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OZET

SICAKLIK ETKISI ALTINDAKI
DUZLEM KAFES SISTEMLERIN OPTIMUM TASARIMI

DEMIRLEK, Mehmet Zahid
Nigde Universitesi
Fen Bilimleri Enstitiisii

Insaat Miithendisligi Anabilim Dali

Danisman : Do¢. Dr. Hakan ERDEM

Ocak 2014, 70 sayfa

Bu tez ¢alismasinda, diizlem kafes sistemlerin sicaklik etkileri altinda optimum tasarimi
arastirilmistir. Cubuk elemanlarin kesitleri tasarim degiskeni olarak secilmis ve toplam
maliyetin bir gostergesi olarak cubuk kesit alanlarinin toplami segilmistir. Tasarim
degiskeni olarak segilen kesit alanlarinda yapilan alt ve {ist smirlar, deplasman
kisitlamalari, rijitlik kisitlamalar1 gerilme kisitlamalar1 altinda amag¢ fonksiyonu
minimize edilmistir. “’Differential Evolution’ niimerik optimizasyon metodu
kullanilmigtir. Bir diizlem kafes sistem iizerinde amaglanan optimizasyon yonteminin
bir 0rnegi gosterilmistir. Gorlilmiistiir ki; sicaklia maruz kalan kafes sistemlerde

sicakligin optimum tasarimlar lizerinde énemli bir etkisi vardir.

Anahtar sozciikler: Yapisal optimizasyon, sicaklik ve optimizasyon, sicaklik ve optimum kesit,

kafeslerin optimizasyonu, sicaklik etkisi.



SUMMARY

OPTIMUM DESIGN OF PLANAR TRUSS SYSTEMS
SUBJECTED TO TEMPERATURE EFFECT

DEMIRLEK, Mehmet Zahid
Nigde University
Graduate School of Natural and Applied Sciences

Department of Civil Engineering

Supervisor : Assoc. Prof. Dr. Hakan ERDEM

January 2014, page 70

In this study, optimum design of planar truss systems subjected to temperature effect is
investigated. Cross-sections of truss elements are selected as a design variable and sum
of truss section areas are selected as an indicator of total cost. Objective function is
minimized as lower and upper limits are defined as design variable at cross sections,
displacement limits, stiffness limits and stress limits. “Differential Evolution” numerical
optimization method is used for analysis. An example of target optimization method for
a planar truss system is shown. It is observed that temperature has an important effect
on truss systems exposed to temperature effect.

Key words: Structural optimization, temperature and optimization, temperature and optimum cross-
section, optimization of truss systems, temperature effect.



ONSOZ

Kafes sistemlerin optimizasyonu miihendislik literatiirlinde olduk¢a Onemli bir yer
tutmaktadir. Sadece insaat miihendisleri degil pek ¢ok miihendislik alaninda da
karsilagilir. Kafes tasiyicilar ile ilgili pek cok optimizasyon ydntemi gosterilmistir.
Literatiirdeki ¢alismalarin ¢ogunlugu optimizasyon yontemleri iizerinedir ve genellikle
dis yiikler altinda yapisal davranislar incelenmistir. Sicakligin etkileri ihmal edilmistir.
Ozellikle sicakliga maruz diizlem kafes sistemlerde bir kesit optimizasyonu yapiliyorsa,
sicaklik etkileri mutlaka arastirilmalidir. Bu calismada, diizlem kafes sistemlerin kesit
optimizasyonu yaninda sicakligin etkileri arastirilmis ve ciddi bir etkisi oldugu ortaya

konmustur.

Tez calismamin yiiriitiilmesi esnasinda her tiirlii imkani1 saglayan, degerli bilgi ve
tecriibelerinden yararlandigim kiymetli hocam Dog¢. Dr. Hakan ERDEM’ e, ayrica
yapilan modellerin analizleri boyunca ihtiya¢ duydugum her an yardimini esirgemeyen

Yrd. Dog. Dr. Ersin AYDIN hocama ¢ok tesekkiir ederim.

Her tiirli maddi ve manevi deste8i veren aileme de en igten tesekkiirlerimi sunarim.
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BOLUM I

GIRIS

1.1 Yapisal Optimizasyon

20. ylizyilin ikinci yarisindan bu yana bilgisayarlarin kullanilmaya baglamasi ile sayisal
hesap yontemleri ve bunlarin miihendislik problemlerine uygulama alanlar1 da hizla
ilerlemistir. Sonraki yillarda sonlu elemanlar yonteminin kullanilmasi ile yap1
miithendisleri uzay kafes, asma koprii, sandvi¢ ve kabuk yapilar gibi daha karmagik yap1
tipleri ile ugragma olanagi bulmuslardir. Yap1 sistemlerinin gesitlenmesi ise, bu yapilar
icin uygun malzeme tiirliniin, yiikleri en elverisli ve ekonomik bi¢cimde tasiyan yapi
sisteminin aranmasimna neden olmustur. Boylece optimizasyon teknikleri, yap1
problemlerine uygulanmaya baslamis, miihendisin deneyim ve Onsezisine dayanan
geleneksel yapi tasarim yontemi ise yerini, belirli kisitlamalar1 saglayacak sekilde yap1
maliyetini minimize eden tasarim degiskenlerinin matematiksel hesabina birakmistir

(Giilay, 1985).

Yapi tasarim alaninda yapilan ¢aligmalar, yapisal optimizasyon olarak adlandirilan yeni
bir aragtirma sahasiin gelisimine yol agmistir. Yapisal optimizasyon, Uysal’ a (2002)
gbre, onceden tanimlanan bir amac¢ ve verilen geometrik davranis kisitlar1 altinda,

muhtemel tasarimlar i¢inde en iyi yap1 tasariminin belirlenmesi olarak tanimlanir.

Bir tasarim miihendisi, arastirmaci ve gelistirmeci olmasi gerektiginden ¢ogu zaman
tamamen yeni yapilar tasarlamak zorundadir. Belirli bir tasarim probleminin yiikleme
ve mesnet kosullari, genelde onceden bilinmektedir. Fakat tasarimeci, gercek yapinin
nasil goriinmesi gerektiginden emin degildir. Yapr maliyetini etkileyen en Onemli
etkenin yap1 agirligi oldugu bilindiginden, tasarim esnasinda dikkate alinan en onemli
hususlardan birisi yap1 agirligiin azaltilmasidir. Mevcut bir problem i¢in daha 6nceden
uygulanan tasarimlar bulunabilir. Ancak her ne kadar istenen tasarima benzemese bile
yine de dnceki tasarimlarin yeniden boyutlandirilmasi faydali olabilir. Tasarimci, dnceki
deneyimlerine dayanarak problemi sezgisel olarak ¢6zmeye calisabilir. Fakat bu

yaklagim, miihendislik problemleri i¢in yorucu goziikmekte ve her zaman 1iyi bir sonuca



ulasmay1 garanti etmemektedir. Diger bir segenek ise, Tanskanen’ in (2002) ifade ettigi

gibi miihendislik problemine yapisal optimizasyon ile yaklasilmasidir.

Onceden tanimlanan bazi1 gereksinimleri karsilayan ve istenen amaca ulasmayi saglayan
makul bir yap1 elde etme temeli lizerine kurulmus olarak tanimlanan yapisal
optimizasyon (Tang vd., 2005), basitce, bir kdprii veya biiyiik bir ¢erceve gibi bir yap1
i¢cin en iyi performansa ulagsmay1 gaye edinen miihendislik, matematik, fen bilimleri ve
teknoloji  alanlarimin  bir kaynagimi olarak Querin vd. (2000a) tarafindan

tanimlanmaktadir.

Yapisal optimizasyonu tanimlayanlardan biride Xie ve arkadaslaridir. Xie vd.” ne
(1993) gore yapisal optimizasyon tasarimda en ¢ok ugrastirici ancak ekonomik yonden
de en miikafatlandirict iglem olarak tanimlanmistir. Yapisal optimizasyon problemleri
icin geleneksel ¢oziimler, muhtelif matematiksel programlama teknikleri kullanilarak
arastirilmistir. Matematiksel programlamanin tasarim optimizasyonu problemlerini
cozmede etkisiz ve ¢cogu kez de uygunsuz olarak gosterilmesine ragmen bu yontemler

kullanilarak uygun tasarim teorileri gelistirilmistir (Xie vd., 1993).

Optimizasyon yoOntemlerinin yapt problemlerine uygulanmasi ile belirli kosullari
saglayan ve ayni zamanda yapi maliyetini minimum yapan tasarim degiskenlerinin
hesab1 miimkiindiir. Yap1 optimizasyonunda amag¢ fonksiyonu olarak, genellikle yapi
maliyetinin minimum olmas1 sarti aranirken, bazi1 problemlerde yer degistirmelerin
minimum olmasi (Thevendran, 1983) yap1 dogal frekansinin (Kamat, 1984) veya kritik

yiikiin maksimum olmasi (Pala, 1978) gibi cesitliliklere de rastlanir.

Yapisal optimizasyon problemi, matris yer degistirme veya matris kuvvet
yontemlerinden biri ile formiile edilebilir. Bilgisayar programlamasina daha uygun
olmasi nedeniyle, daha cok sonlu eleman ve matris yer degistirme yontemi ile

yaklasimlara rastlanmaktadir.

En ekonomik yap1 sisteminin se¢imi ve boyutlandirilmasini amaglayan optimizasyon
probleminde, yap1 maliyeti, malzeme, kalip, iscilik masraflari, bakim onarim gibi ¢esitli
faktorleri igermesine karsin, yapi optimizasyonunda ¢ogu zaman maliyet fonksiyonu

olarak yap1 agirlig1 veya yap1 hacmini almak iyi1 bir yaklasim verir. Buna gore yapisal



optimizasyon problemi, minimize edilecek yap1 agirligi fonksiyonu ile sisteminin
davranig1 ve yonetmeliklerle ilgili kisitlamalar1 saglayan bir programlama problemi

meydana getirir.

Son yirmi yilda yapisal optimizasyon alaninda, uygun malzeme dagilimiyla en iyi
yapisal performansa ulasmay1 hedefleyen 6nemli gelismeler saglanmistir. Tipik olarak
optimizasyon problemleri, bagimli ya da bagimsiz degiskenlere dayanan sonlu eleman
analizi, tasarim duyarlilik analizi ve matematiksel programlama yontemlerinin beraber
kullanilmastyla ¢oztilmektedir. Li vd. (1988) onceki caligmalarin ¢ogunun, bagiml
degiskenler kullanilarak ele alindigini, bunun matematiksel anlamda onemli gibi
goziikse de hedef fonksiyonun ve kisitlayicilarin tiirevi gibi c¢ok sayida tasarim
degiskenine ihtiyag duyulacagini ve bu nedenle de bahsi gegen yontemler, matematiksel

olarak karmasik, hesaplama yoniinden de masraflidirlar diye ifade etmislerdir.

