence {xn} defined as X, = Knat will be the solution of (3.11) for
every K> 0. This is a contradiction since,
Tim Knat = Kt # t

At+0

nat=t
unless K = 1. Therefore we must have that ke + (k=1)oy _q +...+ a; # 0.

If we solve K from Eq. (3.15) we obtain

Bk + Bk-1 L 80

K =
k(},k + (k"])ak_'l +...+ G,'l

and the condition (3.13) is satisfied if and only if K = 1. Hence,
we reach the identity
k k
T Jo, = I B
j=0 J j=0 J ‘
which is the second condition of consistency.

We can conclude from the above argument that any convergent

linear multistep method is necessarily consistent. However, as it
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will become clear later, consistency alone is not a sufficient condition

for convergence.

Definition 6: A 1inear‘mu1ti$tep method is called zero-stable if, for

all functions, f subjected to the condition of Theorem 1, the following

statement holds:

Let go(At),Q](At),..;,Dk_](At) denote k functions from the
interval (O,Ato) (where At  is previously defined as At, = lakB;]L-]l)
to KN such that

[ (At)[] <M 0 <at<at, m=0,1,... k-]

for some constant M, and denote, for each At € (O,Ato), the solution

of Eq. (3.3) having the starting values

)fm:Qm(At) s m=0,1,...,k-1

by {xn(At)}. Then the family of these solutions is uniformly bounded
as At - 0, nat = t there exists a constant M' such that

max [Ix (at) | < M
0<at<At

n=0,1,..,(b-a)/At

A zefo-stéb]e Tinear multistep method is frequently called
simply "stable". The word "zero" was,suggesfed by Lambert [ 9], since
zefo-st§bility is related with the limiting process as At » 0. Some
. authors also call zero—stabi1ity as Dahlquist- (or shorty D-)stabi]i;y

since it was originally defined by Dahlquist.
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By the following theorem, Henrici [ 7] proves that the zero-
stability of a linear multistep method is equivalent to the purely

algebraic property of the first characteristic polynomial of the

method.

THEOREY 3: A Tinear multistep method is zero-stable if and only if

the roots of the polynomial

k k-
p(;) = oL toy qT v, et

satisfy le'.i 1, i =1,2,...,k, and the roots satisfying ‘Cil =1
have multiplicity one. The above condition is frequently called as
the root condition. | '

In order to show the significénce of zero-stability, we will
proceed with the following discussion:

Again assume that the linear multistpe method (3.3) is conver-
gent. Consider-the scalar initial value préb]em x(t) = 0, x(0) = 0,
whose exact solution is x(t) = 0. If we apply the method (3.3) to
that problem, we get the difference equation with constant coeffi-

cients

O Xy F O Xkl T T X = 0 (3.16)

As the method (3.3) is convergent, for all solutions of Eg. (3.10)
started with X = nm(At) such that
. 1im nm(At) =0 , m=0,1,...,k-1 ’ (3.17)
At~0 -

must also satisfy
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Alig X, =0 | ' (3.18)
nAt=t
for all t > 0.
A detailed discussion on fhe solution of linear difference
equations with constant coefficients is given in Appendix 1. In view

of the analysis given in Appendix 1, let us examine the following two

cases;

i) Let L, be a real root of p(r) with multiplicity one. Then
the sequence {xn} defined as X, = Atg? is a solution of
Eq. (3.16). The condition (3.17) is also satisfied by x = n_(at) =
Az, m=0,1,...,k-1, since lim Atz = 0 for all m = 0,1,...,k-1.

At-0
Note that : )

lim Atz =t Vim (go/n) =0 0 iff g | <.
At>0 Mo ’
nat=t

Hence the éondition (3.18) holds if and only if ICrl.i]-

ii)  Let - be a real root of p(z) with multiplicity greater
‘ than one. Then the sequence {x } defined as x_ = Atnz_
is a solution of Eq. (3.16). Again the condition (3.17) is satisfied
_ m _ _ . . m _
by x = nm(At) = Atmg, m = 0,1,...,k-1, since lim Atmg, 0 for all

At~0
m=0,1,...,k-1. "Note that, in this case

lim atngp =t Vimgi=0  ifFF 0 fg | <l
At~>0 N
nat=t

"Hence, the condition (3.18) holds if and only if |g,| < 1.
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It can be found in Henrici [8] thgt, for a convergent linear
multistep method, the root condition is also satisfied when the roots
of p(z) are ﬁomp]ex. Heﬁce, zero-stability is a necessary condition
for convergence. |

We will complete Section (3.2) by stating the fundamental theorem

of Dahlquist, whose proof is also given in Henrici [ 7].

THEOREM 4: A linear multistep method is convergent if and only if

it is consistent and zero-stable.

3.3 ABSOLUTE STABILITY

Upto this point, we have only dealt with the behaviour of the
approximate solutions obtained by linear multistpe methods as At - O.
However, in practice, we compute approximate solutions with a fixed
positive At. In-order to decide on the accuracy of computed ;o]u-
tions when the steplength is fixed, we have to get some information
about the error.

Thefe are mainly two types of errors in any method of approxi-
méte solution. The first is the truncation error, and the second is
the round-off error. '

The truncation error of the Tinear multistep method is de-

fined by

§=X-X(t) s tnEI

‘This errof is unique for the initial value problem, the linear multi- -

step'method and the starting procedure.

!
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The round-off error is that kind of error originating from dis-
;retizing the number system, hence depends also on the computer and

the details of the programs used. It is defined by

where gn is the computed solution at tn. Therefore, we can define the

global error as

Let us assume that we have no round-off error and no previous
truncation errofs have been made. Then the expression E{f(tn);At}
given by Eq. (3.5) will be the local truncation error of the associated
Tinear multistpe method at tn+k’ when f(t) is the theoretical solution.

We put
Yrap = LIx(t,)50t) (3.19)

for the local truncation error.

Lef us assume that we have no truncation error and no -previous
r60nd-off errors have been made. Then thevexpreséion E{gn;At} given
by Eq. (3.5) will be the local round-off error of the associated.
Tinear multistpe method at tn+k’ when {gn} is the computed solution. ‘

We put
k .
R ., = L{X 3At} = 2 - AR F(X .ot 1)} (3.20)

~ntk <'%n j=0{“j5n+j TNt ]

* Rewriting the Egs. (3.19) and (3#20) as

k -k ' :
x(t ,.) =4t X 'B'f(tn+j’§(t

N "
32N+ 2o " nti)) ¥ Ynak (3.21)

3=0 J

ROGAZIC VERSITESH KUTUPHANES!
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k - k

z aan+J‘- At I B.f(t .} +R

§=0 jeg 97 nHg? X * Roa ,(3'22)

and subtracting Eq. (3.21) from Eq. (3.22) we get

k Tk _
X = -
J=0 %380+ i JZO BJ{f( n+J ') 1:(tn‘h]'’2«((tn"'j))} * Snek
(3.23)
where Cnej = 5n+3 - 5(tn+j) and ¢ ., = Rovk - Yotk If we apply the

mean value theorem for a function of several variables to f in Eq.
(3.23) (See Lambert [9 ], page 220), we obtain

k k

L ose = At I BJ(af/ax)

(3.24)
3=0 J~ n+J j=0

~iint] ?n+k
where af/a§ is the NxN Jacobian matrix of f.
Let us assume that af/sx = g is a constant NxN matrix. Then
we can rewrite Eq. (3.24) as
k

z (0.1 - AtB.d)e
j=0 J~ J"' ~

n+j = On+k - (3.25)
where I is-the NxN unit matrix. If we further assume that the eigen-
values of the matrix J are distinct, then there exists a similarity

transformation which reduces 9 to diagonal form such that

M0 0 0
§']J§ Sh= {0 Agerenn 0 0
0 0 ...... 0

. where Az,‘2= 1,2,...,N are the eigenvalues of J.

. ' -1 -1
Defining q by q, =S e, and H .\ by H ik =S ¢p4k> We get

~
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k-
L

0

(ajl ) At8j4)9n+j = oy

_ 3.26

; ,( )
Since I and A are diagonal matrices, the components of Eq. (3.26) are
- uncoupled, hence we may write Eq. (3.26) as

k

T (o

= h s L= 1,2,...,N 3.27
RAC (3.27)

T OB 05,0 7 Prek,e

where qn’g and hn+k,2 are the components of 9, and Hn+k respectively.
At this point, it is convenient to define the polynomial
w(r,Atx) as

m(r,At)) = _
, J

n o™ x

O(aj - AtBjA)rj | (3.28)

or, in terms of the first and second characteristic polynomials of the

Tinear multistep method, as

ﬂ(f,Atx) = p(r) - Atxo(r) (3.29)

The polynomial w(r,Atx) is frequently called as the stability poly-
nomial. A '
The solution of Eq. (2.27) is, then

p._] .
> | i L+ = '
e " 55 i Cy qunt/(n=idblng tdy s = 102, 00N

(3.30)
where r, . j = 1,2,...,5 are the roots of polynomial m(r, ,AtA,),
2,3° ; ‘ s ¥R
each root r, . being a root of multiplicity p; where I p. =k,
2’!\] J J-=-I J .
and'dn 3 is some particular solution of Eq. (3.27). Here Cj 5
s, . ]

i=1,2,...,p5, j = 1i,2,...,5 are arbitrary constants (See Appendix 1),
1f the system (3.1) is Tinear i.e.,

3 % = Ax + §(t)
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then, we can replace Egs. (3.21) and (3.22)'by

k k
Z I3 - -
I ajf(tn+3) At jEOBj[ﬁf(tn+j) + §(tn+j)] ¥k (3.31)
K ko
X X . = ~ ; _
i=0 OLJi,(n-fJ At JEO 83[5§n+\] + §(tn+\])] + Bn'i'k (3.35)

Subtracting Eq. (3.31) from Eq. (3.32) we get

k k

Y a.e ,.=At I B.Re .+ o) (3.33\

j=0 J~nt] ] J=0 J~~nt] int+k !
or

k .

J'Eo(a:i R TN g Y . (3.34)
where ¢ = Rovk ™ Ynek

Let us assume that the eigenvalues of A are distinct. Ther

we can diagonolize A by a similarity transformation such as

A O 0 0
sTas=n= [0 Ay ... 0 0
0 0 ... 0 2,

where Ags 2 =1,2,...,N are the eigenvalues of A. Defining q, by
-1 1

gn'% § &n and Hn+k by En+k B § §n+k’ we get
k ' : .
jio(ajl - At8j4)9n+j - ﬂn+k (3.32)

or in the component form

k
j§0(aj1 - BB A5 0 = Mrae o

2=1,2,...,N (3.3%)
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where qn,z and hn+k,2 are the components of 9, and 5n+k respectively.

The solution of Eq. (3.36) is then

S pJ-] .
9 ,= % I C, nt/(n=1)17r0 .+ 2= 1,2,...,N
’ n,2 j=1 2=0 . Jsﬁ"'][ /(n-1) ]rl,\] dn,gt ’ ]
‘ (3.37)
where .3 J = 1,2,...,s are the roots of polynomial n(rl,AtAQ), each
s
root rlzj being a root of polynomial N(PQ,AtXZ) where I Py = k, and
] J-='l

dn,z 1s some particular solution. Here Cj i i= 1,2,...,pj, J = 1,2.....5

*

are arbitrary consfants.
Note that, in both cases, if g, grows or decays with n, then
e, does and vice versa. We therefore define a 1inear‘mu1tistep abso-
Tutely stab]eiif, for a given initial value problem and a given
positive At, the global error remains bounded as the computation proceeds.
It is evident from Eqs. (3.30) and (3.37) that, in both cases,
if any Irg’jllz 1, then the global error will grow as increases. Hence,
the method will be absolutely unstabie for that AtA,. Thus absolute

stability can formally be defined as follows.

Definition 7: A linear multistep method is said to be absolutely

»stab1e for A\t, such that A is any eigenvalue ofithe Jacobian of the
function f or in the linear case is any eigenvalue of the coefficient
matrix A, if all roots of the stability polynomial n(r,szt) associated

with the method satisfy

vl <1 s J= 12,0k, 2= 1,2,0000N

-Obvious1y, the above definition is strictly dependent on the”

initial value problem to which we apply the linear multistep method.
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Let us now consider the differential equation

X = AX | (3.38)

where A is a complex constant. For this Eqs.(3.19) and (3.20) reduces

to

k k

z . ) =

120 an(tN+J) At I Bjxf(tn+j) * Yotk (3.39)
J =0

k k

T a:X ,.=At T BAX .. + .
j=0 9~N* 320 8335n+3 Rn+k (3.40)

respectively. Subtracting Eq. (3.39) from Eq. (3.40), we get

k = k
I oase . =At I Be .t ¢
j=0 "M 3=0 " ) ek (3-41)
or, in component form,
k k
Y o:e ,..=A0At L B.re . .t 0 .. 1= 1,2,...,N
=0 Jn+i,0 3=0 3 nti,i n+k,i
(3.42)
Thus
k
z 1= ]923 '9N (3 [‘?)

(o - A8B5)en 5 5 = Pag, i o

j=0

which gives us the stability polynomial

RS

VR
(aj .AtABj)r

Jj=0

The region R =C defined as
. R={XateC Irjl <1, ry being a root of the stability

polynomial, j = 1,2,...,k}

is called the absolute stability region of the employed multistep method.
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Clearly, if thelmethod is absolutely staﬂ]e in the region R, then the

region

R' = (A0t e €, & =1,2,.. .
Ogbte €, 2= 1,2, 0|1y ] "

of the stability polynomial, 2 = 1,2,...,N,

<1, r, . being a root

j=1,2,...,k}

is a subset of R. It should be noted that the absolute stability
region of the multistep is defined in term of the differential equation
(3.38). This may give the false impression that the definition of the
region is in terms of a specific problem. That this is not the case,
it follows from the fact that both A and At arbitrary. It should be
kept in mind that though X and At are arbitrary AAt is not.

