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MATHEMATICAL MODELING OF TUMOR GROWTH 

SUMMARY 

This thesis is a study for tumor growth within the framework of continuum 

mechanics. A mechanical model which splits volumetric growth and mechanical 

response into two separate contributions, is applied to a tumor growing in a vessel 

where in one case the vessel is rigid and in the second case it is not rigid. As a part of 

continuum mechanics, Cauchy stress tensor and Piola-Kirchoff stress tensor is used 

to analyze the motion and the growth of the tumor body. 

Firstly, the growth basics for a biological tissue is described. Then kinematics of the 

growth, related to balance equations and nutrient factors are given with proofs.  

Secondly the material type is chosen as Blatz-Ko type and some specific assumptions 

are given related to the material and the behavior of the balance equation with 

respect to the growth kinematics. 

Later, the equations which construct the tumor growth problems are defined. The 

problems are analyzed with respect to the cylindrical coordinates. In the first 

problem, growth of a tumor in a rigid vessel is analyzed. Since the vessel is rigid, 

only tumor has a deformation and the deformation is only at Z direction. Since there 

is stress only on R and 𝜃 directions, the component of Cauchy stress tensor for Z 

direction is assumed to be equal to 0. From this equation, a relation between the 

growth tensor and deformation component at Z direction is obtained. This relation is 

applied to different Blatz-Ko type materials and as result it is shown that the axial 

displacement as elongation is increased as the growth tensor is increased. The 

displacement is an exponentially increasing function of growth. 

In the second example, the vessel is taken as a non-rigid elastic material. Since the 

cylinder can deform the equations are changed to different system. With the vessel is 

not rigid, there is deformation at both 𝜃 and Z directions for the vessel and again 

there is deformation at both 𝜃 and Z directions for the tumor. Since the pressure at 

the inner side of the cylinder must be equal to R direction component of Piola-

Kirchoff stress tensor for a steady balance and the displacement at the inner surface 

of the vessel is equal to the displacement of the outer surface of the tumor, these fasts 

lead to a second order non-linear differential equation for function of the 

displacement of the tumor at R direction. This differential equation is solved via 

Mathematica with the assumptions of the related material constants of the material 

and the growth rate and found that the displacement function of tumor at Z direction 

is a linear function under a restriction relation with the growth tensor, and 

deformation of the tumor. 



xx 

 



xxi 

 

TÜMÖR BÜYÜMESİNİN MATEMATİKSEL MODELLENMESİ 

ÖZET 

Bu çalışmada, tümörün damar içinde büyümesi incelenerek, sürekli ortamlar 

mekaniği temelleri üzerinden matematiksel bir modelleme yapılmıştır. Biyolojik 

olarak ele alındığında tümor, uygun ortam oluştuğunda etrafındaki damarlar 

sayesinde kandan aldığı besinler ile büyüyebilen biyolojik bir kütledir.  

Tümörün büyüme evreleri temel olarak ikiye ayrılır. İlk süreçte oluştuğu bölgede hali 

hazırda bulunan damar sisteminden beslenerek gelişmine devam eder. Bu gelişme 

esnasında tümör büyüdükçe iç tarafta kalan tümör hücrelerinin kandan direk 

alamadığı, kendisine komşu olan dış hücrelerden difizyon yöntemi ile aldığı besin ve 

oksijen git gide azalır. Bu tip durumlarda ikinci evre olan damarlanma sürecinin 

başlamaması veya geç başlaması durumunda tümör iç hücreleri hipoksi yani 

oksijensiz kalma durumu ile ölebilir.  

Kandaki besin değerinde azalma ile ise büyümenin gerilemesi hatta emilimle 

küçülme dahi gözlenebilir. İkinci evre olan damarlanma iki farklı büyüme şekli ile 

gözlenir. Bu büyüme şekillerinden sadece biri oluşabileceği gibi ortamın müsait 

olması durumda iki tip büyüme aynı anda görülebilir. Damarlanma anjiyogenez ve 

vaskulogenez olmak üzere ikiye ayrılır. Anjiyogenez kelime anlamı ile yeni damar 

oluşumu demektir. Yaşadığı ortamda besin değerini yetersiz bulan tümor salgıladığı 

bir takım anjiyogenisis faktörler (TAF) ile kendisini besleyecek yeni damarların 

oluşumunu tetikleyebilir. Vaskulagenez ise vücudun tümörün olduğu bölgedeki 

damarları hasarlı kabul etmesi üzerine bu bölgedeki damarları yeniden oluşturmak ve 

güçlendirmek için kendi yapı taşları olan vasküler endotel büyüme faktörlerini 

(VEGF) kullanması ile olur. Her iki yolla da oluşan damar yapısı, insan vücudunun 

normal damar yapısına göre çok daha kılcallı ve geçirken farklı bir yapıdadır. Bu 

nedenle tümörden kopan yapı taşları veya hücreler bu damarlardan geçip vücudun 

farklı yerlerinde uygun ortamlar bulup yeni tümör dokuları oluşturarak metastaza 

sebebiyet verebilir. Bu tez kampsamında matematiksel olarak modellenen tümör 

gelişimi, büyümesinin ilk evresinde kabul edilip kan yoluyla aldığı besin 

damarlanmanın etkisinden bağımsız kabul edilerek kandaki besin oranı değişimine 

tabi tutulmuştur.  

Tümörün damarın içinde büyümesi sürekli oramlar mekaniğinin temelleri esas 

alınarak iki farklı etkene ayrılmıştır. Bunlardan ilki ortamdaki gerilmelerden 

bağımsız olarak büyüme etkeni, diğeri ise deformasyon olarak ele alınmıştır. Bu iki 

etkenin oluturduğu şekil değişimi olarak oluşan kuvvetin etkisi altındaki tümörden 

bir partikülün kesildiği ve bu partikülün stress ve basınç içeren ortamdan 

ayrıştırılarak (doğal yapılanma) deformasyondan bağımsız bir büyüme kuvveti 

tanımlanmıştır. Bu deformasyondan bağımsız büyümüş tümörden, tümörün gerçekte 

büyümeden sonraki haline getiren deformasyon ise ayrı bir kuvvet olarak ele 

alınmıştır. Bu doğal yapılanma durumdaki büyüme simetrik olarak kabul edilmiştir. 

Burada ele alınan büyüme doğrudan kandaki besin oranı ile ilişkilendirilmiş ve 
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tümörün  büyüyebilmesi için kandaki besin değerinin belirli bir eşik değerinin 

üzerine çıkması gerektiği kabul edilmiştir. Bunun  için bir adım fonksiyonu olan 

Heaviside fonksiyonu büyüme oranı fonksiyonunda eşik değeri ile birlikte kullanılan 

bir fonksiyon olmuştur. 

Uygulanan modelin tutarlı olması adına denge denklemleri modele uygulanmıştır. 

Öncelikle kütlenin korunumu göz önünde tutulmuş ve büyümeden bağımsız olan 

deformasyon esnasında kütlenin korunduğu, büyüme de ise büyüme oranıyla arttığı  

gösterilmiştir. Ayrıca lineer momentumun korunumu yasası gereği oluşan koşullar 

belirlenip probleme uygulanmıştır. Sonrasında büyüme tensorü ve büyüme  oranı 

arasındaki ilişki incelenmiş ve besin faktörlerininin iç enerjinin korunumu deklemini 

sağladığı gösterilmiştir. Bu verilerin ışığında oluşan bir takım denklemler ile tümör 

ve damar için uygun malzeme tipleri seçilmiştir. Tümör için seçilen madde Blatz-Ko 

tipi olup biyolojik dokular için geliştirilen problemlerde yaygın olarak kullanılan 

sıkışabilir hiperelastik bir malzemedir. Damar için sıkışabilir olarak kabul edilen 

örnekte ise elastik malzeme kabulü yapılmıştır. 

Tez kapsamında iki ayrı problem tipi incelenmiştir. Her iki problemin çözümü için 

de silindirik kordinatlar kullanılmıştır. Bu problemlerde büyüme, tümörün 

büyümesinde zamanın katkısının çok küçük olması nedeniyle zamandan bağımsız, 

gene aynı sebeple hızdan da bağımsız düşünülmüştür.  

İlk problemde tümör sıkışmaz olarak kabul edilen damarın içinde büyümektedir. 

Damarda deformasyon oluşmayacağı için tümör sadece Z doğrultusunda büyüme 

yapar ve gene Z doğrultusunda gerilme olmaz. Bu koşullardan elde edilen 

denklemlerden Z doğrultusunda oluşan deformasyon ile büyüme fonksiyonu 

arasındaki ilişki belirlenir. Yapılan hesaplamalarda değişik malzeme katsayıları 

verilerek oluşturulan bu ilişkide Z doğrultusunda oluşan deformasyonun büyümedeki 

artış ile üstel olarak arttığı gözlemlenir.  

İkinci problemde ise damar sıkışabilir kabul edilmiştir. Yani damarda da bir 

deformasyon gözlenecektir. Bu durumda hem tümör için hem damar için olan şekil 

değiştirme hem Z hem de R doğrultusunda olur. Burada damarın iç çepherinde oluşan 

basınç ile tümör için oluşan Piola-Kirchoff gerilme tansörünün R doğrultusundaki 

bileşenin tümörün çepherindeki değerine eşit olması gerekir. Ayrıca tümörün dış 

çepherinde oluşan şekil değiştirmenin damarın iç yüzeyinde oluşan şekil değişimi ile 

aynı kalması beklenir. Bu denklemler ışığında büyüme için, maddenin bünye 

denklemindeki sabitlere, tümörün R doğrultusundaki şekil değişimine ve gene 

tümörün Z doğrultusundaki şekil değişimine bağlı ikinci derece lineer olmayan bir 

diferansiyel denklem elde edilir. Bu denklemi, tümörün R yönündeki şekil değişimi 

için çözmek adına büyüme fonksiyonuna, bünye denklemindeki sabitlere ve tümörün 

Z yönününde olan şekil değişikliği bileşenine değerler verilerek Mathematica’da 

denklem çözülmüştür. Tümörün R yönündeki şekil değişiminin lineer olduğu ve 

verilen değişik değerler için lineer yapısını koruduğu, değişkenlerin sadece eğimde 

oluşan değişikliklere etken olduğu görülmüştür. Ayrıca elde edilen denklemlerden 

büyüme fonksiyonu, tümörün Z yönününde olan şekil değişikliği bileşeninin 

fonksiyonu ve bu fonksiyonun eğimi için, tümör için seçilen bünye denkleminin 

sağlanabilmesi için bir takım kısıtlar geldiği görülmüştür. 



xxiii 

 

Sonuç olarak tümörün gelişiminin kandaki besin miktarına bağlı olan büyüme 

fonksiyonu ile doğru orantılı olduğu gösterilmiştir. Ayrıca damarın malzeme olarak 

sıkışabilir kabul edildiğinde ise seçilen bünye denklemlerinin tümörün R yönündeki 

şekil değişimi bileşenine ve Z yönününde olan şekil değişikliği bileşenine doğrudan 

kısıtlamalar getirdiği gözlenmiştir. 
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1.  INTRODUCTION 

1.1 Purpose of Thesis 

This thesis is a study for tumor growth within the framework of Continuum 

Mechanics, analyzing the tumor as a specific case of growing soft tissues. By the 

notion of multiple natural configurations, a mechanical description that splits 

volumetric growth and mechanical response into two separate contributions is 

introduced and growth is described as an increase of the mass of the particles of the 

body, not as an increase at the particle number.  