Yapisal optimizasyonun bircok pratik uygulamasinda tasarim degiskenleri, verilen bir
takim farkli de@erler arasindan secilmek zorundadir. Ornegin yapisal elemanlar,
tireticilerden ticari olarak ulasilabilecek sekilde standart bir kesit veya kalinlikta
secilmelidir. Bu tiir problemlerin {istesinden gelebilmek i¢in bagimli degisken
yontemleri ¢ogu kez, hedef ve kisitlayic1 fonksiyonlarin tasarim degiskenlerine gore
tirevlerini almak tizere 6zel matematiksel iglemlere ihtiyac duymaktadir. En basit
yontemlerden biri, ilk olarak tiim tasarim degiskenlerinin siirekli oldugunu varsayarak

daha sonra farkli bir sekilde ¢6ziime ulagmaktir (Li vd., 1999b).

1.2 Yapisal Optimizasyon Ile flgili Calismalar

Yapisal optimizasyon ile ilgili ¢aligmalar ¢ok eskidir. Yap1 sistemlerinin kemer, kubbe,
kafes, 1zgara sistemler gibi ¢esitlenmesi, miihendisin c¢esitli mesnetler yardimiyla
yiikleri optimum sekilde aktarma istegini yansitir. Yapi sistemlerinde ¢esitli malzemeler
denenmesi ve kullanilmas1 da yine optimum yap1 tasarimi gereksinmesinden

kaynaklanmaktadir.

Yap1 optimizasyonu ile ilgili ilk bilimsel caligmalar Maxwell (1952) tarafindan
yapilmistir. Daha sonra tam gerilmeli tasarim ve ayni anda go¢me modu kriterlerinin

kullanmasi ile Cilley (1990) tarafindan devam ettirilmistir.



Bilgisayarlarin icadi ve gelismesine paralel olarak sonlu elemanlar yontemi ile
optimizasyon yontemleri de biiyiik bir hizla gelisme olanagi bulmustur. Shmidt (1960)
yap1 optimizasyonu probleminde, sonlu eleman analizi ile matematik programlama
tekniklerini bir arada uygulamayi Onermis, bdylece yaklasimla yapisal tasarim
probleminin tasarim degiskenlerine bagli, bir amag¢ fonksiyonunun oldugu, gerilme, yer
degistirme, frekans gibi sinirlayici kosullar1 da igerecek sekilde ele alinarak matematik
programlama teknikleri, cesitli yap1 sistemlerine uygulanmaya baslamistir. Daha
sonralart matematik programlama tekniklerinin yani sira, yap1 problemleri i¢in iiretilen
optimumluk kriteri yontemleri de yapi optimizasyonu problemlerinde yaygin olarak

kullanilmaya baslamistir (Venkayya ve V.B., 1971).

Onceleri yalmz statik yiik etkisinde olan yapilarin optimizasyonu incelenirken, daha
sonra zamana bagli olarak degisen dinamik yiik, deprem yiikii, ¢ok sayida yiikleme
etkisindeki yapilarin optimum tasarimi, optimum kontrol teorileri ile ilgili ¢calismalar

yapilmistir.

Bendsee ve Kikuchi (1988) topoloji optimizasyonu iizerine en 6nemli ¢alismalardan biri
olan, kendilerinin “Homojenlestirme Yontemi” adin1 verdikleri bir yontem ile yapiy1
mikro biiytikliikte bosluklu bir model seklinde tanimlayarak en uygun goézeneklilik
durumunu arastirmiglardir. Kiiclik bogluklar ile homojenlestirilen yapimin uygun
optimizasyon Ol¢iitlerine gore verilen yiiklemeyi karsiladigi goriilmiistiir. Keskin yap1
kenarlar1 nedeniyle ii¢ boyutlu sistemlere uygulanmasi nispeten zor olan bu yontemin

gelistirilerek istenilen sekilde kullanilabilecegini belirtmislerdir.

Xie ve Steven (1995) topoloji optimizasyonu ve es zamanlt olarak sekil ve boyut
optimizasyonu i¢in basit yaklasimlar sunmuslardir. Dogal yasam1 6rnek alarak temelini
olusturduklar1 bu yontem ile optimizasyon islemi boyunca yapinin diisiik gerilmelere
maruz bolgelerini yapidan c¢ikarmak suretiyle optimizasyon gerceklestirmislerdir.
Cesitli diizlem gerilme problemleri lzerinde gergeklestirdikleri bu optimizasyon
isleminde, kaldirilan elemanlarin malzeme ozelliklerini sifir alarak sabit bir sonlu
eleman modeliyle caligmanin miimkiin oldugunu vurgulamiglardir. Sonu¢ olarak
¢ozdiikleri 6rnek problemlerin ¢ogunda en uygun tasarimda en diigiik gerilme degerinin

en biiyiik degere oranin % 25 oldugunu ortaya koymuslardir.



Chu vd. (1996) yapinin agirhgmi azaltirken rijitlik gereksinimlerini karsilayan bir
yaklagimla c¢alismislardir. Sonlu eleman analizinin ardindan her bir elemanin
kaldirilmasina bagli olarak yap1 rijitligindeki degisimi gosteren bir duyarlilik numarasi
belirlenmekte ve yapi rijitligini en az oranda degistiren elemanlar, yapidan ihrag
edilmektedir. Bu g¢alismada, c¢oklu yer degistirme kisitlayicilarinin, ¢oklu yiikleme
durumlarinin ve hareketli ytiklerin bulundugu problemler ¢oziilmiistiir. Bu problemler
iki boyutlu olmalarina ragmen s6z konusu yontem, ii¢ boyutlu problemlere de kolayca
uyarlanabilmektedir. Rijitlik kisitlayicisinin kullanilmasiyla yine hacimde dikkate deger
kazanimlar elde edilebilmektedir. Bunun akabinde ayni yontemle ulasilan sonuglarda
eleman kaldirma orani, a§ boyutu ve eleman tipinin etkilerini arastirilmigtir (Chu vd.,

1997).

Chu vd. (1997), yapr agirligini azaltmak i¢in deplasman kisitlayicilariyla tasarim
degiskenlerini farkli almislardir. Eleman boyutunu kiigiiltmede kullanilan duyarlilik
numaralarmi  uygunluk Olciiti  yontemlerini  kullanarak belirlemis ve ayrica
calismalarinda basit bir sinir diizeltme teknigi de kullanmislardir. Bu caligmalariyla
boyutlandirma problemlerinde evrimsel yap1 tasariminin farkli tasarim degiskenleriyle
uyum saglayabilecegini gostermislerdir. Ayrica eleman kaldirma oraninin 6nemine de
deginilmis, bu oran kiiciildiik¢e optimizasyon hassasiyetinin artacagini ancak iglemin

zaman yoniinden dezavantaj doguracagini belirtmislerdir.

Cercevelerde uygun tasarim igin yapilan arastirmalarda, Manickajah vd. (2000),
kisitlayict olarak gerilme, yer degistirme, rijitlik ve burkulma yiikii kullanmustir. iki
adimda tamamlanan yontemin ilk adiminda en elverissiz durum i¢in tasarim
degiskenleri diizgiin sekilde dl¢eklendirilmekte; ikinci adiminda da dayanim, rijitlik ve
burkulma ytikii iizerindeki etkilerine bagli olarak her eleman i¢in bir duyarlilik numarasi
hesaplanmaktadir. En uygun tasarima ulasincaya kadar bu iki adim dongii seklinde

tekrarlanmaktadir.
1.3 Yapisal Optimizasyondan Beklentiler
Uriinlerin gelisimi ve iiretimi, 6zellikle endiistriyel alanda belirli bir maliyet smirin

asmadan kalite ve giivenilirligi artirmak icin hangi dl¢iilerin esas alinacagi hususunu sik

sik On plana ¢ikartmaktadir.



Saglamlik ve performans gereksinimlerinden dolay: yiik tagiyan elemanlarin geometrisi
genelde karmagiktir. Bu gereksinimler, ¢ogu zaman iiretim maliyetinin yiikselmesine
sebep olmaktadir. Kullanim amaci, maliyet, estetik, iiretim sartlar1 ve diger teknik

gereklilikler gibi ¢esitli amag ve kisitlayicilar 1s18inda tasarim yapilmalidir.

Pourazady ve Fu (1996) ise miihendislikte iki ana problemle karsilasildigin1 bunlarin;
“Gerilme yogunlugunun azaltilmasi (giivenlik kosulu) ve agirliginin azaltilmasi
(ekonomi kosulu) i¢in yapmnin uygun hale getirilmesidir.”’ oldugu seklinde ifade

etmislerdir.

Bir miihendisin yapisal optimizasyondan beklentilerini Xie ve Steven (1997),
optimizasyonu biitiin yonleriyle ele alip bir liste olusturulmasi gerektigini, optimizasyon

stirecinde gereken hususlar1 asagidaki maddeler halinde sunmuslardir.

e Ayni problemde, yapinin farkli kisimlarinda gergeklestirilen boyut, sekil ve topoloji
optimizasyonu.

e Yapmin farkli kisimlarinda farkli optimizasyon kistaslari. (Ornegin kanatlarinda
dinamik yiik olan, sasisinde rijitlik ve gévdede yorulma (gerilme) bulunan ugak gibi
bir yapi)

e (Cok yonlii yiikleme durumlari.

e ok yonli mesnet kosullari.

e (esitli malzeme ve uygulanabilirlik imkanlari.

e 2 ve 3 boyutlu yapisal bigimleri.

e Statik, dinamik ve denge durumlarina gore es zamanli optimizasyon.

e Dogrusal olmayan geometrik durumlarda optimizasyon.

Bu tam bir listedir ve kisitli matematiksel amaglara nazaran ger¢ek diinyadaki amaglarin
g0z Onilinde tutulmasi gerektigini ortaya koymaktadir. Sekil 1.1.” de tasarim siirecinin

nasil isledigi ile ilgili bir algoritma verilmistir.
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Sekil 1.1. Geleneksel tasarim siireci (Gtlilay, 1985)

1.4 Sonlu Elemanlar Analizi

Bilgisayarlar, islem gii¢lerinin fazlaligindan dolay1 bircok tasarim islemini gittikce
basitlestirmislerdir ve miihendislik tasarimindaki tesiri gittikge belirginlesmeye devam
etmektedir. Tasarimecinin etkinligini artirmak igin tasarim islemine bilgisayarlar1 dahil
eden “Bilgisayar Destekli Tasarim (CAD)” teknigi uzun zamandir ilgi gérmektedir

(Kim vd., 2002).

