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ABSTRACT 

RESISTIVE SWITCHING MECHANISM AND DEVICE 

APPLICATIONS OF ZnO AND AlN THIN FILMS 

 

Ayşe Özcan 

M.S. in Material Science and Nanotechnology 

Supervisor: Assist. Prof. Dr. Ali Kemal Okyay 

August 2014 

 

Resistive switching memories are potential candidates for next generation non-

volatile memory device applications due to natural simplicity in structure, fast 

switching speed, long retention time, low power consumption, suitability for 3D 

integration, excellent scalability and CMOS compatibility. However, the atomic 

scale mechanisms behind resistive switching are still being debated.  

 

In this work we investigate resistive switching mechanisms in ZnO and AlN thin 

films. The structural and physical changes in ZnO thin films during resistive 

switching are investigated via TEM, EDX, EFTEM techniques. We also 

investigate application of resisitive switching to reconfigurable optical surfaces. 

 

Recently, resistive switching in nitride films such as AlN is attracting increasing 

attention. The wide band gap, high electrical resistivity, and high thermal 

conductivity of AlN make it a good candidate for a resistive switching memory 

device. We report self-compliant resistive switching behavior in AlN films 

which is deposited by atomic layer deposition. 

 

 

 

 

Keywords: Resistive Switching Memory, ZnO, AlN, TEM, EDX 
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ÖZET 
ZnO ve AlN İNCE FİLMLERİNDE DİRENÇ DEĞİŞİM 

MEKANİZMASI VE AYGIT UYGULAMALARI  

 

Ayşe Özcan 

Malzeme Bilimi ve Nanoteknoloji Bölümü, Yüksek Lisans 

Tez Yöneticisi: Yar. Doç. Prof. Dr. Ali Kemal Okyay 

Ağustos 2014 

 

Direnç değişimli bellekler; yapısal kolaylığı, hızlı durum değişimi, uzun süreli 

bilgiyi tutabilmesi, 3 boyutlu entegre edilebilmesi, düşük güç gereksinimi, 

nanometre boyutlarında üretilebilmesi ve CMOS uyumluluğu özelliklerinden 

dolayı gelecek nesil kalıcı bellek teknolojisi için potansiyel adaylardır. 

Performans geliştirme üzerinde çok fazla çalışmalar yapılmasına rağmen, direnç 

değişimine neden olan atomik boyutlardakı mekanizma hala tartışılmaktadır. 

 

Bu çalışmada, ZnO ve AlN ince filmlerinin dirençsel değişim mekanizmasını 

inceledik.  Diremç değişim mekanizması sebebiyle ZnO ince filmi içerisinde 

meydana gelen değişimleri TEM, EDX, EFTEM karakterizasyon teknikleri ile 

inceledik. Ayrıca, direnç değişim mekanızmasının optiksel değişimini 

gözlemledik.  

 

Günümüze kadar metal oksit filmelerin direnç değişim mekanizması çokça 

incelenmiştir. Ancak, AlN gibi nitrat filmlerin direnç değişim mekanızması yeni 

yeni dikkat çekmeye başlamıştır. Geniş bant aralığı, yüksek elektriksel direnci 

ve yüksek sıcaklık iletkenliği AlN filmleri direnç değişim bellek uygulamaları 

için iyi bir malzeme yapar. Bu çalışmada AlN ince filmlerinin kendiliğinden 

akım limitli dirençsel değişim mekanizması incelenmiştir.  

 

 

 Anahtar Sözcükler: Direnç değişimli bellek, ZnO, AlN, TEM, EDX 
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“I am the drop that contains the ocean.” 

Yunus Emre (13
th

 -14
th

 centuries) 
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Chapter 1 

 

Introduction 

 

1.1 Resistive Switching Phenomenon 

 

Resistive switching memories are typically two-terminal non-volatile electrical 

devices operating by switching between two or more resistance states. 

Generally, a resistive switching device is a capacitor like structure consisting of 

an insulating layer sandwiched between two metal electrodes. Device operates 

by applying voltage biases/pulses which induce a resistance change in the 

material. There are three states: virgin, high resistance (HR) /OFF state and low 

resistance (LR) /ON state. Virgin device is as-prepared samples and before any 

electrical stress is applied. Commonly, virgin devices allow a very small amount 

of current flow. To activate resistive switching property, a controlled, non-

reversible breakdown process, which is called electroforming, achieved by 

applying high voltages with a current-limiting circuit (to protect from 

overheating) is required. This step preconditions the device which can be 

switched between high resistance state (HRS) and low resistance state (LRS). 