In their studies, Rajagopal and coworkers [1] have introduced the notion of multiple 

natural configuration [2] and used it to study many different phenomena, such as 

metal plasticity [3], twinning [4], shape memory alloys [5], viscoelastic fluids [6] and 

crystallization in polymers [7]. The theory of materials with multiple natural 

configurations is an ideal setting to investigate the process of growth. 

1.2 The Growth of a Tumor as a Biological Tissue 

Biological tissues are generally classified as hard tissues and soft tissues and the 

generation of biological forms involves three different process: growth which is 

defined as mass change, remodeling, which involves changes in material properties 

and morphogenesis, which consists in a change in shape. [8] In this thesis, tumor 

growth will be analyzed with tumor as a soft tissue. 

Growth can occur through cell division (hyperplasia), cell enlargement 

(hypertrophy), and negative growth (atrophy) can occur through cell death mostly by 

hypoxia, cell shrinkage or resorption. [9] In this thesis growth is only described as 

hypertrophy. 

There are two distinct phases of growth the relatively benign phase of avascular 

growth, and more aggressive phase of vascular growth. [10] 
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Figure 1.1. A schematic diagram for stages of solid tumor growth 

 

Vascular growth can occur in two different ways. Angiogenesis, is new vessel 

sprouting, stimulated by TAFs (Tumor Angiogenic Factors), secreted by tumors 

often as a result of hypoxia. [11] As tumor grows avascular, since the inner cells get 

nutrient and oxygen only by diffusion, these cells get lower and lower oxygen and 

nutrient. As a result hypoxia occasionally occurs at the inner part of the tumor and 

this triggers the TAFs production. The second way of vascular growth is 

vasculogenesis, which occurs when the living form realizes the tumor as a damaged 

part of its body. When this happens, the VEGFs (Vascular Endothelial Growth 

Factors) rate at blood increases. VEGFs are products of bones to construct new 

vessels for the damaged part of the body. With a higher rate of VEGFs, new vessels 

are formed around the tumor so that tumor gets more nutrient and oxygen. These new 

vessels, created either by angiogenesis or vasculogenesis, are different then the 

vessels in rest of the body. They are thinner and have more capillaries. This causes 

tumor cells to pass to blood and spread through the body. If these cells find a place 

eligible for the cell to grow, metastasis can occur and a new tumor can be formed. In 

this thesis tumor growth is analyzed only as an avascular growth. 

The specific problem of avascular tumor growth has been the subject of a number of 

a number of mathematical papers which focus mainly on modeling diffusion and bio- 
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chemical interaction of cells and solutes species. [12] In this thesis, the mechanical 

behavior of a grown tumor is expressed not just in terms of the current configuration 

but in terms of history of the possible homogeneous mass increment. 

Growth is a three dimensional process, that is why to fully describe its rate, tensor 

measure should be used instead of a single scalar growth rate. [13] While modeling 

growth, it is assumed that the growth is homogenous in all direction. A function of 

time for growth is described so that multiplied by the identity tensor will give the 

growth tensor. 

In this study, ductal carcinoma is used as an example. Ductal carcinoma is tumor in 

an initial growth phase of breast cancer. It is originated from a malignant 

transformation of epithelial cells. [14] The carcinoma expands inside the lumen of 

the breast duct. 
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2.  MODELING GROWTH OF A TUMOR 

Let a tumor body has an unstressed configuration at time 𝑡 =  0 as 𝐾0, and a 

configuration 𝐾𝑡 with possible application of loads after a growth or a resorption. 

The motion of the body is [15]  

 𝒙 = 𝒙(𝑿, 𝑡), (2.1) 

with the corresponding deformation gradient and velocity as 

 
𝑭 =  

𝜕𝒙

𝜕𝑿
, 𝒗 =  

𝜕𝒙

𝜕𝑡
. (2.2) 

The density field at time 𝑡 and 𝑡 =  0 is 

 𝜌 =  𝜌(𝒙, 𝑡),    𝜌0(𝑿) = 𝜌(𝒙(𝑿, 0), 0). (2.3) 

The initial mass of the a particle is 

 𝑑𝑀0 = 𝜌0(𝑿)𝑑𝑉 (2.4) 

Where 𝑑𝑉 is the volume occupied by a generic particle at time 𝑡 =  0 and the mass 

of the same particle at time 𝑡 is 

 𝑑𝑀 = 𝜌(𝒙, 𝑡)𝑑𝑣 (2.5) 

where 𝑑𝑣 is the volume of the same particle at time 𝑡 and if 𝑑𝑀 > 𝑑𝑀0 growth takes 

place at 𝒙 but if 𝑑𝑀 < 𝑑𝑀0 then resorption takes place. 

Body has an unstressed configuration at time 𝑡 =  0 as 𝐾0, and a current 

configuration 𝐾𝑡. The particles in the body either have grown or been resorbed and 

the stress on the particles may be different from zero. With cutting a generic particle 

out of the body, the state of stress on the particle will relieve but the mass of the 

particle will be constant, so a new state 𝐾𝑝 different from 𝐾0 and 𝐾𝑡, will be obtained 

where the particle is only effected by growth. The deformation and the growth can be 

measured separately with this new configuration as the natural configuration of the 

body at time 𝑡 as described at Fig. 3.1. 
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The deformation can be decomposed to unconstrained growth and deformation as 

 𝑭 = 𝑭𝑲𝑮, (2.6) 

Where 𝑮 is the growth tensor and 𝑭𝑲 is deformation gradient at the state 𝐾𝑝. 

Here 𝑭𝑲 is not directly related to growth because mass does not change along the 

path to from 𝐾𝑝 to 𝐾𝑡. Also it must be noticed that 𝑭 is a mapping from a tangent 

space to another while 𝑭𝑲 and 𝑮 shows local changes caused by growth and 

deformation. Also from (2.6) it can be shown that 𝑭𝑲 and 𝑮 can be invertible since 𝑭 

is invertible. 

 

 

Figure 3.1. Diagram of the motion from the original unstressed configuration to 

current configuration with relational to natural configuration 

 

Since mass is preserved between 𝐾𝑝 and 𝐾𝑡, the volume of the generic particle in the 

natural configuration, denoted by 𝑑𝑉𝑝, 𝑑𝑀 can be defined with the following 

equation below: 

 𝑑𝑀 = 𝜌0(𝑿)𝑑𝑉𝑝. (2.7) 

From (2.4) and (2.7), Jacobean for Growth tensor can be obtained as  

 
𝐽𝐺 = det𝑮 =  

𝑑𝑉𝑝

𝑑𝑉
=  

𝑑𝑀

𝑑𝑀0
 (2.8) 

where 𝐽𝐺 > 1 represents growth and  𝐽𝐺 < 1 represents resorption. 
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3.  BALANCE LAWS 

In this section, balance of mass, linear momentum and internal energy for the 

growing model introduced, are analyzed. 

3.1  Mass Balance 

The motion from state 𝐾0 to 𝐾𝑡 obeys the usual equations of balance of mass, where 

Eulerian form is as [16]; 

 𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝒗) =  𝜌̇ + 𝜌𝑑𝑖𝑣𝒗 =  Γ𝜌 (3.1) 

where Γ is the growth rate and ( )̇ denotes the material time derivative. 

In Lagrange frame (3.1) is rewritten as 

  (𝜌𝐽)̇ =  Γ𝜌𝐽 (3.2) 

where   

 𝐽 = det 𝑭 = 𝐽𝐺𝐽𝐹𝐾
. (3.3) 

The equations which converts (3.1) to (3.2) is given at the section Appendix A. 

Since mass conservation satisfied from state 𝐾𝑝 to 𝐾𝑡 

 𝑑𝑀 = 𝜌0𝑑𝑉𝑝 = 𝜌𝑑𝑣, (3.4) 

From (2.8),  

 𝜌0𝐽𝐺𝑑𝑉 = 𝜌𝐽𝑑𝑉, (3.5) 

and    

 𝜌0= 𝜌𝐽𝐹𝐾
, (3.6) 

where 

 𝐽𝐹𝐾
= 𝑑𝑒𝑡𝑭𝑲 . (3.7) 
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Here (3.7) is in the form of the usual Lagrangian version of conservation of mass in 

the absence mass source, and from 𝐾𝑝 to 𝐾𝑡 mass is conserved. 

3.2  Balance of Linear Momentum 

The balance formula for linear momentum is  

 
 
𝜕

𝜕𝑡
(𝜌𝒗) + 𝑑𝑖𝑣(𝜌𝒗⨂𝒗) − 𝑑𝑖𝑣𝒕 =  𝜌𝒃 + Γ𝜌𝒗, (3.8) 

where 𝒕 is the Cauchy stress tensor, 𝒃 is the body force and Γ𝜌𝒗 represents the 

contribution to the momentum due to the mass source. From the mass balance 

equation (3.1), momentum equation rewrites 

  𝜌𝒗̇ = 𝑑𝑖𝑣𝒕 +  𝜌𝒃, (3.9) 

And since the characteristic velocities are so small at biological tissues, the left-hand 

side of the equation (4.9) can be neglected.  Also neglecting the body forces is usual 

in Solid Mechanics, so the last term at the right-hand side of the equation will 

disappeared as well, and the momentum equation will take the form 

  𝑑𝑖𝑣𝒕 = 0. (3.10) 

The equations to retrieve (3.10) is given at section Appendix B. 

3.3 Balance of Internal Energy 

The balance of internal energy reads   

 
 
𝜕(𝜌𝜀)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝜀𝒗 +  𝒒) = 𝒕 . 𝒅 +  𝜌𝑟, (3.11) 

where 𝒒 is the non-convective flow of internal energy, 𝑟 represents the source of 

energy per unit mass, the symbol 𝒕 . 𝒅 indicates the inner product between Cauchy 

Stress tensor 𝒕 and the deformation rate tensor 𝒅. The quantity 𝑟 in this framework 

includes the energy externally supplied for the growth process. The internal energy 

per unit volume 𝜀 represents the storage of energy that can be spent for growth only. 

Despite a formal analogy with thermal internal energy exists (and this is the reason 

why the same symbols are retained on purpose), 𝜀 should not be confused with the 

thermal energy, which is irrelevant with this context. 