Sonlu elemanlar analizi kiigiik pargalarin (elemanlarin) montaj ile yapmnin
modellenmesine yardimecr bir tekniktir (Sekil 1.2.). Biitiin elemanlar basit bir
geometriye sahiptirler ve bu durum ¢oziimii daha da basitlestirmektedir. Sonlu
elemanlar analizi siirecinde, bilgisayarda ¢oziilen bir siirii es zamanli matematiksel
denklem olusturulmaktadir. Ilk olarak gerilme analizi fikriyle ortaya ¢ikmustir.
Simdilerde ise 1s1 transferi, sivi akisi, elektrik ve manyetik alanlar gibi birgok
miihendislik dalinda uygulamalar mevcuttur. Onceden klasik analitik ydntemlerle
istesinden gelinemeyen karmasik problemler, simdi sonlu elemanlar analizi sayesinde
kolayca c¢oziilebilmektedir. Tasarim ve iiretim yapan ¢ogu miihendislik firmasi,
giinlimiizde sonlu elemanlar analizi yazilimlarina ya sahiptir ya da bu erisimi saglayan

danigman firmalar araciligiyla bu yazilimlari kullanmaktadirlar (Xie ve Steven, 1997).



Sekil 1.2. Bir sonlu eleman modelinde diigiim noktalar1 ve elemanlar
(www.biymed.com, 2013)

Hesaplama araci olarak sonlu elemanlar analiz yonteminin kullanilmasi ve
bilgisayarlarin hizlarindaki artis ile birlikte verilen bir yapi {lizerinde, binlerce analiz

gerceklestirmek miimkiin hale gelmistir.

Yapisal optimizasyonun sonucunun dogrulugu, biiyiik oranda islemin temelini olusturan
yapisal analizin saglamligina baghdir. Sayisal modelin dogrulugu kadar mekanik

modelin 6zelligi de optimizasyonun kalitesinde belirleyici esastir.

Sayisal analiz yontemlerinin temelindeki hatalar da optimizasyon sonucunu olumsuz
etkileyebilmektedir. Sonlu elemanlar yontemi gilinlimiizde en ¢ok kullanilan yapisal
optimizasyon uygulamasidir. Sonlu eleman modellerindeki baslica hatalar, denklemlerin

ayrismasindan kaynaklanmaktadir.

Optimum kelimesi, miimkiin olanin en iyisi anlaminda ilk olarak Leibniz tarafindan 18.
yiizyilda kullanilmistir (Ozkal, 2006). Kim vd. (2002), optimizasyonu, diferansiyel
hesapla en iyi ¢oziimii bulma islemine verilen isimdir diye tanimlamislardir. Barr vd.
(1989), ise optimizasyonu, énceden belirlenen kosulari ve kisitlayicilart ihmal etmeden

en iyi ¢0zlimii aramak seklinde ifade etmislerdir.


http://www.biymed.com/

Optimizasyon, tiim bilim alanlarinda uygulanabilirlige sahiptir ve mihendislik
biliminde de 6nemli yeri vardir. Bunun en 6nemli Sebebi ise, bir problem i¢in en iyi

¢Ozlimii aramak, miihendisligin 6ncelikli ve degismez bir kurali olmasidir.

Tasarim optimizasyonu kavrami ve buna ulagmak icin gelistirilen teknikler nispeten
uzun bir gecmise sahiptir. Ik yaklasimlardan biri, asgari yap: agirhg gibi teknik
amaclara cevap verebilmek i¢in diizgiin yayili gerilme veya sekil degistirme tiiri
uygunluk kosullarin1 karsilamaya yonelik, en az yiiz yil oncesine uzanan dolayl bir

yontemdir (Brotchie, 1997).

Cesitli yliklemeler, simirlamalar altindaki bir yapinin verimini artirmak ic¢in yapilan
calismaya, yapisal optimizasyon adi verilmektedir. Yapisal optimizasyonun amaci
yapimin biitiinliigiinii tehlikeye atmadan agirhigin1 azaltma, tiretim maliyetini diisiirme
ve yapmin beklenen 6mrii boyunca kullanim masrafini azaltma gibi nedenlere bagh
olabilmektedir. Sekil 1.3. ve 1.4.” te bir kafes sistemin optimizasyon uygulanmadan

onceki ve sonraki sekli goriilmektedir.
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Sekil 1.4. Optimizasyondan sonra (www.opteng.com.tr, 2013)

Son yillarda miihendislik, matematik, fen ve teknoloji alanlarindaki ilerlemelere bagl

olarak yapisal optimizasyon uygulamasi daha da 6nemli hale gelmistir.


http://www.opteng.com.tr/
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19. yiizyil sonlar1 ve 20. ylizy1l baslarinda miihendisler, optimizasyon ilkelerini ve
analitik becerilerini birlestirmislerdir. Bunun sonucunda Uygun Tasarim Teoremi olarak
bilinen asgari agirlikta ¢ergeve bi¢imlendirmelerini kapsayan teoremler ortaya gikmistir

(Pross, 2002).

Sonraki 60 yilda basta kafes sistemler olmak iizere yapisal optimizasyon ile ilgili
yapilan calismalara katkilar siirekli artmistir. Bu caligmalar esasen ii¢ bashk altinda
toplanmistir. Kafes agirhi§inin azaltilmasi, belirli bir malzeme hacmi igin sekil
degistirme enerjisinin digiiriilmesi ve liniform dayanima sahip hiperstatik yapilarin
optimizasyonudur. Ancak bu tekniklerin ¢ogu, hesap tabanli klasik optimizasyon

yontemleridir (Proos, 2002).

Gectigimiz 50 yilda optimizasyon denklemindeki degiskenlerin farkli bir sekle
biiriindiigii, ilk yaklagimlara nazaran degisim gosterdigi goriilmektedir. Dogrusal ve
dogrusal olmayan matematiksel programlama gibi yontemlerin katkisiyla bu asamada
matematiksel programlama kilit bir rol oynamistir. Dogrusal programlamanin temelini
ise 1967° de sunulan Simplex Yontemi olusturmaktadir (Ozkal, 2006). Kisitlayicili ve
kisitlayicisiz  teknikler de ayrica matematiksel programlama ile birlestirilerek
kullanilmistir. Bu teknikler, Lagrange Carpan Yontemi ve Penalt Fonksiyonu Y ontemi

seklinde sunulmustur (Proos, 2002).

Bilgisayar teknolojisinin gelismesiyle birlikte son yillarda bir ¢ok yapisal optimizasyon
yontemi ortaya ¢ikmistir. Bu yontemlerin biiyiik bir kismi sonlu elemanlar yontemini
kullanmakta ve bunlar genel olarak 3 ana baslik altinda toplanmaktadir; topoloji
optimizasyonu, sekil optimizasyonu ve boyut optimizasyonu. Yapisal optimizasyon

yontemleri asagi da 6zet halinde agiklanmistir (Proos, 2002).

1.4.1 Topoloji optimizasyonu

Topoloji optimizasyonu, bir yapidaki topoloji baglantisini tanimlayan siireci ifade
etmektedir. Optimizasyon sonucu elde edilen yapi, baslangi¢ tasarimindan ¢ok farkli ve

dolayisiyla da ondan bagimsizdir. Diger bir ifadeyle, yapinin ilk bi¢cimine bagli olarak

nihai bigiminde hi¢bir sinirlama bulunmamaktadir (Proos, 2002).
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Duysinx ve Bendsee (1998), yapilarin topoloji tasariminda, amag olarak belirli bir

tasarim alaninda malzemenin en uygun sekilde dagiliminin arandigini belirtmislerdir.

Topoloji  optimizasyonundan, literatiirde genelde plan optimizasyonu veya

genellestirilmis sekil optimizasyonu olarak bahsedilmektedir.

Verimli ve hafif yapilar elde etme konusunda yapisal topoloji optimizasyonu etkili bir
tasarim aract haline gelmistir (Bendsee ve Kikuchi, 1988). Kavramsal tasarim igin gii¢lii
bir teknik ve ayrica geleneksel boyut ve sekil optimizasyonuna nazaran ¢ok daha fazla
faydalar saglayabilmesi gercegiyle dikkate deger verimlilikte bir yontem oldugu
kanitlanmistir. Hatta uygun yapi tasarim problemini ¢ézmede ve en verimli yapiyi

tiretmede de en iyi yontem oldugu diisiiniilmektedir (Wang vd., 2006).

On tasarim safhasinda bir karar mekanizmasi olan topoloji optimizasyonu, giiniimiizde
cok daha fazla ragbet gormektedir. Hiyerarsik yonden altta kalan boyut ve sekil
optimizasyonlar ile mukayese edildiginde yap1 performansinda biiyiik etkiye sahiptir
(Jang ve Kwak, 2005). Sekil 1.5.” de topoloji optimizasyonunda malzemenin en uygun

dagilim1 gosterilmektedir.

Sekil 1.5. Topoloji optimizasyonu (www.blog.s-t.com.tr, 2013)

Optimizasyon sonucu elde edilen tasarim, tasarimcinin iiretim ig¢in en uygun tasarimi

belirleyebilmesi i¢in kullandig1 en uygun ve basit yoldur.
Kendine ait ozellikleri, belirli formiilasyonlar1 ve uygun ¢oziim teknikleri ile topoloji

tasarimi, giinimiizde ¢ok yonlii ve yapisal optimizasyonun bir dali olarak kabul
edilebilmektedir.
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Daha biiyiik hacimler icin genellestirilmis bir sekil optimizasyonu problemi gibi
nitelendirilebileceginden yapisal topoloji optimizasyonu, son birka¢ yilda asir1 dikkat
cekmis ve biiyiik bir degisim gecirmistir. Giinlimiize kadar muhtelif sayida yapisal

topoloji optimizasyonu yontemleri gelistirilmistir (Wang vd., 2006).

1.4.2 Sekil optimizasyonu

Sekil optimizasyonu, topoloji optimizasyonunun sinirlanmig bir halidir. Belirli sabit bir
topoloji i¢in yapinin uygun smirlarinin belirlenmesi, yani sadece yapi sinirlariyla
calisilmasidir. Bu optimizasyon yonteminde, tasarimci tarafindan belirlenen amaca
cevap verebilecek nitelikte bir sekil aranmaktadir (Proos, 2002). Sekil 1.6.” de sekil

optimizasyonu uygulanmis bir ¢elik yap1 6rnegi gosterilmistir.