We could have defined the absolute stability region of the
method in terms of the region R'. This however will restrict the
region to the specific initial value problem involved and therefore

this approach is deliberatly avoided. The equation
X = AX

~

is referred to as the "test equation".

3.4 THE PROBLEM OF STIFFNESS
Let us consider the NxN linear system of equations
x = Ax + (t) * . (3.4¢)

and assume that the matrix A has distinct eigenvalues A;, 1 =1,2,...,N.
" Let C; be the corresponding eigenvector of the eigenvalue 2. Then,

it can be shown that Eq. (3.44) has a general solution of the form
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=

x(t) = T k.eMtc, + y(t)
~ i__] 1 ~1 ~

~ where ki’ i=1,2,...,N are constants and y(t) is the particular

solution. If

Reki <0 i=1,2,...,N

then the term

N ;
5 kiekitci >0 as t > o

e

N )
It is for this reason that the term % k1ek1tci is called the transient

i=1 ~
term and the part1cu1ar is called the steady-state term. It is impor-
tant that the steady-state term should not be confused with the steady-
state solution. The Tater is the 1limiting value of the former as t - «.

Let Am and Xn be two eigenvalues of A such that
|Rex | < [Rex;['< [Rer | 5 1=T1,2,...,N.

If our aim is to find numerically the steady-state solution, then we
must pursﬁe the numerical solution of Eq. (3.44) at least until the
S]owest decaying exponential in the transient term, namely eAmt, is
negligible. Thus the smaller [Rexml, the Tonger will be the rahge of
integration. On the other hand, in the case of a method with absolute
stability region.as shown in Fig.}3.2, the presence of eigenvalues of
A far out to the left in the complex p]ané, i.e. far away from the
1mag1nary axis, will force us to use excessively small step]ength in

order that A, HAS i=1,2,. N will Tie w1th1n the region of. absolute

stability region of the method of.our choice (unless, of course, the
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—» Re z

FIGURE 3.2 - An absolute stability region.

region is infinite and includes the left-hand half plane). In the

case of the specified absolute stability region, a precise measure

of this difficulty is the magnitude of [Rexr |. If |Rex | >> |Rex_

we are fbrced into the highly undeéirab]e computational situation =7
having to integrate numerically over é long ranée using a steplengtn
which is everywhere excessively small relative to the interQa1 invzlved.
The difficulty of being forced to integrate numerically over a lonz
range using a sfeplength which is excessively small relative to th=z
interval involved is the pfob]em of stiffness.

| It should be emphasized fhat the magnitude of lReAn| is no:

in genéra1 a precise meaéufe of the difficulty involved in the stiffness

.problem, but only a rough measure. That this is the case, can bes< be
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;een if(a multistep method with an arbitrary absolute stability region
is considered. In such cases, the identification of a At such that all
Asat, i =‘1,2,...,N fall into the stability region is governed by the
real parts as well as the imaginary parts of the eigenvalues and the
geometry of the stability region. In view of this fact, the magnitude
of the |Rekn|, in general, can only be regarded as a rough rather than
a precise measure of the difficulty involved in the stiffness problem.
In view of the above discussion, we focus our attention to a

class of problems called stiff problems that can be rather defined as

follows.

Definitioh 8: The linear system_k = Ax + ¢(x) is said to be stiff {f

~e -~

i) Rexy <0, i=1,2,...,0

i1) max |[Rex;|  min |Rex;| »
i=1,2,...,N i=1,2,...,N

where Ai; i=1,2,...,N, are theAeigenva1ues of 5. The

ratio
[max |Rex;|]:[min - |Rex ;| ]
i=1,2,...,N i=1,2,...,N

js called the stiffness ratio.

Non-1inear systems X = f(g,t) exhibit stiffness if the eigen-
values of the Jacobian 3f/ax behave in a similar fashion. ‘The eigen-
values are no longer constant but depend on the solution, and there-
fore Qary with t. Accordingly we say that the system g = f(f’t) is /'
stiff in an interval i of t if, for t € I, the eigenvalues Ai(t) of

9f/ox satisfy (i) and (ii) above.
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Note that if the partial derivatives appearing in the Jacobian

of/ox are continuous and bounded in an appropriate region, then the

Lipschitz constant L of the system x = f(t,x) may be taken to be

L =[|af/3x|| for any matrix A, ||A]]

| v

p(ﬁ), where p(é), the spectral

radius, is defined to be

max |x.|
i=1,2,...,N
Ajs i=1,2,...,N, being the eigenvalues of A. If max [Rex.! >> 0

i=1,2,...,0 ©
it foliows that L >> 0. Thus stiff systems are occasionally referred

to as "systems with large Lipschitz constants".

The basic difficulty, but not the only one, in the numerical
solution of stiff systéms is the satisfaction of the requirement of‘ab—
solute stability with an integrationwise economically feasible time
step. To overcome this difficult several definitions, which require
for the method to possess some "adequate" region of absolute stability,

have been proposed. The following is a brief account of such defini-

tions given by Lambert [9 ].

. Definition 9: (Dahlquist [12]). A linear multistep method is called

A-stable if all solutions of (3.3) tend to zero as n - «, when the

method is applied with a fixed steplength At to any differential equa-

’tfon of the form

X = AX

where A is a complex constant with a negative real part. In other words,

“a linear multistep method is A-stable if its region of absolute stabi-

1ity contains the whole of the left-hand complex plane.
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Re'z

A 4

FIGURE 3.3 - Absolute stability region of A-stable methods.

If an A-stable metHod is applied to a stiff system, then the
difficulties associated with the stiffness problem disappear,‘since,
no matter how large max IReA1|, no stability restriction on -t
~can result. However:—AigééB%iﬁty is a severe requirement to ask of

a numerical method, as the following somewhat depressing theorem of

Dahlquist [12] shows.

THEOREM 5:i) An explicit linear multistep method cannot be A-stable.

ii ) The order of an A-stable implicit Tinear mu]tisfep method

cannot exceed two.

iii) The second-order A-stable implicit Tinear multistep method

with smallest error constant is the Crank-Nicholson method.
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The restriction on order implied by (ii) is a severe one (Note

that the Crank-Nicholson method is the one-step method with coefficients

o =1, a =-1, B =12, B, =1/2

0 0
so that Co=C =C, = O and

C3 = (1/3!)&1 - (1/2!)81

C3 = (1/6) - (1/4) = -1/12.
Then

Lix(t)sat) = - —o— atxP)(e) + o(at*) ;

for a stiff system, we can expect the components x(3)(t) to be very
large, at Teast in an interval on which the transient solution is not
negligible). In view of this, several less demanding stability defi-

nitions have been proposed; we present two here.

Definition.10: (Windlund [13]). A linear multistep method is Aa)-

stable, ae(0,7/2), if all solutions of (3.3) tend to zero as n » «
when the method is applied with a fixed positive At to any differen-

tial equation of the form

where A is a complex constant which Ties in the set.

S& = {z|-a < 7 - arg(z) < a, z # 0}

A method is A(m/2)-stable if it is A(a)-stable for all o e (0,7/2)
/

.and A(0)-stable if it is A(a)-stable for some sufficiently small ae (0,7/2
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The above definition is equivalent to'say that a linear multi-
. step method is A(c)-stable, o € (0,7/2), if its region of absolute

stabi]ity contains the infinite wedge.
Sy * {z] -a <7 - arg(z) <.a, z # 0}

Im z

A

~—» Re z

FIGURE 3.4 - Absolute stability region of A(a)-stable methods.

An é]ternative weakening of A-stability defined by Cryer [14]

is.Ao-stabi1ity.

Definition 11: (Cryer [14]). A linear multistep method is called
! » |

Ao-stable if all sb]utions of (3.3) tend to zero as n +~ =, when the

method is applied with a fixéd positive At to any differential equation

of fhe form

X = AX | ' -

~

- where A € (0,+0). Hence, the absolute stability region of an Ao—étab1e

method contains the open negative real axis.



.definite matrices, A has real positive eigenvalues. The eigenvalue B

VI. MULTISTEP DISCRETIZATION OF THE
SEMIDISCRETIZED HEAT CONDUCTION
EQUATION

4.1 THE GENERAL LINEAR k-STEP METHOD APPLIED T0
HEAT CONDUCTION EQUATION

In the second chapter we have shown that the finite element

semidiscretized heat conduction equation is of the form

Ca + Ka =f ‘ - (4.1)

~~

where

The semidiscretized heat conduction equation (4.1) can be

expressed in the form of (3.1) as

a=-ha+g , - (4.2)

1 1

where A = C~ f. Since C and K are symmetric positive

~ 3

Kand g = c

spectrum of A is usually very large (Zlamal [ 3,15], Wood [16]) and

‘hence, system (4.2) is a stiff system.

39
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The(general form of the linear k-step method applied to semi-

discretized heat conduction is therefore

-k k
z (an + B, AtA)anJrJ ‘At L B39n+j ' (4.3)
j=0 J= = J
If we multiply Eq. (4.3) by C from left, we obtain
k -k
L (€ +pjatkla . =at £ BsF .. (4.4)
j=0 J~ n'*'J j=0 J~ntJ :

Since Eqgs. (4.3) and (4.4) are identical, they can be used inter-
changeably. On the other hand, the form of Eq. (4.4) 1is much more
preferable for computational purposes as far as core requirement and
computation time is concerned. Thi; is bécause of the fact that the
matrices 9 and E are symmetric and banded whereas 5 is not.

In this chapter we will introduce some of the methods proposed
for the numerical integration of problem (4.1). The most well-known
and commonly used algorithms for this purpose are linear multistep
methods upto step number two.

If a Tinear multistep method has a bounded region of abso1ute
stability, then the absolute stability requirement-will impose a step-

length restriction. Such methods are called conditionally stable in the

sense of absolute stability. Due to the excessively small steplength
with respect’to the range of numerical 1ntegﬁation, these method, in
general, yields a highly undesirable computational situation in the
case of stiff’éystems. Therefore, we should restrict the choice of

Tinear ﬁu]tistep methods to those for which there is no steplength
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restriction imposed by absolute stability i.e. to unconditionally
stable ones. |

- In the case of semidiscretized heat conduction equation the
eigenva]ues of A are real and positive, and; therefore, linear multi-
step methods with the region of absolute stability (-»,0) be general
enough and impose no restriétion on the size of the steplength to be
used. Hence we will restrict the choice of a linear multistep method
to be from the set of Ao-stab1e ones. It should be clear that once
we decide for such a method, in order to assure convergence we should
further restrict it to meet the requirements of consistency and zero-

stability.

4.2 ONE-STEP METHODS

It is possible to derive any’sbecific multistep method in a
number of different ways. ‘One possibie way,'as proposed by Zienkiewicz,
is to use the finite element time discretization technique.' This
technique yields the most popular methods used for the solution of the
semidiscretized heat conduction equation. The following is a brief 7
éccount of the derivation of such methods.

Let us approximate the vector a as
§z§=§N1‘91 - !

where a; is the vector of unknown nodal parameters at time ti and
{N (t)} is a finite element C° basis.
For one-step d1scret1zat1on we will use a t1me element of _

length At with nodal points identified as n and n+l. A typical
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ve]ement is shown in Fig. 4.1. The basis functions in terms of local

variables are then given as

Nn =1-& , . Nn+1‘= £

where (4.5)
0<g<1 . g = t/nt
Then
Nn = -1/At . Nn+1v= 1/At
Nn Nn+1
/ ~
P ~
1 1
n n;l

-———;» £ = t/At

At N
'_]

FIGURE 4.1 - Basis functions for one-step methods.

With the assumption that f can be equnded in terms of the

same basis functions Ni’ we get

f ~
~

~

b

t=h>

= I N.f.

where f. is the value of the function f at time t.. For the time -
elément shown in Fig. 4;1, the weighted residual equation associated

/ .
with the system of equations 4.1 can be written as



1
f w {C(

! + gnNn) + K(a

qn+1 n+1 ~n+1] n+1 nNh)

-(f

£y * FN)IE =0 (4.6)

If we substitute the expressions for the basis functions given by

Egs. (4.5) in Eq. (4.6) and multiply the result by At, we obtain

1 1 1 1
{crs wjdg + AtKS wjgdi}gn+ + {- Cf Wy dg + Ath W (] e)da}a
0 0

1 1
= Mt{f 44 f Wiede + f f wi(1-8)de] (3=1)  (4.7)

1
Dividing Eq. (4.7) by S wjdg and defining 6 as
0

1 1
=/ wjgdg/f wjdg (4.8)
) 0

we get

{C+ eAt§}§n+] + {-C+ (1-9)At5}§ = At{efn+] (1-e)fn)}
(4.9)
If we premultiply Eq. (4.8) by E—A, we can put it in the form of

Eq. (4.3) as

{I + eAtA}a + {-1 + (1-9)At5}a At{egn+] (1-e)gn}

n+l

Eq. (4.10) defines a class of one-step methbds with coefficients

6

.q]:] s . B]
-1 T B

1 - 6.

o
0

A member of this class is frequently referred to as the 6-method.

