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ÖZET 

 

SICAKLIK ETKİSİ ALTINDAKİ 

DÜZLEM KAFES SİSTEMLERİN OPTİMUM TASARIMI 

 

DEMİRLEK, Mehmet Zahid 

Niğde Üniversitesi 

Fen Bilimleri Enstitüsü 

İnşaat Mühendisliği Anabilim Dalı 

 

Danışman   : Doç. Dr. Hakan ERDEM 

 

Ocak 2014, 70 sayfa 

 

Bu tez çalışmasında, düzlem kafes sistemlerin sıcaklık etkileri altında optimum tasarımı 

araştırılmıştır. Çubuk elemanların kesitleri tasarım değişkeni olarak seçilmiş ve toplam 

maliyetin bir göstergesi olarak çubuk kesit alanlarının toplamı seçilmiştir. Tasarım 

değişkeni olarak seçilen kesit alanlarında yapılan alt ve üst sınırlar, deplasman 

kısıtlamaları, rijitlik kısıtlamaları gerilme kısıtlamaları altında amaç fonksiyonu 

minimize edilmiştir. ‘’Differential Evolution’’ nümerik optimizasyon metodu 

kullanılmıştır. Bir düzlem kafes sistem üzerinde amaçlanan optimizasyon yönteminin 

bir örneği gösterilmiştir. Görülmüştür ki; sıcaklığa maruz kalan kafes sistemlerde 

sıcaklığın optimum tasarımlar üzerinde önemli bir etkisi vardır. 

 

Anahtar sözcükler: Yapısal optimizasyon, sıcaklık ve optimizasyon,  sıcaklık ve optimum kesit, 

kafeslerin optimizasyonu, sıcaklık etkisi. 
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SUMMARY 

 

OPTIMUM DESIGN OF PLANAR TRUSS SYSTEMS  

SUBJECTED TO TEMPERATURE EFFECT 

 

DEMİRLEK, Mehmet Zahid 

Nigde University 

Graduate School of Natural and Applied Sciences 

Department of Civil Engineering 

 

Supervisor : Assoc. Prof. Dr. Hakan ERDEM 

 

 January 2014, page 70 

  

In this study, optimum design of planar truss systems subjected to temperature effect is 

investigated. Cross-sections of truss elements are selected as a design variable and sum 

of truss section areas are selected as an indicator of total cost. Objective function is 

minimized as lower and upper limits are defined as design variable at cross sections, 

displacement limits, stiffness limits and stress limits. “Differential Evolution” numerical 

optimization method is used for analysis. An example of target optimization method for 

a planar truss system is shown. It is observed that temperature has an important effect 

on truss systems exposed to temperature effect. 

 

Key words: Structural optimization, temperature and optimization, temperature and optimum cross-

section, optimization of truss systems, temperature effect. 
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ÖNSÖZ 

 

Kafes sistemlerin optimizasyonu mühendislik literatüründe oldukça önemli bir yer 

tutmaktadır. Sadece inşaat mühendisleri değil pek çok mühendislik alanında da 

karşılaşılır. Kafes taşıyıcılar ile ilgili pek çok optimizasyon yöntemi gösterilmiştir. 

Literatürdeki çalışmaların çoğunluğu optimizasyon yöntemleri üzerinedir ve genellikle 

dış yükler altında yapısal davranışlar incelenmiştir. Sıcaklığın etkileri ihmal edilmiştir. 

Özellikle sıcaklığa maruz düzlem kafes sistemlerde bir kesit optimizasyonu yapılıyorsa, 

sıcaklık etkileri mutlaka araştırılmalıdır. Bu çalışmada, düzlem kafes sistemlerin kesit 

optimizasyonu yanında sıcaklığın etkileri araştırılmış ve ciddi bir etkisi olduğu ortaya 

konmuştur. 

 

Tez çalışmamın yürütülmesi esnasında her türlü imkânı sağlayan, değerli bilgi ve 

tecrübelerinden yararlandığım kıymetli hocam Doç. Dr. Hakan ERDEM’ e, ayrıca 

yapılan modellerin analizleri boyunca ihtiyaç duyduğum her an yardımını esirgemeyen 

Yrd. Doç. Dr. Ersin AYDIN hocama çok teşekkür ederim. 

