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This thesis is a study for tumor growth within the framework of Continuum
Mechanics. A mechanical model which splits volumetric growth and mechanical
response into two separate contributions, is applied to a tumor growing in a vessel
where in one case the vessel is rigid and in the second case it is not rigid.
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MATHEMATICAL MODELING OF TUMOR GROWTH

SUMMARY

This thesis is a study for tumor growth within the framework of continuum
mechanics. A mechanical model which splits volumetric growth and mechanical
response into two separate contributions, is applied to a tumor growing in a vessel
where in one case the vessel is rigid and in the second case it is not rigid. As a part of
continuum mechanics, Cauchy stress tensor and Piola-Kirchoff stress tensor is used
to analyze the motion and the growth of the tumor body.

Firstly, the growth basics for a biological tissue is described. Then kinematics of the
growth, related to balance equations and nutrient factors are given with proofs.

Secondly the material type is chosen as Blatz-Ko type and some specific assumptions
are given related to the material and the behavior of the balance equation with
respect to the growth kinematics.

Later, the equations which construct the tumor growth problems are defined. The
problems are analyzed with respect to the cylindrical coordinates. In the first
problem, growth of a tumor in a rigid vessel is analyzed. Since the vessel is rigid,
only tumor has a deformation and the deformation is only at Z direction. Since there
is stress only on R and @ directions, the component of Cauchy stress tensor for Z
direction is assumed to be equal to 0. From this equation, a relation between the
growth tensor and deformation component at Z direction is obtained. This relation is
applied to different Blatz-Ko type materials and as result it is shown that the axial
displacement as elongation is increased as the growth tensor is increased. The
displacement is an exponentially increasing function of growth.

In the second example, the vessel is taken as a non-rigid elastic material. Since the
cylinder can deform the equations are changed to different system. With the vessel is
not rigid, there is deformation at both 6 and Z directions for the vessel and again
there is deformation at both 8 and Z directions for the tumor. Since the pressure at
the inner side of the cylinder must be equal to R direction component of Piola-
Kirchoff stress tensor for a steady balance and the displacement at the inner surface
of the vessel is equal to the displacement of the outer surface of the tumor, these fasts
lead to a second order non-linear differential equation for function of the
displacement of the tumor at R direction. This differential equation is solved via
Mathematica with the assumptions of the related material constants of the material
and the growth rate and found that the displacement function of tumor at Z direction
is a linear function under a restriction relation with the growth tensor, and
deformation of the tumor.
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TUMOR BUYUMESININ MATEMATIKSEL MODELLENMESI

OZET

Bu c¢alismada, tiimoriin damar iginde biiyliimesi incelenerek, siirekli ortamlar
mekanigi temelleri ilizerinden matematiksel bir modelleme yapilmistir. Biyolojik
olarak ele alindiginda tiimor, uygun ortam olustugunda etrafindaki damarlar
sayesinde kandan aldig1 besinler ile biiyiliyebilen biyolojik bir kiitledir.

Tiimériin biiyiime evreleri temel olarak ikiye ayrilir. ilk siirecte olustugu bélgede hali
hazirda bulunan damar sisteminden beslenerek gelismine devam eder. Bu gelisme
esnasinda tiimor biylidiikkge i¢ tarafta kalan tiimor hiicrelerinin kandan direk
alamadigi, kendisine komsu olan dis hiicrelerden difizyon yontemi ile aldigi besin ve
oksijen git gide azalir. Bu tip durumlarda ikinci evre olan damarlanma siirecinin
baslamamasi veya gec¢ baslamasi durumunda tiimor i¢ hiicreleri hipoksi yani
oksijensiz kalma durumu ile 6lebilir.

Kandaki besin degerinde azalma ile ise bilylimenin gerilemesi hatta emilimle
kiiciilme dahi gozlenebilir. Ikinci evre olan damarlanma iki farkli bilyiime sekli ile
gbzlenir. Bu biiylime sekillerinden sadece biri olusabilecegi gibi ortamin miisait
olmasi durumda iki tip bilylime ayn1 anda goriilebilir. Damarlanma anjiyogenez ve
vaskulogenez olmak {iizere ikiye ayrilir. Anjiyogenez kelime anlami ile yeni damar
olusumu demektir. Yasadig1 ortamda besin degerini yetersiz bulan tiimor salgiladigi
bir takim anjiyogenisis faktorler (TAF) ile kendisini besleyecek yeni damarlarin
olusumunu tetikleyebilir. Vaskulagenez ise viicudun tiimdriin oldugu bolgedeki
damarlart hasarli kabul etmesi lizerine bu bolgedeki damarlart yeniden olusturmak ve
giiclendirmek i¢in kendi yap1 taslari olan vaskiiler endotel biiyiime faktorlerini
(VEGF) kullanmasi ile olur. Her iki yolla da olusan damar yapisi, insan viicudunun
normal damar yapisina gore ¢ok daha kilcalli ve gegirken farkli bir yapidadir. Bu
nedenle tiimorden kopan yapi taslar1 veya hiicreler bu damarlardan geg¢ip viicudun
farkli yerlerinde uygun ortamlar bulup yeni tiimor dokular1 olusturarak metastaza
sebebiyet verebilir. Bu tez kampsaminda matematiksel olarak modellenen timor
gelisimi, biiylimesinin ilk evresinde kabul edilip kan yoluyla aldig1 besin
damarlanmanin etkisinden bagimsiz kabul edilerek kandaki besin orani degisimine
tabi tutulmustur.

Tiimoriin damarin ig¢inde biiylimesi siirekli oramlar mekaniginin temelleri esas
almarak iki farkli etkene ayrilmistir. Bunlardan ilki ortamdaki gerilmelerden
bagimsiz olarak biiylime etkeni, digeri ise deformasyon olarak ele alinmistir. Bu iki
etkenin oluturdugu sekil degisimi olarak olusan kuvvetin etkisi altindaki tiimérden
bir partikiilin kesildigi ve bu partikiiliin stress ve basing igeren ortamdan
ayristirilarak (dogal yapilanma) deformasyondan bagimsiz bir biliylime kuvveti
tanimlanmistir. Bu deformasyondan bagimsiz biiyiimiis tiimorden, tiimdriin gercekte
bliylimeden sonraki haline getiren deformasyon ise ayr1 bir kuvvet olarak ele
alinmistir. Bu dogal yapilanma durumdaki biiyiime simetrik olarak kabul edilmistir.
Burada ele alinan biiylime dogrudan kandaki besin orani ile iligskilendirilmis ve
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tiimoriin ~ biiyliyebilmesi i¢in kandaki besin degerinin belirli bir esik degerinin
lizerine ¢ikmasi gerektigi kabul edilmistir. Bunun igin bir adim fonksiyonu olan
Heaviside fonksiyonu biiyiime orani fonksiyonunda esik degeri ile birlikte kullanilan
bir fonksiyon olmustur.