For the quasi-steady processes, it is considered, equation (3.11) simplifies to 
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𝜕(𝜌𝜀)

𝜕𝑡
+ 𝑑𝑖𝑣(𝒒) = 𝜌𝑟, (3.12) 

or, in a Lagrangian frame of reference, 

 
 
𝜕(𝐽𝜌𝜀)

𝜕𝑡
+ 𝑑𝑖𝑣(𝐽𝒒𝑭−𝑻) =  𝜌𝑟. (3.13) 
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4.  GROWTH TENSOR AND GROWTH RATE 

To obtain a relation between growth tensor and its rate, the equation (3.6) is used. 

Differentiating (3.6) with respect to time, 

 𝑑𝜌0

𝑑𝑡
=  

𝑑(𝜌𝐽𝐾)

𝑑𝑡
 (4.1) 

Since  

 𝑑𝜌0

𝑑𝑡
=  0,

𝑑(𝜌𝐽𝐾)

𝑑𝑡
=  𝜌̇𝐽𝐾 + 𝜌𝐽𝐾̇ = 0, (4.2) 

 
𝜌̇ = − 𝜌

𝐽𝐾̇
𝐽𝐾

. (4.3) 

By using the equation (4.3) into (3.2)  

 
 (𝜌𝐽)̇ =  𝜌̇𝐽 + 𝜌𝐽̇ =  − 𝜌

𝐽𝐾̇
𝐽𝐾

 𝐽 + 𝜌𝐽̇ =  Γ𝜌𝐽, (4.4) 

and by simplifying the equation (4.4)  

 𝐽̇

𝐽
−  

𝐽𝐾̇
𝐽𝐾

 =  Γ, (4.5) 

Using equation (3.3) with (4.5) 

 𝐽𝐺̇𝐽𝐾 + 𝐽𝐺𝐽𝐾̇
𝐽𝐺𝐽𝐾

− 
𝐽𝐾̇
𝐽𝐾

= 
𝐽𝐺̇
𝐽𝐺

+ 
𝐽𝐾̇
𝐽𝐾

− 
𝐽𝐾̇
𝐽𝐾

=  Γ ,
𝐽𝐺̇
𝐽𝐺

=  Γ, (4.6) 

With standard tensor calculus, as shown in section Appendix C that (4.6) can be 

transform to the below equation  

 𝑡𝑟𝑫𝑔 =  Γ, (4.7) 

where 𝑫𝑔 is the symmetric part of 𝐺̇𝐺−1 and 𝑡𝑟 represents trace of the tensor and as 

shown at section Appendix C, for an isotropic growth, i.e. 𝐺 = 𝑔𝐼 where 𝑔 is a 

scalar, the relation between growth tensor 𝑔 and growth rate Γ is as 

 
 
3𝑔̇

𝑔
=  Γ. (4.8) 
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5.  NUTRIENT FACTORS 

The growth of biological tissues depends to the availability of nutrient and growth 

factors in blood. The tumor is fed by the environment with diffusing in the interstitial 

liquid. Nutrient factors are dissolved in the interstitial liquid, therefore it is assumed 

that the concentration of nutrient 𝑛(𝒙, 𝑡) obeys the following reaction-diffusion 

equation [17]: 

 𝜕𝑛

𝜕𝑡
+ 𝑑𝑖𝑣(𝑛𝒗) − 𝑑𝑖𝑣(𝐷(𝑛)grad𝑛) =  −𝛾𝑛𝜌. (5.1) 

The equation (5.1) is a mass balance law for the nutrient where 𝒗 is the velocity field 

of the transport and 𝛾 is the absorption rate. The nutrient concentration at a fixed 

point changes in time because of the diffusion due to Brownian motion. Here, for the 

sake of simplicity, a linear uptake function is considered. Also it is assumed that the 

concentration of 𝑛 is constant at the boundary of tumor, as the boundary condition: 

 𝑛|𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝑛0. (5.2) 

The equations which describes the motion of the nutrient, are coupled to the mass 

and momentum balance equations by the right hand side of the equation (5.1), and by 

using the Reynolds’s transport theorem [18] and by standard calculations, (5.1) can 

be rewritten in Lagrangian coordinates: 

 𝜕

𝜕𝑡
(𝑛) − 𝑑𝑖𝑣[𝐷(𝑛)𝐽𝑭−𝟏𝐷𝑖𝑣(𝐽𝑭−𝑻𝑛)] =  −𝛾𝑛𝜌𝐽. (5.3) 

Since the time needed for a steady state of chemical quantities is usually much 

smaller than the typical time needed for growth, diffusion and production can be 

assumed that always balance in equation (5.3) as,  

 𝑑𝑖𝑣[𝐷𝑭−𝟏𝐷𝑖𝑣(𝐽𝑭−𝑻𝑛)] =  𝛾𝑛𝜌𝐽. (5.4) 

and by standard calculation the following equation can easily obtained,  

 𝑑𝑖𝑣[𝐷grad𝑛] =  𝛾𝑛𝜌. (5.5) 
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Another way to obtain an equation for nutrient, which will be further used in this 

thesis, is that, from a mechanical point of view, the concentrations of nutrient is a 

measure of the energy that can be spent for growth. Therefore the equation regulating 

the concentration of nutrient factors can be read as the balance of internal energy 

(3.13) with the suitable constitutive assumptions. In fact, when assumed as  

  𝜀 =  𝑐𝑛, 𝑞 =  −𝑐𝐷𝑔𝑟𝑎𝑑(𝑛), 𝑟 = − 
𝑛𝜌𝑐

𝜏
, (5.6) 

Where 𝑐 is a constant, 𝐷 is a diffusion coefficient and 1 𝜏⁄  is the absorption rate, the 

following equation can be obtained, 

 𝐷𝑖𝑣[𝑭−𝟏𝐷𝑖𝑣(𝐽𝑭−𝟏𝑛)] =  𝛾𝑛𝑛𝜌𝐽, (5.7) 

where 𝛾𝑛 = 1 𝐷𝜏,⁄  which is a reaction diffusion equation for the field 𝑛(𝑿, 𝑡). 

Equation (5.7) s the balance law for the nutrient. 

The calculations of this section and related theorems are given at section Appendix 

D. 
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6.  ASSUMPTIONS 

Anisotropy is a crucial characteristics of biological tissues. However, for tumor 

spheroids, isotropy is a reasonable assumption. [19] For this, while modelling the 

tumor as a material, the experimental evidence found by Helmlinger, Netti, 

Linchtenbeld, Melder and Jain at 1997 [20] is considered. At their experiments they 

showed that tumor spheroids are compressible. Under these evidences, using an 

isotropic compressible non-linearly elastic material will be wise. [21] The specific 

model referred here is a material of the Blatz-Ko type [16], one of the most used 

compressible hyperelastic materials which responses the same for each natural 

configuration. 

The strain energy function of a general Blatz-Ko material is 

 
𝑊 =  

𝑣𝑓

2
[(𝐼𝐶𝐾

− 3) − 
2

𝑞
(𝐼𝐼𝐼𝐾𝐶𝐾

𝑞 2⁄
− 1)]

+ 
𝑣(1 − 𝑓)

2
 [(

𝐼𝐼𝐶𝐾

𝐼𝐼𝐼𝐶𝐾

− 3) − 
2

𝑞
(𝐼𝐼𝐼𝐶𝐾

−(𝑞 2⁄ )
− 1)], 

(6.1) 

Where 𝑣, 𝑞 and 𝑓 are material constants satisfying the following restrictions: 

 𝑣 >  0, 0 < 𝑓 ≤ 1, 𝑞 < 0 (6.2) 

Here 𝑓 will be taken as 𝑓 = 1 for simplicity and energy function takes the form 

 
𝑊 =  

𝑣

2
[(𝐼𝐶𝐾

− 3) − 
2

𝑞
(𝐼𝐼𝐼𝐶𝐾

𝑞 2⁄
− 1)]. (6.3) 

In this case using a viscoelastic constitutive equation would be a better 

approximation. Nevertheless, the characteristic times of rate dependent response of 

the material are much less than the characteristic times of growth and of mechanical 

loading for tumor spheroids, without a significant error the material can be used as a 

hyperelastic material. [16] Under these assumptions an energy function 𝑊𝐾 can be 

introduced as 

 𝑊 = 𝑊𝐾(𝑭𝑲). (6.4) 
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where 𝑭𝑲 is Deformation gradient tensor as 

 
𝑭𝑲 = [𝑥𝑘,𝐾],   𝑥𝑘,𝐾 = 

𝑑𝑥𝑘

𝑑𝑋𝐾
 . (6.5) 

Here 𝑿  and 𝒙 are location tensors before and after the motion and deformation and 

𝑋𝐾 and 𝑥𝑘are their form at indices notation. 

With this energy function the Cauchy stress tensor can be derived with the general 

formula of Cauchy stress tensor below. 

 
𝒕 =  𝜌𝑭𝑲 (

𝜕𝑊𝐾

𝜕𝑭𝑲
). (6.6) 

The simplest form of growth tensor is 

 𝑮(𝑿, 𝑡, 𝑛) = 𝑔(𝑿, 𝑡, 𝑛)𝑰 (6.7) 

where 𝑔 is the scalar function of growth, 𝑿 is the three component of the motion, 𝑡 

represents time and 𝑛 is the nutrient. 