By applying a set voltage, Vset, a device in its HRS can be SET to LRS. By 

applying an appropriate Vreset programming voltage a device is RESET back to 
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its HRS. Resistive switching devices are generally of two types: bipolar and 

unipolar. Switching is unipolar when it does not depend on the voltage polarity 

between Vset and Vreset. The opposite polarity between Vset and Vreset indicates 

the bipolar resistive switching characteristics.  

 

1.2 Literature Survey 

 

Although resistive switching memories are intensely studied after 1990s for 

applications in next generation solid state memories, resistive switching property 

of metal oxides was discovered and identified in the early 1960s. Hickmott  and 

Hiatt [1, 2] at General Electric and Gibbons and Beadle [3] at Stanford 

University were the first to report the hysteretic resistive switching 

phenomenon. Resistive switches were also being considered for more-than-

Moore scaling, so the physical mechanism behind restive switching attracted 

great attention. The initial period of the resistive switching and the discussions 

are presented in a review by Dearnaley, Stonehom and Morgan [4] . 

 

After the first practical application of MOSFET-based floating gate memory 

(EPROM) at Intel, research activity into resistive switching fizzled out early 

1970s [5] and was thought as a scientific interest until early 2000s. 

 

The current period started in the late 1990s, triggered by Asamitsu et al. [6], 

Kozicki et al. [7] and Beck et al. [8]. In the early 2000s, resistive switching was 

thought as a possible candidate for conventional complementary metal oxide 

semiconductor (CMOS) technology with nanoscale crossbar circuits [9] and 

novel computing architecture [10-12] applications. Also in 2002, W.W. Zhuang 

and colleagues showed a resistive switching device with Pr0.7Ca0.3MnO3 

(PCMO) [13]. In this work they showed that resistive switching memories are 

potentially more favorable than that of traditional flash devices. After that, in 

2004, Samsung Electronics [14] demonstrated resistive switching behavior in 

various transition metal oxides (TMO) such as NiO, TiO2, HfO2 and ZrO2 The 
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devices had operating voltage below 3V, programming current around 2mA 

with 106 cycles of endurance. Ever since, RRAM has become one of the hottest 

research topics in both academia and industry. In 2006 Szot et al. [15] showed 

the resistive switching mechanism of SrTiO3 that switching could be confined to 

a single dislocation implying that the ultimate scalability can be down to 10nm. 

These works indicate that resistive switching memories can be next generation 

technology when the limit of current flash approaches is estimated at 16nm in 

2016 (see e.g. the Emerging Research Devices section of the 2009 ITRS Report 

[16]).  

 

The main motivation driving research on resistive switching is that resistive 

switching is a promising candidate for conventional electronic memory, 

potentially substituting current technologies that are approaching their 

fundamental limits. Resistive switching behavior of various materials are 

extensively investigated for their non-volatile memory and logic applications 

due to its scalability, low power consumption, fast switching speed, fabrication 

simplicity, long retention time, 3D integrability and CMOS compatibility [17-

21]. Resistive switching characteristic of a large variety of almost all metal 

oxides as well as other dielectrics such as some metal-nitrides [22], sulfides 

[17], fluorides [23], carbides [24] and phosphides [25] are studied. 

 

1.3 Dissertation Summary 

 

In this dissertation, we report the results of mainly three research efforts. 