 

Her türlü maddi ve manevi desteği veren aileme de en içten teşekkürlerimi sunarım.
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BÖLÜM I 

 

GİRİŞ 

 

1.1 Yapısal Optimizasyon  

 

20. yüzyılın ikinci yarısından bu yana bilgisayarların kullanılmaya başlaması ile sayısal 

hesap yöntemleri ve bunların mühendislik problemlerine uygulama alanları da hızla 

ilerlemiştir. Sonraki yıllarda sonlu elemanlar yönteminin kullanılması ile yapı 

mühendisleri uzay kafes, asma köprü, sandviç ve kabuk yapılar gibi daha karmaşık yapı 

tipleri ile uğraşma olanağı bulmuşlardır. Yapı sistemlerinin çeşitlenmesi ise, bu yapılar 

için uygun malzeme türünün, yükleri en elverişli ve ekonomik biçimde taşıyan yapı 

sisteminin aranmasına neden olmuştur. Böylece optimizasyon teknikleri, yapı 

problemlerine uygulanmaya başlamış, mühendisin deneyim ve önsezisine dayanan 

geleneksel yapı tasarım yöntemi ise yerini, belirli kısıtlamaları sağlayacak şekilde yapı 

maliyetini minimize eden tasarım değişkenlerinin matematiksel hesabına bırakmıştır 

(Gülay, 1985). 

 

Yapı tasarım alanında yapılan çalışmalar, yapısal optimizasyon olarak adlandırılan yeni 

bir araştırma sahasının gelişimine yol açmıştır. Yapısal optimizasyon, Uysal’ a (2002) 

göre, önceden tanımlanan bir amaç ve verilen geometrik davranış kısıtları altında, 

muhtemel tasarımlar içinde en iyi yapı tasarımının belirlenmesi olarak tanımlanır. 

 

Bir tasarım mühendisi, araştırmacı ve geliştirmeci olması gerektiğinden çoğu zaman 

tamamen yeni yapılar tasarlamak zorundadır. Belirli bir tasarım probleminin yükleme 

ve mesnet koşulları, genelde önceden bilinmektedir. Fakat tasarımcı, gerçek yapının 

nasıl görünmesi gerektiğinden emin değildir. Yapı maliyetini etkileyen en önemli 

etkenin yapı ağırlığı olduğu bilindiğinden, tasarım esnasında dikkate alınan en önemli 

hususlardan birisi yapı ağırlığının azaltılmasıdır. Mevcut bir problem için daha önceden 

uygulanan tasarımlar bulunabilir. Ancak her ne kadar istenen tasarıma benzemese bile 

yine de önceki tasarımların yeniden boyutlandırılması faydalı olabilir. Tasarımcı, önceki 

deneyimlerine dayanarak problemi sezgisel olarak çözmeye çalışabilir. Fakat bu 

yaklaşım, mühendislik problemleri için yorucu gözükmekte ve her zaman iyi bir sonuca 
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ulaşmayı garanti etmemektedir. Diğer bir seçenek ise, Tanskanen’ in (2002) ifade ettiği 

gibi mühendislik problemine yapısal optimizasyon ile yaklaşılmasıdır. 

 

Önceden tanımlanan bazı gereksinimleri karşılayan ve istenen amaca ulaşmayı sağlayan 

makul bir yapı elde etme temeli üzerine kurulmuş olarak tanımlanan yapısal 

optimizasyon (Tang vd., 2005), basitçe, bir köprü veya büyük bir çerçeve gibi bir yapı 

için en iyi performansa ulaşmayı gaye edinen mühendislik, matematik, fen bilimleri ve 

teknoloji alanlarının bir kaynaşımı olarak Querin vd. (2000a) tarafından 

tanımlanmaktadır.  

 

Yapısal optimizasyonu tanımlayanlardan biride Xie ve arkadaşlarıdır. Xie vd.’ ne  

(1993) göre yapısal optimizasyon tasarımda en çok uğraştırıcı ancak ekonomik yönden 

de en mükafatlandırıcı işlem olarak tanımlanmıştır. Yapısal optimizasyon problemleri 

için geleneksel çözümler, muhtelif matematiksel programlama teknikleri kullanılarak 

araştırılmıştır. Matematiksel programlamanın tasarım optimizasyonu problemlerini 

çözmede etkisiz ve çoğu kez de uygunsuz olarak gösterilmesine rağmen bu yöntemler 

kullanılarak uygun tasarım teorileri geliştirilmiştir (Xie vd., 1993). 

 

Optimizasyon yöntemlerinin yapı problemlerine uygulanması ile belirli koşulları 

sağlayan ve aynı zamanda yapı maliyetini minimum yapan tasarım değişkenlerinin 

hesabı mümkündür. Yapı optimizasyonunda amaç fonksiyonu olarak, genellikle yapı 

maliyetinin minimum olması şartı aranırken, bazı problemlerde yer değiştirmelerin 

minimum olması (Thevendran, 1983) yapı doğal frekansının (Kamat, 1984) veya kritik 

yükün maksimum olması (Pala, 1978) gibi çeşitliliklere de rastlanır.  

 

Yapısal optimizasyon problemi, matris yer değiştirme veya matris kuvvet 

yöntemlerinden biri ile formüle edilebilir. Bilgisayar programlamasına daha uygun 

olması nedeniyle, daha çok sonlu eleman ve matris yer değiştirme yöntemi ile 

yaklaşımlara rastlanmaktadır. 