Finally from (4.8) 

 𝑔 ̇ =  
𝑔

3
Γ(𝑿, 𝑡, 𝑛, 𝑔). (6.8) 
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7.  CAUCHY STRESS TENSOR COMPONENTS FOR TUMOR 

In this section Cauchy stress tensor is formed by applying the energy function 𝑊𝐾 

defined in the section 6. First of all the equation (6.4) is recast to satisfy the principle 

of material frame indifference as 

 𝑊 = 𝑊𝐾(𝑪𝑲). (7.1) 

where 𝑪𝑲 is Green deformation tensor and  

 𝑪𝑲 = 𝑭𝑲
𝑻𝑭𝑲. (7.2) 

Since the assumption is that the material is isotropic, (7.1) can be written in terms of 

the principle invariants of 𝑪𝑲 as  

 𝑊 = 𝑊𝐾(𝐼𝐶𝐾
, 𝐼𝐼𝐶𝐾

, 𝐼𝐼𝐼𝐶𝐾
). (7.3) 

To apply (7.1) to (6.6), Cauchy stress tensor can be written in the form of indices 

notation  

 
𝑡𝑘𝑙 =  𝜌 (

𝜕𝑊𝐾

𝜕𝑥𝑘,𝐾
) 𝑥𝑙,𝐾. (7.4) 

With using Green deformation tensor (7.4) can be written in the form 

 
𝑡𝑘𝑙 =  𝜌 (

𝜕𝑊𝐾

𝜕𝐶𝐾𝑀𝑁

)(
𝜕𝐶𝐾𝑀𝑁

𝜕𝑥𝑘,𝐾
)𝑥𝑙,𝐾, 𝐶𝐾𝑀𝑁

= 𝑥𝑚,𝑀𝑥𝑚,𝑁 . (7.5) 

With more calculation; 

 
𝑡𝑘𝑙 =  𝜌 (

𝜕𝑊𝐾

𝜕𝐶𝐾𝑀𝑁

) (𝛿𝑘𝑚𝛿𝐾𝑀𝑥𝑚,𝑁 + 𝛿𝑘𝑚𝛿𝐾𝑁𝑥𝑚,𝑀)𝑥𝑙,𝐾, (7.6) 

 
𝑡𝑘𝑙 =  𝜌 (

𝜕𝑊𝐾

𝜕𝐶𝐾𝑀𝑁

) (𝛿𝑘𝑚𝑥𝑘,𝑁 + 𝛿𝐾𝑁𝑥𝑘,𝑀)𝑥𝑙,𝐾, (7.7) 

 
𝑡𝑘𝑙 =  𝜌 (

𝜕𝑊𝐾

𝜕𝐶𝐾𝑀𝑁

) (𝑥𝑙,𝑀𝑥𝑘,𝑁 + 𝑥𝑙,𝑁𝑥𝑘,𝑀), (7.8) 
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𝑡𝑘𝑙 =  𝜌

𝜕𝑊𝐾

𝜕𝐶𝐾𝑀𝑁

𝑥𝑙,𝑀𝑥𝑘,𝑁 + 𝜌
𝜕𝑊𝐾

𝜕𝐶𝐾𝑀𝑁

𝑥𝑙,𝑁𝑥𝑘,𝑀, (7.9) 

 
𝑡𝑘𝑙 =  𝜌

𝜕𝑊𝐾

𝜕𝐶𝐾𝑁𝑀

𝑥𝑙,𝑁𝑥𝑘,𝑀 + 𝜌
𝜕𝑊𝐾

𝜕𝐶𝐾𝑀𝑁

𝑥𝑙,𝑁𝑥𝑘,𝑀,    𝐶𝐾𝑁𝑀
=  𝐶𝐾𝑀𝑁

, (7.10) 

 
𝑡𝑘𝑙 = 2𝜌

𝜕𝑊𝐾

𝜕𝐶𝐾𝑀𝑁

𝑥𝑙,𝑁𝑥𝑘,𝑀, (7.11) 

 
𝑡𝑘𝑙 =

2𝜌0

𝐽𝐾

𝜕𝑊𝐾

𝜕𝐶𝐾𝑀𝑁

𝑥𝑙,𝑁𝑥𝑘,𝑀,     𝜌 =  
𝜌0

𝐽𝐾
 (7.12) 

Here 

 𝜕𝑊𝐾

𝜕𝐶𝐾𝑀𝑁

= 
𝜕𝑊𝐾

𝜕𝐼𝐶𝐾

𝜕𝐼𝐶𝐾

𝜕𝐶𝐾𝑀𝑁

+ 
𝜕𝑊𝐾

𝜕𝐼𝐼𝐶𝐾

𝜕𝐼𝐼𝐶𝐾

𝜕𝐶𝐾𝑀𝑁

+ 
𝜕𝑊𝐾

𝜕𝐼𝐼𝐼𝐶𝐾

𝜕𝐼𝐼𝐼𝐶𝐾

𝜕𝐶𝐾𝑀𝑁

, (7.13) 

 
𝐼𝐶𝐾

= 𝐶𝐾𝑀𝑀
,

𝜕𝐼𝐶𝐾

𝜕𝐶𝐾𝑀𝑁

= 𝛿𝑀𝐾𝛿𝑁𝐾 = 𝛿𝑀𝑁 , (7.14) 

 
𝐼𝐼𝐶𝐾

=
1

2
(𝐼𝐶𝐾

2 − 𝐶𝐾𝑀𝑁
𝐶𝐾𝑁𝑀

), (7.15) 

 
  

𝜕𝐼𝐼𝐶𝐾

𝜕𝐶𝐾𝑀𝑁

=
1

2
(2𝐼𝐶𝐾

𝛿𝑀𝑁 − 𝛿𝑀𝐾𝛿𝑁𝐿𝐶𝐾𝐿𝐾
− 𝛿𝑀𝐿𝛿𝑁𝐾𝐶𝐾𝐿𝐾

), (7.16) 

 
  

𝜕𝐼𝐼𝐶𝐾

𝜕𝐶𝐾𝑀𝑁

=
1

2
(2𝐼𝐶𝐾

𝛿𝑀𝑁 − 𝐶𝐾𝑀𝑁
− 𝐶𝐾𝑀𝑁

), (7.17) 

 
  

𝜕𝐼𝐼𝐶𝐾

𝜕𝐶𝐾𝑀𝑁

= 𝐼𝐶𝐾
𝛿𝑀𝑁 −  2𝐶𝐾𝑀𝑁

, (7.18) 

 
𝐼𝐼𝐼𝐶𝐾

= det (𝑪𝑲),   
𝜕𝐼𝐼𝐼𝐶𝐾

𝜕𝐶𝐾𝑀𝑁

= 𝐼𝐼𝐼𝐶𝐾
[𝐶𝐾

−1]
𝑀𝑁

, (7.19) 

Using (7.13), (7.14), (7.18), (7.19) into (7.12)  

 
𝑡𝑘𝑙 =

2𝜌0

𝐽𝐾
[
𝜕𝑊𝐾

𝜕𝐼𝐶𝐾

𝛿𝑀𝑁 + 
𝜕𝑊𝐾

𝜕𝐼𝐼𝐶𝐾

( 𝐼𝐶𝐾
𝛿𝑀𝑁 −  2𝐶𝐾𝑀𝑁

)

+ 
𝜕𝑊𝐾

𝜕𝐼𝐼𝐼𝐶𝐾

𝐼𝐼𝐼𝐶𝐾
[𝐶𝐾

−1]
𝑀𝑁

] 𝑥𝑙,𝑁𝑥𝑘,𝑀, 

(7.20) 

Tensor notation for of (7.20) is 
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𝒕 =

2𝜌0

𝐽𝐾
[
𝜕𝑊𝐾

𝜕𝐼𝐶𝐾

𝑪𝑲
−1 + 

𝜕𝑊𝐾

𝜕𝐼𝐼𝐶𝐾

( 𝐼𝐶𝐾
𝑪𝑲

−1 − 𝑪𝑲
−2)

+ 
𝜕𝑊𝐾

𝜕𝐼𝐼𝐼𝐶𝐾

𝐼𝐼𝐼𝐶𝐾
𝑰], 

(7.21) 

When 𝑊𝐾 is derived for 𝐼𝐶𝐾
, 𝐼𝐼𝐶𝐾

 and 𝐼𝐼𝐼𝐶𝐾
: 

 𝜕𝑊𝐾

𝜕𝐼𝐶𝐾

=  
𝑣

2
, (7.22) 

 𝜕𝑊𝐾

𝜕𝐼𝐼𝐶𝐾

=   0, (7.23) 

 𝜕𝑊𝐾

𝜕𝐼𝐼𝐼𝐶𝐾

= −
𝑣

2
𝐼𝐼𝐼𝐶𝐾

(
𝑞
2
−1)

. (7.24) 

(7.21) can be rewritten with (7.22), (7.23), (7.24) as 

 
𝒕 =

2𝜌0

𝐽𝐾
[ 
𝑣

2
𝑪𝑲

−1 + −
𝑣

2
𝐼𝐼𝐼𝐶𝐾

𝑞 2⁄
𝑰],     

𝐼𝐼𝐼𝐶𝐾
= det(𝑪𝑲) = 𝑑𝑒𝑡(𝑭𝑲)2 = 𝐽𝐾

2. 

(7.25) 

Defining 𝜇 =  𝜌0𝑣 and using (7.2) and (7.12), (7.25) can be simplified as 

 𝒕 =
𝜇

𝐽𝐾
[−(𝐽𝐾)𝑞𝑰 + 𝑭𝑲𝑭𝑲

𝑻 ]. (7.26) 
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8.  IMPLEMENTATIONS 

In this section, homogeneous growth problems are solved for spheroid tumors inside 

rigid cylindrical vessel and spheroid tumors inside non-rigid cylindrical vessel, to 

apply the general theory illustrated in this study. In the first problem equilibrium 

equation is directly satisfied since the deformation is homogeneous and vessel is 

rigid. In the second problem the form of the growth deformation is assumed as 

inhomogeneous and the vessel is not rigid. In this case there will be a deformation at 

vessel as well as the tumor. 

This implementations are based on the 5 equations below: 

 

No Equation Eq. No 

1 𝜌0= 𝜌𝐽𝐹𝐾
 (3.6) 

2  𝑑𝑖𝑣𝒕 = 0 (3.10) 

3 𝑑𝑖𝑣(𝐷grad𝑛) =  𝛾𝑛𝜌 (5.5) 

4 𝑔 ̇ =  
𝑔

3
Γ(𝑿, 𝑡, 𝑛, 𝑔) (6.8) 

5 𝒕 =
𝜇

𝐽𝐾
[−(𝐽𝐾)𝑞𝑰 + 𝑭𝑲𝑭𝑲

𝑻 ] (7.26) 

 

Table 8.1. Equations building the problems 

 

8.1 Isotropic and homogeneous growth of a tumor inside a rigid vessel 

A spheroid tumor with in a rigid cylindrical vessel represents a type of breast cancer 

named ductal carcinoma. By receiving nutrients through the walls of tumor cells, 

tumor can grow nearly 10 cm inside a breast duct. [16] 
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Figure 8.1.1. Tumor growing in a rigid vessel 

 

As the vessel is rigid the deformation is only at Z direction and the motion and its 

deformation gradient is as: 

 

𝑟 = 𝑅, 𝜃 = Θ, 𝑧 =  𝜆𝑍, 𝑭 =  [

1 0 0

0
1

𝑅
0

0 0 𝜆

] (8.1) 

Here 𝜆 is the function of deformation on Z direction. Suppose the growth rate is 

piecewise constant and level of nutrients is above a threshold value; 

 Γ = Γ̂(𝑛 − 𝑛̂), (8.2) 

Where 𝑛̂ threshold value and H is Heaviside function as; 

 
𝐻(𝑛̂) =  {

   1      𝑖𝑓 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 > 𝑛̂,
 0      𝑖𝑓 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 ≤ 𝑛̂

 . (8.3) 

With a nutrient flow given above, the growth can be assumed as homogeneous; 

 𝑔 = 𝑔(𝑡). (8.4) 

As shown at equation (6.8)  

 𝑔̇ =
𝑔

3
Γ(𝑿, 𝑡, 𝑛, 𝑔). (8.5) 

When integrated the equation above as 

 ∫
1

𝑔
𝑑𝑔 = ∫

1

3
𝛤 𝑑𝑡. (8.6) 