Uygulanan modelin tutarli olmasi adina denge denklemleri modele uygulanmistir.
Oncelikle kiitlenin korunumu géz oniinde tutulmus ve bilyiimeden bagimsiz olan
deformasyon esnasinda kiitlenin korundugu, biiylime de ise biiyiime oraniyla arttigi
gosterilmistir. Ayrica lineer momentumun korunumu yasasi geregi olusan kosullar
belirlenip probleme uygulanmistir. Sonrasinda biiyiime tensorii ve biiylime orani
arasindaki iligki incelenmis ve besin faktorlerininin i¢ enerjinin korunumu deklemini
sagladig1 gosterilmistir. Bu verilerin 1s18inda olusan bir takim denklemler ile timor
ve damar i¢in uygun malzeme tipleri se¢ilmistir. Tiimor i¢in se¢ilen madde Blatz-Ko
tipi olup biyolojik dokular i¢in gelistirilen problemlerde yaygin olarak kullanilan
sikigabilir hiperelastik bir malzemedir. Damar i¢in sikisabilir olarak kabul edilen
ornekte ise elastik malzeme kabulii yapilmistir.

Tez kapsaminda iki ayr1 problem tipi incelenmistir. Her iki problemin ¢éziimii igin
de silindirik kordinatlar kullanilmistir. Bu problemlerde biiylime, tlimoriin
biliylimesinde zamanin katkisinin ¢ok kiiclik olmast nedeniyle zamandan bagimsiz,
gene ayni sebeple hizdan da bagimsiz diigtiniilmiistir.

IIk problemde tiimér sikismaz olarak kabul edilen damarin iginde biiyiimektedir.
Damarda deformasyon olusmayacagi igin tiimor sadece Z dogrultusunda biiyiime
yapar ve gene Z dogrultusunda gerilme olmaz. Bu kosullardan elde edilen
denklemlerden Z dogrultusunda olusan deformasyon ile biiylime fonksiyonu
arasindaki iliski belirlenir. Yapilan hesaplamalarda degisik malzeme katsayilari
verilerek olusturulan bu iligkide Z dogrultusunda olusan deformasyonun biiyiimedeki
artis ile tistel olarak arttig1 gézlemlenir.

Ikinci problemde ise damar sikisabilir kabul edilmistir. Yani damarda da bir
deformasyon gozlenecektir. Bu durumda hem tiimor i¢in hem damar i¢in olan sekil
degistirme hem Z hem de R dogrultusunda olur. Burada damarin i¢ ¢epherinde olusan
basing ile tiimor i¢in olusan Piola-Kirchoff gerilme tansoriiniin R dogrultusundaki
bilesenin tiimoriin ¢epherindeki degerine esit olmasi gerekir. Ayrica tlimoriin dig
¢epherinde olusan sekil degistirmenin damarin i¢ yiizeyinde olusan sekil degisimi ile
ayni kalmasi1 beklenir. Bu denklemler 1s1ginda biiylime i¢in, maddenin biinye
denklemindeki sabitlere, tiimoriin R dogrultusundaki sekil degisimine ve gene
tiimoriin Z dogrultusundaki sekil degisimine bagli ikinci derece lineer olmayan bir
diferansiyel denklem elde edilir. Bu denklemi, timoriin R yoniindeki sekil degisimi
i¢in ¢6zmek adina biiylime fonksiyonuna, biinye denklemindeki sabitlere ve tiimoriin
Z yoniiniinde olan sekil degisikligi bilesenine degerler verilerek Mathematica’da
denklem c¢oziilmiistiir. Tiimortin R yoniindeki sekil degisiminin lineer oldugu ve
verilen degisik degerler icin lineer yapisini korudugu, degiskenlerin sadece egimde
olusan degisikliklere etken oldugu goriilmiistiir. Ayrica elde edilen denklemlerden
bliylime fonksiyonu, tiimoriin Z yoniinlinde olan sekil degisikligi bileseninin
fonksiyonu ve bu fonksiyonun egimi igin, timdr igin secilen biinye denkleminin
saglanabilmesi i¢in bir takim kisitlar geldigi goriilmiistiir.
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Sonug olarak tiimoriin gelisiminin kandaki besin miktarina bagli olan biiyiime
fonksiyonu ile dogru orantili oldugu gosterilmistir. Ayrica damarin malzeme olarak
sikigabilir kabul edildiginde ise segilen biinye denklemlerinin timdriin R yoniindeki
sekil degisimi bilesenine ve Z yoniiniinde olan sekil degisikligi bilesenine dogrudan
kisitlamalar getirdigi gézlenmistir.
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1. INTRODUCTION

1.1 Purpose of Thesis

This thesis is a study for tumor growth within the framework of Continuum
Mechanics, analyzing the tumor as a specific case of growing soft tissues. By the
notion of multiple natural configurations, a mechanical description that splits
volumetric growth and mechanical response into two separate contributions is
introduced and growth is described as an increase of the mass of the particles of the

body, not as an increase at the particle number.

In their studies, Rajagopal and coworkers [1] have introduced the notion of multiple
natural configuration [2] and used it to study many different phenomena, such as
metal plasticity [3], twinning [4], shape memory alloys [5], viscoelastic fluids [6] and
crystallization in polymers [7]. The theory of materials with multiple natural

configurations is an ideal setting to investigate the process of growth.

1.2 The Growth of a Tumor as a Biological Tissue

Biological tissues are generally classified as hard tissues and soft tissues and the
generation of biological forms involves three different process: growth which is
defined as mass change, remodeling, which involves changes in material properties
and morphogenesis, which consists in a change in shape. [8] In this thesis, tumor

growth will be analyzed with tumor as a soft tissue.

Growth can occur through cell division (hyperplasia), cell enlargement
(hypertrophy), and negative growth (atrophy) can occur through cell death mostly by
hypoxia, cell shrinkage or resorption. [9] In this thesis growth is only described as

hypertrophy.