Q)

/57\\
/
\\
\\ Z: ;

Vavs

Sekil 1.6. Sekil optimizasyonu (Www.opteng.com.tr, 2013)

Tasarim degigkenleri genellikle iki veya ii¢ boyutlu herhangi bir yapi seklini tanimlayan
egri kontrol noktalaridir. Boyut optimizasyonundan farkli olarak sonlu eleman modelini
degistirmekte ve bu yiizden optimizasyon sistemiyle ag olusumunu ve sonlu elemanlar
analizini birlestirmede zorluklar dogurmaktadir (Kim vd., 2002). Ancak basta da
belirtildigi lizere topoloji optimizasyonu ile mukayese edildigi takdirde de hiyerarsik

yonden alt sirada kalmaktadir.
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1.4.3 Boyut optimizasyonu

Daha yiiksek verim alabilmek i¢in yapisal elemanlarin kesit boyutlarinin
diizenlenmesiyle gergeklestirilen boyut optimizasyonu, yapisal optimizasyonun ilk
halidir. Boyut optimizasyonu, kirislerde en wuygun kesit alanin1 elde
edebilmek i¢in genellikle kafes tiiriindeki yapilara uygulanmaktadir. Boyutlandirmadaki
tasarim degiskenleri, plak kalinligi veya kiris kesit alani olabilmektedir. Boyutta
degisiklik yapilirken yapinin sonlu eleman modelinde degisiklige gerek yoktur ve bu
nedenle boyut optimizasyonu nispeten daha kolay ve acik bir yonteme sahiptir (Kim
vd., 2002).

Boyut optimizasyonu kavrami, 6zetle en uygun tasarima ulagsmak i¢in yap1 boyutlarinin
degistirilmesini ifade etmektedir. En iyi ve miimkiin olan boyut birlesiminin bulunmasi

hedeflenmektedir (Proos, 2002).

Asagidaki sekilde ise birlestirilmis optimizasyonun bir kabuk {izerindeki gdsterimi

goriilmektedir.

Sekil Optimizasyonu

Topoloji Optimizasyonu Birlegtirilmig
Optimizasyon

Sekil 1.7. Silindirik bir kabuk i¢in nihai tasarimlar (Lee vd., 2000)
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BOLUM II

KAFES SISTEMLER

Bu boliimde kafes yapilarin analizi sunulmaktadir. Sekil 2.1.” de tipik bir diizlem kafes
gosterilmektedir. Kafes ¢ubuklart yalnizca iki kuvvet liyesinden olusmaktadir. Yani, her
kafes elemani direkt basing veya g¢ekme etkisi altindadir (Sekil 2.2.). Bir kafeste,
yalnizca baglantilara tiim yiik ve reaksiyonlarin uygulanmasi ve tiim iiyelerin beraberce,

stirtiinmesiz pim baglantilari ile bunlarin uglarina baglanmasi gerekir (Chandrupatla ve
Belegundu, 1991).

Qs

P1 P2 Ps

Sekil 2.1. Iki boyutlu bir kafes (Chandrupatla ve Belegundu, 1991)

/DP

P
Sekil 2.2. Cubuk eleman kuvvetleri (Chandrupatla ve Belegundu, 1991)
Statik derslerinde diigim yontemi ve kesim yontemi Kullanilarak kafesler analiz

edilmektedir. Statigin temellerini gosterirken, bu yontemler statik olarak belirsiz kafes

yapisina uygulandiklarinda, sikici ve zor hale gelirler. Bunun disinda, baglant1 noktasi
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degisiklikleri kolaylikla saglanamaz. Diger yandan, statik olarak belirli veya belirsiz
benzer yapilara sonlu eleman metodu uygulanabilmektedir. Sonlu eleman metodu ayrica
baglanti noktas1 sapmalar1 da saglamaktadir. Sicakligin etkileri ve mesnet ¢okmeleri

hesaplara katilabilmektedir.

2.1 Duzlem Kafesler

2.1.1 Yerel ve global koordinat sistemleri

Tek boyutlu yapilar ve kafesler arasindaki temel fark kafes elemanlarnin degisik
yonelimlere sahip olmasidir. Bu farkli yonelimlerin agiklamasini yapmak i¢in, yerel ve

global koordinat sistemleri asagidaki gibi ortaya koyulmaktadir.

Sekil 2.3.” teki yerel ve global koordinat sistemlerinde tipik bir diizlem kafes elemani
gosterilmektedir. Yerel numaralandirma yonteminde, elemanin iki digimi 1 ve 2
olarak numaralandirilir. Yerel koordinat sistemi 1. diiglimden 2. diiglime kadar olan
eleman boyunca uzanan X' ekseninden ibarettir. Yerel koordinat sistemindeki tiim
degerler bir asal issii (') isareti ile belirtilmektedir. Global x-y koordinat sistemi
sabittir ve elemanin yonelimine baglidir. X ve y’ nin kagidin disina ¢ikan z ekseni ile
sagda bir koordinat sistemi olusturduguna dikkat ediniz. Global koordinat sisteminde
her diigiim iki serbestlik derecesine sahiptir. Burada sistematik bir numaralandirma
yontemi izlenmektedir. Global diigiim sayist j olan bir diigim, 2j-1 ve 2j serbestlik
derecesi ile iliskilendirilmistir. Dahasi, j diigiimii ile iliskilendirilen global yer
degistirmeler, Sekil 2.2.°de goriildigii gibi Q2j-1 ve Q2j olur. Dolayisiyla, yerel
koordinat sisteminde eleman yer degistirme vektorii asagidaki gibi gosterilmektedir
(Chandrupatla ve Belegundu, 1991).

q=[a', g1 (2.1)
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Sekil 2.3. Yerel ve global koordinat sisteminde iki boyutlu kafes elemani (Chandrupatla
ve Belegundu, 1991)

Global koordinat sisteminde ki eleman yer degisim vektorii agagidaki ile gosterilen bir

(4x1) vektordiir.

0 = [02,02,03.04]" 2.2)
q' ve q arasindaki iligki asagidaki gibi gosterilebilir. Sekil 2.3.” te, g;, X' ekseni iizerinde
01 Ve g2’ nin izdiisiimleri toplamina esittir. Dolayistyla, bu durum denklem (2.3) ile elde
edilir.

01’ = g1€0s6 + g2 Sind (2.3)
Benzer bir sekilde denklem (2.4)’ e ulasilabilir.

02’ = (3 c0SO + q4 SIiNO (2.4)
Bu asamada, dogrultman kosinlisi € ve m, {=cosf, m=cos@(=sinf) olarak
gosterilmektedirler. Bu dogrultman kosiniisleri sirasiyla yerel x' eksenini global x, y

eksenleri ile yaptig1 agilarin kosiniisleridir. Denklem (2.3) ve (2.4) artik asagidaki gibi

matris seklinde yazilabilir.
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g =Lq (2.5)
Burada doniisiim matrisi L denklem (2.6) ile verilmektedir.

[f m 0 0 26)

Diigiim koordinat verilerinden £ ve m dogrultman kosiniislerini hesaplamak i¢in artik
basit formiiller verilmektedir. Sekil 2.4.’¢e istinaden, (X1, Y1) Ve (X2, Y») sirastyla 1 ve 2

diigtimlerin koordinatlar1 olsun, o halde asagidaki denklemler elde edilir.

=% (2.79)
YZl Y1 (27b)

Uzunluk £, asagidaki denklemden bulunabilir.

le= \/(Xz —X1)*+ (Y2—Yy1)? (2.8)

Denklem (2.7) ve (2.8)’ deki ifadeler diigiim koordinat verilerinden elde edilmektedir ve

bir bilgisayar programinda kolaylikla gergeklestirilebilir.

2
(Xe ,ye}

(X: —y:}

] (,\;1— 1}
(Xl,yﬁ} s

Sekil 2.4. Dogrultman kosiniisleri (Chandrupatla ve Belegundu, 1991)
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2.1.2 Elemanin rijitlik matrisi

Kafes elemani1 yerel koordinat sisteminde incelendiginde tek boyutlu bir elemandir.
Yerel koordinat sistemindeki bir kafes elemani igin eleman rijitlik matrisi denklem (2.9)

ile verilmektedir (Chandrupatla ve Belegundu, 1991).

e=sEl Tl @9

Burada A¢ kesit alanidir, E, ise elastisite modiiliidiir. Eldeki problemde global koordinat
sistemindeki eleman rijittik matrisi igin bir ifade gelistirmistir. Bu, elemanda ki
potansiyel enerjiyi hesaba katarak elde edilebilir. Ozellikle, yerel koordinatlardaki
eleman potansiyel enerjisi denklem (2.10) ile verilmektedir.

U.=—q kg (2.10)
g' = Lq' bagintis1 denklem (2.10)’ da yerine konularak denklem (2.11) elde edilebilir.
U.=-q' [L'k'L]q (2.11)
Global koordinatlardaki potansiyel enerji ise su sekilde yazilabilir.

Ue = %qT kq (2.12)

Burada k global koordinatlardaki elemanin rijitlik matrisidir. Yukaridaki denklemden,

global koordinatlardaki eleman rijitlik matrisi su sekilde ifade edilir.
k=LKL (2.13)

Denklem (2.6)” dan L ve denklem (2.9)’ dan k' yerine konularak asagidaki baginti elde
edilebilir.
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12 Im -1 —Im

EeAe | Im m? —Im —m?
k=—— 2.14
le | =12 —Im 12 Im (2.14)
—Im —m? Im m?

Eleman rijitlik matrisleri, yapisal rijitlik matrisini elde etmek icin olagan bir sekilde

birlestirilmektedir.

2.1.3 Gerilme hesaplamalari

Yerel koordinatlarda, bir ¢ubuk elemanindaki kuvvetler Sekil 2.2. de gosterilmistir.
Dolayisiyla, bir kafes elemanindaki gerilme asagidaki gibi verilmektedir (Chandrupatla
ve Belegundu, 1991).

o=E.¢ (2.15)

€, birim uzama orani olarak verilmis olup denklem (2.15)’ e asagidaki gibi ilave
edilebilir.

o= Fe(dp=01) (2.16)

le
%) 2.17)

o=E[-1 1] <
q>

Yukaridaki denklem q' = LgK doniistimii kullanilarak, global yer degistirmelere gore
gerilemeler ifade edilecek olursa,

o==[-1 1]Lg (2.18)
Seklinde yazilabilir. Denklem (2.6)’ dan L yerine koyularak,
o=2[-1 —m | m Jq (2.19)

gerilmeler hesaplanir. Yer degistirmeler sonlu eleman denklemlerini c¢ozerek

belirlendikten sonra, her bir eleman i¢in gerilmeler denklem (2.19)’ dan saglanabilir.
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Negatif gerilmenin basing, pozitif gerilmenin ise ¢ekme anlamina geldigi dikkate

alinmalidir.
2.1.3 Sicaklik etkileri

Burada 1s1l gerilme problemi dikkate alinmaktadir. Bir kafes elemani yerel koordinat
sisteminde basit bir sekilde tek boyutlu oldugu igin, yerel koordinat sistemindeki

eleman sicaklig1 asagidaki gibi verilmektedir.