Growth function 𝑔 can be obtained as: 

 
𝑔 =  𝑒Γ̂

𝑡
3. (8.7) 
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From (8.1), (8.4) and (2.6), 𝑭𝑲 can be obtained as, 

 𝑭 = 𝑭𝑲 𝑮,       𝑮 = 𝑔 𝑰,            𝑭𝑲 = 
1

𝑔
 𝑭, (8.8) 

In matrix form 𝑭𝑲 can be shown as: 

 

𝑭𝑲 = 

[
 
 
 
 
1

𝑔
0 0

0
1

𝑔𝑅
0

0 0
𝜆

𝑔]
 
 
 
 

 ,         𝐽𝐾 = det 𝑭𝑲 = 
𝜆

𝑔3𝑅
 . (8.9) 

Substituting into (7.26) 

 

𝒕 =
𝜇𝑔3𝑅

𝜆

[
 
 
 
 
 
 
 

− (
𝜆

𝑔3𝑅
)
𝑞

[
1 0 0
0 1 0
0 0 1

] + 

[
 
 
 
 
 
 
1

𝑔
0 0

0
1

𝑔𝑅
0

0 0
𝜆

𝑔]
 
 
 
 
 
 

[
 
 
 
 
 
 
1

𝑔
0 0

0
1

𝑔𝑅
0

0 0
𝜆

𝑔]
 
 
 
 
 
 

]
 
 
 
 
 
 
 

, (8.10) 

 

𝒕 =
𝜇𝑔3𝑅

𝜆

[
 
 
 
 
 
 
 

[
 
 
 
 
 
 
1

𝑔2
0 0

0
1

𝑔2𝑅2
0

0 0
𝜆2

𝑔2]
 
 
 
 
 
 

−

[
 
 
 
 
 
 (

𝜆

𝑔3𝑅
)
𝑞

0 0

0 (
𝜆

𝑔3𝑅
)

𝑞

0

0 0 (
𝜆

𝑔3𝑅
)
𝑞

]
 
 
 
 
 
 

]
 
 
 
 
 
 
 

, (8.11) 

 

𝒕 =
𝜇𝑔3𝑅

𝜆

[
 
 
 
 
 
 
1

𝑔2
− (

𝜆

𝑔3𝑅
)
𝑞

0 0

0
1

𝑔2𝑅2
− (

𝜆

𝑔3𝑅
)

𝑞

0

0 0
𝜆2

𝑔2
− (

𝜆

𝑔3𝑅
)
𝑞

]
 
 
 
 
 
 

, (8.12) 

Here, it can be assumed that the bottom and top surface of the cylinder are stress free 

since the cylinder is rigid and obtained a boundary condition as 𝒕𝑧𝑧 = 0. 

𝜆 can be obtained with the following calculations: 

 
𝒕𝑧𝑧 = 

𝜇𝑔3𝑅

𝜆
[
𝜆2

𝑔2
− (

𝜆

𝑔3𝑅
)
𝑞

] = 0, (8.13) 

 𝜆2

𝑔2
− (

𝜆

𝑔3𝑅
)
𝑞

= 0, (8.14) 



24 

 

 𝜆 = 𝑔(2−3𝑞) (2−𝑞)⁄ 𝑅−𝑞 (2−𝑞)⁄ . (8.15) 

 

𝜆
(𝑔

) 

 

 

 𝑔  

 Figure 8.1.2. Growth of a spheroid tumor in a rigid cylindrical vessel: axial 

displacement of the material as a function of 𝑔 for different values of 𝑞 

when initial radius 𝑅 of tumor is 1 cm. 

 

 

𝜆
(𝑔

) 

 

 

 𝑔  

 

Figure 8.1.3. Growth of a spheroid tumor in a rigid cylindrical vessel: axial 

displacement of the material as a function of 𝑔 for different values of 𝑞 

when initial radius 𝑅 of tumor is 2 cm. 
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8.2 Isotropic and homogeneous growth of a tumor inside a non-rigid vessel 

The problem is solved for a spheroid tumor with in a non-rigid cylindrical vessel is 

solved here. Since both the vessel and tumor have a deformation, each of their 

deformation is solved separately and then these equations are used as a boundary 

conditions for each other where the inner surface of the vessel and surface of the 

tumor touch each other.  

 

 
 

Figure 8.2.1. Tumor growing in a non-rigid vessel 

 

Stress components for vessel: 

As the vessel is non-rigid the deformation is at R and Z directions and the motion 

and its deformation gradient for vessel is as: 

 

𝑟 = 𝑓1(𝑅), 𝜃 = Θ, 𝑧 =  𝜆𝑍, 𝑭𝒗 = [

𝑓1′ 0 0

0
𝑓1
𝑅

0

0 0 𝜆

] (8.16) 

Here energy function for vessel is taken as isotropic hyperelastic material, 

 𝑊𝑣 =  𝛼(𝐼𝑣 − 3). (8.17) 

From (7.20), the Cauchy stress tensor for vessel is 

 
𝑡𝑘𝑙 = 2𝜌 [

𝜕𝑊𝑣

𝜕𝐼𝑣
𝛿𝑀𝑁 + 

𝜕𝑊𝑣

𝜕𝐼𝐼𝑣
( 𝐼𝑣𝛿𝑀𝑁 −  2𝐶𝑣𝑀𝑁

)

+ 
𝜕𝑊𝑣

𝜕𝐼𝐼𝐼𝑣
𝐼𝐼𝐼𝑣[𝑪𝒗

−𝟏]
𝑀𝑁

] 𝑥𝑙,𝑁𝑥𝑘,𝑀, 

(8.18) 

 
𝒕 = 2𝜌 [

𝜕𝑊𝑣

𝜕𝐼𝑣
 𝑪𝒗

−𝟏 + 
𝜕𝑊𝑣

𝜕𝐼𝐼𝑣
( 𝐼𝑣 𝑪𝒗

−𝟏 −  𝑪𝒗
−𝟐) + 

𝜕𝑊𝑣

𝜕𝐼𝐼𝐼𝑣
𝐼𝐼𝐼𝑣𝑰], 

(8.19) 
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Since vessel is assumed to be incompressible and isotropic, Cauchy stress tensor 

takes the following form  

 
𝒕 = 𝑃𝑰 + [2

𝜕𝑊𝑣

𝜕𝐼𝑣
 𝑪𝒗

−𝟏 + 2 
𝜕𝑊𝑣

𝜕𝐼𝐼𝑣
( 𝐼𝑣 𝑪𝒗

−𝟏 −  𝑪𝒗
−𝟐)], (8.20) 

which is shown by Hilmi Demiray [22], here P is hydrostatic pressure function. 

Derivatives of 𝑊𝑣 are 

 𝜕𝑊𝑣

𝜕𝐼𝑣
=  𝛼,

𝜕𝑊𝑣

𝜕𝐼𝐼𝑣
= 0,

𝜕𝑊𝑣

𝜕𝐼𝐼𝐼𝑣
=  0. (8.21) 

And 𝐶𝑣
−1

is Green deformation tensor where 

 𝐶𝑣
−1 = 𝑭𝒗𝑭𝒗

𝑻, (8.22) 

 

𝐶𝑣
−1 = [

𝑓1′ 0 0

0
𝑓1
𝑅

0

0 0 𝜆

] [

𝑓1′ 0 0

0
𝑓1
𝑅

0

0 0 𝜆

] =  

[
 
 
 
(𝑓1′)

2 0 0

0
(𝑓1)

2

𝑅2
0

0 0 𝜆2]
 
 
 
 (8.23) 

From (8.18), (8.19) and (8.21) Cauchy stress tensor for vessel takes the following 

form: 

 

𝒕 = 𝑃 + [
𝜕𝑊𝑣

𝜕𝐼𝑣
 𝑪𝒗

−𝟏] =  𝑃 +  2𝛼

[
 
 
 
(𝑓1′)

2 0 0

0
(𝑓1)

2

𝑅2
0

0 0 𝜆2]
 
 
 
 . (8.24) 

Since the vessel is taken as an incompressible material, 

 𝐼𝐼𝐼𝑣 = det(𝐶𝑣
−1) =  1, (8.25) 

From (8.24) 

 (𝑓1′)
2(𝑓1)

2

𝑅2
𝜆2 =  1, (8.26) 

𝑓1 can be obtained with the following calculations: 

 
𝑓1′𝑓1 = 

𝑅

𝜆
, (8.27) 

 
𝑓1′𝑑𝑓1 = 

𝑅𝑑𝑅

𝜆
, (8.28) 

 (𝑓1)
2

2
=  

𝑅2

2𝜆
+ 𝐴, 

(8.29) 
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𝑓1 = √
𝑅2

𝜆
+ 𝐵. (8.30) 

where A and B are integral constants. 

Here 

 
𝑓1′ =  

𝑅

𝜆𝑓1
, (8.31) 

will be useful at further calculations. Also to simplify the equations, 

 
𝑥 =  

𝑅

𝑓1
, (8.32) 

 is used, with which the Green deformation tensor becomes as below, 

 

𝐶𝑣
−1 = 

[
 
 
 
 
𝑥2

𝜆2
0 0

0
1

𝑥2
0

0 0 𝜆2]
 
 
 
 

 (8.33) 

and Cauchy stress tensor takes the form: 

 

𝒕 = 𝑃 +  2𝛼 

[
 
 
 
 
𝑥2

𝜆2
0 0

0
1

𝑥2
0

0 0 𝜆2]
 
 
 
 

 . (8.34) 

These stress components should satisfy the Balance equation: 

 𝑑𝑡𝑟𝑟

𝑑𝑟
+ 

1

𝑟
 (𝑡𝑟𝑟 − 𝑡𝜃𝜃) = 0. (8.35) 

From (8.32) 

 
𝑥 =  

𝑅

𝑓1
= 

𝑅

𝑟
, (8.36) 

Then the derivative can be calculated as below: 

 
𝑑𝑡𝑟𝑟

𝑑𝑟
=

𝑑𝑡𝑟𝑟

𝑑𝑥

𝑑𝑥

𝑑𝑟
=  

𝑑𝑡𝑟𝑟

𝑑𝑥

𝑑𝑅
𝑑𝑟

𝑟 − 𝑅

𝑟2
. (8.37) 

From (8.30) 
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𝑟2 = 

𝑅2

𝜆
+ 𝐵. (8.38) 

Deriving (8.38) and using (8.32) 

 
2𝑟𝑑𝑟 =  

2𝑑𝑅

𝜆
, (8.39) 

 𝑑𝑟

𝑑𝑅
= 

𝑥

𝜆
. (8.40) 

When (8.40) applied into (8.37) 

 𝑑𝑡𝑟𝑟

𝑑𝑟
=  

1

𝑟

𝑑𝑡𝑟𝑟

𝑑𝑥
(
𝜆

𝑥
− 𝑥). (8.41) 