There are two distinct phases of growth the relatively benign phase of avascular

growth, and more aggressive phase of vascular growth. [10]



Diffusion-limited growth
Relatively harmles

AVASCULAR GROWTH

ANGIOGENESIS Blood supply acquired

Rapid growth and spread
Potentially fatal

VASCULAR GROWTH

Figure 1.1. A schematic diagram for stages of solid tumor growth

Vascular growth can occur in two different ways. Angiogenesis, is new vessel
sprouting, stimulated by TAFs (Tumor Angiogenic Factors), secreted by tumors
often as a result of hypoxia. [11] As tumor grows avascular, since the inner cells get
nutrient and oxygen only by diffusion, these cells get lower and lower oxygen and
nutrient. As a result hypoxia occasionally occurs at the inner part of the tumor and
this triggers the TAFs production. The second way of vascular growth is
vasculogenesis, which occurs when the living form realizes the tumor as a damaged
part of its body. When this happens, the VEGFs (Vascular Endothelial Growth
Factors) rate at blood increases. VEGFs are products of bones to construct new
vessels for the damaged part of the body. With a higher rate of VEGFs, new vessels
are formed around the tumor so that tumor gets more nutrient and oxygen. These new
vessels, created either by angiogenesis or vasculogenesis, are different then the
vessels in rest of the body. They are thinner and have more capillaries. This causes
tumor cells to pass to blood and spread through the body. If these cells find a place
eligible for the cell to grow, metastasis can occur and a new tumor can be formed. In

this thesis tumor growth is analyzed only as an avascular growth.

The specific problem of avascular tumor growth has been the subject of a number of

a number of mathematical papers which focus mainly on modeling diffusion and bio-



chemical interaction of cells and solutes species. [12] In this thesis, the mechanical
behavior of a grown tumor is expressed not just in terms of the current configuration

but in terms of history of the possible homogeneous mass increment.

Growth is a three dimensional process, that is why to fully describe its rate, tensor
measure should be used instead of a single scalar growth rate. [13] While modeling
growth, it is assumed that the growth is homogenous in all direction. A function of
time for growth is described so that multiplied by the identity tensor will give the

growth tensor.

In this study, ductal carcinoma is used as an example. Ductal carcinoma is tumor in
an initial growth phase of breast cancer. It is originated from a malignant
transformation of epithelial cells. [14] The carcinoma expands inside the lumen of
the breast duct.






2. MODELING GROWTH OF A TUMOR

Let a tumor body has an unstressed configuration at time t = 0 asK,, and a
configuration K, with possible application of loads after a growth or a resorption.
The motion of the body is [15]

x = x(X,t), (2.1)

with the corresponding deformation gradient and velocity as

ox ox
el = = 2.2
F=x "o @2)
The density field attime tandt = 0 is
p= pxt), poX)=px(X,0),0). (2.3)
The initial mass of the a particle is

Where dV is the volume occupied by a generic particle at time t = 0 and the mass

of the same particle at time t is

dM = p(x,t)dv (2.5)

where dv is the volume of the same particle at time t and if dM > dM, growth takes

place at x but if dM < dM, then resorption takes place.

Body has an unstressed configuration at time t = 0 askK,, and a current
configuration K;. The particles in the body either have grown or been resorbed and
the stress on the particles may be different from zero. With cutting a generic particle
out of the body, the state of stress on the particle will relieve but the mass of the
particle will be constant, so a new state K, different from K, and K, will be obtained
where the particle is only effected by growth. The deformation and the growth can be
measured separately with this new configuration as the natural configuration of the

body at time t as described at Fig. 3.1.



The deformation can be decomposed to unconstrained growth and deformation as
F = FyG, (2.6)

Where G is the growth tensor and Fg is deformation gradient at the state K,.
Here Fg is not directly related to growth because mass does not change along the
path to from K, to K;. Also it must be noticed that F is a mapping from a tangent
space to another while Fgx and G shows local changes caused by growth and

deformation. Also from (2.6) it can be shown that Fg and G can be invertible since F

is invertible.

Figure 3.1. Diagram of the motion from the original unstressed configuration to

current configuration with relational to natural configuration

Since mass is preserved between K,, and K, the volume of the generic particle in the
natural configuration, denoted by dV,,, dM can be defined with the following
equation below:

dM = po(X)dV,. (2.7
From (2.4) and (2.7), Jacobean for Growth tensor can be obtained as

_qetg= Yo _ M 28
Jo =dett = 2= T, (2.8)

where J; > 1 represents growth and J; < 1 represents resorption.



3. BALANCE LAWS

In this section, balance of mass, linear momentum and internal energy for the

growing model introduced, are analyzed.

3.1 Mass Balance

The motion from state K, to K, obeys the usual equations of balance of mass, where

Eulerian form is as [16];

9]
a—'[; + div(pv) = p+ pdive = Tp (3.1)

where T is the growth rate and (') denotes the material time derivative.
In Lagrange frame (3.1) is rewritten as
(o)) = TpJ (3.2)
where
J =detF =J;]p,- (3.3)
The equations which converts (3.1) to (3.2) is given at the section Appendix A.

Since mass conservation satisfied from state K, to K,

dM = podly, = pdv, (3.4)
From (2.8),
polcdV = pjav, (3.5)
and
Po= Py (3.6)
where
Jr, = detFg. (3.7)



Here (3.7) is in the form of the usual Lagrangian version of conservation of mass in

the absence mass source, and from K, to K, mass is conserved.

3.2 Balance of Linear Momentum

The balance formula for linear momentum is
d . .
T (pv) + div(pvQ®v) — divt = pb + T'pv, (3.8)

where tis the Cauchy stress tensor, bis the body force and I'pv represents the
contribution to the momentum due to the mass source. From the mass balance

equation (3.1), momentum equation rewrites
pv = divt + pb, (3.9

And since the characteristic velocities are so small at biological tissues, the left-hand
side of the equation (4.9) can be neglected. Also neglecting the body forces is usual
in Solid Mechanics, so the last term at the right-hand side of the equation will

disappeared as well, and the momentum equation will take the form
divt = 0. (3.10)

The equations to retrieve (3.10) is given at section Appendix B.