43

(4.10)
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The first characteristic polynomial of a 6-method is
plz) = ¢ -1

so that its root is g, = 1. Thus, any e-method is necessarily zero-

stable. Since

any 6-method is also necessarily consistent. Therefore,_any g-method
is consistent and zero-stable, thus convergent.

For the study of Ao-stability, it will be convenient to reduce
system (4.2) to é typical single degree of freedom model equation which
can be achieved with the application of the modal analysis technique.

Let us assume that Q has a compiete set of normalized ortho-
gonal eigenvectors. Then, the vector a can be written as

n

a = U | (4.01)
']:

where Uy are -normalized eigenvectors of A and y; are modal participa-

tion variables. If expression (4.11) is substituted into Eq. (4.2)

and the result is premultiplied by giT (i = 1,2,...,N) we get

i T fkiyi_+ 9; | | (4.12)
where 9; = giTg and Ai are the eigenvalues of A. For notational

simplicity, we will drop the i'th modal subscript in Eq. (4.12) and
continue'our analysis with the~fo1]owing single degree of freedom
model equation

/ y = =AYy + ¢ (4.]3)
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where A représents an eigenvalue of the métrix A. Application of
the 6-method to Ed. (4.13) yields

(U ate)y g + (-1 +aat(1-6))y, = ateg ,, + (1-0)g,)
(4.14)
The stability polynomial of the 6-method is then

m(r,Aat) = (1 + AAt6)r - 1 + AAt(1 - 8) (4.15)

If we set polynomial (4.15) equal to zero and solve r, we obtain

1 - (1-8)AAt
1 + oaAt

r = (4.16)
Hence, a 6-method is Ao-stable if and ohTy if r has modulus less than

one for all AAt > 0. The requirement |r| < 1 implies

-1 - eaat < 1 - (1-8)2At < 1 + gaAt
or

AAt(26-1) > -2

(4.17)

Ant > 0
Condition (4.17) is always satisfied when 6 > 1/2. Therefore, a
8-method is A -stable if and only if 6 > 1/2.

With the proper choice of weight functions in Eq. (4.8) we

can obtain the following Ao—stable 8-methods:

Wy = S(E - —%—) or w.=1 , 8=1/2 (Crank-Nicholson)
wj = g , 6 =2/3 (Galerkin)
w. = 8(E - 1) , 6 =1 (Backward-difference)
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Here §(& - gd) is the Dirac function. The derivation of the above
g-values are given in Appendix 2.

With the intention of‘stating another g-method, let us assume
that the term g in Eq. (4.13) is zero. Then Eq. (4.14) yields the

recurrence relation

1 - (1 - g)aat

Yo T W T (4.18)
The homogeneous solution of Eq. (4.13), on the other hand is

y(t) = y(0)e™* | (4.19)
and satisfies the recurrence relation

yI(n+1)at] = e MYy (nat) 4 | (4.20)

Comparing the Egs. (4.18) and (4.20) we conclude that r approximates

e Mt 14 s proposéd by Lihiger [17] to choose @ in such a way that

max | emAdt _ 1 - (1 - e)aat
0<AAt<e 1+ 6aat

is minimum, and this happens when 6 = 0.878; Here 6n, the 6-method
corresponding to the value 6 = 0.878 will be considered as the fourth
6-method and referred to as the Liniger method;

Let us rewrite the recurrence relation (4.18) as

1 - (1 -e)mt (4.21)

n
y =1y ,r=
no.Jo’ 1 + BAAL
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We have shown/that when 6 > 1/2, the method-(4.10) is Ao-stable so that
[r] < 1 for all AAf > 0. Note that if 6 > 1, then f will be positive

for a11‘va1ues of AAt > 0 and produce no oscillation. On‘the other
hand, for 1/2 < 6 < 1 positiveness Qf r is conditional and if -1 < r < 0,
the recurrence relation (4.21) produces an oscillatory solution. One
possible approach to prévent this oscillation is to choose At in such a
way that for 1/2 < 8 < 1,r stays positive. If we write this requirement

as

1-(P-8t g 12 <9< (4.22)
1 + gxat -

we get the condition

Mt o< —— 1/2 <0< 1 (4.23)

(1 -0
Since ) stands for any eigenvalue of the matrix A, the condition (4.23)
is equivalent to |

At < At =1 ' (4.24)

crit =
(]_e)xmax

where Amax is the maximum eigenvalue of the matrix A.

For the semidiscretized heat conduction equation, which we have
seen to be a stiff system, the critical va]ué of the steplength will
most probably be excessively small with respect to the range of integ-
ratﬁon., Therefore, it is impractiéab]e,to prevent oscillations by

-reducing fhe magnitude of the steplength and some artificial smoothing

techniques should be preferred.

/
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It should further be noted that
lim r= (8 -1)/6
AAtoo

is. less than zero for all 1/2 < 6 < 1 and approaches to the value -1
for 6 = 1/2. Therefore, the g-method with the value 6 = 1/2, which
is known as the Crank-Nicholson scheme, is inaccurate for larger values
of Mt and only marginally stable (Liniger [17]). On the other hand,
it is proved by Cryer [14] that the Crank-Nicholson scheme with p = 2,
k = 1 is the only Ao—stab]e linear k-step method of order p > k+l.
For this reason, it is of great importance and special precautions

should be taken in.using it for the solution of stiff systems.

4.3 TWO-STEP METHODS

We will adopt the finite element time discretization technique
to Eq. (4.1) to obtain a class of two-step methods proposed by Zienkie-
wicz [ 2] for the numerical integration of first order systems.

Let us approximate the vector a as

~ & =2 N.a.
ad ~d ;i

where a; is the vector of unknown nodal parameters at time ti and
N, (t)} is a finite element ¢! basis. |
For two-step.discretization wé will use a time element of
length AAt with nodal points identified as n, n+l, nt2. A typical
é]emeﬁt is shown in Fig. 4.2. The sténdard parabolic basis functions

in.terms of local variables can then be written as

Nn =-g(1-8)/2,  Nop = (1-8)(1+8), N, = &(1+E)/2  (4.25)
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where

-1<g<l , g = t/at
Therefore‘

W= (-(1/2) + &) /st . N = -2e/at N, = ((172) + 2)/at

.ﬂ—-‘

N4y
:
MNhez 1 ,
n+l n;2
——* & = t/At '

* FIGURE 4.2 - Basis functions for two-step methods.

Assuming further that the same approximation as that of a can

, be applied to the function f, we get
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f ~

~

tmhd

=T N.f.
PR

for the element shown in Fig. 4.2, the weighted residual equation

associated with the system of equations (4.1) can be written as

1
{ W5 {C( n+2Nn+2 ~n+]Nn+] + a N ) + K( n+2Nn+2 ~n+]Nn+'| + inNn)
(fn+2 n+2 fn+1Nn+1 )}dg
(j = 1) (4.26)

Substituting the expressions for the basis functions given by Eqs.

(4.25), we get

[ 5tCla (172050 /8t + 3 (-26)/t + 2, ((-1/2)%e) /t]

* Kla, Le(1+g)/2 + a) ,(1-£)(1+g) + a £(e-1)/2]

- [fn+25(1+g)/2 +f (1.6 (1+g) + £ £(e-1)/2] =

Let us define y and B as follows:

1 1T
{ Wy ((1/2) + £)dg/ { WdE

=
1

(4.28)
1 1
i) Ws (1 + g)dg/ S w dg
-1 -1

™
Ll

1 .
If we divide Eq. (4.27) by (1/At) J wjdg and rearrange the terms, we

- get

(/8 + BAtKIa,, + L0V - 2)C + ((1/2) - 28 + VIotkda, g

+ {(y - NC+ ((1/2) +B- y)AtK}a,
= At{Bf o + ((1/2)-28+y)f 1 + ((1/2)+6-v)f;} (4.29)
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Premultiplying Eq. (4.29) by 9'], we can put it in the form of Eq. (4.3)

as
UL+ eathlan, + (=201 + ((1/2-28m)8thia g + (1)1
+ ((172)+8-y)athla, = atieg, , + ((1/2)-28+v)g .,

((7208-g) (4.30)

Eq. (4.30) defines a class of two step methods with coefficients

dz =Y s Bz =B
» B ((]/2) - 28 + Y)
((172) + g - )

Q
—
|
—
'
~no
-

do "'Y'v-l s BO

This class of two-step methods are commonly referred to as Zienkiewicz

three-level schemes.

Application of the two-step method (4.30) to Eq. (4.13) gives
Dyaantely o + [(1-2y) + a8t((1/2)-28+y) Iy ,q + [(y-1)
+ A8t((1/2)+8-v) 1y, = stieg,, + ((1/2)-28+Y)g .

+ ((1/72)+6-v)g,} - (a.31)

The first and second characteristic po]ynomia1s of the method

(4.30) are - j
p(c) = vz + (1 - 2y)z + vy - 1
| - (4.32)
o(t) = Bz + ((1/2) - 28 + y)z + ((1/2) + B - ¥)
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Since

or equivalently p(1) = 0, and p*(1) = o(1), then the method is con-
sistent. The requirement of zero-stability is fulfilled if the roots
of first characteristic polynomial p(z) have modulus less than or

equal to one. These roots are

z, =1, ¢, = (=v)/y

and the condition Igil <1, i=1,2, is always satisfied if y > 1/2.
To get the conditions for Ao—stability, we require that modulus

of the roots of the stability polynomial
n(r,aat) = [y + aatglr? + [(1 - 2y) + at((1/2) - 28 + y)]Ir

+ Ly = 1)+ at((172) + 8 - 1))

. (4.33)
fs less than one for all AAt. Application of the transformation
r= (1+z)/(1-z), which maps the.interior of the unit circle into
1éft-ha1f complex plane, makes it possib1e to use the well-known
Routh-Hurwitz criterion that gives the necessary and sufficient éondi—
tions for the rooﬁs of a po]ynomia] to havebnegative real parts.
Under this transformation, we obtain the following polynomial equa-

tion for the stability polynomial (4.33);

{4y - 2 + At(48-2v)} 2% + {2 - a8t(1-2y))z + Ast = 0 (4.34)
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The necessary and sufficient conditions for ‘the roots of Eq. (4.34) to
have negative real parts as given by Routh-Hurwitz criterion are as

follows.

b4y - 2+ At(4g - 2y) > 0
2 - at(1 -2y) >0

At > 0

These conditions are satisfied for all Aat > 0 if and only if v > 1/2
and B > y/2.

We conclude that the method (4.30) is consistent, zero-stable
if y > 1/2 and, Ao—stab1e if y > 1/2 and g8 > vy/2. Two bopu]ar Ao—stab1e
methods of type (4.30) are obtained from Egs. (4.28) with the fo]]owing.

specific choices of weight functions:

s(g - 1) , 3/2 , 1 (Fully implicit)

=
1
<
I
™
n

4/5 (Galerkin)

1}
tl

gg+1)/2 Y

(]

W.

3 32, 8

Derivation details are given in Appendix 2.
Note that the homogeneous solution of the difference equation

(4.31) is

Y, = C]r]n + C2r2n (4.35)

. | ‘
where rirs are the roots of the stability polynomial (4.33) and C],

C, are constants. It should be clear that C, and C, are to be deter-
minéd from the starting values Yo and Yq- It is evident that a nega-

tive root or complex roots can produce oscillation. In this case, some

- -rartificial smoothing techniques may reduce oscillation and improve -

/
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accuracy. Lambert [ 9] shows that for one of the roots of stability

polynomial, say rys
o= e Moty T e st o0

where p is the order of the linear multistep method. Theréfore the

At

value e~ is being approximated here by the root rys which is called

the principal root, whereas the other rpot is spurious. Liniger [171]

-AAat -
s Ty 0

for some particular aat = C > 0 and shows that fitting is compatible

suggests an exponential fitting by demanding that ry = e

with Ao—stabi11ty if At > 2. If we choose At = 3, then ry = e’

and ro = 0 will satisfy the poiynomial equation n(r]3) = 0, i.e.,
{y +383r2 + {(1 - 2y) +43(f1/2)14 28 + y)lr
+ {(y - 1) +3((1/2) + 8 - y)} = 0 (4.36)
For one of the roots to be zero, we should have
y-1+3((1/2) +B8-v) =0
-and therefore
E_G{Y'+ 38} + e 3{(1 - 2y) + 3((1/2) - 28 ¥ v)} =0

From above equations it follows that y = 1.2184, B = 0.646. The
method with these ¥ and B values will referred to as the Liniger's

two-step method. Two other useful Ao-stable'two-step methods are
y=1/2 B=1/3

_ proposed by Lees [18] and called the Lees' algorithm and

/
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y=1 , 8=3/4

due to Dupont [19] and referred to as the Dupont scheme.

If one demands to make the roots of the stability polynomial
(4.33) real, then any pfobab]e'osci11ation because of the complex
roots can be prevented. The roots will be real, if the’discreminant

of the polynomial (4.33) satisfies the condition
(Aat)2{(1 + 2y)2 - 168} + 4xat(1 - 2y) + 4 >0 (4.37)

Condition (4.37) is satisfied for all xat if B < y/2. Therefore,

any Ao-stable Zienkiewicz three-level scheme has complex roots for
some interval of )At and oscillation can be expected in this interval.
In order to have real roots for a11’AAt, We may accept marginal stabi-

Tity (Wood [ 4]) with B = v/2. For example the method
W = lgl > y=1/2 , g =1/4

which is known as the method of average acceleration may be used for
this purpose. However, any method with 8 = v/2 is equivalent to the
well-known Crank-Nicholson method so that the benefit from using a
two-step method diminishes.