Using (8.34) and (8.41) with balance equation (8.35) 

 1

𝑟

𝑑𝑡𝑟𝑟

𝑑𝑥
(
𝜆

𝑥
− 𝑥)  +

1

𝑟
(𝑃 + 2 𝛼

𝑥2

𝜆2
− 𝑃 − 2 𝛼

1

𝑥2
) = 0. (8.42) 

(8.42) can be simplified as 

 𝑑𝑡𝑟𝑟

𝑑𝑥
=  

2𝛼

𝜆2
(𝑥 + 

𝜆

𝑥
) . (8.43) 

Integrating the equation (8.43) 

 
𝑡𝑟𝑟 = ∫

2𝛼

𝜆2
(𝜉 + 

𝜆

𝜉
)  𝑑𝜉

𝑥

𝑥𝑖

, (8.44) 

 
𝑡𝑟𝑟 = 

2𝛼

𝜆2
[(

𝜉2

2
+  𝜆𝑙𝑛𝜉)]|

𝑥𝑜

𝑥

, (8.45) 

 
𝑡𝑟𝑟 = 

2𝛼

𝜆2
[
(𝑥2 − 𝑥𝑜

2)

2
+  𝜆𝑙𝑛

𝑥

𝑥𝑜
], (8.46) 

where 𝑥𝑖 is the inner boundary of the radius of the vessel and  

 𝑡𝑟𝑟|𝑥=𝑥𝑖

 = −𝑃𝑖, 𝑡𝑟𝑟|𝑥=𝑥𝑜
 =  0, (8.47) 

as 𝑥𝑜 is the outer boundary of the radius of the vessel and 𝑃𝑖 is the pressure made by 

tumor to the inner surface of the vessel. 
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Stress components for tumor: 

As the vessel is non-rigid the deformation is at R and Z directions and the motion 

and its deformation gradient for tumor is as: 

 

 

𝑟 = 𝑓2(𝑅), 𝜃 = Θ, 𝑧 =  𝜆𝑍, 𝑭𝒕 = [

𝑓2′ 0 0

0
𝑓2
𝑅

0

0 0 𝜆

] (8.48) 

 

Here 𝜆 is the function of deformation on Z direction and 𝑓2(𝑅) is the deformation 

function on R direction. Suppose the growth rate is piecewise constant and level of 

nutrients is above a threshold value like the example at section 8.1; 

 Γ = Γ̂(𝑛 − 𝑛̂), (8.49) 

 

Where 𝑛̂ threshold value and H is Heaviside function as; 

 
𝐻(𝑛̂) =  {

   1      𝑖𝑓 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 > 𝑛̂,
 0      𝑖𝑓 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 ≤ 𝑛̂

 . (8.50) 

 

With a nutrient flow given above, the growth can be assumed as homogeneous; 

 𝑔 = 𝑔(𝑡). (8.51) 

 

As shown at equation (7.10)  

 𝑔̇ =
𝑔

3
Γ(𝑿, 𝑡, 𝑛, 𝑔). (8.52) 

 

When integrated the equation above as 

 ∫
1

𝑔
𝑑𝑔 = ∫

1

3
𝛤 𝑑𝑡. (8.53) 

 

Growth function 𝑔 can be obtained as: 
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𝑔 =  𝑒Γ̂

𝑡
3, (8.54) 

which is exactly the same as example 9.1. 

From (8.48), (8.51) and (2.6), 𝑭𝑲 can be obtained as, 

 𝑭𝒕 = 𝑭𝑲 𝑮,       𝑮 = 𝑔 𝑰,            𝑭𝑲 = 
1

𝑔
 𝑭𝒕, (8.55) 

In matrix form 𝑭𝑲 can be shown as: 

 

𝑭𝑲 = 

[
 
 
 
 
𝑓2′

𝑔
0 0

0
𝑓2

𝑔𝑅
0

0 0
𝜆

𝑔]
 
 
 
 

 ,         𝐽𝐾 = det 𝑭𝑲 = 
𝜆𝑓2′𝑓2

𝑔3𝑅
 . (8.56) 

Here, to write boundary conditions in the reference configuration, instead of Cauchy 

stress tensor, Piola-Kirchoff stress tensor, 𝑻 is used: 

 𝑻 =  𝐽𝐺  𝜇 𝑮−𝟏[𝑭𝑲
𝑻 − (𝐽𝐾)𝑞𝑭𝑲

−𝟏] . (8.57) 

Applying (8.55) and (8.56) to (8.57), 

   

 

𝑻 = 𝜇 𝑰

[
 
 
 
 
 
 
 

1

𝑔
 

[
 
 
 
 
 
 
𝑓2′

𝑔
0 0

0
𝑓2
𝑔𝑅

0

0 0
𝜆

𝑔]
 
 
 
 
 
 

− (
𝜆𝑓2′𝑓2
𝑔3𝑅

)

𝑞

[
 
 
 
 
 
 
𝑔2

𝑓2′
0 0

0
𝑔2𝑅

𝑓2
0

0 0
𝑔2

𝜆 ]
 
 
 
 
 
 

]
 
 
 
 
 
 
 

, (8.58) 

 

By some easy calculations components of T can be defined in the following forms: 

 
𝑇𝑅𝑅 =  𝜇 [

𝑓2′

𝑔2
− (𝐽𝐾)𝑞

𝑔2

𝑓2′
], (8.59) 

 
𝑇ΘΘ =  𝜇 [

𝑓2
𝑔2𝑅

− (𝐽𝐾)𝑞
𝑔2𝑅

𝑓2
], (8.60) 

 
𝑇𝑍𝑍 =  𝜇 [

𝜆

𝑔2
− (𝐽𝐾)𝑞

𝑔2

𝜆
], (8.61) 

 
𝐽𝐾 =

𝜆𝑓2′𝑓2
𝑔3𝑅

 . 
(8.62) 
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With Piola-Kirchoff stress tensor the equation (3.10) will take the following form: 

 𝑑𝑇𝑅𝑅

𝑑𝑅
+ 

1

𝑅
 (𝑇𝑅𝑅 − 𝑇ΘΘ) = 0, (8.63) 

with the boundary conditions given in the reference configuration as, 

 𝑇𝑅𝑅|𝑅=𝑅𝑖

 = −𝑃𝑖, 𝑓2(0) =  0. (8.64) 

Since tumor is free of stress at Z direction, 𝑇𝑍𝑍 = 0, and this leads to  

 
(𝐽𝐾)𝑞 =

𝜆2

𝑔4
 . (8.65) 

Using (8.65) with (8.59) and (8.60), rewrites the stress components as; 

 
𝑇𝑅𝑅 =  𝜇 [

𝑓2′

𝑔2
−

𝜆2

𝑔2𝑓2′
], (8.66) 

 
𝑇ΘΘ =  𝜇 [

𝑓2
𝑔2𝑅

− 
𝜆2𝑅

𝑔2𝑓2
]. (8.67) 

These stress components are used at equation (8.62) to obtain the non-linear ordinary 

differential equation of 𝑓2(𝑅): 

 𝑑

𝑑𝑟
(𝑓2

′ − 
𝜆2

𝑓2
′) + 

1

𝑅
(𝑓2

′ − 
𝜆2

𝑓2
′ −

𝑓2
𝑅

+
𝜆2

𝑓2
 ) =  0. (8.68) 

This equations with the boundary condition given at (8.64) is solved numerically 

using Mathematica with the codes given at section Appendix F. Here 𝜇 as material 

constant of tumor and 𝛼 as material constant of vessel are unknown constant. A new 

constant 𝛽is defined for the relation between these two constant as 𝛼 = 𝛽𝜇. By using 

this new constant the first boundary condition at (8.64) is rewritten as, 

 
𝑓2

′(𝑅𝑖) =  
1

2
(−𝛽𝑃𝑖𝑔

2 + √𝛽𝑃𝑖𝑔2 + 4𝜆2). (8.68) 

This equation is numerically solved at 𝑅 =  𝑅𝑖, by giving related values to 𝛽 and 

𝑔, and taking values of 𝜆 which satisfies the condition 𝑞 < 0 using equation (8.64). 

At Figure 8.2.2, for different values of 𝜆 and 𝑔, changes of 𝑓2 with respect to 𝑅 is 

given with 𝛽 = 2. Also at 8.2.3, for different values of 𝜆 and 𝑔, changes of 𝑓2 with 

respect to 𝑅 is given with 𝛽 = 0.5. When these both graphs are analyzed, with same 

𝑔 value, it is shown that the function 𝑓2(𝑅) is increased when value of 𝜆 is increased. 
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Another important note is that when 𝜆 is same, the function 𝑓2(𝑅) is decreases when 

value of 𝑔 is increased. As a conclusion, when the rate of expansion function at Z 

direction 𝜆 increase, the contribution of the growth function of tumor 𝑔, to the 

deformation is decreased. This result is not a result mostly expected. But since there 

is no clue for the value of the material constant rate 𝛽 = 𝛼 𝜇⁄  and there is no study 

on tumor growth in a non-rigid vessel, there is no way to compare the results with 

valid solutions. 

 

Figure 8.2.2. Changes of 𝑓2 with respect to 𝑅 is given with 𝛽 = 2 
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Figure 8.2.3. Changes of 𝑓2 with respect to 𝑅 is given with 𝛽 = 0.5 

 

The other hand, the other material constant 𝑞 should be negative. As shown at Figure 

8.2.4., when 𝛽 = 3, and 𝜆 = 3, if 𝑔 is taken as 𝑔 = 2, then 𝑞 =  −0.65 and if 𝑔 is 

taken as 𝑔 = 2.2, the 𝑞 =  −23. As a result of this, with the model studied in this 

thesis, it is possible to determine the value of 𝑞 which determines the structural 

features of the tumor if the values of 𝑔 and 𝜆 are measured. 
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Figure 8.2.4. Changes of 𝑓2 with respect to 𝑔 
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9.  CONCLUSIONS AND RECOMMENDATIONS 

In this study, a mathematical model for a tumor growing in a cylindrical vessel is 

proposed. Firstly, a rigid vessel is considered in the model and tumor is considered as 

a spherical body, and a respectively basic growth tensor 𝑮 is defined to obtain the 

relation between the extension and the growth. It is observed that as the growth 

increases, the elongation is increased as well.  

Later the vessel is considered as a non-rigid elastic material and a simple constitutive 

equation for this material is defined. In the model, tumor is considered as grown 

enough, in a cylindrical shape and in an interaction with the vessel as a reference 

state, and let the tumor to deform in radial directions. As a result, opposite to a rigid 

vessel, with a non-rigid vessel it is observed that as the growth increases the 

elongation is decreased.  

At the evaluation of the model, the unknown material constants and the assumptions 

to simplify the equations take roles as disadvantages. 