Chapter 2 contains both ZnO resistive switching memory characteristics and its 

microscopic study using transmission electron microscopy (TEM) and energy 

dispersive X-ray (EDX). In chapter 3, we present the resistive switching 

characteristic of AlN with self-compliance of current property. In chapter 4 the 

use resistive switching mechanism as an optical modulation system introducing 

a new modulation method is presented. The final chapter concludes the thesis. 
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Chapter 2 

 

Microscopic Characterization of ZnO 

Resistive Switching Memories  

 

2.1 Introduction 

 

Material-wise, resistive switching behavior is observed in almost all metal-

oxides, as well as other dielectrics such as metal-nitrides [22], sulfides [17], 

fluorides [23], carbides [24] and phosphides [25]. The atomic scale switching 

mechanism behind resistive switching is theorized to vary in different material 

systems [26]. Several mechanisms have been suggested such that local capture 

and dispersion of filaments [27], ion transport recombination effect [28], space-

charge-limited-current effect [29] and modifications at the interface of the 

electrodes and the active region [30]. Among these models, the formation and 

dissolution of conductive filaments is very common and recently it has also been 

supported by in-situ transmission electron microscopy (TEM) studies [31, 32].  
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In this work, we present the resistive switching mechanism of Al/ZnO/Si device 

and studied its microscopic origins via TEM, EFTEM and EDX. We showed the 

Zn/O ratio difference within a filamentary and bulk region for HRS and LRS. 

 

2.2 Device Fabrication 

 

ZnO resistive switching device fabrication starts with a highly doped (3.1 mΩ-

cm) silicon (100) substrate which is also used as a bottom electrode. After 

standard wafer cleaning, an 80-nm thick ZnO polycrystalline layer is deposited 

at room temperature by reactive magnetron (RF) sputtering using a ZnO target 

having 99.999% purity at 150W RF power and 20mTorr Ar pressure under 

vacuum condition. ZnO is patterned with optical lithography and etching in 

dilute H2SO4 solution. Plasma annealing at 125C with 30sccm O2 and 5sccm 

N2 gas flow is applied. The Al top contacts are designed with finger structures 

for optoelectronic characterizations. 120-nm-thick Al contact pad and finger 

layer is formed by thermal evaporation followed by lift-off process. A schematic 

device structure is shown in the Figure 2.1. 

 

Figure 2.1 a) Basic device structure b) 3-D structure of Al/ZnO/Si device 
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2.3 Electrical Characterization 

 

Electrical characterization of ZnO resistive switching device is performed 

through a direct current voltage (I-V) measurement in a double sweeping mode 

by using Agilent B1500A semiconductor parameter analyzer. Initially, the virgin 

device allows a very low amount of current, which is less than 100µA/cm
2
. In 

order to observe resistive switching, a controlled breakdown process, called 

electroforming, is required. During this process, device undergoes atomic scale 

modifications as a result of high electrical bias and a current compliance is 

required to prevent permanent damage due to excess current flow. Conductive 

paths, called filaments, are formed inside the ZnO layer via electric field 

induced redox reactions [33] and Joule heating [34]  enhancing zinc and oxygen 

ion migration; resulting in an abrupt increase in the overall conductivity of the 

films.  

Electroforming process is performed by applying voltage bias of -6V for 1 

second with a current compliance of 100mA. The resistive switching behavior of 

the devices, achieved by varying voltage bias between -6 and 6V in double 

sweep mode, with the same current compliance is shown in the Figure 3.2a. 

Starting with high resistance state (HRS), the device remains in this state during 

the voltage sweep from -6 to 6V until it reaches about a set voltage (Vset) of 

2.4V. At this point, the amplitude of the current sharply rises to the limit value 

and the device switches to low resistance state (LRS) via set process. As the 

voltage is swept from 6 to -6V for a device initially at LRS, an abrupt decrease 

in the current amplitude occurs at around -2.4V (Vreset) and the device switches 

back to HRS. The device exhibits more than 100 repeated switching cycles 

between HRS and LRS. During these cycles, the device exhibits excellent 

stability since the set and reset voltages vary less than 0.3V and the hysteresis 

curve does not change significantly. The RHRS/RLRS contrast ratio is 3, which is a 

relatively low contrast ratio.  
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Figure 2.2 Hysteretic resistive switching behavior of Al/ZnO/Si device 

 

Retention times more than 5 days have been observed for the device at both 

states as shown in the Figure 2.3 (a). The states of the devices are read with 

0.1V bias at each 60s continuously for one day and then measured consecutively 

a week after in a room temperature environment. The readout voltage is found to 

be nondestructive. Devices maintain their states HRS and LRS individually and 

reach retention times more than 10
5 

seconds without an external electrical 

power, indicating that the memory device is nonvolatile and stable at room 

temperature.  

 

An endurance test of the device is performed by the cyclic switching operation. 