As we have discussed in Chapter three, two-step methods require
the determination of starting values 3,0 3y and it is desirable that
these values be calculated to an accuracy as high as the order of
- accuracy of the two-step method. Defining the coefficients CO, C],...
as in Chapter three, we have for the Zienkiewicz three level schemes

_ by - 128 - 1
12

C =C =¢C,=0 and C3
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It is clear ihat none of the methods we have givenrin this section make
C3 = (0 so that théy are all second order accurate. Therefore, it is
possible to start these methods by setting a, = a(0) (thé initial
vector of the prdb}em (4.1)) and calculating 34 by the second order
accurate Crank-Nicholson method. An alternative way of sfarting

multistep methods is to translate the problem to that of an initially

steady system to which a perturbation is applied.

4.4 THE PROBLEM ASSOCIATED WITH THE INTERPOLATION OF THE
FORCING FUNCTIONS

As we have stated in Chapter two, the forcing function f is

of the form

Foh-Gaylt) - kay(t) o a= T2

where m is the number of specified nodal parameters, h is the conden-

sated form of the function ? defined as

t—ht

= J pc¢¢TdQ + f ¢qin1ds + [ ¢he_ds
Y Sy K S, .
‘ 3
by simply deleting the correspondant rows of f to specified nodal
parameters C, and k, are, respectively, the partition of the &'th
columns of the C and K matrices assembled with the assumption that

. ’ ) |
the specified nodal parameters are free and the partitioning consists
of the condensation of the relavant column vectors by simply omitting

the m rows corresponding to the specified nodal parameters a, and éz

‘respectively.
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With the intention of deriving multistep methods, in sections

4.2 and 4.3 we have interpolated the forcing function f as

~
-~
~

¢ =k

=Z N;f.
;-1

where Ni is the i'th basis function and fi is the value of the function
f at time ti’ Clearly, the above interpolation requirés the knowledge
of f at each ti' If the functions az(t) are discontinuous at some ti’
then the function f will be undefined for this ti' In order to over-
come this difficulty, it should be preferred to interpolate the func-
tioné a, and b separately.

'3 .
Defining the function-¥,as in Zienkiewicz, we have

ntk .
w.fdg
t /At I

~ o+

=4

n+k
dg

S5 Y |3

W,
t/at Y

where k is the stepnumber of the method applied to the heat conduction

equation. We can therefore rewrite Eqs. (4.9) and (4.29) as

{C + et E}an+] + {-C+ (1 - 8)at E}an = 5t f (4.38)

where 1
I w.?dg
_ -~ |
f=2
- 1
S ow.dE
o J

and



58

(YC + Bt KRy, + £(1 = 20)C + ((1/2) - 28 + YAt K,

+{(v - N+ ((1/2) - g +v)ot Kta =at f  (4.39)

where
1 .
Jow.fdg
R J
f =
~ 1
J oW dg
-1
Let us interpolate a, as
a,Q, x ag = % N1a9“1
and h as
h=hs= ; Nshy

where az ; and hi are the values of the functions a, and h at time ti‘

In this case the approximation of f will be

£ x
.
!

—h>

iz, T & NXdy

=L Nihi - X N C - 2 N:k
i T i

With the above interpolation we can obtain f for Eq. (4.38) as

= __ S
f=6lhgq * Ky pqd + (1-0)Th + kpag nd e Slog ner - 3y 0l

and for Eq. (4.39) as '

+ ((1/2)+8-)h, + ke, |
:

" Gl neg P 0723y g+ (T ]
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It can be seen that the above interpolation is completely
equivalent to, first, to treat the specified noda]yvariables as free
and assemble the matrix equation associated with the mu]tistep methods,
and, then, modify the resulting equation such that specified ndda]

variable conditions hold.

4.5 SMOOTHING METHODS FOR DISCONTINUQUS FORCING FUNCTIONS
We have shown that the forcing function f is of the form

k a (4.40)

f=h-ca -ka

It should irmediately be noted that f will be of a singular form if

o occur or if impulsive heat

discontinuous jumps of boundary values a
fluxes or heat generation are 1mpo§ed.

In finite differehde approximations, or in finite element
formulation in which the matrix C is lumped (diagonal), the second
term of Eq. (4.40) does not occur. f then becomes discontinuous when
merely step changes of boundary values are specified.

Both types of variation of the forcing term are deleterious
to the performance of time integration schemes derived for the solu-
tian of semidiscretized heat conduction equation, and result in violent
oscillation of the solution for which artificial smoothing methods have
to be devised. The following is a brief summary of the smoothing
methods that have been incorporated for one-step methods.

The first possible method to smooth discontinuity is to re-

place tﬁe~step function shown in Fig. 4.3 with a ramp function in the

first time interval as shown in Fig. 4.4.
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L

FIGURE 4.3 - Step change in h or a.

[

22

-2At -At At 2At

FIGURE 4.4 - Ramp change in h or a,.

An alternative method of smoothing as proposed by Zienkiewicz [é ]
is to start numerical integration from -At/2 and to assume a }amp func-

tion variation in the first interval. The method is illustrated in

Fia. 4.5.

P
»

| -At/2 pt/2 36t/2
! FIGURE 4.5 - Smoothing of Q or a, as proposed by Zienkiewicz.
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Two other smoothing methods, particularly proposed for the

Crank-Nicholson method, are

a) the smoothing of the discontinuity with an exponential

function, (i-e—at), as shown in Fig. 4.6 [16], and

b) the averaging the values of the variable at the
beginning and the end of the first interval and

continuing numerical integration from there [20].

Based on numerical experiments, it is found that for exponential
smoothing the values o = 2/At and o = 4/At, improves the performance

of the Crank-Nicholson method considerably.

Bl

) J

At 2At

FIGURE 4.6 - Smoothing of h or a, by an- exponential function.

In the case of two-step methods there exist two different
methods of smoothing the discontinuity, and are illustrated by Fig. 4.7
and Fig. 4.8. |

It should be noted that in the case of the smoothing method
illustrated in Fig. 4.7, the forcing function is interpolated in terms
of the functional values at -At, 0, At values with the same’inter-’

'poTating function that are used for the interpolation of the hoda]



62

<
<
3

=g
ct+
4

At 0

FIGURE 4.7 - Interpolation of the forcing function.

ag,b
)
/‘/\‘
-3At/? -At/2 At/? 3At/2

FIGURE 4.8 - Interpolation of the forcing function.

variables. Since the functional value of the function is zero at -At
' . ' . . |
the interpolation functions used are N t=0‘and Niiopt.

In the case of the smoothing illustrated in Fig. 4.8, the~
forcing function is interpolated in terms of the functional values
at -3At/2,-At/2 with the same interpolating functions that are used"

'for~the-interpolation of the nodal variéb1es. Since the functional:
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values of,fhe forcing function is zero at -3At/2 and -At/2, the only
interpolation function used is N t=At/2"

In the case of the smoothing methods, Fig. 4.7 and Fig. 4.8,
it is natural to start the method with the values of the nodal
variables at -At and 0 and with the values at -3At/2 and -At/2,

respectively.
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V. RESULTS

The test problem we have considered for the comparison of numerical

integration methods discussed is given by the equation

2 2 ‘ ’
97 , 370 _ 90 0O<x<1, 0O0<y<1, t>0 (51)

ax2 dy? ot

subject to the initial condition
8(x,y,0) =0 (5.2)

and the boundary conditions

1}
1]

100 at x

(a/3y)e(x,y,t) =0 at x =0, 8(x,y,t)

1l
—
—
. ;m
w
~—

I
d
——
wm
~
A

(5/3x)06(x,y,t) =0 at y =0, e(x,y,t) = 100 at y

The analytic solution of this problem is given in Arpaci [21] as

_ N o
8(x,y,t) = 100 - 400( (-1) e A"tcoskny)
(5.5)

where . Ay = (2n+1)m/2 R n=20,1,2,..
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6 = 100

—

36/3x = 0 6 = 100

SONARNOUANOUASARISASSS SNYNNNNS

FT7T7TTrTTT7rrrToITTT
36/3y = 0

—

FIGURE 5.1 - Test problem.

The finite element mest used for the solution of the problem
(5.])9(5.4) is shown in Fig. 5.2. The elements used are linear plane
triangular elements.

The test problem is first solved by the following four 6-methods:

i) 6 =1/2 Crank-Nicholson
— 1) 6 =2/3 Galerkin
iii) 6 = 0.878  Liniger
iv) 9 =1 Backward-Difference.

For smoothing the discontinuity resulting from the suddenly applied
boundary temperature, the following techniques are employed for all

. the 6-methods Tisted above:



66

/
/.

/

NN

FIGURE 5.2 - 10x10 Finite Element Mesh with Triangular Elements.

»a) Smoothing the suddenly applied boundary temperature with

a ramp function in the first time interval.

b) Smoothing the suddenly applied boundary. temperature

with the procedure proposed by Zienkiewicz.

The following procedures are particu1arﬂy adopted for the Crank-
Nicholson method in order to eliminate the difficulties associated

with discontinuous surface temperature.

a) ~Averaging the value of the var1ab1e at the beg1nn1ng and
“end of the f1rst time step and continuing with Crank- N1cho1son

from there.
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b)  Smoothing the suddenly applied b6undary temperature with

an exponential function.

The test problem is then solved by the following five Zienkiewicz

three-level methodé:

i) y=3/2, B=45 Galerkin

ii) y=3/2, B=1 Fully implicit
iii) vy =1.218, B = 0.646 Liniger
»iv) y =1 , B =3/4 Dupont

v) y=1/2 , B =‘1/3 Lees

The starting procedures employed are

a) calculating a, by Crank-Nicholson method.
b) starting the method with the known steady conditions for

time less than zero, as shown in Fig. 4.7.

Results of the numerical experiments are given in the following
tables for points (0,0) and (0.5,0.5). The error given in these

" tables is defined as

ferror] = [nUmerica] solution] - [analytical solution].



TABLE 5.3 ONE-STEP METHODS, SOLUTION OBTAINED FOR DISCONTINUOUS BOUNDARY TEMPERATURE,

X = (0.0,0.0), at = 0.001
0= 1/2 0= 2/3 0= 0.0878 =1
AnaTytic Numeric Numeric Numeric Numeric

time | Solution | Solution | Error Solution | Error Solution [ Error Solution | Error
0.01 | 0.62 E-9 | 0.39 E-5 | 0.39 E-5 | -0.30 E-6] -0.30 E-6{-0.75 E-7 | -0.76 E-7 —0.14‘E¥5 -0.14 E-5
0.02 | 0.23 E-3 |-0.27 E-3 {-0.50 £-3 | -0.44 E-3| -0.67 E-3{-0.29 E-3 | -0.52 E-3] -0.17 E-4| -0.25 E-3
0.03’ 0.18 E-1 | 0.50 E-2 |-0.13 E~-1} 0.12 E-1| 0.61 E-2 |-0.21 E-1{-0.33 E-3 0.27 E-1} 0.92 E-2
0.04 | 0.16 0.15 -0.15 E-1| 0.17 0.98 £E-2 | 0.20 0.41 E-1f 0.22 0.06
0.05 0.63 0.66 0.03 0.70 0.75 E-1{0.75 0.13 0.79 - 0.16
0.06 | 1.55 - 1.68 0.13 . 1.74 0.18 1.80 0.25 1.84 0.29
0.07 | 2.99 3.25 0.26 3.30 0.32 3.38 0.39 3.42 0.43"
0.08 | 4.9 5.30 0.40 5.36 0.45 5.42 0.52 5.46 0.56
0.09 | 7.23 7.76 0.53 | 7.81 0.58 7.87 0.64 7.90 0.67
0.10 { 9.88 10.53 0.65 10.57 0.69 10.62 0.73 10.64 0.76
0.20 |40.35 41.38 1.03 41.34 0.99 41.30 0.95 11.28 0.92
0.30 63.]8v 64.00 0.82 | 63.96 0.78. 63.90 0.72 63.87 0.69
0.40 77.49 78.08 0.59 78.04 0.56 78.00 0.51 77.97 0.49
0.50 86,&5 ' 86.67 0.41 86.64 0.39 86.60 0.35 86.58 0.33

89



TABLE 5.1 ONE-STEP METHODS, SOLUTION OBTAINED FOR

X =

(0.0,0.0)," At = 0.01

DISCONTINUOUS BOUNDARY TEMPERATURE,

0= 1/2 0= 2/3 0= 0.878 0=
Analytic | Numeric Numeric Numeric Numeric
time | Solution | Solution | Error Solution | Error Solution | Error Solution | Error
0.01 |0.62 E-9 | 0.39 -3 | 0.39 E-3| 0.25 €-2 | 0.25 E-2| 0.10 E-1 | 0.10 E-1] 0.18 E-1| 0.18 E-1
0.02 ] 0.23 E-3 0.64 E-2 | 0.62 E-1| 0.26 E-1| 0.26 E-1| 0.74 E-1 | 0.73 E-1} 0.11 0.1
0.03 | 0.18 E-1 | 0.48 E-1 | 0.31 E-1} 0.13 0.11 | 0.28 0.26 0.37 0.36
0.04 |0.16 0.22 0.59 E-1| 0.44 0.28 0.73 0.57 0.90 0.79
0.05 | 0.63 - 0.70 0.77 E-1] 1.09 0.47 1.54 0.91 1.77 1.14
0.06. ’1.55 1.67 0.12 2.18 0.63 2.74 1.19 3.03 1.48
0.07 | 2.99 3.20 0.21 3.75 0.77 4.36 1.37 4.67 1.68
0.08 | 4.91 5.24 0.33 5.77 0.86 6.36 1.45 6.66 1.76
0.09 | 7.23 7.69. 0.46 8.15 0.92 8.68 1.45 8.96 1.72
0.10 ] 9.88 10.46 0.58 10.83 0.95 11.26 1.38 11.50 1.62
0.20 }40.35 41.37 1.02 41.83 0.68 40.63 0.28 40.42 0.06
0;30 63.18 64.01 6.83 63.58 0.40 63.05 -0.13 62.75 -C.43
"0.40 77.49 78.08 0.60 77.73 0.24 77;27 -0.21 77 .01 -0.47
0:50 86.25 86.67 0.42 86.40 0.15 86.05 -0.20 85.85 -0.47