0'= EcActo {‘i} (2.20)

Burada sicaklik degisimi ile iligkilendirilen &, baslangic birim sekil degistirme

asagidaki gibi verilmektedir.
€= 0AT (2.21)
a elemandaki 1s1l genlesme katsayisi ve AT ise sicakliktaki ortalama degisikliktir.

Ayrica &, baslangi¢ birim sekil degistirmesinin de, iiretim hatasi nedeniyle de meydana

gelebilecegi bilinmektedir.
Global koordinat sisteminde yiik vektorii ifade edilir. Bu yiik ile iligkilendirilen
potansiyel enerji gerek yerel gerekse de global koordinat sistemlerinde 6lgiilen

bliytikliikle ayni1 oldugu i¢in, asagidaki baginti elde edilir.

q'e'=q' 0 (2.22)

Burada ® global koordinat sistemindeki yiik vektoriidiir. q' = Lq yukarida yerine yazilir

ise,
gL'e=q'0 (2.23)

ifadesi elde edilir. Yukaridaki denklemin sag ve sol taraflar1 karsilagtirilir ise;
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o=L"e (2.24)

elde edilir. Denklem (2.6)’ dan L’ nin yeri degistirilerek, eleman sicaklik yiikii i¢in su

ifade yazabilir;

—1
@° = EcAceo| ™ (2.25)

Distan uygulanan diger yiikler ile birlikte sicaklik yiikleri de F diiglim yiik vektoriinii
elde etmek amaciyla olagan sekilde birlestirilirler. Yer degistirmeler sonlu eleman
denklemlerini ¢ozerek elde edilir edilmez, her bir kafes elemanindaki gerilme elde

edilir.

o= E(e-&,) (2.26)

Elemanlardaki gerilmeler denklem (2.19) kullanilarak ve &=aAT’ yi dikkate alarak

sicaklik etkisinde gerilme denklemi elde edilir.

o=22[-1 —m | m]q-EoAT (2.27)
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BOLUM 111

SAYISAL ORNEK
3.1 Optimizasyon Probleminin Tamimlanmasi
Yapilarin optimum tasariminda problemin dogasina veya miihendisin onceliklerine gore
bir veya birkag¢ tane amag fonksiyonu belirlenir. Agirligin, deplasmanin, ivmenin veya
tanimlanan diger amaglarin minimizasyonu veya bazi davranis ve amaglarin
maksimizasyonu yapilabilir. Kritik yiikiin maksimizasyonu, tasarim ve imalat
asamasinda liretimde karin maksimizasyonu da yapilabilmektedir.
Bu optimizasyon calismasinda kafes sistemlerde cubuklarin kesit alanlarinin toplami
veya diger bir ifadeyle cubuk eleman sayist n olan bir diizlem kafes i¢in amag
fonksiyonu;

Min (X, 4,) i=1,....n (3.1)

seklinde verilebilir. Burada A; ¢ubuk eleman kesit alanini ifade eder. Tasarim degiskeni

Ay’ ler icin alt sinir kisitlamalari;

Ai<0 i=1,....n (3.2)

seklinde verilebilir. Gerilmelerin sinir gerilmeleri gegmesi istenmediginden gerilmeler

icin asagidaki kisitlamalar verilebilir;

Gi-6,<0 i=1,....n (3.3)

burada oj, i elemanindaki normal gerilmeyi, o, ise sinir gerilmeyi ifade eder. Ayrica

kafes sistem diiglimlerindeki i. deplasman i¢in bir deplasman kisitlamast;

0; <0, i=1,....n (3.4)

seklinde verilebilir. Rijitlik kisitlamast ise;
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seklinde verilebilir. Q deplasman vektoriinii ifade ederken, K global rijitlik matrisini, F

ise dis yiik vektoriinii gosterir.

Mevcut kisitlamalar altinda tanimlanan bu optimizasyon problemi niimerik bir
optimizasyon yontemi kullanilarak c¢oziilebilir. Sicakligin degisimi gerilmeyi

dolayisiyla optimizasyon tasarimlarini etkiler.

Bu calismada optimizasyon {iizerinde, kafes sisteme etki eden yiiklerin ve sicakligin
etkisi aragtilirken Mathematica programinda kodlama yapilmistir. Mathematica’ nin
blinyesinde yer alan diferansiyel evrim, optimum degere yeterince yaklagmasindan

dolay1 tercih edilmistir.

Diferansiyel evrim (Differential Evolution, (DE)) ilk olarak 1995 yilinda K. Price
tarafindan ortaya konmustur. Diferansiyel evrim algoritmasi ¢aprazlama, mutasyon ve
se¢im gibi genetik algoritmalarda bulunan benzer operatorleri kullanan ve son
zamanlarda popliler olan popiilasyon tabanli bir algoritmadir. DE’ nin Onemli
parametreleri; popiilasyon biiyiikliigii, ¢aprazlama sabiti ve dlgekleme faktorii olarak

sayilabilir. Bir DE algoritmasinin temel adimlar1 agagidaki gibidir (Eke, 2011).

* Baslangi¢ popiilasyonunun olusturulmasi
* Degerlendirme

* Durma kriteri saglanincaya kadar tekrarla
* Mutasyon

* Caprazlama

* Secim
3.2 Problemin Tanimlanmasi

Sekil 3.1.” de gosterilen dort cubuklu bir kafesin tim elemanlari icin E=29.5x10° psi

olarak verilmektedir.
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Qs 25000 Ib Qs
L o L .
v D @ o
£ ) @
B
Qf Qs
. § o f—L D %( - Qs - 20000 Ib X
\ 40 in. g

Sekil 3.1. Dort ¢ubuklu bir kafes

Verilen bu sistemde kesit alanlar1 tasarim degiskeni olarak se¢ilmektedir. Amacglanan
yontem ile optimum kesit alanlari, toplam alan minimize edilerek bulunacaktir. Yapisal
ozellikler ve dis yiikler asagida verilmistir.

Tasarim degiskenleri olarak elastisite modiilii ve 1s1 genlesme katsayist;

E=29.5x10° psi (3.6)
o = 0.00000667 (3.7)

Cubuk boylar sirasiyla;

le1 = 40 in. (3.8)
lez = 30 in. (3.9)
les = 50 in. (3.10)
les = 40 in. (3.11)
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Malzeme akma dayanimlari ise 1s1 etkisi altindayken 0.8 ile ¢arpilarak yani % 20

azaltilarak asagidaki gibi verilmistir.

Ga= 0.8%10000 psi (3.12)
Ga = 0.8%15000 psi (3.13)
Ga = 0.8%20000 psi (3.14)
G2 = 10000 psi (3.15)
Ga = 15000 psi (3.16)
Ga = 20000 psi (3.17)

Sisteme tliniform etki ettirilen sicaklik farklari ;

AT =100 °F (3.18)
AT = 150 °F (3.19)
AT =200 °F (3.20)
AT = 250 °F (3.21)
AT =500 °F (3.22)

olarak verilmistir. D1s ylik olarak sisteme etki ettirilen gekme ve basing kuvvetleri;

F1 = 20000 Ib, F» = -25000 Ib (3.23)
F1 = 30000 Ib, F» = -35000 Ib (3.24)
F1 = 40000 Ib, F»= -45000 Ib (3.25)

seklinde verilmistir. Diigiim noktasinda ki deplasmanlarin iist siniri;

ds=0,1in. (3.26)

olarak secilmistir. Amag fonksiyonu,

Min Fpy = ZA = Aj+Ag+Agt+A, (3.27)

olarak tiim ¢ubuk kesit alanlarinin toplamina esittir. Boyut kisitlamalart;
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01=A:120
02=A220
03=A320
0s=A420

(3.28)
(3.29)
(3.30)
(3.31)

seklinde verilmistir. Cubuklardaki normal gerilme ve diigiim deplasmanlarindaki

kisitlamalar;

05=061-6a<0
0s=-01-0,=<0
07=062-6a<0
Js=-062-0,<0
J9=03-0,<0
J10=-063-0,<0
011=04-6,<0
012=-64-03 <0
013=-ds<Qs3 <ds
014=-ds<Qs <ds
O15=-ds<Qp <ds

seklinde ifade edilmistir. Cizelge 3.1. ve 3.2. ve diiglin numaralarina bagl olarak

kodlamada kullanilan verileri gostermektedir.

(3.32)
(3.33)
(3.34)
(3.35)
(3.36)
(3.37)
(3.37)
(3.39)
(3.40)
(3.41)
(3.42)

Cizelge 3.1. Cubuk elemanlarinin diigiim noktalar1 ve diigiim koordinat verileri

Diigim X y
1 0 0
2 40 0
3 40 30
4 0 30

Cizelge 3.2. Eleman ve diigiim numaralari

Eleman

1

2
3
4

NG SN FOVI T T

WIWINININ
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Eleman baglanti durumunu tanimlama konusunda herhangi bir se¢im yapilabilir.
Ornegin, eleman 2’ nin baglamrhigi yukaridaki gibi 3-2 yerine 2-3 olarak
tanimlanabilirdi. Ancak, dogrultu kosiniislerinin hesaplamalar1 segilen baglanirlik
semasit ile tutarli olmalidir. Denklem (2.7) ve (2.8)’ deki formiilleri kullanarak, yukarida
verilen diigiim koordinat verileri ve eleman baglanirhik bilgisi ile birlikte, asagidaki

dogrultu kosiniisleri tablosu elde edilebilir.

Cizelge 3.3. Dogrultman kosiniisleri

Eleman le | m
1 40 1 0
2 30 0 -1
3 50 0.8 0.6
4 40 1 0

Verilen kafes sistemin elaman rijitlik matrisleri asagidaki gibi tasarim degiskenlerine

bagli olarak yazilabilir.

T 7375004, 0 —7375004, O
0 0 0 0
k= 4
"[-737500a, 0 7375004, 0 (343)
0 0 0 0
0 0 0 0
| o 983333a, 0 —9833334,
ke=| 0 0 0 (3.44)
0 —983333A, 0 9833334,
377600A5 283200A;  —377600A; —283200A,
o| 2832004, 212400A;  —283200A; —212400A, (3.45)
[ —377600A;  —283200A;  377600A;  283200A, '
—283200A; 2124004, 283200A; —212400A,
737500A, 0 —737500A, O
0 0 0 0
k= 3.46
"l —737500A, 0  737500A, O (3.46)
0 0 0 0

Global rijitlik matrisi ise asagidaki gibi tasarim degiskenlerine bagli olarak yazilabilir.

7375004, A, A,
K= 0 377600A; + 7375004, 0 (3.47)
0 2832004, 983333A, + 2124004,
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Yer degistirmeler denklem (3.48)’den hesaplanir.