Figure 2.3 (b) shows the two well-resolved states in 100 cycles. The current 

values were read out at 0.1V for each DC sweep. The RHRS/RLRS contrast ratio is 

larger than 3, which is a low contrast ratio for a resistive switching device. 

Although, current value has some fluctuation, after around the 45th cycle 

degradation in the RHRS/RLRS contrast ratio is observed.  
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Figure 2.3 a) Retention time measurements at room temperature and b) 

Endurance test of ZnO resistive switching memory device  

 

2.3 TEM and EDX Characterization 

 

To have a better understanding of the origins of the resistive switching 

mechanism of the Al/ZnO/Si device, HRTEM, EFTEM and EDX analyses are 

performed. 

 

To prepare TEM samples, three virgin devices are configured to different 

resistance states: virgin, HRS and LRS. TEM samples are prepared by taking 

cross-sectional slices from an active device area with fingers. The HRS and LRS 

devices are prepared after several time cycling operations. Sample preparation is 

performed using FEI Nova 600i Nanolab Focused Ion Beam (FIB) Milling 

device by etching with Ga ions. The thicknesses of the samples are less than 

100-nm. To prevent Ga ion damage, Ga ion beams of small voltage, small 

current and small angle are used. ZnO films retain its polycrystalline structure 

and Si substrate is still in single crystalline form as evident in the TEM images. 

Also the EDX data did not reveal the presence of Ga ion, so Ga ion damage is 

not an issue in our experiment.  
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The HRTEM images of the devices (virgin, HRS and LRS) are shown in Figure 

2.4. Initially, for virgin devices the ZnO film is in polycrystalline form. After the 

electroforming process, conductive filaments are formed via electric field 

induced redox reactions [33] and Joule heating [34] enhanced zinc and oxygen 

ion migration; resulting in an increase in the overall conductivity of the films. 

This process is irreversible; the conductive filaments cannot completely dissolve 

after applying an opposite polarity voltage and the device cannot return to its 

virgin state. In many transition metal oxides, oxygen ion defects and oxygen 

vacancies are much more mobile than cations under an external electric field 

[26, 35]. Migration of oxygen ions via electric field cause the oxygen vacancy 

doping, resulting in a steady decrease of the resistance. The HRTEM image of 

the LRS device shown in the Figure 2.4 (c) depicts conducting filaments 

reaching from the top electrode to the bottom Si substrate. When the switching 

is OFF, partial ruptures of the conductive filaments are observed via Joule 

heating by reverse direction. The HRTEM image of the HRS device in Figure 

2.4 (b) depicts partially dissolved filaments contributing to decrease in the 

conduction current while a considerable amount of fully conducting filaments 

exists. The remaining conducting paths prevent the whole ZnO layer to behave 

like a good insulator; therefore, a relatively low contrast ratio of 3 is achieved 

between two resistance states (RHRS/RLRS). 
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Figure 2.4 Cross sectional HRTEM image of a) virgin b) HRS and c) LRS 

devices  
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In order to understand the transition between HRS and LRS, EDX 

measurements of the filamentary and bulk region are performed. Our EDX 

system gives the elemental presence along with the atomic concentration. The 

EDX measurements were taken along a line as shown in Figure 2.5.  

 

 

Figure 2.5 A representative TEM image that verifies the region of EDX 

measurement along the line  

 

Table 2.1 The atomic percentage of Zn and O within a filamentary and bulk 

regions for HRS and LRS.  

 

We took four different measurements, within a filamentary and no filamentary 

(bulk) region for HRS and LRS. We compared the Zn and O ratio of the LRS 

and HRS devices within a filamentary and no filamentary (bulk) region. The 

atomic percentage of Zn is higher than that of O in filamentary region and to 

compare the HRS and LRS, Zn percentage is higher in LRS as given in Table 

 Filamentary Region Bulk Region 

Atomic Percentage Zn (%) O (%) Zn (%) O (%) 

HR State 52.18 47.82 50.20 49.80 

LR State 56.09 43.91 46.35 53.65 
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2.1. The percentage values are calculated as the average atomic percentage of 

each atom on every measurement point along the line. 

 

In addition, EFTEM image demonstrating oxygen concentrations in Figure 2.6 

shows lower oxygen concentration within a filament region compared to bulk 

regions and supports the stoichiometric change within ZnO films.  