TABLE 5.2 ONE-STEP METHODS, SOLUTION OBTAINED FOR DISCONTINUOUS BOUNDARY TEMPERATURE,

At = 0,01

X = (0.5,0.5).
0= 1/2 0= 2/3 0= 0.878 0= 1
. Analytic | Numeric ‘Numeric Numeric Numeric
time | - Solution | Solution] Error Solution| Error Solution | Error Solution| Error
0.01 | 0.81 E-1 | 0.23 0.15 0.54. 0.46 0.99 0.91 1.24 1.16
0.02 2.47 ‘2.06 -0.41 3.12 0.65 4.09 1.62 4.53 2.06
0.03 | 8.08 7.50 -0.57 8.42 0.34 9.14 1.07 9.46 1.39
0.04 14.83 15.41 -0.58 | 15.12 O.29~ 15.15 0.32 15.21 0.38
-0.05 21.47 23.31 -0.84 21.73 0.25 21.26 -0.21 21.09 -0.39
0.06 | 27.57 28.36 -0.79 27.77 0.20 27.05 -0.52 26.71 -0.86
0.07 | 33.01 31.03 1.02 33.17 0.17 32.33 -0.68 31.90 -0.11
0.08 | 37.82 38.61 0.79 37.96 0.14 37.09 -0.79 36.62 -1.20
0.09 | 42.09 43.00 0.91 42.21 0.13 41.35 -0.79 40.88 =0.12
0.10 | 45.88 46.60 0.72 46.00 0.12 45.18 -0.71 44.72 -1.17
0.20 | 69.40 69.82 0.42 69.50 0.10 69.08 : -0.32 68.83 -0.57
0.30 | 81.52 81.83 0.30 81.59 0.07 81.29 -0.23 81.12 -0.40
0.40 | 88.74 88.96 0.23 88.78 0.04 88.55 -0.19 88.41 -0.33
0.50 93.13 93.29 0.16 93.15 0.03 92.97 -0.15 92.87 -0.25

04



., .TABLE 5.4 ONE-STEP METHODS, SOLUTION OBTAINED FOR DJSCONTINUOUS BOUNDARY TEMPERATURE,

X =z (0.5,0.5), At = 0.001
0= 1/2 0= 2/3 0= 0.878 o=1
: Analytic | Numeric . Numeric Numeric Numeric
time | Solution | Solution { Error Solution| Error Solution | Error Solution | Error
0.01 | 0,08 -0.19 ~-0.28 -0.13 -0.21 H-O.51 E-1] -0.13 -0.85 E-2| -0.09
0.02 | 2.47 2.25 -0.22 2.38 -0.09 2.53 0.06 2.61 0.14
'0.03 | 8.08 8.41 - 0.33 8.45 0.37‘ 8.50 0.42 ‘8.53 0.45
0.04 | 14.83 15.50 0.68 15.48 0.65 15.46 0.63 15.44 0.61
0.05 | 21.47 22.30 0.83 22.25 0.78 22.18 0.71 22.14 0.67
0.06 27.57 28.44 0.87 28.37 0.80 28.28 - 0.7 28.23 0.66
0.07 ] 33.01 33.87 0.86 33.79 0.78 33.70 0.69 33.64 0.64
0.08 | 37.82 - 38.64 0.82 38.57 0.75 38.47 "~ 0.65 38.42 0.60
0.09 | 42.09 42.86 0.77 42.79 0.70 42.70 0.61 42.64 0.56"
0.10 | 45.88 46.60 0.72 46.53 0.65 46.45 0.57 | 46.40 - 0.52
0.20169.40 69.80 0.40 69.77 0.37 69.73 0.33 69.71 0.31
0.30 ] 81.52 81.82 0.30 81.80 0.27 81.77 0.25 | 81.75 0.23
0.40 | 88.74 88.96  |. 0.22 88.94 0.20 88.92 | 0.18 88.90 0.16
0.50 93.13 93.29 0.16 93.27 0.14 93.25 0.12 93.24 0.12

1L
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TABLE 5.5 ONE-STEP METHODS, SOLUTION OBTAINED FOR RAMP SMOOTHED BOUNDARY TEMPERATURE,

X =

(0.0,0.0), At = 0.01

. 0= 1/2 0= 2/3 0= 0.878 0= 1
‘Analytic | Numeric Numeric Numeric Numeric '

time | Solution | Solution | Error Solution | Error Solution | Error Solution | Error
0.01 | 0.62 E-9 | 0.13 E-3} 0.13 £-3] 0.13 E-2| 0.13 £=2| 0.73 £-2| 0.73 E-2| 0.15 E-1| 0.15 E-1
0.02 | 0.23 E-3 0.25 E-2| 0.22 E—Z 0.15 E-1| 0.14 E-1] 0.56 E-1| 0.56 E-1} 0.97 E-1} 0.97 E-1
0.03 | 0.18 E-1 0.21 E-1| 0.30 E-2] 0.81 E~1| 0.63 E-1] 0.22 0.20 0.33 0.31
0.04 | 0.16 0.1 -0.05 0.29 0.13 0.61 0.44 0.82 0.66
10.05 | 0.63 0.39 -0.24 0.77 0.15 1.31 0.69 1.64 1.01
0.06 | 1.55 1,04 -0.52 1.65 0.10 2.41 0.85 2.83 1.28
0.07 | 2.99 220 -0.79 2.98 -0.01 3.91 0.92 4.41 1.42
0.08 | 4.9 3.90 -1.01 4.78 - -0.13 5.80 0.89 6.35 1.44
0.09 | 7.23 6.08 -1.16 6.98 -0.26 8.03 0.79 8.59 1.36
0.10 | 9.88 8.64 -1.24 9.51 -0.37 10.54 0.66 11.10 1.21
0.20‘ 40.35 35.50 -0.85 39.65 -0.70 39.85 -0.50 39.98 -0.35
0.30 |63.18 62.81 -0;37‘ 62.68. ~0.50 62.54 -0.64 62.46 -0.72
0.40177.49 77.35 -0.14 77 .17 -0.31 76.95 -0.53 76.83 -0.66
0.50 | 86.25 86.23 -0.03 . |86.06 -0.19 85.85 -0.40 85.73 -0.60

¢l



TABLE 5.6 ONE-STEP METHODS, SOLUTION OBTAINED FOR RAMP SMOOTHED BOUNDARY TEMPERATURE,

X = (0.5,0.5), -At = 0.01
o= 1/2 0= 2/3 0= 0.878 o= 1
Analytic | Numeric , Numeric Numeric Numeric
time { Solution | Solution | Error Solution | Error Solution| Error Solution| Error
0.0 0.08 . 0.78 E-1 | 0.31 E-2 | 0.27 FO.]Q 0.70 0.62 1.04 0.95
0.02 | 2.47 0.84 -1.62 1.83 -0.69 3.20 0.73 3.98 1.51
0.03 |. 8.08 3.88 -4.20 5.77 -2.31 7.69 ~-0.38 8.65 | 0.57
0.04. 14.83 10.15 -4.68 11.78 -3.05 13.43 -1.40 14.26 -0.56
- 0.05 | 21.47 17.73 -3.74 18.44 -3.03 19.52 -1.96 - 20.12 -1.35
0.06 |27.57 24 .35 -3.21 24.77 -2.80 25.40 -2.17 25.79 -1.78
0.07 |33.01 | 30.27 -2.73 30.49 -2.52 | 30.83 -2.18 31.06 ° -1.95
0.08 |37.82 35.58 -2.24 35.59 -2.23 35.73 -2.09 35.86 -1.97
0.09 | 42.09 40.09 -1.99 40.11 -1.98 40.14 -1.95 40.19 -1.90
0.10 | 45.88 44.22 -1.66 44.13 -1.76 44.09 -1.79 44,10 -1.79
0.20 | 69.40 68.75 -0.65 68.69 -0.71 68.61 -0.79 68.56 -0.84
0.30 | 81.52 81.21 -0.31 81.13 -0.39 81.02 -0.50 80.97 -0.56
0;40 88.74 88.59 -0.15 88.50 -0.24 88.38 ~-0.35 88.32 -0.42
0.50} 93.13 93.06 -0.06 92.98 -0.15 92.87 -0.25 92.81 -0.31

€L



TABLE 5.7 ONE-STEP METHODS, SOLUTION OBTAINED FOR RAMP SMOOTHED BOUNDARY TEMPERATURE,

~x = (0.0,0.0), At = 0.001
o= 1/2 0= 2/3 0= 0.878 0= 1
1" Analytic | Numeric Numeric Numeric Numeric

time| Solution | Solution | Error Solution | Error Solution | Error Solution | Error

0.01| 0.62 E-9 | 0.21 E-7 | 0.20 E-7| 0.33 E-6 | 0.33 E-6 0.44 E-7 | 0.44 E-7 | -0.16 E-6 -0.16 E-6

0.02| 0.23 E-3 | 0.77 E-4 |-0.15 E-3|-0.18 E-3 | -0.41 E-3|-0.32 E-3 [-0.55 E-3|-0.25 E-3; -0.48 E-3

0.03} 0.18 E-1 {-0.13 E-2 |-0.19 E-]l 0.34 E-2 |-0.14 E-1}0.11 E-1 [-0.68 E-2| 0.16 E-1| -0.17 E-2

0.04_ 0.16 0.92 E-1 [-0.71 E-T1] 0.12 -0.45 E-110.15 ~0.12 E-1| 0.17 0.83 E-2

0.05| 0.63 - 0.51 -0.12 0.56 -0.65 E—] 0.63 0.98 E-3| 0.66 0.39 E-1

0.06 | 1.55 1.42 -0.13 | 1.49 -0.59 E-11.59 0.34 E-1| 1.64 0.88 E-1

0.07 | 2.99 2.87 -0.1 2.96 -0.27 E-1: 3;07 0.08 3.13 0.14
10.08| 4.9 4.83 -0.07 4.93 0.21 E-1 5.04 0.14 5.11 0.20

0.09( 7.23 7.22 -0.13 E-1] 7.31 0.78 E-1 7.43 | 0.19 7.49 0.26

0.10] 9.88 - 9.93 0.05 10.02 0.14 10.13 0.25 10.19 0.31

0.20 | 40.35 40.79 0.44 40.81 0.45 40.82 0.47 40.83 0.48

0.30 63.18 63.63 0.45 63.61 0.43 63.60 0.42 63.59 0.41

0.40 | 77.49 77.85 0.36 77.83 0.35 77.81 0.32 77.80 0.31

0.50]86.25 86.53 0.27 86.51 0.26 86.49 0.24 86.48 0.23

174



TABLE 5.8 ONE-STEP METHODS, SOLUTION OBTAINED FOR RAMP SMOOTHED BOUNDARY TEMPERATURE,

X = (0.5,0.5) At = 0.0Mm
0= 1/2 0= 2/3 0=0.878 0= 1
1 Analytic | Numeric Numeric Numeric Numeric
time | Solution | Solution Errpr Solution | Error Solution |Error Sotution |Error
0.01 0.08 -0.11 -0.19 -0.10 -0.18 -0.77 E-1 ]-0.16 -0.56 E-1 [-0.14
0.02 2.47 1.23 -1.23 1.45 ~1.02 1.71 -0.76 1.85 -0.61
0.03 8.08 6.92 -1.15 7.09 -0.98 7.31 -0.77 7.43 -0.64
0.04 | 14.83 13.99 -0.84 14.09 -0.73 14.23 -0.60 14.30 -0.52
0.05. 21.47 20.91 -0.56 20.97 -0.50 21.04 -0.43 21.09 -0.39
0.06 | 27.57 27.21 -0.36 27.23 -0.33 27.27 -0.30 27.29 -0.28
0.07 | 33.01 32.78 1-0.22 32.79 ~0.21 32.80 -0.20 32.81 -0.19
0.08 | 37.82 | 37.69 |-0.13 |37.69 |-0.13 [37.69  |-0.13 |37.69  |-0.13
0.09 | 42.09 42.01 -0.74 E-1}42.01 -0.08 42.00 -0.09 42.00 -0.09
0.10 | 45.88 45,85 1-0.34 E-1| 45.84 -0.04 45.83 -0.05 45.83 -0.56 E-1
0.20 | 69.40 69.47 -0.74 E-1[69.47 0.07 69.46 -0.06 69.46 0.56 E-1
0.30 | 81.52 81.63 0.10 81.62 0.10 . |81.61 -0.09 81.60 0.79 E-1
0.40 | 88.74 88.84 0.10 88.83 0.09 88.82. -0.08 88.81 0.77 E-1
0.50 ] 93.13 93.22 0.09 93.21 0.08 93.20 -0.07 93.19 0.65 E-1