3.3 Balance of Internal Energy

The balance of internal energy reads

d(pe
% +div(pev + q) = t.d + pr, (3.11)

where q is the non-convective flow of internal energy, r represents the source of
energy per unit mass, the symbol t.d indicates the inner product between Cauchy
Stress tensor t and the deformation rate tensor d. The quantity r in this framework
includes the energy externally supplied for the growth process. The internal energy
per unit volume & represents the storage of energy that can be spent for growth only.
Despite a formal analogy with thermal internal energy exists (and this is the reason
why the same symbols are retained on purpose), € should not be confused with the

thermal energy, which is irrelevant with this context.

For the quasi-steady processes, it is considered, equation (3.11) simplifies to

8



da(pe)
BT div(q) = pr,

or, in a Lagrangian frame of reference,

a(Jpe)
ot

+ div(JqF™T) = pr.

(3.12)

(3.13)
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4. GROWTH TENSOR AND GROWTH RATE

To obtain a relation between growth tensor and its rate, the equation (3.6) is used.

Differentiating (3.6) with respect to time,

dpo _ d(p/k)
dt dt
Since
dpy d(plk) . .
W—O; dt = pJk +pJk =0,
p=- p]ﬁ
Jk

By using the equation (4.3) into (3.2)

(o)) = pl+p] = —p]—K]+p]'= I'p],

Jx
and by simplifying the equation (4.4)
J Jk
-— = =T
I Jk

Using equation (3.3) with (4.5)

Jolx el _Jx _Jo  Jx i _

JeJk Jk Je Ik Ik Je

]ﬁ:

L,

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

With standard tensor calculus, as shown in section Appendix C that (4.6) can be

transform to the below equation

trD, = T,

4.7)

where D, is the symmetric part of GG~' and tr represents trace of the tensor and as

shown at section Appendix C, for an isotropic growth, i.e. G = gl where gis a

scalar, the relation between growth tensor g and growth rate I is as

—=T.
g

11

(4.8)



12



5. NUTRIENT FACTORS

The growth of biological tissues depends to the availability of nutrient and growth
factors in blood. The tumor is fed by the environment with diffusing in the interstitial
liquid. Nutrient factors are dissolved in the interstitial liquid, therefore it is assumed
that the concentration of nutrient n(x,t) obeys the following reaction-diffusion
equation [17]:

on

™ + div(nv) — div(D(n)gradn) = —ynp. (5.1)

The equation (5.1) is a mass balance law for the nutrient where v is the velocity field
of the transport and y is the absorption rate. The nutrient concentration at a fixed
point changes in time because of the diffusion due to Brownian motion. Here, for the
sake of simplicity, a linear uptake function is considered. Also it is assumed that the

concentration of n is constant at the boundary of tumor, as the boundary condition:

nlboundary = Np. (5.2)

The equations which describes the motion of the nutrient, are coupled to the mass
and momentum balance equations by the right hand side of the equation (5.1), and by
using the Reynolds’s transport theorem [18] and by standard calculations, (5.1) can

be rewritten in Lagrangian coordinates:
0
3¢ (M — div[DM)JF “1Div(JFTn)] = —ynpJ. (5.3)

Since the time needed for a steady state of chemical quantities is usually much
smaller than the typical time needed for growth, diffusion and production can be

assumed that always balance in equation (5.3) as,
div[DF~1Div(JF~Tn)] = ynpJ. (5.4)
and by standard calculation the following equation can easily obtained,

div[Dgradn] = ynp. (5.5)

13



Another way to obtain an equation for nutrient, which will be further used in this
thesis, is that, from a mechanical point of view, the concentrations of nutrient is a
measure of the energy that can be spent for growth. Therefore the equation regulating
the concentration of nutrient factors can be read as the balance of internal energy

(3.13) with the suitable constitutive assumptions. In fact, when assumed as

npc
€= cn, q = —cDgrad(n), r=— %, (5.6)

Where c is a constant, D is a diffusion coefficient and 1/t is the absorption rate, the

following equation can be obtained,
Div[F~Div(JF~n)] = y,npJ, (5.7)

where y,, = 1/Dt,which is a reaction diffusion equation for the field n(X,t).
Equation (5.7) s the balance law for the nutrient.

The calculations of this section and related theorems are given at section Appendix
D.
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6. ASSUMPTIONS

Anisotropy is a crucial characteristics of biological tissues. However, for tumor
spheroids, isotropy is a reasonable assumption. [19] For this, while modelling the
tumor as a material, the experimental evidence found by Helmlinger, Netti,
Linchtenbeld, Melder and Jain at 1997 [20] is considered. At their experiments they
showed that tumor spheroids are compressible. Under these evidences, using an
isotropic compressible non-linearly elastic material will be wise. [21] The specific
model referred here is a material of the Blatz-Ko type [16], one of the most used
compressible hyperelastic materials which responses the same for each natural

configuration.

The strain energy function of a general Blatz-Ko material is

2
- [t~ )

v(1—f) [( He, 20 —(a/2) ©D
+ = KIIICK = 3) = E(IIICK - 1)]
Where v, g and f are material constants satisfying the following restrictions:
v>0 0<f<1 ¢g<0 (6.2)
Here f will be taken as f = 1 for simplicity and energy function takes the form
[(ICK —3) - (111"/ 2 )] (6.3)

In this case using a viscoelastic constitutive equation would be a better
approximation. Nevertheless, the characteristic times of rate dependent response of
the material are much less than the characteristic times of growth and of mechanical
loading for tumor spheroids, without a significant error the material can be used as a
hyperelastic material. [16] Under these assumptions an energy function Wy can be

introduced as

W = Wy (Fg). (6.4)
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where Fg is Deformation gradient tensor as

dxk

P (6.5)

Fg = [xik] xix =
Here X and x are location tensors before and after the motion and deformation and
Xy and x;are their form at indices notation.

With this energy function the Cauchy stress tensor can be derived with the general

formula of Cauchy stress tensor below.

t= pF (aWK) 6.6
The simplest form of growth tensor is
G(X,t,n) = g X, t,n)I (6.7)

where g is the scalar function of growth, X is the three component of the motion, t

represents time and n is the nutrient.