 

 

Figure 2.6 EFTEM image showing the oxygen deficiency within a filamentary 

region compared to bulk region 

 

2.4 Conclusion 

 

In conclusion, resistive switching behavior of Al/ZnO/Si device is related with 

the conductive filament formation and dissolution during voltage application. 

When the virgin device is changed the initially highly insulating state to activate 

the resistive switching, the overall resistance of the film decreased 

approximately 10
6
 times due to the filament formation via redox reduction and 

Joule heating. The formation and rupture of the filamentary regions are observed 
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via TEM images. EDX and EFTEM results show the variation in oxygen 

concentration within a filamentary region, resulting the switching between HRS 

and LRS. A low contrast ratio of 3 is achieved between two resistance states is 

due to the non-dissolved filaments at HRS. The device shows non-volatile 

bipolar resistive switching behavior over cycling.  
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Chapter 3 

 

Resistive Switching Behavior of 

HCPA-ALD Grown AlN 

 

3.1 Introduction 

 

Resistive switching characteristics of almost all anion based transition metal 

oxides are studied intensely. However, non-oxide ionic insulators and 

semiconductors are not extensively reported. Resistive switching property of 

AlN [22, 36-38] films is explored in a few works.  However, the self-compliance 

current behavior of AlN resistive switching devices has not shown before. 

 

Generally, to activate resistive switching property, a controlled, non-reversible 

breakdown process, which is called electroforming, achieved by applying high 

voltages is required [33]. A current limiting circuit is essential to protect the 

device from permanent damage and to increase endurance of the device. To 

build up a current compliance element, such as transistor and diode, has been 

regarded an important issue to commercialize resistive switching memories. The 
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self-compliance effect is helpful for memory circuit design in terms of reducing 

the complexity of the circuit. Moreover, resistive switching devices can be 

scaled down to 10nm [15], however, additional current compliance elements 

restrict the scalability of this memory system.  

 

In this work, we successfully investigated the bipolar resistive switching 

characteristic of AlN films with a self-compliance of current property. AlN films 

were deposited using hollow cathode plasma assisted atomic layer deposition 

(HCPA-ALD) technique.  

 

3.2 Device Fabrication 

 

 

Figure 3.1 (a) A cross sectional TEM image (b) Schematic illustration of device 

structure 

 

AlN resistive switching memories are fabricated on a thermally grown 1µm-

thick SiO2 on Si substrate.  As a bottom electrode, a 100nm Ti/W metal alloy is 

sputtered with DC magnetron sputtering of a Ti/W (10:90) target. A 10-12 nm 

AlN thin film is deposited with a hollow cathode plasma assisted atomic layer 

deposition (HCPA-ALD) system using trimethylaluminium (TMA, Al(CH3)3) 

and N2:H2 (50:50 SCCM) gas mixture at a wafer temperature of 200°C. Finally, 

a 100nm Ti top electrode is deposited by sputtering through a shadow mask to 

complete device fabrication. A cross sectional TEM image of the device is 
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shown in Figure 3.1 (a) and a representative device structure is shown in Figure 

3.1 (b). 

 

3.3 Device Characterization 

 

3.2.1 AlN Material Characterization 

 

Our group has optimized the deposition of AlN films by using a modified Fiji 

F200-LL ALD reactor (Ultratech/Cambridge NanoTech Inc.), which is pumped 

by an Edward NXDS20iC dry scroll vacuum pump [39]. This system is 

modified by replacing its original quartz-based plasma source with a stainless 

steel hollow cathode plasma (HCP) source (Meaglow Ltd.). The optimized AlN 

films are deposited at a wafer temperature of 200°C using trimethylaluminium 

(TMA, Al(CH3)3) and N2:H2 (50:50 SCCM) gas mixture. The optimized growth 

per cycle (GPC) value is 0.99°A and the refractive index (n) of the film is 1.94. 

AlN films with wafer level non-uniformities less than ±1.5% are achieved. 