For further studies, under the results of this study, it is highly recommended to define 

tumor as a viscos-elastic material for more realistic solutions. Also the relation 

between tumor and the vessel should be defined more realistic ways. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



36 

 



37 

 

REFERENCES 

[1]Rajagopal K.R. (1995) Multiple Natural Configurations in Continuum 

Mechanics, Rep. Inst. Appl. Mech. 6 

[2]Rajagopal, K.R. and Wineman A.S. (1992) A Constitutive Equation For 

Nonlinear Solds Which Undergo Deformation Induced 

Microstructural changes, Int. J. Plast., 8, 385-395 

[3]Rajagopal, K.R. and Srinivasa A.R. (1998) Mechanics of the Inelastic Behavior 

of Materials, Part II: Inelastic Response, Int. J. Plast., 14, 969-995 

[4]Rajagopal, K.R. and Srinivasa A.R. (1995) On the Inelastic Behavior of 

Materials, Part I: Twinning, Int. J. Plast., 11, 653-678 

[5]Rajagopal, K.R. and Srinivasa A.R. (1999) On the Thermodynamics of Shape 

Memory Wires, ZAP, 50, 459-496 

[6]Rajagopal, K.R. and Srinivasa A.R. (2000) A Thermodynamics Framework for 

Rate Type Fluid Models, J. Non-Newtonian Fluid Mech., 88, 207-227 

[7]Rao, I.J. and Rajagopal, K.R. (2000) Phenomenological Modeling of Polymer 

Crystallization Using the Notion of Multiple Natural Configurations, 

Interf. Free Bond, 2, 73-94 

[8]Ambrosi, D. and Guanna, F. (2007). Mathematics and Mechanics of Solids, 

Stress-Modulated Growth, University of Torino, Italy, 12:319 DOI: 

10.1177/1081286505059739. 

[9]Taber, Larry A. (1995). Biomechanics of growth, remodeling, and 

morphogenesis, University Of Rochester, Rochester NY, 14627. 

[10]Byrne, Helen (2000). Using Mathematics to Study Solid Tumour Growth, 

Meetings of European Women in Mathematics, University of 

Nottingham, England. 

[11]Stamper, I.J., Byrne H.M., Owen M.R. and Maini P.K. (2007). Modelling the 

Role of Angiogenesis and Vasculogenesis in Solid Tumour Growth, 

Society for Mathematical Biology, England.  

[12]Ambrosi, D. and Mollica, F. (2003). The Role of Stress in the Growth of a 

Multicell Spheroid. Mathematical Biology, 48, 477-499 

DOI:10.1007/s00285-003-0238-2. 

[13]Rodriguez, Edvard K., Hoger, Anne and McCulloch, Andrew D. (1994). 

Stress-Dependent Finite Growth in Soft Elastic Tissues, University of 

California, SanDiego, USA.  



38 

 

[14]Ciarletta, P., Ambrossi, D. and Maugin, G.A. (2011). Mass Transport in 

Morphogenetic Processes: A Second Gradient Theory for Volumetric 

Growth and Material Remodeling. Journal of Mechanics and Physics 

of Solid, 60, 432-450. 

[15]Truesdell, C.A. and Noll, W. (1992) The Non-linear Field Theories of 

Mechanics, Second Edition, Springer, Berlin, Germany 

[16]Ambrosi, D. and Mollica, F. (2001). On the Mechanics of a Growing Tumor, 

International Journal of Engineering Science, Italy, 40 (2001) 1297-

1316. 

[17]Murray, J.D. (1993) Mathematical Biology, Third Edition, Springer, Berlin, 

Germany. 

[18]Gurtin, M.E. (1981) An Introduction to Continuum Mechanics, Academic 

Press, New York, USA. 

[19]Helmlinger, G., Netti, P.A., Linchtenbeld, H.C., Mlder, R.J. and Jain, R.K. 

(1997). Solid Stress Inhibits the Growth of Multicellular Tumour 

Spheroids, Nature Biotech, 15 (1997) 778-783. 

[20]Rajagopal, K.R. and Srinivasa A.R. (1998).Mechanics of the Inelastic 

Behavior of Materials, Part I: Theoretical Underpinnings, Int. J. Plast, 

14, 945-967. 

[21]Blatz, P.J. and Ko, W.L. (1962). Application of Finite Elasticity Theory to the 

Deformation of Rubbery Materials, Trans. Soc. Rheol, 6 (1962) 223-

251 

[22]Demiray, Hilmi. (1994). A Viscoelastic Model for Arterial Wall Materials. 

Istanbul Technical University, Istanbul, Turkey, 0020-

7225(93)E0003-2. 



39 

 

APPENDICES 

APPENDIX A: Balance Law Equations 

Equation of the balance law is 

 𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝒗) =  𝜌̇ + 𝜌𝑑𝑖𝑣𝒗 =  Γ𝜌. (A.1) 

As from the law of conservation of mass, 

 𝜌(𝒙, 𝑡)𝑑𝑉 = 𝑑𝑚, (A.2) 

 
𝑀 = ∫𝜌(𝒙, 𝑡)𝑑𝑣

 

𝑉

, (A.3) 

 𝑑𝑀

𝑑𝑡
=  

𝑑

𝑑𝑡
∫𝜌𝑑𝑣

 

𝑉

. (A.4) 

Here if 𝑑𝑀 𝑑𝑡 = 0  ⁄ the mass is conserved, if 𝑑𝑀 𝑑𝑡 > 0  ⁄ then there exists growth 

and if 𝑑𝑀 𝑑𝑡 < 0  ⁄  there exists resorption.  

 
 
𝑑

𝑑𝑡
∫𝜌𝑑𝑣

 

𝑉

= 
𝑑𝜌

𝑑𝑡
+  𝜌𝑣𝑘,𝐾 = 𝜌̇ + 𝜌𝑑𝑖𝑣𝒗. (A.5) 

Sine in the tumor model there may exist growth, the rate of the growth 𝚪 is assumed 

that is given the form below to the law of conservation of mass, 

 𝜌̇ + 𝜌𝑑𝑖𝑣𝒗 =  Γ𝜌. (A.6) 

To rewrite the this equation as 

  (𝜌𝐽)̇ =  Γ𝜌𝐽 (A.7) 

The following equations are used: 

 
 J = det(𝑭) =  

𝑑𝑣

𝑑𝑉
, (A.8) 

 
𝑑𝑖𝑣𝒗 = 𝑣𝑘,𝐾 = 

𝜕𝑣𝑘

𝜕𝑉𝐾
,

𝜕𝑣𝑘

𝜕𝑉𝐾

𝑑𝑣

𝑑𝑉
=  (

𝑑𝑣

𝑑𝑉

̇
), (A.9) 

Multiplying (A.6) with J 
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 𝜌̇𝐽 + 𝜌𝑑𝑖𝑣𝒗𝐽 =  Γ𝜌𝐽, (A.10) 

 
𝜌̇

𝑑𝑣

𝑑𝑉
+ 𝜌

𝜕𝑣𝑘

𝜕𝑉𝐾

𝑑𝑣

𝑑𝑉
= 𝜌̇

𝑑𝑣

𝑑𝑉
+ 𝜌 (

𝑑𝑣

𝑑𝑉

̇
) = (𝜌𝐽)̇  , (A.11) 

And this leads to 

 (𝜌𝐽)̇ =  Γ𝜌𝐽. (A.12) 
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APPENDIX B: Balance of Linear Momentum Equations 

The balance formula for linear momentum is  

 
 
𝜕

𝜕𝑡
(𝜌𝒗) + 𝑑𝑖𝑣(𝜌𝒗⨂𝒗) − 𝑑𝑖𝑣𝒕 =  𝜌𝒃 + Γ𝜌𝒗, (B.1) 

where 𝑡 is the Cauchy stress tensor, 𝑏 is the body force and Γ𝜌𝑣 represents the 

contribution to the momentum due to the mass source. 

From contribution of momentum, the total momentum is 

 
 𝑷 = ∫𝜌𝒗𝑑𝑣

 

𝑉

. (B.2) 

External forces are as 

 
∫ 𝜌𝒃𝑑𝑣 + ∫ 𝒕(𝒏)𝑑𝑎 = 𝑹 =  

𝑑𝑷

𝑑𝑡
 

 

𝑆

 

𝑉

. (B.3) 

Where first term at left-hand side of the equation is mass forces and second term of 

the left-hand side of the equation is surface forces. 

This equation is rewritten as  

 𝑑

𝑑𝑡
∫𝜌𝒗𝑑𝑣

 

𝑉

= ∫ 𝜌𝒃𝑑𝑣 + ∫𝒕(𝒏)𝑑𝑎
 

𝑆

 

𝑉

, (B.4) 

 𝑑

𝑑𝑡
∫𝜌𝒗𝑑𝑣

 

𝑉

− ∫ 𝜌𝒃𝑑𝑣 − ∫𝒕(𝒏)𝑑𝑎
 

𝑆

≠
 

𝑉

0, (B.5) 

Because mass change is not 0 but it is 𝚪𝝆𝒗 the equation takes form, 

 
 
𝜕

𝜕𝑡
(𝜌𝒗) + 𝑑𝑖𝑣(𝜌𝒗⨂𝒗) − 𝑑𝑖𝑣𝒕 =  𝜌𝒃 + Γ𝜌𝒗, (B.6) 

 
 
𝜕

𝜕𝑡
(𝜌𝒗) + 𝑑𝑖𝑣(𝜌𝒗⨂𝒗) − Γ𝜌𝒗 =  𝜌𝒃 + 𝑑𝑖𝑣𝒕, (B.7) 

 𝜌̇𝒗 + 𝜌𝒗̇ + 𝑑𝑖𝑣(𝜌𝒗⨂𝒗) − Γ𝜌𝒗 =  𝜌𝒃 + 𝑑𝑖𝑣𝒕. (B.8) 

From mass balance equation (3.1) 

 𝜌̇𝒗 + 𝜌𝒗̇ + 𝑑𝑖𝑣(𝜌𝒗⨂𝒗) − (𝜌̇ + 𝜌𝑑𝑖𝑣𝒗)𝒗 =  𝜌𝒃 + 𝑑𝑖𝑣𝒕, (B.9) 

 𝜌̇𝒗 + 𝜌𝒗̇ + 𝑑𝑖𝑣(𝜌𝒗⨂𝒗) − 𝜌̇𝒗 −  𝑑𝑖𝑣(𝜌𝒗⨂𝒗) =  𝜌𝒃 + 𝑑𝑖𝑣𝒕, (B.10) 

 𝜌𝒗̇ =  𝜌𝒃 + 𝑑𝑖𝑣𝒕, (B.11) 
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With neglecting velocity changes and body forces  

 𝑑𝑖𝑣𝒕 = 0. (B.12) 
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APPENDIX C: Tensor Calculus for Relation between Growth Tensor and Growth 