Finally from (4.8)

g = %r(x, t,n,g). 6.8)
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7. CAUCHY STRESS TENSOR COMPONENTS FOR TUMOR

In this section Cauchy stress tensor is formed by applying the energy function Wy
defined in the section 6. First of all the equation (6.4) is recast to satisfy the principle

of material frame indifference as
W = Wi (Cr). (7.1)
where Cg is Green deformation tensor and
Cx = FEFy. (7.2)

Since the assumption is that the material is isotropic, (7.1) can be written in terms of

the principle invariants of Cx as
W = WK(ICKJIICK'IIICK)' (73)

To apply (7.1) to (6.6), Cauchy stress tensor can be written in the form of indices

notation

oW,
ke = P Fram XK (7.4)

With using Green deformation tensor (7.4) can be written in the form

oWy \ [9Ck
=P <aCKMN> < ax}(";’("’) Fuke Ckyny = XmMXmn - (7.5)

With more calculation;

Wy
tkl = pl\7=— (6km6KMxm,N + 6km6KNxm,M)xl,K' (76)
0Cx
ow,
tky = p K (5kmxk_N + SKka,M)xl,K' (77)
0Ck iy
ow,
tiy = p K (Xl‘Mxk'N + xl’ka,M)’ (78)
Cx iy
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Wy AWy

ty = + ,
kl PaCKMN X, MXk N PaCKMN X1, NXk,M
oWx oWyx
fa = Poc —Xuwndim t oo —xanXiou Loy = Crun
. ) oWy
ki = 4P 3~ Xi,NXk,M»
E)CKMN
g =200 W = Do
kl T aCKMN LNXkM, P Te

Here

Wy _ Wy Il Wy g, OWy Olllg,
0Ckyy  Olc, 0Ckyy Ol 0Cky,y 01l 0Ckyy

ey = CKMM» = Suxbnk = Sun,

1 2
He, = E(ICK - CKMNCKNM)’

olle, 1

=3 (ZICK5MN — OmkOnLCk e — 6ML6NKCKLK)'
0Cxpy 2

ollg, 1
aCKMN = E(ZIstMN — Ckyn — CKMN)’

all
Ck = ICK6MN - ZCKMN’
0Cx

e, 1
lHlg, = det(Cy), ot = e [Ck 7],
Using (7.13), (7.14), (7.18), (7.19) into (7.12)
=— | — (e, Oun — 2C
Wy _1
+ 3l Hle, [Ce 7] [ Xuniom,

Tensor notation for of (7.20) is
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(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)



C2pg[OWi | L, W

.S -1 _ -2
" Jk |0l K * dllc, (Iei i Ci™)
(7.21)
+ M
olllg, <[
When Wy is derived for I, , Ilc, and I11¢, :
oWy v 9
aICK - 21 (7 )
oWy 0
e, (7.23)
oWy v (2-1)
3l = -l . (7.24)
(7.21) can be rewritten with (7.22), (7.23), (7.24) as
2 v v
=Pl e+ — 1),
Jie b2 2 (7.25)
¢, = det(Cg) = det(Fg)? = J°.
Defining u = p,v and using (7.2) and (7.12), (7.25) can be simplified as
— K q T
t _]—K[—(]K) I+ FgF%]. (7.26)
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8. IMPLEMENTATIONS

In this section, homogeneous growth problems are solved for spheroid tumors inside
rigid cylindrical vessel and spheroid tumors inside non-rigid cylindrical vessel, to
apply the general theory illustrated in this study. In the first problem equilibrium
equation is directly satisfied since the deformation is homogeneous and vessel is
rigid. In the second problem the form of the growth deformation is assumed as
inhomogeneous and the vessel is not rigid. In this case there will be a deformation at

vessel as well as the tumor.

This implementations are based on the 5 equations below:

No Equation Eg. No

1 Po= p]FK (36)

2 divt =0 (3.10)

3 div(Dgradn) = ynp (5.5)
.9

4 g = gF(X,t,n,g) (6.8)

— K q T

5 t = -[-UU + FxFi] | (7.26)

K

Table 8.1. Equations building the problems

8.1 Isotropic and homogeneous growth of a tumor inside a rigid vessel

A spheroid tumor with in a rigid cylindrical vessel represents a type of breast cancer
named ductal carcinoma. By receiving nutrients through the walls of tumor cells,

tumor can grow nearly 10 cm inside a breast duct. [16]
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Figure 8.1.1. Tumor growing in a rigid vessel

As the vessel is rigid the deformation is only at Z direction and the motion and its

deformation gradient is as:

1 00
1
r=R  0=0  z=27 F=[0 - 0 (8.1)
00 2

Here A is the function of deformation on Z direction. Suppose the growth rate is

piecewise constant and level of nutrients is above a threshold value;
['=T(n—- n), (8.2)

Where 71 threshold value and H is Heaviside function as;

A 1 if concentration of nutrient > 7,
H(R) = { 0 if concentration of nutrient <n (8.3)
With a nutrient flow given above, the growth can be assumed as homogeneous;
g=4g(t). (8.4)
As shown at equation (6.8)
g =3T(Xt,n,9). (8.5)
When integrated the equation above as
Ydo = 1
[5dg=[3T dt. (8.6)
Growth function g can be obtained as:
ot
g = er§_ (87)



From (8.1), (8.4) and (2.6), Fk can be obtained as,

F=FxG G=gl, Fg=_F
In matrix form Fy can be shown as:
200
g
1
FK— 0 g_R O, ]K:detFK:TR
0o 0o 2
g
Substituting into (7.26)
1 1rl
g 0 g
ug3R 1,91 0 0 1
t = —( ) 0 1 o|+1]0 — 0}]0
A g3R gR
0 0 1
A
0 0 -—[|0
i gllL
L0 o] [) o
g? g°R
3R 1 Y q
t -8 0 2p2 - 0 (T)
A g°R g3R
/12
0 0 ? 0 0
el v M.
g* \g°R
3R 1 A\
t -2 0 2Rz (T)
A g*R g°R
AZ
0 0 E—

( A
g3R

q

IQIA» ()

)

)

~

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

Here, it can be assumed that the bottom and top surface of the cylinder are stress free

since the cylinder is rigid and obtained a boundary condition as t,, = 0.

A can be obtained with the following calculations:

3R [A? A\?
t, = |5 - (T)l=o'
A g g>R
22 N
E‘(gz—R) =0

(8.13)

(8.14)



A(9)

A(9)

A = g@-30)/@-ap-a/-a), (8.15)

w e e
[ITIT]

2 14 g 16 18 20
Figure 8.1.2. Growth of a spheroid tumor in a rigid cylindrical vessel: axial
displacement of the material as a function of g for different values of g
when initial radius R of tumor is 1 cm.
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10 12 14 16 18 20

g
Figure 8.1.3. Growth of a spheroid tumor in a rigid cylindrical vessel: axial
displacement of the material as a function of g for different values of g
when initial radius R of tumor is 2 cm.
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8.2 Isotropic and homogeneous growth of a tumor inside a non-rigid vessel

The problem is solved for a spheroid tumor with in a non-rigid cylindrical vessel is
solved here. Since both the vessel and tumor have a deformation, each of their
deformation is solved separately and then these equations are used as a boundary
conditions for each other where the inner surface of the vessel and surface of the
tumor touch each other.