GIXRD patterns of AlN films exhibit hexagonal (wurtzite) polycrystalline 

structure with crystallite sizes of 19.2 and 24.8 nm. (See Figure 10 (a)) XPS 

survey analyses showed 2.5-3.0 %O and no C impurities in AlN films, after 

etching in situ with a beam of Ar ions under UHV conditions. (See Figure 6) 

 

3.2.1 AlN Resistive Switching Memory Characteristics 

 

Electrical characterization of the AlN resistive switching device is performed 

through a direct current (DC) voltage (I-V) measurement in a double sweeping 

mode by using Keithley 4200 semiconductor parameter analyzer. Voltage bias is 

applied from the Ti top electrode while keeping bottom Ti-W electrode 

grounded. The virgin device passes a very low amount of current, on the order 
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of 10
-9

A. In order to activate resistive switching a controlled but irreversible 

breakdown process is applied. Electroforming process is performed by varying 

voltage from 0 to 6 V. Around 5.4 V a sudden increase in the current value 

which is on the order of 10
-6 

A is observed. During this process, device 

undergoes atomic scale modifications and conductive filaments are formed. 

Figure 3.2 shows the hysteretic current versus voltage (I-V) characteristic of an 

AlN resistive switching device in a semi-logarithmic scale with Vset voltages 

ranging between -2 to -5V and Vreset voltages ranging between 4 to 6V. Starting 

with a HRS, the device remains in this state until it reaches a Vset value. At this 

point system set to a LRS with an abrupt increase in current. As the voltage is 

swept back to the starting value, the abrupt decrease in current occurs at a Vreset 

voltage value and the device is reset back to the LRS. The device shows a self-

compliance of current flowing, resulting in high endurance over cycling.  

 

Figure 3.2 Hysteretic resistive switching behavior of Ti/AlN/Ti-W device 

 

An endurance test of the device is performed by the cyclic switching operation. 

Figure 3.2 shows the HRS and LRS as well-resolved in 100 cycles. The current 

values were read out at 0.1V for each DC sweep. Although, current value has 
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some fluctuation, no significant degradation in the RHRS/RLRS contrast ratio is 

observed. 

 

Figure 3.3 The current of HRS and LRS vs the number of switching cycles at 

0.1 V readout voltage. 

 

The nonvolatile memory characteristic of the device is examined in Figure 3.4. 

Retention times more than 10
5
 seconds have been observed for the device at 

both HRS and LRS. The states of the devices are read with 0.1V bias at every 

60s continuously in a room temperature environment. The readout voltage is 

found to be nondestructive. Devices maintain their states HRS and LRS 

individually and reach retention times more than 10
5
 seconds without an 

external electrical power, indicating that the memory device is nonvolatile and 

stable at room temperature. 
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Figure 3.4 Stability of both HRS and LRS at room temperature 

 

Many models of carrier transport mechanism for resistive switching devices 

have been reported by previous works. These models include space charge 

limited current (SCLC), Schottky emission, Poole-Frenkel emission and Fowler-

Nordheim quantum tunneling. These models can be identified in terms of I-V 

curves. The linear IαV indicates Ohmic [40], exponential in IαV indicates Poole 

Frenkel [41] or Fowler-Nordheim emission [42] , and IαV
2
 indicates SCLC [29]. 

In order to have a better understanding of the conduction mechanism of the 

Ti/AlN/Ti-W resistive switching device, the I-V data is plotted on a log-log 

scale as shown in Figure 3.5.  

 

The slope of the I-V curve in the logarithmic scale graph shows a linear 

relationship between voltage and current at LRS indicating that the conduction 

mechanism for LRS is ohmic for both negative and positive voltage values. The 

conduction mechanism of the HRS is also ohmic at low voltages, while a space 

charge limited conduction (SCLC) mechanism is observed at increased applied 

voltages. The combined ohmic and SCLC mechanisms together indicate that the 

resistive switching mechanism is due to the formation and rupture of conducting 

filaments in the AlN layer [43].  
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Figure 3.5 I-V curves in a double logarithmic scale for a) positive voltage and b) 

negative voltage values 

 

3.4 Conclusion 

 

Resistive switching characteristics of HCPE-ALD grown AlN films are 

investigated. As deposited AlN thin films are verified to exhibit stoichiometric 

hexagonal polycrystalline structure with less than 3% oxygen and carbon 
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impurities. The Ti/AlN/Ti-W device shows a bipolar resistive switching 

behavior with a self-compliance of current. Reversible, nonvolatile and 

reproducible resistive switching characterizations successfully demonstrated. 