7375004, A, A, q3] [19666.7
0 377600A; + 7375004, 0 qs|=| 35400 | (3.48)
0 28320045 983333A, + 2124004,/ [96] 131466.7

Cubuk elemanlardaki gerilmeler asagidaki gibi hesaplanir.

1= f—ll{—u, —m1,11,m1}{0,0, g3,0} — E;0AT (3.49)
o= ’f—;{—lz, —m2,12,m2}{q5, q6,q3,0} — EoaAT (3.50)
3= ’f—j{—l& —m1,13,m3}{0,0, g5, g6} — E30AT (3.51)
Ga= %{—14, —m4, 14, m4}{0,0, g5, g6} — Es0AT (3.52)

T

Qs F2 Qs

U

30 in.

@D AT

2 [ Qs F1 X
40 in. %

Sekil 3.2. Sicaklik etkisi altindaki dort gubuklu kafes

Tiim elemanlar i¢in farkli yiikk ve sicaklik kombinasyonlar1 altinda degerler asagidaki
grafikler ve tablolarda sunulmustur. Sisteme sadece F;=20000 Ib ve F,=-25000 Ib yiik
uygulandiginda malzeme dayanimiyla dogru orantili olarak, akma dayanimi arttikca
cubuk kesit alanin azaldig1 gozlenmistir. Sekil 3.3. ve Sekil 3.4.” te her bir ¢ubuk i¢in

toplam kesit alaninin ve buna bagli olarak toplam maliyetin kag¢ iteresyon sonucunda
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bulundugu sunulmustur. Cizelge 3.4.” de ise grafiklerde elde edilen degerlerin tablosal

hali gosterilmistir.

Cizelge 3.4. D1s yiik altindaki (F1=20000 Ib F,=-25000 Ib) yapisal degerler

Akma Dayamim o, (psi) 10000 15000 20000
Kuvvet F; (Ib) 20000 20000 20000
Kuvvet F, (Ib) -25000 -25000 -25000

Sicaklik (°F) 0 0 0
A;(in?) 2,00018 1,33338 1,00001
A; (in.?) 2,50007 1,66668 1,25003
Az (in.?) 0 0,000012 0,0000042
A4 (in.?) 0,000097 0,000008 0,000013
Maliyet XA (in.?) 4,500347 3,000080 2,250057
4 4
3.5t Z oeisemn et 3.5¢ ~ s pes
3 F 02=20000 psi F — 0a=20000 psi
Hz.s- it 2; t Mt
\“\ NHH e o 15¢ HM \H \\ s

0 500 1000 1500 2000 2500

iterasyon no

35k — 0a=10000 psi

0a=15000 psi
— ©2=20000 psi

0 500 1000 1500 2000 2500

|terasyon no

|_\

3.5¢

2.5¢

< 2f
15¢

|_\

0.5}

I

500 1000 1500 2000 2500

iterasyon no

m “H\“\‘ i

L

‘Mmh\

— ©a=10000 psi
— 0a=15000 psi
— 02220000 psi

500 1000 1500 2000 2500

iterasyon no

Sekil 3.3. Dis yiik altindaki (F1=20000 Ib F,=-25000 Ib) tasarim degiskenlerinin
optimizasyon esnasindaki degisimi
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Sekil 3.4. D1 yiik altindaki (F;=20000 Ib F,=-25000 Ib) kafes sistemde amag
fonksiyonunun optimizasyon esnasindaki degisimi

Sisteme sadece F;=30000 Ib ve F,= -35000 Ib yiik uygulandiginda malzeme
dayanimiyla dogru orantili olarak, akma dayanimi arttik¢a cubuk kesit alanin azaldigi
gozlenmistir. Sekil 3.5. ve Sekil 3.6.” de her bir ¢ubuk i¢in toplam kesit alanin ve buna
bagli olarak toplam maliyetin kag iteresyon sonucunda bulundugu sunulmustur. Cizelge

3.5.” de ise grafiklerde elde edilen degerlerin tablosal hali gosterilmistir.

Cizelge 3.5. D1s yiik altindaki (F1=30000 Ib F»,=-35000 Ib) yapisal degerler

Akma Dayanimi o, (psi) 10000 15000 20000
Kuvvet F; (Ib) 30000 30000 30000
Kuvvet F; (Ib) -35000 -35000 -35000

Sicaklik (°F) 0 0 0
A (in.?) 3,00018 2,00016 1,50002
A; (in.?) 3,50007 2,33363 1,75009
A (in.?) 0,000106 0,000005 0,0000005
A4 (in.?) 0,0000258 0,0000092 0
Maliyet XA (in.?) 6,500382 4,333804 3,250111
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Sekil 3.5. Dis yiik altindaki (F1=30000 Ib F,=-35000 Ib) tasarim degiskenlerinin
optimizasyon esnasindaki degisimi
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Sekil 3.6. D1s yiik altindaki (F;=30000 Ib F,=-35000 Ib) kafes sistemde amag
fonksiyonunun optimizasyon esnasindaki degisimi

Sisteme sadece F;=40000 Ib ve F,=-45000 Ib yiik uygulandiginda malzeme dayanimiyla

dogru orantili olarak, akma dayanimi arttik¢a ¢ubuk kesit alanin azaldigi gozlenmistir.
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Sekil 3.7. ve Sekil 3.8.” te her bir ¢ubuk igin toplam kesit alanin ve buna bagli olarak

toplam maliyetin kag iteresyon sonucunda bulundugu sunulmustur. Cizelge 3.6.” da ise

grafiklerde elde edilen degerlerin tablosal hali gosterilmistir.

Cizelge 3.6. D1s yiik altindaki (F;=40000 Ib F,=-45000 Ib) yapisal degerler

Akma Dayanim o, (psi) 10000 15000 20000
Kuvvet F; (Ib) 40000 40000 40000
Kuvvet F; (Ib) -45000 -45000 -45000

Sicaklik (°F) 0 0 0
A1 (in.?) 4,00221 2,66672 2,00001
A, (in.?) 4,5013 3,00004 2,25006
Aj (in.?) 0,000092 0,000028 0,000001
A4 (in.?) 0,0000007 0,0000001 0
Maliyet XA (in.?) 8,503603 5,666788 4,250071
6 6
5t *s000 pei 5f WWMW 20000 pas
| e
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Sekil 3.7. Dis yiik altindaki (F;=40000 Ib F,=-45000 Ib) tasarim degiskenlerinin
optimizasyon esnasindaki degisimi
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Sekil 3.8. D1s yiik altindaki (F1=40000 Ib F,=-45000 Ib) kafes sistemde amag
fonksiyonunun optimizasyon esnasindaki degisimi

Cubuklarin akma dayanimlart 10000 psi, 15000 psi ve 20000 psi olarak belirlenmis olup
sisteme sadece yiik etki ettirilmis ve ¢ubuk kesitlerinde, farkli akma dayanimlarinda

farkl yiiklemelerde nasil etkiler oldugu gozlenmistir.

10000 psi’ lik akma dayanimina sahip gubuklarda toplam kesit alamin 4.50 in.> den
8.50 in.%’ ye ¢iktig1, 15000 psi’ lik akma dayanimina sahip ¢ubuklarda toplam kesit
alanin 3.00 in.?> den 5.60 in.” ye ¢iktigr ve 20000 psi’ lik akma dayanimina sahip
ubuklarda ise toplam kesit alanmn 2.20 in.> den 4.25 in.”’ ye ¢iktign goriilmiistiir.
Beklenildigi gibi yiik artirildikga kesit alanlarinda artmalar meydana gelmistir.
Malzeme dayanimi arttik¢a ¢ubuk kesit alanlarinda azalmalar, ayn1 akma dayaniminda
yik iki katmma cikartildiginda ihtiya¢ duyulan kesitinde iki katina ¢iktig1 tespit
edilmigtir. Sekil 3.9.” da farkli akma dayanimlarinda kesitlerde ihtiya¢ duyulan artmalar

grafiksel olarak sunulmustur. Cizelge 3.7." de ise maliyet artiglarinin yiizdesel ifadesi

tablosal olarak gdsterilmistir.
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Sekil 3.9. Sinir gerilmeler ile minimum maliyetler arasindaki degisim

Cizelge 3.7. Farkl1 yiikler altindaki ¢ubuklarin minimum maliyet yilizdeleri

Akma Dayanim o, (psi) 10000 15000 20000
AT °F 0 0 0
Maliyet Farki XA (in.?) 4,00 2,666708 2,000014
Maliyet Artis1 % 88,95 88,89 88,89

Sistemden yiik kaldirilarak sadece 100 °F sicaklik uygulandiginda her bir gubukta

ihtiya¢ duyulan kesit alanlar1 Sekil 3.10.” da, Sekil 3.11." de ise toplam maliyetin farkli

akma dayanimlarinda nasil degiskenlik gosterdigi grafiksel olarak sunulmustur. Cizelge

3.8.” de farkli akma dayanimlarinda ihtiya¢ duyulan kesit alanlarinin tablosal gdsterimi

sunulmustur. Ayni sicaklik etki ettirildiginde malzeme dayanimi arttikg¢a toplam kesit

alanlarinda azalmalar tespit edilmistir.

Cizelge 3.8. Sicaklik altindaki (AT=100 °F) yapisal degerler

Akma Dayanim o, (psi) 0.8*10000 0.8*15000 0.8*20000
Kuvvet F; (Ib) 0 0 0
Kuvvet F; (Ib) 0 0 0

Sicaklik (°F) 100 100 100
A (in.?) 0,710882 0,621053 0,551497
A; (in.?) 0,17775 0,155273 0,137853
Az (in.?) 1,60007 1,39735 1,2408
A4 (in.?) 0 0,000013 0
Maliyet XA (in.?) 2,488702 2,173689 1,930150
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Sekil 3.10. Sicaklik altindaki (AT=100 °F) tasarim degiskenlerinin optimizasyon
esnasindaki degisimi
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Sekil 3.11. Sicaklik altindaki (AT=100 °F) kafes sistemde amag¢ fonksiyonunun
optimizasyon esnasindaki degisimi

0 2000

Sistemden yiik kaldirilarak sadece 150 °F sicaklik uygulandiginda her bir ¢ubukta
ihtiya¢ duyulan kesit alanlart Sekil 3.12.” de, Sekil 3.13.” de ise toplam maliyetin farkli
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akma dayanimlarinda nasil degiskenlik gosterdigi grafiksel olarak sunulmustur. Cizelge

3.9.” da farkli akma dayanimlarinda ihtiya¢ duyulan kesit alanlarinin tablosal gdsterimi

sunulmustur. Aym sicaklik etki ettirildiginde malzeme kalitesi arttikca toplam kesit

alanlarinda azalmalar tespit edilmistir.