D

Figure 8.2.1. Tumor growing in a non-rigid vessel

Stress components for vessel:

As the vessel is non-rigid the deformation is at R and Z directions and the motion

and its deformation gradient for vessel is as:

fi’ 0 0
r=f(R), 0=0, z=217 F,=|o 1L o 16
0 0 2
Here energy function for vessel is taken as isotropic hyperelastic material,
W, = a(l, — 3). (8.17)
From (7.20), the Cauchy stress tensor for vessel is

b = ZP[al Oun + a1, (1 Sun — vMN)
(8.18)

6]]] [ v_l]MN] X1,NXk,M>

—1

C - ¢,
v au

aw, 1] (8.19)
alll,
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Since vessel is assumed to be incompressible and isotropic, Cauchy stress tensor

takes the following form

oW,
t=Pl+|2—2C, " +2

o1,

—1 -2
a ” - C, )] (8.20)

which is shown by Hilmi Demiray [22], here P is hydrostatic pressure function.

Derivatives of W, are

ow, ow, 0 oW,
oL, _ “ o, oI,

= 0. (8.21)

And C,is Green deformation tensor where

C, ' = F,FT, (8.22)

fi' 0 oul 0 0] [(AD* 0 o]l
C, =

E 0 _ll 0 (f)* 0 (8.23)

R2
0 0 22

R

From (8.18), (8.19) and (8.21) Cauchy stress tensor for vessel takes the following

form:
ow, [(AD? 0 0]
t=P+[aI ] Zai 0 (7;2 OJl. (8.24)
0 0 A2

Since the vessel is taken as an incompressible material,

111, = det(C,™") = 1, (8.25)
From (8.24)
R2 '

f1 can be obtained with the following calculations:

e R
=7 (8.27)
fi'dfy = @, (8.28)
2
(f)? _ R? (8.29)
=57t 4
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RZ
fi= |5+ (8.30)

where A and B are integral constants.

Here
- K 8.31
fl - Afl’ ( ' )
will be useful at further calculations. Also to simplify the equations,
K (8.32)
X = - .
fi
is used, with which the Green deformation tensor becomes as below,
[*° ]
— 0 O
G
C, = 1 8.33
v o L of (8.33)
X
lo o 2l
and Cauchy stress tensor takes the form:
x? ]
iz ° 9
t=P+ 2a 1 : (8.34)
0 =% 0
X
0 0 A2
These stress components should satisfy the Balance equation:
dt 1
d;r + ; (trr - t@@) = 0. (835)
From (8.32)
R_E (8.36)
x = —-—-—= - .
fi r
Then the derivative can be calculated as below:
dR R
dtrr _ dtrrd_x _ dtrr WT B (837)

dr  dx dr  dx T2
From (8.30)
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r?= —+B. (8.38)

Deriving (8.38) and using (8.32)

2rdr = 0 (8.39)
;l_; - % (8.40)
When (8.40) applied into (8.37)
e o4
Using (8.34) and (8.41) with balance equation (8.35)
1dt,, (A 1 x2 1
~x (;—x) +;<P+2aF—P—2ax—2>=O. (8.42)
(8.42) can be simplified as
- eed)
Integrating the equation (8.43)
= J xz—“(f + ’—1) de, (8.44)
L2 g
tyy = za (ﬁ + Alnf)l ) , (8.45)
A2\ 2 .
= i—f[@+ Aln;—ol, (8.46)
where x; is the inner boundary of the radius of the vessel and
trrlx=x; = —Pi trrly=x, = 0, (8.47)

as x, is the outer boundary of the radius of the vessel and P; is the pressure made by

tumor to the inner surface of the vessel.
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Stress components for tumor:

As the vessel is non-rigid the deformation is at R and Z directions and the motion
and its deformation gradient for tumor is as:

f2!
r = f,(R), 6 =0, z= AZ, F,

(8.48)

Il
oX|sh ©
N~ o o

Here A is the function of deformation on Z direction and f,(R) is the deformation

function on R direction. Suppose the growth rate is piecewise constant and level of
nutrients is above a threshold value like the example at section 8.1;

I'="T(n- n), (8.49)
Where 71 threshold value and H is Heaviside function as;
o 1 if concentration of nutrient > 1,
H(R) = { 0 if concentration of nutrient <# ° (8.50)
With a nutrient flow given above, the growth can be assumed as homogeneous;
g=g(@®). (8.51)
As shown at equation (7.10)
g =5TX,t,n,9). (8.52)
When integrated the equation above as
1 1
[5dg = ][3I dt. (8.53)

Growth function g can be obtained as:
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=t

g = eF§ (8.54)

which is exactly the same as example 9.1.

From (8.48), (8.51) and (2.6), Fk can be obtained as,

F,=FxG, G=gl, Fy = g F,, (8.55)

In matrix form Fy can be shown as:

fol
= o o
f: Aot f,
Fy = % 0l Jk=detFg =" (8.56)
o o 2
g

Here, to write boundary conditions in the reference configuration, instead of Cauchy

stress tensor, Piola-Kirchoff stress tensor, T is used:
T=JsuG ' Fg— U)Fx']. (8.57)

Applying (8.55) and (8.56) to (8.57),

i - 2

2o 9 o o

9 q f2

1 f2 (Alefz) g*R
T =pul|- = 0f- 0 —/— of| 8.58

A 2

0 0 - 0 0 9
9 A

By some easy calculations components of T can be defined in the following forms:

_ fi_
Trr = Ux)? & l (8.59)
Too = |2~ g7 LE] (8.60)
g f2
Tyz = .U[__ Ux)? l (8.61)
A2 fa (8.62)

]K= ggR '
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With Piola-Kirchoff stress tensor the equation (3.10) will take the following form:

dR

+ % (Trr — Toe) =0, (8.63)
with the boundary conditions given in the reference configuration as,