Rate 

To show that 

 𝑡𝑟𝑫𝑔 =  Γ, (C.1) 

first 𝑱𝑮 is shown at the form of indices notation, 

 𝐽𝐺 = 𝑒𝑖𝑗𝑘𝐺𝑖1𝐺𝑗2𝐺𝑘3, (C.2) 

then derived to time 

 𝐽𝐺̇ = 𝑒𝑖𝑗𝑘[𝐺𝑖1
̇ 𝐺𝑗2𝐺𝑘3 + 𝐺𝑖1𝐺𝑗2

̇ 𝐺𝑘3 + 𝐺𝑖1𝐺𝑗2𝐺𝑘3
̇ ]. (C.3) 

Secondly trace of 𝑫𝒈 , symmetric part of 𝑮̇𝑮−𝟏, is shown at the form of indices 

notation, 

 𝑫𝑔 = 𝑠𝑦𝑚(𝑮̇𝑮−1), (C.4) 

 
𝑫𝑔 =

1

2
[𝑮̇𝑮−1 + (𝑮̇𝑮−1)𝑇] =

1

2
[𝑮̇𝑮−1 + (𝑮−1)𝑇𝑮̇𝑇], (C.5) 

 
(𝑫𝑔)

𝑖𝑗
=

1

2
[𝐺𝑖𝑚̇𝐺𝑚𝑗

−1 + (𝐺−1)𝑖𝑚
𝑇
𝐺𝑚𝑗

̇ 𝑇
], (C.6) 

 
(𝑫𝑔)

𝑖𝑗
=

1

2
[𝐺𝑖𝑚̇𝐺𝑚𝑗

−1 + (𝐺−1)𝑚𝑖𝐺𝑗𝑚̇], (C.7) 

 
(𝑡𝑟𝑫𝑔) =  (𝑫𝑔)

𝑖𝑖
=

1

2
[𝐺𝑖𝑚̇𝐺𝑚𝑖

−1 + (𝐺−1)𝑚𝑖𝐺𝑖𝑚̇] =  𝐺𝑖𝑚̇𝐺𝑚𝑖
−1, (C.8) 

Then using (C.2), 

 𝐽𝐺𝐺𝑖1
−1 = 𝑒𝑖𝑗𝑘𝐺𝑗2𝐺𝑘3, (C.9) 

 𝐽𝐺𝐺𝑗2
−1 = 𝑒𝑖𝑗𝑘𝐺𝑖1𝐺𝑘3, (C.10) 

 𝐽𝐺𝐺𝑘3
−1 = 𝑒𝑖𝑗𝑘𝐺𝑖1𝐺𝑗2, (C.11) 

and using  

 𝑎𝑑𝑗(𝑮) = det(𝑮)𝑮−1 = 𝐽𝐺𝑮−1 (C.12) 

(C.3) is written in this form; 
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Γ =

𝐽𝐺̇
𝐽𝐺

= 𝐺𝑖1
̇ 𝐺𝑖1

−1 + 𝐺𝑗2
̇ 𝐺𝑗2

−1 + 𝐺𝑘3𝐺𝑘3
−1̇ = 𝐺𝑖𝑚̇𝐺𝑚𝑖

−1

= 𝑡𝑟𝑫𝑔 . 

(C.13) 

Using 𝑮 = 𝒈𝑰, 

 
𝑡𝑟𝑫𝑔 = 𝑡𝑟𝑫𝐺 = Γ =

𝐽𝐺̇
𝐽𝐺

 . (C.14) 

 𝐽𝐺 = 𝑒𝑖𝑗𝑘𝐺𝑖1𝐺𝑗2𝐺𝑘3 = 𝑒123𝐺11𝐺22𝐺33 = 𝑒123 𝑔
3, (C.15) 

 𝐽𝐺̇ = 𝑒𝑖𝑗𝑘[𝐺𝑖1
̇ 𝐺𝑗2𝐺𝑘3 + 𝐺𝑖1𝐺𝑗2

̇ 𝐺𝑘3 + 𝐺𝑖1𝐺𝑗2𝐺𝑘3
̇ ] 

= 𝑒123[𝐺11
̇ 𝐺22𝐺33 + 𝐺11𝐺22

̇ 𝐺33 + 𝐺11𝐺22𝐺33
̇ ] 

= 𝑒123[𝑔̇𝑔𝑔 +  𝑔𝑔̇𝑔 + 𝑔𝑔𝑔̇] =  3𝑒123𝑔̇𝑔2 

 

(C.16) 

with the obtained values the below relation between rate and scalar growth function 

can be easily shown, 

 
Γ =

𝐽𝐺̇
𝐽𝐺

= 
3𝑒123𝑔̇𝑔2

𝑒123 𝑔3
= 

3𝑔̇

 𝑔
. (C.17) 
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APPENDIX D: Nutrient Equations 

Reaction-Diffusion equation (Diffusion in 3 space dimensions): 

 𝜕

𝜕𝑡
∫ 𝑐(𝑥, 𝑡)𝑑𝑣 =  −∫𝐽𝑑𝑠 

 

𝑆

+ ∫𝑓𝑑𝑣,
 

𝑉

 

𝑉

 (D.1) 

Where 𝑺 is the surface, 𝑽 is the volume, 𝑱 is the flux of the material, f is the source 

of the material i.e. 𝒇(𝒄, 𝒙, 𝒕,), the right hand side of the equation is rate of change of 

amount of material in 𝑽, first integration at left hand side of the equation is rate f 

flow of material across 𝑺 into 𝑽 and the second tern at the right hand side of the 

equation is material created in 𝑽. 

Divergence Theorem: 

 
∭(∇.𝑭)

 

𝑉

𝑑𝑉 =  ∯(𝑭.𝒏)𝑑𝑆
 

𝑆

 (D.2) 

Where 𝑭 is continuously differentiable vector field and 𝒏 is outward pointing unit 

normal field. 

Reynolds’ Transport Theorem: 

 𝑑

𝑑𝑡
∫ Φ𝑑𝑉 =  ∫ (Φ +  Φ∇. 𝑣)𝑑𝑉 

 

𝑃𝑡

 

𝑃𝑡

 (D.3) 

 𝑑

𝑑𝑡
∫ Φ𝑑𝑉 = ∫ Φ′𝑑𝑉 

 

𝑃𝑡

+ ∫ Φ𝑣. 𝑛 𝑑𝐴 
 

𝜕𝑃𝑡

 

𝑃𝑡

 (D.4) 

Equations: 

 𝐷𝑖𝑣[𝑭−𝟏𝐷𝑖𝑣(𝐽𝑭−𝟏𝑛)] =  [𝑋𝐾,𝑘(𝐽𝑋𝑀,𝑘𝑛)
,𝑀

]
,𝐾

 (D.5) 

 =  [𝑋𝐾,𝑘𝐽𝑋𝑀,𝑘𝑛,𝑀]
,𝐾

=  [𝑋𝐾,𝑘𝐽𝑋𝑀,𝑘𝑛,𝑙𝑥𝑙,𝑀]
,𝐾

 (D.6) 

 =  [𝑋𝐾,𝑘𝐽𝛿𝑘𝑙𝑛,𝑙],𝐾 =  [𝑋𝐾,𝑘𝐽𝑛,𝑘],𝐾 (D.7) 

 = 𝐷𝑖𝑣[𝐽𝑭−𝟏𝛁𝑛] (D.8) 
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APPENDIX E: Plotting Codes for the Graphs of 8.1 

Figure 8.1.2: 

lamda[g_, q_, R_] := g^((2-3q)/(2-q)) * R ^(-q/(2-q)) 

Needs["PlotLegends`"] 

Plot[{lamda[g, -1, 1], lamda[g, -2, 1], lamda[g, -4, 1]}, {g, 

1, 2}, FrameTrue,PlotStyle{Black,Dashed,Dotted}, 
PlotLegend{"q = -1","q = -2", "q = -4"}, LegendPosition{-
0.95,0.45},Joined{True,True,True},PlotMarkersAutomatic, 
ImageSizeFull, LegendSize{0.2, 0.15}, LegendShadow{0,-0}] 

Figure 8.1.3: 

lamda[g_, q_, R_] := g^((2-3q)/(2-q)) * R ^(-q/(2-q)) 

Needs["PlotLegends`"] 

Plot[{lamda[g, -1, 2], lamda[g, -2, 2], lamda[g, -4, 2]}, 

{g, 1, 2}, FrameTrue,PlotStyle{Black,Dashed,Dotted}, 
PlotLegend{"q = -1","q = -2", "q = -4"}, 

LegendPosition{-
0.95,0.45},Joined{True,True,True},PlotMarkersAutomatic
, ImageSizeFull, LegendSize{0.2, 0.15}, 

LegendShadow{0,-0}] 
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APPENDIX F: Mathematica Codes for Solving the Problem 8.2 and Plotting its 

Graphs 

Solving the Problem 8.2: 

Ri = 0.4 

Ro = 0.6 

ri = 0.5 

lam = 1. 

beta = 0.01 

lamd = 1 

ro = Sqrt[(Ro^2 - Ri^2)/lamd + ri^2] 

xo = Ro/ro 

xi = Ri/ri 

PPi = ((xo^2 - xi^2)/2 + lamd*Log[xo/xi])/lamd^2 

g = 1. 

f2t = (-PPi*beta*g^2 + Sqrt[(PPi*beta*g^2)^2 + 

4*lam^2])/2 

denk = D[(f2'[R] - lam^2/f2'[R]), R] + (f2'[R] - 

lam^2/f2'[R] - f2[R]/R + lam^2*R/f2[R])/(R) 

Solve[denk == 0, D[f2[R], {R, 2}]] 

denk1 = Derivative[2][f2][R] - 

(Derivative[1][f2][R]*(lam^2*R*f2[R] - 

lam^2*R^2*Derivative[1][f2][R] + 

f2[R]^2*Derivative[1][f2][R] - 

R*f2[R]*Derivative[1][f2][R]^2))/(R^2*f2[R]*(lam^2 + 

Derivative[1][f2][R]^2) + 10^(-6)) 

Ri = ri 

s = NDSolve[{denk1 == 0, f2[0] == 0, f2'[Ri] == f2t}, f2, 

{R, 0, Ri}] 

Do[WriteString["C:\Users\Damla\Desktop\damla\dat\YazB001L

18g1.txt",R,"\t",f2[R]/.s,"\n"],{R,0,Ri,0.01}] 

Plot[Evaluate[f2[R] /. s], {R, 0, Ri}, PlotRange -> All] 

trrr = f2'[R]/g^2 - lam^2/(g^2*f2'[R]) 

Plot[Evaluate[trrr /. s], {R, 0, Ri}, PlotRange -> All] 

Plot[Evaluate[f2'[R] rr /. s], {R, 0, Ri}, PlotRange -> 

All] 

trrr /. R -> Ri 

With the program above the points of the solution of 𝑓2 is exported to a text file and 

then using program named Graph, these files are turned in to the graphs given at 

section 8.2. 
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