The resistive switching mechanism is mainly ascribed to the formation and 

dissolution of conductive filaments.  
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Chapter 4 

 

Optoelectronic Applications of 

Resistive Switching 

 

4.1 Introduction 

 

Today’s active light engineering technologies are mainly based on the optical 

modulators. Optical modulation is heavily used for integrated optical 

interconnects to solve the interconnect bottleneck in complementary metal oxide 

semiconductor (CMOS) technology, however recent innovations in photonics 

expanded its applications in imaging [44], active matrix displays [45], bio-

sensing [46], telecommunications [47], radio frequency and terahertz 

applications [48]. Conventional optical modulators are achieved by using plasma 

dispersion [49] via electrical modulation of free carrier concentration in 

semiconductors. However, fast [19], energy efficient [18], compact [35], 

scalable and integrable [20] modulation technologies are required for new 

applications.  
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In this chapter, resistive switching is introduced as an alternative method to 

modulate light by exploiting atomic scale modifications using electrical stimuli. 

The resistive switching memory explained in chapter 2 is used for optical 

modulation demonstration. The optical modulation mechanism is modeled by 

the modulation of effective doping concentration in the ZnO active layer. Up to 

2 orders of magnitude modulation in effective doping concentration inside the 

active layer is predicted by our theoretical model. 

 

4.2 Device Characterization 

 

In chapter 2, resistive switching memory characterization and its TEM and EDX 

results were explained in detail. In order to investigate the effect of resistive 

switching on the optical characteristics of the device are performed via 

reflection measurements using a fourier transform infrared spectrometer (FTIR) 

from the finger part of the device represented in the Figure 2.1b while the device 

is electrically biased using the top contact pad and the bottom electrode. 

Reflection measurements are performed using Bruker Vertex 70 Fourier 

Transform Infrared Spectrometer with Hyperion 2000 Microscope attachment. 

The size of the FTIR probe beam is ca 250250μm
2
, smaller than the device 

area. The FTIR system is coupled with a Keithley 2400 source measure unit and 

the optical measurements are observed simultaneously. The hysteretic behavior 

is observed in the reflection spectrum vs applied voltage bias. Figure 4.1 shows 

a representative hysteretic behavior of reflection at 8µm wavelength as a 

function of voltage bias. The highest contrast of reflection between low 

resistance and high resistance state is observed at 8µm. Applying voltage from 0 

to 6V at LRS, the change in the reflection is below 1% until a bias voltage value 

of 6V. Right after 4V of bias, a sudden drop in the reflection by 4% is observed. 

Applying voltage back from 6 to 0V, reflection does not change significantly at 

HRS. To keep looping from 0 to 6V, reflection spectrum goes into a steady 

increase towards its original value at LRS. The reflection-voltage loop and 
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current voltage loop does not correlate in terms of Vset and Vreset voltages. 

Because to observe the state transition in the electrical I-V measurements, 

formation and dissolution of the tip of some of the filaments is sufficient. 

Further atomic reorganization within the rest of the film results in a more global 

change that is observed as optical state transition. When the voltage bias is 

removed, the programmed optical reflection state (LRS or HRS) remains same, 

so the effect is verified as non-volatile. Therefore, the resulting modulation in 

the reflection spectra is attributed to the change in the optical constants of ZnO 

layer due to atomic scale modifications caused by resistive switching.  

 

Figure 4.1 Reflection loop at the wavelength of 8µm as a function of bias 

voltage 

 

An ultra-broadband non-volatile modulation in the reflection within 5-18µm 

spectrum by 4% is observed at 0V between HRS and LRS in Figure 4.2.  