TRR|R=Ri = —P, f2(0) = 0. (8.64)
Since tumor is free of stress at Z direction, T,, = 0, and this leads to

Jg)? = 3—: (8.65)

Using (8.65) with (8.59) and (8.60), rewrites the stress components as;

X

Trr = 1 lE Al (8.66)
[f AR
T@@ = U gZR ngz . (867)

These stress components are used at equation (8.62) to obtain the non-linear ordinary
differential equation of £, (R):

d,,121,/12f2/12_0 8 68
sl 7Reg)-e (%59

This equations with the boundary condition given at (8.64) is solved numerically
using Mathematica with the codes given at section Appendix F. Here u as material
constant of tumor and a as material constant of vessel are unknown constant. A new
constant gBis defined for the relation between these two constant as a = Su. By using

this new constant the first boundary condition at (8.64) is rewritten as,

f2(R) = %(—ﬁPigz +JBPg? + 4/12). (8.68)

This equation is numerically solved at R = R;, by giving related values to § and

g, and taking values of A which satisfies the condition g < 0 using equation (8.64).

At Figure 8.2.2, for different values of 1 and g, changes of f, with respect to R is
given with g = 2. Also at 8.2.3, for different values of A and g, changes of f, with
respect to R is given with § = 0.5. When these both graphs are analyzed, with same

g value, it is shown that the function £, (R) is increased when value of A is increased.
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Another important note is that when A is same, the function f,(R) is decreases when
value of g is increased. As a conclusion, when the rate of expansion function at Z
direction A increase, the contribution of the growth function of tumor g, to the
deformation is decreased. This result is not a result mostly expected. But since there
is no clue for the value of the material constant rate § = a/u and there is no study
on tumor growth in a non-rigid vessel, there is no way to compare the results with

valid solutions.

1 —

Figure 8.2.2. Changes of f, with respect to R is given with § = 2
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A=1 H g=1 Y
- - --1=13 lgfi 2
08 | . _ . _ 1=18 W g= R

Figure 8.2.3. Changes of f, with respect to R is given with 8 = 0.5

The other hand, the other material constant q should be negative. As shown at Figure
8.2.4., when B =3,and A =3, if gis taken as g = 2, then g = —0.65 and if g is
taken as g = 2.2, the ¢ = —23. As a result of this, with the model studied in this
thesis, it is possible to determine the value of g which determines the structural
features of the tumor if the values of g and A are measured.
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Figure 8.2.4. Changes of f, with respect to g
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9. CONCLUSIONS AND RECOMMENDATIONS

In this study, a mathematical model for a tumor growing in a cylindrical vessel is
proposed. Firstly, a rigid vessel is considered in the model and tumor is considered as
a spherical body, and a respectively basic growth tensor G is defined to obtain the
relation between the extension and the growth. It is observed that as the growth
increases, the elongation is increased as well.

Later the vessel is considered as a non-rigid elastic material and a simple constitutive
equation for this material is defined. In the model, tumor is considered as grown
enough, in a cylindrical shape and in an interaction with the vessel as a reference
state, and let the tumor to deform in radial directions. As a result, opposite to a rigid
vessel, with a non-rigid vessel it is observed that as the growth increases the
elongation is decreased.

At the evaluation of the model, the unknown material constants and the assumptions
to simplify the equations take roles as disadvantages.

For further studies, under the results of this study, it is highly recommended to define
tumor as a viscos-elastic material for more realistic solutions. Also the relation
between tumor and the vessel should be defined more realistic ways.
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APPENDICES

APPENDIX A: Balance Law Equations

Equation of the balance law is

d
a—f + div(pv) = p + pdivv = Tp. (A1)

As from the law of conservation of mass,

p(x,t)dV = dm, (A.2)
M= fv p(x, t)dv, (A.3)
dM d

rTin Ej;pdv. (A.4)

Here if dM/dt = 0 the mass is conserved, if dM/dt > 0 then there exists growth
and if dM /dt < 0 there exists resorption.

d dp . .
%Lpdv = + pvgx = p + pdivv. (A.5)

Sine in the tumor model there may exist growth, the rate of the growth T is assumed

that is given the form below to the law of conservation of mass,

p + pdivv = Tp. (A.6)
To rewrite the this equation as
(o)) = TpJ (A7)
The following equations are used:
dv
= F) = — A.8
J = det(F) = —, (A.8)
vy dvy dv dv
1y — - Kk — == A9
dive =Vix = 3p 0 Fycav (dV)' (A9)

Multiplying (A.6) with J
39



pJ + pdivv] = T'pJ, (A.10)

dv  dv,dv  dv <d'v

And this leads to

(o)) = Tp]. (A.12)
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APPENDIX B: Balance of Linear Momentum Equations
The balance formula for linear momentum is
d . .
a(pv) + div(pv®v) — divt = pb + T'pv, (B.1)

where tis the Cauchy stress tensor, b is the body force and TI'pv represents the

contribution to the momentum due to the mass source.

From contribution of momentum, the total momentum is

P = fpvdv. (B.2)
%4
External forces are as

j pbdv + f t(in)da=R = ap (B.3)
v

s dt
Where first term at left-hand side of the equation is mass forces and second term of
the left-hand side of the equation is surface forces.

This equation is rewritten as

d
—fpvdv = f pbdv + ft(n)da, (B.4)
dt Jy v s

d
—fpvdv—f pbdv — ft(n)da #0, (B.5)
dt J, v s

Because mass change is not 0 but it is T pv the equation takes form,

0
a(pv) + div(pv®v) — divt = pb + I'pv, (B.6)
d . .
3¢ (PV) + div(pv®v) —Tpv = pb + divt, (B.7)
pv + pv + div(pv@®v) — T'pv = pb + divt. (B.8)

From mass balance equation (3.1)
pv + pv + div(pv®v) — (p + pdivv)v = pb + divt, (B.9)
pv + pv + div(pv@®v) — pv — div(pv@v) = pb + divt, (B.10)

pv = pb + divt, (B.11)
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With neglecting velocity changes and body forces

divt = 0. (B.12)
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APPENDIX C: Tensor Calculus for Relation between Growth Tensor and Growth
Rate

To show that
trDy = T, (C1)
first J; is shown at the form of indices notation,
J¢ = €ijrGi1GjrGys, (C.2)
then derived to time
Je = €iji|Gi1GjaGrs + Gi1G2Gys + Gi1Gp Gyl (C.3)