Cizelge 3.9. Sicaklik altindaki (AT=150 °F) yapisal degerler

Akma Dayanimi 6, (psi) 0.8*10000 0.8*15000 0.8*20000
Kuvvet F; (Ib) 0 0 0
Kuvvet F; (Ib) 0 0 0

Sicaklik (°F) 150 150 150
A (in.?) 0,787057 0,710844 0,648361
A; (in.?) 0,196672 0,177712 0,162125
Az (in.?) 1,77078 1,59943 1,45885
A4 (in.?) 0 0 0,000021

Maliyet XA (in.?) 2,754509 2,487986 2,269357
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Sekil 3.12. Sicaklik altindaki (AT=150 °F) tasarim degiskenlerinin optimizasyon
esnasindaki degisimi
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Sekil 3.13. Sicaklik altindaki (AT=150 °F) kafes sistemde amag¢ fonksiyonunun
optimizasyon esnasindaki degisimi

Sistemden yiik kaldirilarak sadece 200 °F sicaklik uygulandiginda her bir ¢ubukta
ithtiya¢ duyulan kesit alanlar1 Sekil 3.14.” de, Sekil 3.15.” de ise toplam maliyetin farkli
akma dayanimlarinda nasil degiskenlik gosterdigi grafiksel olarak sunulmustur. Cizelge
3.10.” da farkli akma dayanimlarinda ihtiya¢ duyulan kesit alanlarinin tablosal gosterimi
sunulmustur. Ayn1 sicaklik etki ettirildiginde malzeme kalitesi arttik¢ca toplam kesit

alanlarinda azalmalar tespit edilmistir.

Cizelge 3.10. Sicaklik altindaki (AT=200 °F) yapisal degerler

Akma Dayanimi o, (psi) 0.8*10000 0.8*15000 0.8*20000
Kuvvet F; (Ib) 0 0 0
Kuvvet (Ib.) 0 0 0
Sicaklik (°F) 200 200 200
A (in.?) 0,83105 0,766261 0,710843
A; (in.?) 0,207751 0,191743 0,177711
A (in.?) 1,86986 1,72377 1,59951
A4 (in.?) 0 0,000242 0
Maliyet XA (in.?) 2,908661 2,682016 2,488064
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Sekil 3.14. Sicaklik altindaki (AT=200 °F) tasarim degiskenlerinin optimizasyon
esnasindaki degisimi
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Sekil 3.15. Sicaklik altindaki (AT=200 °F) kafes sistemde amag¢ fonksiyonunun
optimizasyon esnasindaki degisimi

Sistemden yiik kaldirilarak sadece 250 °F sicaklik uygulandiginda her bir ¢ubukta

ihtiya¢ duyulan kesit alanlar1 Sekil 3.16.” da, Sekil 3.17.” de ise toplam maliyetin farkli
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akma dayanimlarinda nasil degiskenlik gosterdigi grafiksel olarak sunulmustur. Cizelge

3.11.” de farkli akma dayanimlarinda ihtiya¢ duyulan kesit alanlarinin tablosal gdosterimi

sunulmustur. Aymi sicaklik etki ettirildiginde malzeme kalitesi arttikga toplam kesit

alanlarinda azalmalar tespit edilmistir.

Cizelge 3.11. Sicaklik altindaki (AT=250 °F) yapisal degerler

Akma Dayanimi 6, (psi) 0.8*10000 0.8*15000 0.8*20000
Kuvvet F; (Ib) 0 0 0
Kuvvet F; (Ib) 0 0 0
Sicaklik (°F) 250 250 250

A (in.?) 0,860058 0,803816 0,754476
A; (in.?) 0,215015 0,200955 0,188619
Az (in.?) 1,93526 1,80909 1,69759
A4 (in.?) 0 0 0
Maliyet XA (in.?) 3,010333 2,813861 2,640685
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Sekil 3.16. Sicaklik altindaki (AT=250 °F) tasarim degiskenlerinin optimizasyon
esnasindaki degisimi
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Sekil 3.17. Sicaklik altindaki (AT=250 °F) kafes sistemde amag¢ fonksiyonunun
optimizasyon esnasindaki degisimi

Sisteme sadece sicaklik etki ettirilerek incelendiginde ise 10000 psi’ lik akma
dayanimina sahip ¢ubukta toplam sicaklik farki 150 °F igin kesit alanlarinda 0.52 in.2,
15000 psi’ lik akma dayanimina sahip cubukta 0.64 in.?2 ve 20000 psi’ lik akma
dayanimina sahip ¢ubukta ise 0.71 in.>’ lik kesit artisina ihtiya¢ oldugu goriilmiistiir.
Sicakligin artmasiyla kesitlerde artis goriilmiistiir. Malzeme dayaniminin artmasiyla
cubuk kesitlerinde duyulan ihtiyacin arttiginin goézlenmesi malzeme kalitesinin sicaklik
etki ettirildikce Onemini yitirdigi gozlenmistir. Toplam ihtiyag duyulan kesit
alanlarindan yola ¢ikarak malzeme kalitesine bagli olarak sicakligin maliyeti malzeme
dayanimi 10000 psi’ lik ¢ubukta % 20.96, 15000 psi’ lik cubukta % 29.45 ve 20000
psi’ lik ¢ubukta % 36.81 etkiledigi goriilmiistiir. Farkli akma dayanimlarina sahip
cubuklarin farkli sicakliklar etki ettirildiginde toplam kesit alanlarindaki degisimlerin
grafigi Sekil 3.18.” de, maliyet artiglarinin tablolastirilmig hali ise Cizelge 3.12.” de

gosterilmistir.
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Sekil 3.18. Sinir gerilmeler ile minimum maliyetler arasindaki degisim

Cizelge 3.12. Farkli sicaklik altindaki gubuklarin minimum maliyet yiizdeleri

Akma Dayanim o, (psi) 0.8*10000 0.8*15000 0.8*20000
AT °F 150 150 150
Maliyet Farki XA (in.?) 0,521631 0,640172 0,710535
Maliyet Artis1 % 20,96 29,45 36,81

Sisteme F;= 20000 Ib F,= -25000 Ib yiik ve 100 °F sicaklik beraber etki ettirildiginde

her bir ¢ubukta ihtiya¢ duyulan kesit alan1 Sekil 3.19.” da, Sekil 3.20.” de ise toplam

ithtiya¢ duyulan kesit alanin grafiksel gosterimi sunulmustur. Cizelge 3.13.” de ise farklh

akma dayanimlarinda her bir ¢ubukta ve toplam maliyette ihtiyag duyulan degerler

gosterilmistir. Yikk ve sicaklik beraber etki ettirildi§inde malzeme kalitesi arttikca

cubuk kesitlerindeki azalmalar goriilmiistiir.

Cizelge 3.13. Hem yiik hem de sicaklik altindaki (F1;=20000 Ib F,=-25000 Ib, AT=100

°F) yapisal degerler
Akma Dayamim o, (psi) 0.8*10000 0.8*15000 0.8*20000
Kuvvet F; (Ib) 20000 20000 20000
Kuvvet F; (Ib) -25000 -25000 -25000
Sicaklik (°F) 100 100 100
A (in.?) 1,43378 1,2527 1,11217
Az (in.?) 0 0,000021 0
Az (in.?) 0,389612 0,340333 0,302185
A4 (in.?) 0,967908 0,845674 0,750786
Maliyet XA (in.?) 2,791300 2,438728 2,165141
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Sekil 3.19. Hem yiik hem de sicaklik altindaki (F;=20000 Ib F,=-25000 1b, AT=100 °F)
tasarim degiskenlerinin optimizasyon esnasindaki degisimi
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Sekil 3.20. Hem yiik hem de sicaklik altindaki (F;=20000 Ib F,=-25000 1b, AT=100 °F)
kafes sistemde amag fonksiyonunun optimizasyon esnasindaki degisimi

Sisteme F;= 20000 Ib F,= -25000 Ib yiik ve 150 °F sicaklik beraber etki ettirildiginde
her bir ¢ubukta ihtiya¢ duyulan kesit alan1 Sekil 3.21.” de, Sekil 3.22.” de ise toplam
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ihtiya¢ duyulan kesit alanin grafiksel gosterimi sunulmustur. Cizelge 3.14.” de ise farklh

akma dayanimlarinda her bir ¢ubukta ve toplam maliyette ihtiya¢ duyulan degerler

tablosal olarak gosterilmistir. Yiik ve sicaklik beraber etki ettirildiginde malzeme

kalitesi arttik¢a ¢ubuk kesitlerindeki azalmalar goriilmiistiir.

Cizelge 3.14. Hem yiik hem de sicaklik altindaki (F;=20000 Ib F,=-25000 Ib, AT=150

°F) yapisal degerler
Akma Dayanim o, (psi) 0.8*%10000 0.8*15000 0.8*20000
Kuvvet F; (Ib) 20000 20000 20000
Kuvvet F; (Ib) -25000 -25000 -25000
Sicaklik (°F) 150 150 150
A; (in?) 1,32 1,19277 1,08792
A; (in.?) 0,0000925 0,000023 0
A3 (in.2) 0,986512 0,891827 0,813912
A4 (in?) 0,62979 0,566296 0,516484
Maliyet XA (in.?) 2,936395 2,650916 2,418316
10 F+ATi(1fobi)- 10 F+ATi(lE>(iali)'
8 T Silole vasonn 8 T Sioe szomo
o 6 . 6
<y <y
2 2k
500 1000 1500 2000 | “ M“MM
iterasyon no iterasyon no
10 F+ATi(1E(1fJ)- 10 F+ATi(175Cf)alf3'
8 B oo 8
< <
2 i

iterasyon no

1000
iterasyon no

500

1500

2000

Sekil 3.21. Hem yiik hem de sicaklik altindaki (F1=20000 Ib F,=-25000 Ib, AT=150 °F)

tasarim degiskenlerinin optimizasyon esnasindaki degisimi
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Sekil 3.22. Hem yiik hem de sicaklik altindaki (F;=20000 Ib F,=-25000 1b, AT=150 °F)
kafes sistemde amag fonksiyonunun optimizasyon esnasindaki degisimi

Sisteme F;= 20000 Ib F,= -25000 1b yiik ve 200 °F sicaklik beraber etki ettirildiginde
her bir ¢ubukta ihtiya¢ duyulan kesit alan1 Sekil 3.23.” de, Sekil 3.24.” de ise toplam
ihtiya¢ duyulan kesit alanin grafiksel gosterimi sunulmustur. Cizelge 3.15.” de ise farkli
akma dayanimlarinda her bir ¢ubukta ve toplam maliyette ihtiya¢ duyulan degerler
tablosal olarak gosterilmistir. Yiik ve sicaklik beraber etki ettirildiginde malzeme

kalitesi arttikca ¢ubuk kesitlerindeki azalmalar goriilmiistiir.