Low Resistance 

High Resistance 
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Figure 4.2 A non-volatile modulation of reflection by 4% in the 5-18µm FTIR 

reflection spectrum, measured at 0V 

 

In order to further investigate the effect, capacitance voltage measurements are 

utilized as shown in Figure 4.3. A cyclic voltage bias between -6 and 6V 

resulted in non-volatile hysteretic capacitance values. In addition, capacitance 

value of a two terminal device is known to be quite sensitive to localized 

morphological changes within the active layer as opposed to its resistance value 

[50]. Especially, variation in the dielectric parameters would reflect on the 

measured device capacitance. We apply a DC voltage sweep, the same as the I-

V measurement. At integer values of voltage, we perform impedance-frequency 

measurement, and extract the capacitance value at 20 kHz. We use a very small 

AC voltage to make sure the device state is not disturbed. The switching occurs 

at the usual set/reset voltage for resistive switching. Resistance measurement 

shows sudden switching into LRS, for instance, when Zn-rich filament forms a 

conductive path. When measuring capacitance, on the other hand, a more 

gradual transition is observed since measured capacitance is not dominated by a 

localized filament, but rather the effective dielectric medium, where Zn and O 

atoms are gradually migrating during the switching.  
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Figure 4.3 The hysteritic capacitance of Al/ZnO/Si device as a function of 

voltage bias 

 

As stated in chapter 2, oxygen concentrations in a filamentary region of the 

device exhibits lower concentration compared to bulk region. EDX results show 

a clear contrast in Zn/O ratio within the filamentry regions between LRS and 

HRS. Difference in the average Zn to O concentration on filamentary regions 

with respect to non-filamentary regions in terms of signal counts in EDX 

spectroscopy is measured to be 5% for LRS whereas it is about 1.85% for HRS 

indicating improved stoichiometry for HRS. For thin film ZnO, zinc interstitials 

or oxygen vacancies are reported to account for unintentional doping. These 

findings also support that electro-optical modulation observed in the FTIR 

measurements are caused by variation of effective doping caused by variation of 

oxygen concentration inside the filaments between HRS and LRS. 

 

4.4 Conclusion 

 

In conclusion, we demonstrated resistive switching as a new and viable optical 

modulation technique. By fabricating Al/ZnO/Si structure, we represented a 
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proof-of-principle non-volatile and repeatable optical modulation via resistive 

switching behavior. Through FTIR reflection measurements, we showed optical 

modulation of reflection by 4% within the spectral range covering nearly the 

entire mid and long-wave infrared wavelengths. The performed capacitance 

measurements indicating variation of dielectric parameters exhibit hysteretic 

behavior similar to that of the resistive switching characteristics. HRTEM and 

EDX results support the variation of local stoichiometry within the filamentary 

regions which supports optical modulation mechanism. The results of this work 

bridge resistive switching mechanism to optical modulation and enable 

alternative modulation schemes such as reconfigurable non-volatile surfaces, 

imagers, emitters as well as electro-optic memories. 
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Chapter 5 

 

Conclusions 

 

Conventional charge based memories will face severe problems when the 

scaling limit is approached. The development of new non-volatile memories 

with high performance, power consumed, low cost and fast properties is 

attracting extreme attention. Therefore, resistive switching memories are 

potential candidates for future conventional non-volatile memory to overcome 

the physical and technological limitations and fulfill the essential requirements 

for 3-D integrated circuit architecture. The resistive switching behavior of 

almost all transition metal oxides, as well as other insulators/semiconductors 

such as metal-nitrides, sulfides, fluorides, carbides and phosphides are studied. 

However the physical mechanisms behind resistive switching still remains 

uncertain. Several mechanisms were reported such as local capture and 

dissolution of filaments, ion transport recombination effect, space-charge-

limited current (SCLC) trap mechanism and interface effect. Among these 

models, the formation and capture of filaments is strongly championed via in-

situ transmission electron microscopy (TEM) studies. 

 



 

29 

This thesis presents analysis of the switching mechanism of Al/ZnO/Si device. 

We propose the stoichiometric change due to switching and support via TEM 

and EDX. We used this device to show resistive switching as a new and viable 

way of optoelectronic modulation technique. These results pave the way for 

reconfigurable non-volatile surfaces, imagers, emitters, electro-optic memories. 

 

Non-oxide ionic dielectrics also reveal resistive switching behavior, but less has 

been reported so far. Resistive switching mechanism of nitrides has not been 

intensely studied. We showed the bipolar resistive switching behavior of AlN 

films with self-compliance of current. The wide band gap, high electrical 

resistivity, and high thermal conductivity of AlN make it a good candidate for a 

resistive switching memory device.  

 

In future, these devices may be used in non-volatile memory, reconfigurable 

neuromorphic applications and optoelectronic applications. 
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