G/



TABLE 5.9 ONE-STEP METHODS, SOLUTION OBTAINED FOR SMOOTHED BOUNDARY TEMPERATURE AS PROPOSED BY ZIENKIEWICZ,

\ Xz (0.0,0.0), At = 0.01
0= 1/2 0= 2/3 0= 0.878 0= 1
Analytic |Numeric Numeric Numeric Numeric

time |Solution |Solution [Error Solution | Error Solution | Error Solution | Error
0.005 | 0.64 E-11 0.13 E-3 | 0.13 E-3| 0.13 E-2 |- 0.13 E-2 0.73 E-2| 0.73 €-2| 0.15 E-1| 0.15 E-1
0.015 | 0.31 E-5 | 0.25 E-2 | 0.25 E-2| 0.15 E-1| 0.15 E-1} 0.56 E-1| 0.56 E-1| 0.97 E-1| 0.97 E-1
10.025 0.31 E-2 | 0.21 E-1 | 0.18 E-1{ 0.81 E-1| 0.78 E-1] 0.22 0.22 0.33, 0.33
0.035 | 0.63 E-1 | 0.11 0.47 E-1} 0.29 0.23 0.61 | 0.55 0.82 0.76
0.045 | 0.34 0.39 0.05 0.77 0.43 1.31 0.97 1.64 1.30
0.055 | 1.02 1.04 0.02 1.65 - 0.63 2;41 1.39 2.83 1.81

.065 | 2.21 - 2.20 -0.01 2.98 0,77 3.91 1.70 4.41 2.20
0.075 | 3.89 3.90 0.0 4.78 0.89 5,80 1.91 6.35 2.46
0.085 | 6.02 6.08 0.06 6.98 0.96 8,03 2.01 8.59 2.57
0.095 | 8.52 8.64 0.12 9.51 0.99 10.54 2.02 11.10 2.58
0.195 [ 38.95 39.50. 0.55 39.65 0.70 39.85 -0.10 39.98 1.03
0.295 | 62.27 62,80 0.53 62.68 0.41 62.54 0.27 62.46 0.19
0.395 | 76.92 77.35 0.43 77.17 0.25 76.95 0.03 76.83 -0.09
0.495 | 85.91 86.23 0.32 86.06. 0.15 85.85 -0.06 85.73 -0.18
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TABLE 5.10 ONE-STEP METHODS, SOLUTION OBTAINED FOR SMOOTHED sS8OUNDARY TeMPeRAIURL Ao PRUFUSED BY ZIENARIEWILL,

x = (0.5,0.5), At = 0.01

0= 1/2 ‘ 0= 2/3 0= 0.878 0= 1
: Analytic | Numeric : Numeric Numeric Numeric
time {Solution | Solution | Error Solution { Error Solution {Error Solution Error‘
0.005 | 0.11 E-1| 0.78 E-1| 0.67 E-1| 0.27 0.26 0.70 0.69 ']-04 1.03
0;015 0.78 0.84 0.06 1.83 1.05 3.20 2.42 3.98 3.20
0.025 | 5.01 3.88 1-1.13 5.77 0.76 7.69 2.68 8.65 | 3.64
0.035 {11.41 10.15 -1.36 11.78 0.37 13.43 2.02 14.26 | 2.75
0.045 118.20 17.73 - -0.47 18.44 0.24° 19.52 1.32 20.12 1.92
0.055 |24.60 24.35 -0.25 24.77 k0.]7 | 25.46 0.86 25.79 1.19
1 0.065 |30.37 | | 30.27 -0.10 30.49 0.12 | 30.83 0.46 31.06 0.69
0.075 |35.49 | 35.58 0.09 35.59 0.10 35.73 0.24 35.86 0.37
0.085 |40.02 40,09 10.07 40.11 0.09 40.14 0.12 40.19 0.17
0.095 144.04 | 44 .22 0.18 44.13 0.09 44.09 0.05 44.10 0.06
0.195 |68.59 68.75 0.16 68.69 0.10 68.01 0.42 68.56 f -0.03
0.295 |81.06 81.21 0.15 81.13 0.07 81.02 | .-0.04 80.97 -0.09
10.395 | 88.46 8.59 | 0.14 88.50 0.04 88.38 -0.08 88.32 - -0.14
0.595- 92.95 93.06 0.1 92.98 | 0.03 | 92.87 -0.08 92.81 -0.14
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TABLE 5.11 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR
AVERAGING FIRST TWO SUCCESSIVE TEMPERATURES,
x = (0.0,0.0), At = 0.01

AVERAGING
Analytic Numeric
time Solution Solution- Error
0.005 0.64 E-11| 0.66 E-4 0.66 E-4
0.015 0.31 E-5 0.13 E-2 0.13 E-2
0.025 0.31 E-2 0.11 E-1 0.08 E-2
0.035 0.62 E-1 0.64 E-1 0}02‘5;1
0.045 0.34 0.25 | -0.09
0.055 1.02 0.71 -0.31
0.065 2.2 1.62 | -0.59
0.075 | 3.89 3.05 -0.84
0.085 6.02 4.99 -2.03
0.095 8.52 7.36 -1.16
0.195 | 38.95 38.05 20.90
0.295 | 62.27 61.87 -0.40
0.395 | 76.92 76.77 -0.15
0.495 | 85.91 85.87 -0.04




TABLE 5.12 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR
AVERAGING FIRST TWO SUCCESSIVE TEMPERATURES,
x = (0.5,0.5), At = 0.01

AVERAGING
Analytic Numeric
time Solution Solution Error
0.005 0.11 E-3 0.39 E-1 0.39 E-1
0.015 | 0.78 0.46 -0.32
0.025 5.01 2.36 : -2.65
0.035 11.41 7.01 -4.40
0.045 | 18.20 | 13.94 | -4.26
0.055 24.60 21.04 —4.56
0.065 30.37 27.31 -3.06
0.075 36.49 32.93 -3.56
0.085 40.C2 37.84 -2.18
0.095 44,04 42.15 -1.89
0.195 |- 68.59 67.91 - ~0.68
- 0.295 81.06 80.73 -0.33
b.395 88.46 88.30 -0.16
0.495 92.95 92.88 -0.07




FABLE 5.13 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR -
AVERAGING FIRST TWO SUCCESSIVE TEMPERATURES,
x = (0.0,0.0), At = 0001

AVERAGING
Analytic Numeric

time Solution Solution Error
0.0095 0.17 E-9 -0.19 E-5 | -0.19 E-5
0.0195 0.16 E-3 0.93 E-4 | -0.7 E-4
0.0295 | 0.15 E-1 | -0.17 E-2 | -0.17 E-1
0.0395 0.15 0.08 -0.07
0.0495 0.59 0.48 -0.11
0.0595 | 1.49 1.36 -0.13
C.0695 2.90 | 2.79 -0.11
0.0795 4.80 4.73 -0.07
0.0895 .71 7.09 -0.02
0.0995 9.74 9.79 0.05
0:1995 40.21 40.65 0.44.
0.2995 |63.09 63.54 0.45
0.3995 |77.43 . 77.79 0.36
0.4995 |86.21 86.49 0.20




TABLE 5.14 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR
AVERAGING FIRST TWO SUCCESSIVE TEMPERATURES,
x = (0.5,0.5), At =0.001 |

AVERAGING
Analytic Numeric
time Solution Solution Error
10.0095 | 0.57 E-1| -0.60 E-T1| =-0.11
0.0195 | 2.26 1.04 -1.22
0.0295 | 7.75 6.59 -1.76
0.0395 | 14.48 13.63 | -0.85
0.0495 | 21.15 20.58 -0.57
0.0595 | 27.27 26.91 | -0.36
0.0695 | 32.75 32.52 -0.23
0.0795 | 37.60 37.48 -0.12
0.0895 | 41.89 41.81 -0.08
0.0995 | 45.70 45,66 -0.04
0.1995 | 69.32 69.37 0.05
0.2995 | 81.48 81.58 0.10
0.3995 | 88.71 88.81 0.10
10.4995 | 93.11 93.20 0.09




TABLE 5.15 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR

EXPONENTIAL SMOOTHED BOUNDARY TEMPERATURE, :

x = (0.0,0.0), 4t = 0.01
Je-dt/at 1-e72t/ 2
Analytic | Numeric Numeric
time |Solution |Solution [ Error Solution |Error
0.01 62 E-9| .13 E-3| .13 -3 0.11 E-3| 0.11 E-3
0.02 23 E-3| .24 E-2| .21 €-2] 0.21 E-2 | 0.19 E-2
0.03 8 E-1| .21 E-1| .27 €-2] 0.18 E-1| 0.50 E-3
0.04 .16 b -.06 0.96 E-1] 0.67 E-1
0.05 .63 .38 -.24 0.35 -0.28
0.06 1.55 1.02 -.53 0.94 -0.61
0.07 2.99 2.17 81 | 2.03 -0.96
0.08 | 4.91 3.87 -1.04 3.65 -1.26
0.09 | 7.23 6.04 -1.20 5.75 -1.48
0.10 | 9.88 8.59 -1.29 8.25 -1.63
0.20 |40.35 39.45 -0.91 39.05 -1.31
0.30 |63.18 62.77 -0.41 |62.51 -0.67
0.40 | 77.49 77.33 -0.16 77.17 -0.32
0.50 |86.25 86.21 -0.04 86.11 -0.14

82



TABLE 5.16 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR
" EXPONENTIAL SMOOTHED BOUNDARY TEMPERATURE,
x = (0.5,0.5), 4t = 0.0 |

1-e-dt/at 1-e-2t/At
Analysis | Numeric Numeric
time |[Solution | Solution | Error Solution} Error
0.01 | 0.08 | 0.77 E-1-0.46 E-2| 0.07 -0.01
0.02 | 2.47 0.83 -1.64 0.74 -1.73
0.03 | 8.08 3.82 -4.25 3.45 -4.62
0.04 [14.83 10.03 -4.79 9.29 -5.58
0.05 {21.47 17.59 -3.88 16.58 -4.89
0.06 |27.57 | 24.23 -3.34 23.30 -4.27
0.07 |33.01 | 30.16 -2.84-  ]29.33 -3.68
0.08 37.82 35.48 -2.34 34.79 | -3.09
0.09 |[42.09 40.01 -2.08  |39.37 -2.72
0.10 |45.88 | 44.14 -1.74 43.56 | =-2.32
0.20 |[69.40 68.72 -0.68 68.48 -0.91
0.30 [81.52 | 81.19 -0.33 81.06 -0.47
0.40 |88.71 88.58 -0.16 | 88.50 -0.29
0.50 |93.13 93.06 -0.07 93.01 -0.12.




~- "TABLE 5.17 CRACK-NICHOLSON METHOD, SOLUTION OBTAINED FOR

EXPONENTIAL SMOOTHED BOUNDARY TEMPERATURE,

X = (0.0,0.0), at = 0.001
1-e-At/at 1-em2t/At
Analytic | Numeric | Numeric

time | Solution | Solution | Error Solution | Error
0.01 0.62 £-9 | -0.49 E-7 | -50 E-7 |-0.42 E-6 | -0.42 E-6|
0.02 | 0.23 E-3 | -0.77 E-4| -0.15 E-3] 0.81 E-4 | -0.15 E-3
0.03 { 0.18 E-1 -0.13 E-2} -0.19 E-1{-0.14 E-2 | -0.02
0.04 | 0.16 0.91 E~1} -0.07 0.88 E-1| -0.07
0.05 | 0.63 -0.51 ;0.12 0.50- -0.13
C.06 | 1.55 1.42 -0.14 1.40 -0.15
0.07 | 2.9¢ 2.87 -0.12 2.85 -0.14
0.08 | 4.91 4f83 -0.08 4.80 -0.10
0,09 | 7.23 7.2] -0.02 7.18 -0.05
0.10 | 9.88 9.93 0.05 9.89 0.01
0.20 [40.35 40,79 0.44 40.75 0.40
0.30 [63.18 63.62 0.44 63.60 0.42
0.40 |77.49 77 .85 0.36 77.83 0.35
0.50 [86.25 86.53 0.27 86.52 0.26
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TABLE 5.18 CRANK-NICHOLSON METHOD, SOLUTION OBTAINED FOR
EXPONENTIAL SMOOTHED BOUNDARY TEMPERATURE,
x = (0.5,0.5), At = 0.001 '

Jemdt/at 1-e-2t/ 8t
Analytic | Numeric Numeric

~time | Solution | Solution | Error Solution | Error
0.01{ 0.81 E-1 | -0.m -0.19 -0.95.6-1| -0.18
0.02| 2.47 1.23 -1.24 1.18 -1.29
0.03| 8.08 | 6.9 -1.17 6.82 -1.26
0.04 | 14.83 . 13.98 -0.85 13.88 -0.95
0.05 | 21.47 20.90 -0.57 20.81 -0.66
0.06 | 27.57 27.20 -0.37 27.11 -0.46
0.07 | 33.01 32.77 20.23 | 32.70 -0.31
0.08 | 37.82 37.68 -0.14 37.62 -0.20
0.09 | 42.09 42.01 -0.08 41.95 -0.14
0.10 | 45.88 45.84 -0.04 | 45.79 -0.09
0.20 | 69.40 69.47 0.07 | 69.45 0.05
0.30 | 81.52 | 81.62 0.10 81.61 0.09
0.40 | 88.74 88.84 0.10 88.83 0.09
0.50 | 93.13 93.22 0.09 93.21 0.08




X_:

(0.0,0.0), At = 0.0

_TABLE 5.19 TWO-STEP METHODS, SOLUTION OBTAINED BY STARTING WITH THE CRANK-NICHOLSON METHOD,

y= 3/2 B= 4/5 vz 3/2 B= 1 v= 1.2184 B= 0.646 |y= 1 B= 3/4 v= 1/2 B=1/3
Analytic | Numeric Numeric Numeric Numeric Numeric
‘time Solution | Solution |Error Solution | Error Solution | Error Solution | Error Solution ‘ Error
0.01 0.62 E-9 0.39 E-3 0.30 E-3{ 0.39 E-3 | 0.39 E-3} 0.39 £-3}{ 0.39 E-3| 0.39 E-3} 0.39 E-3} 0.39 E-3| 0.39 E-3
0.02 0.23 E-3| 0.75 E-2 | 0.73 E-2| 0.13 E-1{ 0.13 E-1| 0.74 E-2| 0.72 E-2| 0.18 E-1| 0.18 E-1] 0.13 E-1} 0.13 E-I
0.03 0.18 E-1| 0.55 E-1 | 0.37 E-1| 0.85 E-1| 0.67 E-1| 0.55 E-1] 0.37 E-1} 0.99 E-1| 0.81 E-1 0.73 E-1 0.55 E-1 |
.04 | 0.16 0.24 0.08 0.31 0.15 0.24 0.08 0.33 0.17 0.28 0.12
0.05 0.63 0.73 0.10 0.83 0.20 10.73 | 0.10 0.85 0.22 0.76 0.13
0.06 1.55 - 1.69 0.14 1.77 0.22 1.69 0.14 1.77 0.22 1.69 0.14
0.07 2.99 3.20 0.21 3.21 0.22 3.20. 0.21 3.18 0.19 3.15 0.16
0.08 4.91 5.22 0.31 5.15 0.24 5.22 0.31 5.11 0.20 5.17 0.26
0.09 | 7.23 7.66 0.43 7.53 0.30 7.66 0.43 7.49 0.26 7.61 0.38
0.10 9.88 10.43 0.56 10.27 0.49 10.43 0.56 10.24 0.46 10.40 0.53
0.20 |40.35 41.37 1.02 41.34 0.99 41.37 1.02 41.35 1.00 41.37 1.02
0.30 |63.18 64.02 0.84 64.04 6.86 64.02 0.84 64.04 0.86 . 64.02 0.84
0.40 | 77.49 78.09 0.60 78.11 0.62 78.09 0.60 78.11 0.62 78.09 0.60
0.50 | 86.25 86.68 0.43 86.69 | 0.44 86.88 0.43 86.69 - 0.41 86.68 0.43
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- TABLE 5.20 TWO-STEP METHODS, SOLUTION OBTAINED BY

STARTING WITH THE CRANK-NICHOLSON METHOD,

x = (0.5,0.5), At = 0.01
vz 3/2 B= 4/5 | y= 3/2 B= 1 y= 1.2184 B= 0.646 | y= 1 B=3/4 |y=1/2 | B=1/3
Analytic |[Numeric Numeric Numeric Numeric Numeric

time | Solution |[Solution | Error Solution | Error Solution | Error Solution | Error Solution| Error
0.01 0.81 E-1 ] 0.23 0.15 0.23 0.15 0.23 0.15 0.23 0.15 0.23 0.15
10.02 2.47 2.13 -0.34 2.32 -0.15 2.12 ~0.33 2.39 -0.08 2.32 >-0.15
0.03 8.08 7.45 -0.63 7.21 -0.87 7.44 -0.62 7.03 -1.05 6.97 =111
0.04 | 14.83 15.07 0.24 14.13 0.70 15.13 0.74 13.82 =1.01 14.61 -0.22
0.05 | 21.47 22.19. 0.72 21.46 ~0.01 22.24 0.77 21.38 -0.09 22.37 0.90
0.06 | 25.57 28.38 0.81 28.16 0.59 28.41. 0.83 28.37 0.80 28.77 1.20
0.07 | 33.01. 33.95 © 0.94 33.93 0.92 33.96 0.95 34.20 1.19 | 33.90 0.89
0.08 | 37.82 38.71 0.89 | 38.85 1.03 38.71 0.89 39.00 1.18 38.50 0.68
0.09 | 42.08 42.97 0.89 43.11 1.03 42.96 10.88 43.13 1.05 43.26 1.18
0.10 | 45.88 46.69 0.81 46.85 0.97 46.68 0.80 46.82 0.94 46.61 0.73
0.20 | 69.40 69.83 0.43 69.87 0.47 69.83 0.43 69.87 0.47 69.86 0.46
0.30 | 81.52 81.83 - 0.31 81.85 0.33 81.83 0.31 81.85 0.33 81.79 0.27
0.40 | 88.74 88.97 0.23 88.98 0.24 88;96 0.22 88.98 0.24 88.99 0.25
0.50 | 93.13 93.29 0.16 93.30 0.17 93.29 0.16 93.30 0.17 93.29 O.]?;_




CTABLE 5.21 TWO-STEP METHODS, SOLUTION OBTAINED BY

| -~

P X

= (0.0,0.0), At = 0.001

STARTING WITH THE CRANK-NICHOLSON METHOD,

vy= 3/2 B= 4/5 v= 3/2 B= 1 v= 1.2184 B= 0.646 [y= 1 B= 3/4 v=1/2 . B=1/3
Analytic | Numeric Numeric Numeric Numeric Numeric

time |Solution | Solution |[Error Solution | Error Solution- | Error Solution | Error Solution |Error
0.01 0.62 E-9| 0.24 E-5 | 0.24 E-5| 0.14 E-6 | 0.14 E-6| 0.26 E-5 0.26 E-5/ 0.15 E-7 [ 0.14 E~7 -0.97 E-8 40,10 E-7
0.02 '0.23 E-3| -0.27 E-3 |-0.50 E-3|-0.29 E-3 | -0.52 E-3|-0.27 E-3 | 0.50 E-3|-0.27 E-3|-0.50 E-3|-0.25 E-3 -Q.48 E-3
0.03 0.18 E-1| 0.53 E-2 |-0.12 E-T| 0.66 E-2 | -0.01 0.53 E-2 | -0.13 E-1| 0.67 E-2|-0.01 0.56 E-2 -0.12 E;l
0.04 0.16 0.15 -0.01 0.15. -0.01 0.15 -0.01 0.15 -0.01 0.15 -0.15 E-1
0.05 0.63 0.66 | 0.03 0.66 0.03 0.66 0.03 0.66 0.03 0.66 0.03
0.06 1.55 1.68 0.13 1.68 0.13 1.68 - 0.13 1.68 0.13 1.68 0.13
0.07 2.99 3.25 0.26 3.25 0.26 3.25 0.26 3.25 0.26 3.25 0.26
0.08 4.91 5.30 0.40 5.30 0.39 5.30 0.39 5.30 0.40 '5.30 0.40 .
0.09 7.23 7.76 0.53 7.76 0.53 7.76 0.53 7.76 0.53 | 7.76 | 0.53
0.10 9.88 10,53 0;65 10.53 0.65 10.53 0.65 10.53 0.65 10.53 0.65
0.20 |40.35 41.38 1.03 41.38 - 1.03 41.38 1.03 41.38 1.03 41.38 1.03
0.30 63418v 64.00 0;82 64.00 0.82 64.00 0.82 64.00 0.82 64.00 0.82
0.40 |{77.49 78.08 0.59 78.08 0.59 78.08. - 0.59 78.08 0.59 78.08 0.59
0.50 | 86.25 | 86.67 0.41 86;67 0.41 86.67 0.41 86.67 0.41 86.67 0.41
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TABﬁE 5}22_ TNb-STEP METHODS, SOLUTION OBTAINED BY STARTING WITH THE CRANK-NICHOLSON METHOD,

x = (0.5,0.5), At = 0.001

| v= 372 B= 4/5 | vy= 3/2 B= 1 v= 1.2184 B= 0.646| vy= 1 B=3/4 | vy=1/2  B=1/3
Analytic | Numeric . Numeric Numeric Numeric Numeric .

time | Solution | Solution | Error Solution | Error Solution | Error Solution| Error Solution | Error
0.01 0.81 E-1} -0.19 -0.27 -0.16 -0.24 -0.19 -0.27 -0.16 -0.24 -0.19 -0.27
0.02 | 2.47 2.25 -0.22 2.23 -0.24' 2.25 -0.22 2.23 -0.24 2.25 -0.22
0.03 8.03 8.41 0.33 8.39 0.32. 8.41 0.33 8.39 0.32 8.41 0.33

0.04 | 14.83 15.50 0.67 15.50 0.67 15.50 0.67 15.50 0.67 15.50 0.68
0.05 | 21.47 22.31 ' 0.84 22.30 0.83 22.31 0.84 22.30 - 0.83 22.31 0.83
0.06 | 27.57 -28.44 |- 0.88 28.44 0.88 28.44 | 0.88 28.44 0.88 28.44 0.88
0.07 | 33.01 33.87 .0.86 33.87 0.86 33.87 | 0.86 33.87 0.86 33.87 0.86
0.08 | 37.82 38.64 0.82 38.65 0.81 38.64 0.82 38.65 0.81 38.64 0.82
0.09 | 42.09 42.86 0.77 42.86 0.77 42.86 0.77 42.86 0.77 42.86 0.77
0.10 | 45.88 46.60 0.72 46.60 0.72 46.60 0.72 46.60 0.72 46.60 0.72
0.20 | 69.40 69.81 0.41 69.81 0.41 69.81 0.41 69.81 0.41 69.81 0.41
0.30 |81.52 81.82 0.30 81.82 - 0.30 81.82 0.30 81.82 0.30 81.82 0.30
0.40 | 88.74 88.96 0.22 88.96 0.22 88.96 0.22 88.96 0.22 88.96 0.22
93.13 - 93.29 0.76 93.29 0.16 93.29 0.16 93.29 0.16 93.29 0.16




TABLE15.23 TWO-STEP METHODS, SOLUTION OBTAINED BY STARTING WITH KNOWN STEADY CONDITIONS,

‘

x = (0.0,0.0), At = 0.01

y= 3/2 B= 4/5 |y= 3/2 B= T vy= 1.2184 8= 0.646 ) vy= 1 B= 3/4  iy=1/2 B=-1/3

time ég?lﬁ;; glcj)r?ﬁggn Er"ror gg[?ﬁﬁgn Error gg%ﬂgn Error msggn Error: gg?ﬁrc‘:gn % Error
0.01 | 0.62 E-9| 0.52 E-3| 0.52 E-3| 0.17 £-2| 0.17 E-2| 0.53 E-3| 0.53 -3 0.35 £-2| 0.35 E-4 0.29 E-2| 0.29 E-2|
0.02 | 0.23 E-3| 0.77 E-2} 0.75 E-2} 0,18 E-1| 0.17 E-1| 0.79 E-2| 0.77 E-2| 0.27 E-1] 0.26 E-1| 0.22 E-1| 0.21 E-1
0.03 | 0.18 E-1|  0.52 E-1| 0.36 E-1| 0.87 E-1| 0.69 E-1{ 0.54 E-1| 0.36 E-1| 0.11 0.94 E-1| 0.10 0.84
0.04 | 0.16 0.22 0.59 E-1| 0.29 0.13 0.23 0.07 0.34 0.18 0.33 0.17
0.05 | 0.63 0.66 0.03 0.74 0.12 0.69 0.06 0.81 ’0.18 0.87 0.24
0.06 | 1.55 1.55 -0.38 E-2f 1.56 0.01 1.60 | 0.05 1.66 0.11 1.83 0.28
0.07 | 2.99 2.95 -0.04 2.82 0.17 3.06 0.07 2.95 -0.04 3.36 0.34
0.08 | 4.91 4.85 -0.06 4,55 -0.35 5.02 0.11 4.74 -0.16 5.38 0.47
0.09 | 7.23 7.18 -0.04 6.73 -0.50 7.41 0.18 6.99 -0.24 7.89 0.66

' 0.10 | 9.88 9.87 -0.01 9.28 -0.60 10.14 0.26 9.62 -0.26 10.13 0.75
0.20 | 40.35 40.73 - 0.38 40.10  |-0.25 - 41.05 0.70 40.61 0.26 41.41 1.06
0.30 |63.18 | 63.59 0.41 |63.22 0.04 63.80 0.62 63.55 0.38  |63.9 0.72
0.40 |77.49 77.84 0.36 77.62 0.13 77.96 0.48 77.82 0.33 77.90 0.42
0.50 | 86.25 86.52 0.27 86.39 0.14 86.60 0.35 86.51 0.26 86.47 0.22
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(0.5,0.5), at = 0.01