Cizelge 3.15. Hem yiik hem de sicaklik altindaki (F;=20000 Ib F,=-25000 Ib, AT=200

°F) yapisal degerler
Akma Dayanim o, (psi) 0.8*10000 0.8*15000 0.8*20000
Kuvvet F; (Ib) 20000 20000 20000
Kuwvvet F; (Ib) -25000 -25000 -25000
Sicaklik (°F) 200 200 200
A; (in.?) 1,25352 1,20142 1,07229
A; (in.?) 0,02693064 0,0517612 0
Az (in.?) 1,29079 1,18787 1,14291
A4 (in.?) 0,463145 0,466756 0,365462
Maliyet XA (in.?) 3,034386 2,907807 2,580662
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Sekil 3.23. Hem yiik hem de sicaklik altindaki (F1=20000 Ib F,=-25000 1b, AT=200 °F)
tasarim degiskenlerinin optimizasyon esnasindaki degisimi
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Sekil 3.24. Hem yiik hem de sicaklik altindaki (F;=20000 Ib F,=-25000 1b, AT=200 °F)
kafes sistemde amag fonksiyonunun optimizasyon esnasindaki degisimi

Sisteme F;= 20000 Ib F,= -25000 Ib yiik ve 250 °F sicaklik beraber etki ettirildiginde
her bir ¢ubukta ihtiya¢ duyulan kesit alan1 Sekil 3.25.” de, Sekil 3.26.” da ise toplam

ihtiya¢ duyulan kesit alanin grafiksel gosterimi sunulmustur. Cizelge 3.16.” da ise farkl
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akma dayanimlarinda her bir ¢ubukta ve toplam maliyette ihtiya¢ duyulan degerler
tablosal olarak gosterilmistir. Yiik ve sicaklik beraber etki ettirildiginde 15000 psi akma

dayanimina sahip ¢ubuktaki kesit ihtiyact 10000 psi akma dayanimina sahip ¢ubuktaki

kesit ihtiyacina gore daha azdir. Fakat 20000 psi akma dayanimina sahip ¢ubugun

15000 psi akma dayanimina sahip ¢ubuktaki kesite gore daha fazla kesite ihtiyag

duydugu goriilmiistiir.

Cizelge 3.16. Hem yiik hem de sicaklik altindaki (F;=20000 Ib F,=-25000 b, AT=250

°F) yapisal degerler
Akma Dayanimi o, (psi) 0.8*10000 0.8*15000 0.8%20000
Kuwvvet F; (Ib) 20000 20000 20000
Kuvvet F; (Ib) -25000 -25000 -25000
Sicaklik (°F) 250 250 250
A, (in2) 1,20991 1,1308 1,0674
A; (in.?) 0,17557 0 0,33139
A; (in.?) 1,27201 1,46608 0,898135
A4 (in?) 0,530497 0,277122 0,687466
Maliyet XA (in.?) 3,187987 2,874002 2,984391
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Sekil 3.25. Hem yiik hem de sicaklik altindaki (F;=20000 Ib F,=-25000 1b, AT=250 °F)
tasarim degiskenlerinin optimizasyon esnasindaki degisimi
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Sekil 3.26. Hem yiik hem de sicaklik altindaki (F;=20000 Ib F,=-25000 1b, AT=250 °F)
kafes sistemde amag fonksiyonunun optimizasyon esnasindaki degisimi

Sisteme F;= 20000 Ib F,= -25000 Ib yiik ve 500 °F sicaklik beraber etki ettirildiginde
her bir ¢ubukta ihtiya¢ duyulan kesit alan1 Sekil 3.27.” de, Sekil 3.28.” de ise toplam
ithtiya¢ duyulan kesit alanin grafiksel gosterimi sunulmustur. Cizelge 3.17.” de ise farkh
akma dayanimlarinda her bir ¢ubukta ve toplam maliyette ihtiyag duyulan degerler
tablosal olarak gosterilmistir. Yiik ve sicaklik beraber etki ettirildiginde 15000 psi akma
dayanimina sahip ¢ubuktaki kesit ihtiyact 10000 psi akma dayanimina sahip ¢ubuktaki
kesit ihtiyacina gore daha azdir. Fakat 20000 psi akma dayanimina sahip ¢ubugun
15000 psi akma dayanimina sahip c¢ubuga gore daha az kesite ihtiyag duydugu

gorilmiistiir.

Cizelge 3.17. Hem yiik hem de sicaklik altindaki (F;=20000 Ib F»,=-25000 Ib, AT=500

°F) ¢ubuk degerleri
Akma Dayamim o, (psi) 0.8*10000 0.8*15000 0.8*20000
Kuvvet F; (Ib) 20000 20000 20000
Kuvvet F; (Ib) -25000 -25000 -25000
Sicaklik (°F) 500 500 500
A (in.?) 1,30996 1,37076 1,43725
Az (in.?) 0,507893 0,135871 0,102023
Az (in.?) 1,48965 2,19116 2,31576
A4 (in.?) 0,734979 0,212058 0,168949
Maliyet XA (in.?) 4,042482 3,909849 4,023982
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Sekil 3.27. Hem yiik hem de sicaklik altindaki (F;=20000 Ib F,=-25000 1b, AT=500 °F)
tasarim degiskenlerinin optimizasyon esnasindaki degisimi

F+ATi(500 F)
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Sekil 3.28. Hem yiik hem de sicaklik altindaki (F;=20000 Ib F,=-25000 1b, AT=500 °F)
kafes sistemde amag fonksiyonunun optimizasyon esnasindaki degisimi

Yik sabit tutularak farkli sicakliklar, 10000 psi, 15000 psi ve 20000 psi akma
dayanimina sahip ¢ubuklara etki ettirildiginde ise toplam sicaklik farkinin 400 °F’ a

48



ulastigi durumda 10000 psi’ lik akma dayanimima sahip ¢ubugun 1.25 in.%, 15000 psi’
lik akma dayanimina sahip cubugun 1.47 in.? ve 20000 psi’ lik akma dayanimina sahip
cubugun 1.85 in? daha kesite ihtiya¢ duydugu goriilmiistir. Malzeme akma
dayaniminin ayni oldugu cubuklarda sicaklik artirildikca daha fazla kesite ihtiyag
oldugu anlasilmigtir. Toplam ihtiya¢ duyulan kesit alanlarindan yola ¢ikarak malzeme
kalitesine bagl olarak sicakligin maliyeti, malzeme dayanimi 10000 psi’ lik cubukta %
44.82, 15000 psi’ lik cubukta % 60.32 ve 20000 psi’ lik cubukta % 85.85 etkiledigi
gorilmistiir. Farkli akma dayanimlarma sahip c¢ubuklarin, farkli sicakliklar etki
ettirildiginde toplam kesit alanlarindaki degisimlerinin grafigi Sekil 3.29.” da, maliyet

artiglarinin tablolastirilmis hali ise Cizelge 3.18.” de gosterilmistir.

=¢—100°F/F1=20000 1b F2=-25000 1b == 150°F/F1=20000 1b F2=-25000 1b
200°F/F1=20000 Ib F2=-25000 1b =>¢=250°F/F1=20000 1b F2=-25000 1b
=3#=500°F/F1=20000 1b F2=-25000 1b

= 20000
2
©
©
E 15000 NN [
[~
>
«
g 10000
g “\ \
<
5000 . : : : .
2,00 2,50 3,00 3,50 4,00 4,50

Maliyet XA (in.?)

Sekil 3.29. Sinir gerilmeler ile minimum maliyetler arasindaki degisim

Cizelge 3.18. Hem yiik hem de sicaklik altindaki gubuklarin minimum maliyet

yiizdeleri
Akma Dayamimui 6, (psi) 0.8*10000 0.8*15000 0.8*20000
AT °F 400 400 400
Maliyet Farki XA (in.?) 1,251182 1,471121 1,858841
Maliyet Artis1 % 44,82 60,32 85,85
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BOLUM IV

SONUCLAR

Yapisal optimizasyondan beklentiler artilariyla eksileriyle incelendiginde iiriinlerin
imalat1 ve gelistirilmesi, 6zellikle endiistriyel alanda sinirlar belirlenen maliyeti, kalite
ve giivenilirligi artirmak i¢in hangi kriterlerin 6n plana c¢ikartilmasi gerektigini ortaya

koymaktadir.

Yik tastyan elemanlarin, verimlilik ve dayaniklilik 6zellikleri nedeniyle geometrileri
genelde karmasiktir. Bu nedenle iiretim maliyetleri de yiiksek ¢ikmaktadir. Elemanin
neye hizmet edecegi, liretim kosullari, teknik ihtiyaglari ve maliyeti goz Onilinde

bulundurularak gesitli amag ve kisitlamalar altinda tasarlanmalidir.

Kafes sistemler iizerine yapisal optimizasyon ile ilgili ¢aligmalar her gecen giin hizla
artmaktadir. Bu calismalarin da 6ncelikli hedefleri sistemlerin dayanimlarinin tiniform
olmasi, kafes agirliklarinin azaltilmasi, sekil degistirme enerjilerinin azaltilmasi

seklindedir.

Yapilan sayisal analizler gostermistir ki sicakliga maruz diizlem kafes sistemlerin

optimum tasariminda sicakliklar 6nemli bir faktordiir.

Bu calismada kafeslerin optimum tasarimi i¢in bir optimizasyon problemi Mathematica
programi ile kodlanmis ve sonuclar1 incelenmistir. Lineer olmayan denklemler ihtiva

eden optimizasyon problemi Differential Evolution metodu ile ¢oziilmiistiir.

Sicaklik etkisi altindaki diizlem kafes sistemlerin optimum tasarimi incelelendi ve su

sonuglara ulasildi:
Ayn1 akma dayanimina sahip ¢cubuklarda yiik artirildigi zaman daha fazla kesite ihtiyag

duyuldugu, kesit alanlarinda, sadece yiik etkisinde malzeme dayaniminin artirilmasiyla

azalmalarin olacagi,
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Sisteme sadece sicaklik artirilarak etki ettirildigi vakit ayn1 akma dayanimina sahip
cubuklarda daha biliylik kesite ihtiya¢ duyuldugu, malzeme dayaniminin artmasiyla

akma dayanimi yiliksek malzemede oransal olarak daha fazla kesite ihtiya¢ duyuldugu,
Hem sicaklik hem de yiik birlikte uygulandiklarinda ise ayn1 akma dayanimina sahip

cubuklarda daha biiylik kesite ihtiya¢ duyuldugu, malzeme dayaniminin artmasinin belli

bir sicakliktan sonra 6nemini yitirdigi tespit edilmistir.
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