Secondly trace of D, , symmetric part of GG, is shown at the form of indices

notation,
D, = sym(GG™), (C.4)
Lo o A

Dy =667 + (66| =-[667 + (67)E"] (C5)

17 . _ .
(Dg)ij = E[GlmeJ 1 + (G_l)imTGm]T], (C6)

1, . .
(Dg)l-j = E [Glmej_1 + (G_l)miG}m]' (C7)

1, . _ . . _
(tng) = (Dg)ii = E[Glmei ! + (G_l)miGlm] = Glmei 1: (C8)

Then using (C.2),

JeGin ' = eijiGi2Grs, (C.9)
JeGi2 ' = €ijxGirGya, (C.10)
JeGis™" = eijxGinGja, (C.11)
and using
adj(G) = det(6) G = J,G™? (C.12)

(C.3) is written in this form;
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Jo . . o . .
r =]_ = GGy '+ G2Gja "+ GGz = GG
G
=trD, .
Using G = g1,
trDy; =trDg =T =§—G.
G
Jo = €ijkGi1Gj,Grs = €123G11G22G33 = €123 93'
Je = eijk[G.LlGjZGk3 + GilG;ZGRB + Gi1szG}<3]
= 9123[6211622633 + G11G32Gs3 + G11G22G§3]

= e123l999 + 999 + 999] = 3e12399°

(C.13)

(C.14)

(C.15)

(C.16)

with the obtained values the below relation between rate and scalar growth function

can be easily shown,

r_Je _ Besgg® _ 34
I e123 g3 g'
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APPENDIX D: Nutrient Equations

Reaction-Diffusion equation (Diffusion in 3 space dimensions):

%fvc(x,t)dv = —fs]ds + fvfdv' (D.1)

Where S is the surface, V is the volume, J is the flux of the material, f is the source
of the material i.e. f(c, x, t,), the right hand side of the equation is rate of change of
amount of material in V, first integration at left hand side of the equation is rate f
flow of material across S into V and the second tern at the right hand side of the

equation is material created in V.

Divergence Theorem:

f f fv (V.F)dV = jff; (F.n)dS (D.2)

Where F is continuously differentiable vector field and n is outward pointing unit

normal field.

Reynolds’ Transport Theorem:

d
— f ®dV = | (¢ + OV.v)dV (D.3)
dt Py Py
d
—f odV = fdn’dv +f dv.n dA (D.4)
dt Py Py P,
Equations:
Div[F1Div(JF~'n)] = [XK,k(]XM,kn),M]K (D.5)
= [XK,k]XM,kn,M],K = [XK,k]XM,kn,lxl,M]'K (D.6)
= [XK,k]6kln,l]’K= [XK,k]n,k]’K (D.7)

= Div[JF~1Vn] (D.8)
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APPENDIX E: Plotting Codes for the Graphs of 8.1
Figure 8.1.2:

lamda[g_, g_, R_] := g~ ((2-3q)/(2-q)) * R ~(-g/(2-q))

Needs ["PlotLegends "]

Plot[{lamda[g, -1, 1], lamdalg, -2, 11, lamdalg, -4, 11}, {g,
1, 2}, Frame—-True, PlotStyle—{Black,Dashed, Dotted},
PlotLegend-»{"qg = -1","g = -2", "q = -4"}, LegendPosition-—{-
0.95,0.45},Joined—»{True, True, True}, PlotMarkers—Automatic,
ImageSize—Full, LegendSize—{0.2, 0.15}, LegendShadow—{0,-0}]

Figure 8.1.3:

lamdalg , 9 , R ] := g*((2-39)/(2-9)) * R ~(-q/(2-9))

Needs ["PlotLegends "]

Plot[{lamdalg, -1, 2], lamdalg, -2, 2], lamdalg, -4, 21},
{9, 1, 2}, Frame-True,PlotStyle—{Black,Dashed,Dotted},
PlotLegend—{"g = -1","qg = -2", "g = -4"},
LegendPosition—>{-
0.95,0.45},Joined—»{True, True, True}, PlotMarkers—Automatic
, ImageSize—Full, LegendSize—{0.2, 0.15},
LegendShadow—{0,-01}]
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APPENDIX F: Mathematica Codes for Solving the Problem 8.2 and Plotting its
Graphs

Solving the Problem 8.2:

Ri = 0.4
Ro = 0.6
ri = 0.5
lam = 1.
beta = 0.01
lamd = 1

ro = Sqgrt[(Ro"2 - Ri"2)/lamd + ri~2]
xo = Ro/ro
x1 = Ri/ri

PPi = ((x0"2 - xi”2)/2 + lamd*Log[xo/xi])/lamd”2

g=1.

f2t = (-PPi*beta*g”"2 + Sgrt[ (PPi*beta*g”™2) "2 +
4*lam”21)/2

denk = D[ (f2"'[R] - lam”2/f2'[R]), R] + (£2"' [R] -
lam”2/£f2'[R] - f2[R]/R + lam™2*R/f2[R])/ (R)

Solve[denk == 0, D[f2[R], {R, 2}]]

denkl = Derivative[2] [£2] [R] -
(Derivative[1l] [£2] [R]* (lam™2*R*f2 [R] -
lam"2*R*"2*Derivative[1l] [£2] [R] +
f2[R]"2*Derivative[1l] [£2] [R] -
R*f2 [R] *Derivative[1l] [£2] [R]"2))/ (R*2*f2[R]* (lam"2 +
Derivative[1l] [£2] [R]"2) + 10" (-6))

Ri = ri

s = NDSolve[{denkl == 0, f2[0] == 0, f2'[Ri] == f2t}, f2,

{R, 0, Ri}]

Do [WriteString["C:\Users\Damla\Desktop\damla\dat\YazB0O0O1lL
18gl.txt",R,"\t",f2[R]/.s,"\n"],{R,0,R1,0.01}]

Plot [Evaluate[f2[R] /. s], {R, 0, Ri}, PlotRange -> All]
trrr = £2'[R]/g”2 - lam”™2/(g"2*£f2'[R])

Plot [Evaluate([trrr /. s], {R, 0, Ri}, PlotRange -> All]
Plot[Evaluate[f2'[R] rr /. s], {R, 0, Ri}, PlotRange ->
All]

trrr /. R -> Ri

With the program above the points of the solution of £, is exported to a text file and
then using program named Graph, these files are turned in to the graphs given at
section 8.2.
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