TABLE 5.24 TWO-STEP METHODS, SOLUTION OBTAINED BY STARTING WITH KNOWN STEADY CONDITIONS,

Xz
'VY: 3/2 B= 4/5 vy= 3/2 B= 1 v= 1.2184 g= 0.646| v= 1 R= 3/4 v=1/2 g= 1/3
Analytic | Numeric ' Numeric Numeric Numeric Numeric .
time | Solution | Solution| Error Solution [ Error Solution | Error Solution | Error Solution | Error
0.01 0.81 E-1] 0.25 0.16 0.39 0.31 0.26 0.18 0.54 0.45 0.63 0.55
0.02 2.46 1.96 -0.50 2.19 -0.27 2.05 -0.45 2.44 -0.02 2.66 0.20
0.03 8.08 6.70 -1.38 6.16 -1.92 7.02 -0.15 6.43 -0.17 7.95 -0.13
0.04 | 14.82 13.71 -1.11 12.00 -2.82 14.34 -0.49 12.40 -2.42 14.82 0.00
0.05 | 21.47 20.67 .-0.80v 18.68 -2.79 21.43 }\ -0.04 19.43 -2.04 23.33 1.86
0.06 | 27.57 26.96 -0.61 25.25 -0.23 27.69 0.12 26.37 1.20 28.61 j.OSv'
0;07 33.01 32.64 =0.37 31.21 -1.79 33.31 0.30 32.48 -0.52 34.95 1.95
0.08 | 37.82 37.56 -0.26 | 36.46 -1.37 38.15 0.33 37.61 -0.21 38.19 1 0.37
0.09 | 42.09 41,94 -0.15 41.03 -1.06 42.45 0.36 41.97 -0.12 44.21 2.12 .
0.10 | 45.88 45.79 -0.09 45.03 -0.85 46.24 0.36 45,80 -0.08 | 46.29 - 0.41
0.20 | 69.40 69.46 0.06 69.16 -0.25 69.64 0.24 69.44 0.04 69.60 0.20
0.30 | 81.52 . 81.61 0.09 | 81.43 -0.09 81.72 0.20 | 81.40 0.08 81.60 0.08
0.40 { 88.74 | 88.84 0.10 88.73 -0.01 88.90 0.16 88.93 0.09 88.82 0.08
0.50 | 93.13 93.2] 0.08 93.15 0.02 93.25 0.12 93.21 0.08 93.16 0.03
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TABLE 5.25 TWO-STEP METHODS, SOLUTION OBTAINED BY STARTING WITH KNOWN STEADY CONDITIONS.

x = (0.0,0.0), 4t = 0.001
v= 3/2 R= 4/5 v= 3/2 B= 1 v=1.2184 Rz 0.646 |y= 1 B= 3/4 [y=1/2 = 1/3
Analytic | Numeric Numeric Numeric Numeric Numeric

time | Solution | Solution | Error Solution | Error Solution | Error Solution | Error Solution {Error
0.01 "0.62 E-9| 0.27 E-5 ' 0.27 £-5| 0.64 E-7| 0.64 E-7| 0.27 E-5| 0.27 E-5| 0.37 E-9|-0.25 E-7| -0.76 E-7 ;0.76 E-7
0.02 0.23 E-3| 0.33 E-3 -0.56 E-3|-0.32 E-3| -0.54 E-3|-0.29 E-3 | -0.52 E-3| -0.25 E-3 | -0.48 E-3 -0.17 E-3{-0.40 E-3
0.03 0.18 E-1| 0.67 E-2| -0.11 E-1} 0.77 E-2| -0.10 E-1| 0.59 E-2 -0.01 0.62 E-2|-0.12 E-} 0.34 E-2{-0.14 E-1
0.04 | G.16 0.16 -0.24 E-2| 0.16 -0.50 E-2} 0.15 -0.01 0.14 -0.02 0.13 -0.03
0.05 0.63 0.69 0.66 E-1] 0.68 0.05 0.67 0.04 0.64 0.01 0.61 -0.14 E-1
0.06 | 1.55 1.74 0.19 1.72 0.17 . 1.71 | 0.16 1.65 0.10 1.60 0.05
0.07 2.99 3.33 -0.35 13.30 0.31 3.28 Q.29 3.20 0.21 3.13 0.14
0.08 4.9 5.41 0.51 5.37 0.46 5.35 0.44 5.25 0.34 5.16 0.25
0.09 7.23 7.89 0.66 7.84 0.61 7.82 0.58 7.70 0.47 7.60 0.37
0.10 9.88 - 10.68 0.79 10.62 0.73 10.59 0.71: 10.46 0.58 10.36 0.48
0.20| 40.35 41.52 1.17 41.46 1.11 41.44 1.08 41.31 0.96 41.31 0.95
0.30| 63.18 64.09 0.917 |64.05 0.88 64.04 0.86 63.96 0.78 69.07 0.89
0.40) 77.49 78.13 0.65 78.11 0.63 78.10 0.61 78.05 0.57 78.21 0.73
0.50| 86.25 86.70 0.45 86.89 0.43 86.68 0.43 86.61 0.40 86.82 0.57
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TABLE 5.26 TWO-STEP METHODS, SOLUTION OBTAINED BY STARTING WITH KNOWN STEADY CONDITICNS,

x = (0.5,0.5), At = 0.001

y= 3/2 Bz 4/5 vy= 3/2 B= 1 v= 1.2184 8= 1 v= 3/4 = 1/2 v= 1/2 = 1/3
Analytic | Numeric ' Numeric Numeric ' Numeric Numeric

time | Solution | Solution | Error Soluticn | Error Solution |Error Solution | Error Solution | Error

.6] 0.81 E-11-0.21 -0.29 -0.17 -0.25 -0.20 -0.28' -0.14 -0.22 -0.12 -0.20
0.02 | 2.47 | 2.49 0.02 2.39 -0.07 2.35 -0.12 2.13 -0.34 1.88 -0.59
0.03 8.08 | 8.77 0.69 8.62 0.55 8.56 0.48 8.22 0.15 7.93 -0.15
0.04 |14.83 15.87 1.05 15.72 0.90 15.65 0.83 15.32 - 0.49 15.14 0.32
0.05 |21.47 22.64 | 1.17 22.51 1.04 22.44 0.97 22.14 0.67 22.11 0.64
0.06 |27.57 28.74 1.17 28.62 1.06 28.56 0.99 28.30 0.73 28.39 0.83
10.07 |33.01 34.43 1.12 34.03 1.02 33.98 0.97 33.74 0.73 33.93 0.52
0.08 |37.82 38.87 1.05 38.78 0.96 38.74 0.91 38.53 0.71 38.79 0.97
0.09 |42.09 43.06 - 0.97 42.98 0.89 42.94 ~0.85 42.76 0.67 43.06 0.97
0.10 |45.88 46.78 0.90 46.71 0.83 46.67 0.79 46.51 0.63 v46.84 0.96
0.20 |69.40 69.88 0.48 69.85 0.45 69.84 0.44 69.77 0.37 70.05 0.65
0.30 |81.52 81.86 0.34 81.85 0.32 81.84 0.32 ~81.80 0.27 81.99 0.47
0.40 |88.74 88.99 0.25 88.97 0.24 88.97 0.23 88.94 0.21 89.09 0.35
0.50 [93.13 93.30 0.17 93.30 0.17 93.29 0.17 93.28 0.15 93.39 0.26
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VI. CONCLUSIONS

One-Step Methods

Whether discontinuous or ramp smoothed, Liniger and Backward-
difference methods give comperatively inaccurate results.
Crank-Nicholson and Galerkin methodé are of acceptable accuracy

in the discontinuous case.

In the case of larger steplengths, averaging and exponential
smoothing techniques reduce the accuracy of the Crank-Nicholson
method. Accuracy is improved by reducing the steplength. On

the other hand, computation time increases considerably.

Galerkin method when applied with smoothing the discontinuity
by a ramp function gives better results than do all the above

methods.

Crank-Nicholson method when applied with smoothing as proposed

by Zienkiewicz gives excellent results.
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Two-Step Methods

Irrespective of the method of starting, Lees, Dupont and fully
implicit methods give less accurate results than Liniger and
Galerkin methods. Galerkin and Liniger methods show acceptable

accuracy in the case of Crank-Nicholson starting.

Liniger method shows better performance in the case of starting
from an initially steady state. Galerkin method with this

starting technique gives excellent results.



APPENDIX 1
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LINEAR K ORDER DIFFERENCE

EQUATIONS WITH CONSTANT COEFFICIENTS
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A 11near kth order d1fference equat1on w1th constant coeff1c1ents

s of the form

AInek T A-1Ynek-1 F e ¥ 8 = by i (A1)
_So]thg the above equation c0nsists of finding a sequente of numbers

: {y }, where ak, ak 1298, are constants and b, +k are g1ven funct1ons

of n def1ned,for n-—:0,1,2,...,;- It w111 be assumed that 2y #0 and

_‘a0 7 0,; A S v g

. : _ | : ,
The general so]ution'{yn}gcan be written of the form {y +y 1},
where {&n} is the solution of the homogeneous equatidn
L . -’ . ' . : i .
akyn;Fk ! ak-1yn+k-1 Feer® Aoy = Q | ?
and {w } is same part1cu1ar solution of the nonhomogeneous equat1on
A poss1b1e method of f1nd1ng a part1cu1ar so]ut1on {w }, is

- to so]ve the nonhomogeneous equat1on with the startlng va]ues

nwb = w] wk ] 0. For m= 0,1,2,,.} Tet the sequence ‘
-y Yn, m} sat1sfy the conditions ” B "\ o 3 |
y. =20 l ‘ o Co
nsm . n<m é i
Ym,m.” /o, '

. and Tet it be a solution of homogeneous equation for h >m. It is
proved in Henrici [8] that, the particular solution of the difference |

“equation (A.1.1)’is

|
S . . |
ro Wy T m§ bnyn mo n>k R
_ v | |

|
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» The‘next-step is to find the homogeneous so]u%ion of Eq. (A.1.1).
~ One canheasi]y verify that, Y, = En is a homogeneoushsolution of thef
. difference equation if and only if £ is a root of the polynomial .

) = akgk + ‘ak_]gk']_+,..+‘ao;

_ It is‘e1ear that £ = 0 is not a root of P(t), since eo # 0 [8].
If the ooTyhomﬁal P(£) has k distinct roots, Eﬁ,g', v B
then it can be proved that the so]ut1ons are 11near1y 1ndependent,

‘ thus form a fundamenta1 system [8] Hence the homogeneous solution

| k ' R e
I TS J |

and, therefore, the'general.solutionsis
k' .
| yn=3§f€ vy

, where cJ, j=1, 2 k are arhitrary cohstants, ,

_ If the po]ynom1a] P(g) has a root, say g s of mu1t1p11c1ty P,
then it can be shown that (n!/(n- 1)Dg ; i 1,2,..,,p-1 are a}so
" solutions of the homogeneous,equat1on and the set‘ofhso1utiohs
{(m1/(n=1)1)EM, §=0,1,...,p-1 and (E5}s § = pH, p2,enesk form
a fundamental system t8]. The homogenerous so]utidnhin this case
willbe R |

A.p]- ’nl n. K n‘
In T I CEJ '

i= 0 “i+1 (n-i)t ' g=phl J
and,,therefore, the general SQlution wiT] be

p 1 ' | k



where ¢

L[ e b 1=

J

where

Yn ©
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Cys Jj = TIZ ,k are arb1trary constants

For the most genera] case, where the po]ynom1a] P(&8) has roots

1,2 . and each root E is a root of mu1t1p11c1ty PJ

K, then the genera] so]ut1on w111 be

.r pj-] n' o .n

Z_’z c;. - E.
j=1 =0 4Tl nogyy T3

+\pn

C5,4° j = 1,2,...,pj,'j = 1;2,.;.,r are arbitrary constants [8].
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DERIVATION DETAILS FOR 6-METHODS AND-
ZIENKIEWICZ THREE-LEVEL SCHEMES



6 Values for. the e-Methods_.

We have shown that
1T
8= S wEde/S w.dE

For the weight function Wy = 6(5-(1/2)); we get
: - B e |
fowede =7 8(E-(1/2))dg =1
0 J, 0 ) : B
} : 8
"Thuﬁ

g G
0 =/ &8(g-(1/2))edg = 1/2
0 v o

which cOrreSponds to‘thé Chank—NiEho]sdn method.

o fuhction Wy = 1, we get

1 ]
! wjdg = [ &dE =1
o 0
fhus |
1 | 1
0=/ wide =/ &dg = (1/2)g2| =1/2
0 ‘] 0. - o .

For thé'weight

which also corresponds to the CranksNichoTson method, For the

" weight function ,wj{= E,_wé get
0 TE

S ow.dg = J EdE = (1/2)E?
.oVJ.v 0 .;.

-I . .
o= 1/2
o

101.
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Thus
1

o T
8 =2 ) wikde =2 g2dg = 2(1/3)g*| = 2/3
‘ 0 J“ L ’ o -
which corréspbnds.to the Galefkin method.
For the weight fuhctiOn wj.='6(g-1), we get
:

T
§(g-1)dg =1

S w.dg =,f
o Y 0

' Thus |
8 = s §(&-1)edg = 1
0 ’ :

. which corresponds to the Backward-differente method.

v and B Values for the Zienkiewicz Three-Level Schemes '

. We haVe'shown'that
1

v ‘ ) ) 1
e wj((1/2) + g)dg/ S
=1 R -1

Y deg o

1 1

8= (1/2) f w.iE(1+ E)E/ [ widE
! -1 o9 S

For_the weight functfon W
i
S
-1

J

‘ B . » |
w.dE = f 8(E-1)dE = 1
oo v

.= §(g-1), we get

- Thus

R o ,
Y = Lo (Q/2pede = (172) + 1 = 3/2



8 =(1/2) {
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S(E-1)E(14E)dE = (172)(141) = 1

'which corresponds to the fu]ly-implicit two=step method.

Thus .

For the weight function wj = §(g+1)/2, we get »

‘which corresponds to Galerkin two-step method.

=1/3

{'wjds = (1/2) { g(g+1)dg = (1/2)((£%/3) + (£%/2)
¥ =3 { (172)e(e+1) ((172)+8)dE = (3/2) {.(£3+(3/2)£?+£)d£ |
. o o 1
Y = (3/2)((£"/8) + (£3/2) + (52/4)l' =3/2
B =(3/2) { (1/72)e(g+1)E(E+1)dE = (3/4) {,(a“+2£3+s?)d£
| o o 1
B = (3/4)((£%/5) + (g%/2) + (£%/3))| = 4/5
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