 

En ekonomik yapı sisteminin seçimi ve boyutlandırılmasını amaçlayan optimizasyon 

probleminde, yapı maliyeti, malzeme, kalıp, işçilik masrafları, bakım onarım gibi çeşitli 

faktörleri içermesine karşın, yapı optimizasyonunda çoğu zaman maliyet fonksiyonu 

olarak yapı ağırlığı veya yapı hacmini almak iyi bir yaklaşım verir. Buna göre yapısal 
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optimizasyon problemi, minimize edilecek yapı ağırlığı fonksiyonu ile sisteminin 

davranışı ve yönetmeliklerle ilgili kısıtlamaları sağlayan bir programlama problemi 

meydana getirir. 

 

Son yirmi yılda yapısal optimizasyon alanında, uygun malzeme dağılımıyla en iyi 

yapısal performansa ulaşmayı hedefleyen önemli gelişmeler sağlanmıştır. Tipik olarak 

optimizasyon problemleri, bağımlı ya da bağımsız değişkenlere dayanan sonlu eleman 

analizi, tasarım duyarlılık analizi ve matematiksel programlama yöntemlerinin beraber 

kullanılmasıyla çözülmektedir. Li vd. (1988) önceki çalışmaların çoğunun, bağımlı 

değişkenler kullanılarak ele alındığını,  bunun matematiksel anlamda önemli gibi 

gözükse de hedef fonksiyonun ve kısıtlayıcıların türevi gibi çok sayıda tasarım 

değişkenine ihtiyaç duyulacağını ve bu nedenle de bahsi geçen yöntemler, matematiksel 

olarak karmaşık, hesaplama yönünden de masraflıdırlar diye ifade etmişlerdir. 

 

Yapısal optimizasyonun birçok pratik uygulamasında tasarım değişkenleri, verilen bir 

takım farklı değerler arasından seçilmek zorundadır. Örneğin yapısal elemanlar, 

üreticilerden ticari olarak ulaşılabilecek şekilde standart bir kesit veya kalınlıkta 

seçilmelidir. Bu tür problemlerin üstesinden gelebilmek için bağımlı değişken 

yöntemleri çoğu kez, hedef ve kısıtlayıcı fonksiyonların tasarım değişkenlerine göre 

türevlerini almak üzere özel matematiksel işlemlere ihtiyaç duymaktadır. En basit 

yöntemlerden biri, ilk olarak tüm tasarım değişkenlerinin sürekli olduğunu varsayarak 

daha sonra farklı bir şekilde çözüme ulaşmaktır (Li vd., 1999b). 

 

1.2 Yapısal Optimizasyon İle İlgili Çalışmalar 

 

Yapısal optimizasyon ile ilgili çalışmalar çok eskidir. Yapı sistemlerinin kemer, kubbe, 

kafes, ızgara sistemler gibi çeşitlenmesi, mühendisin çeşitli mesnetler yardımıyla 

yükleri optimum şekilde aktarma isteğini yansıtır. Yapı sistemlerinde çeşitli malzemeler 

denenmesi ve kullanılması da yine optimum yapı tasarımı gereksinmesinden 

kaynaklanmaktadır. 

 

Yapı optimizasyonu ile ilgili ilk bilimsel çalışmalar Maxwell (1952) tarafından 

yapılmıştır. Daha sonra tam gerilmeli tasarım ve aynı anda göçme modu kriterlerinin 

kullanması ile  Cilley (1990) tarafından devam ettirilmiştir.  
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Bilgisayarların icadı ve gelişmesine paralel olarak sonlu elemanlar yöntemi ile 

optimizasyon yöntemleri de büyük bir hızla gelişme olanağı bulmuştur. Shmidt (1960) 

yapı optimizasyonu probleminde, sonlu eleman analizi ile matematik programlama 

tekniklerini bir arada uygulamayı önermiş, böylece yaklaşımla yapısal tasarım 

probleminin tasarım değişkenlerine bağlı, bir amaç fonksiyonunun olduğu, gerilme, yer 

değiştirme, frekans gibi sınırlayıcı koşulları da içerecek şekilde ele alınarak matematik 

programlama teknikleri, çeşitli yapı sistemlerine uygulanmaya başlamıştır. Daha 

sonraları matematik programlama tekniklerinin yanı sıra, yapı problemleri için üretilen 

optimumluk kriteri yöntemleri de yapı optimizasyonu problemlerinde yaygın olarak 

kullanılmaya başlamıştır (Venkayya ve V.B., 1971). 

 

Önceleri yalnız statik yük etkisinde olan yapıların optimizasyonu incelenirken, daha 

sonra zamana bağlı olarak değişen dinamik yük, deprem yükü, çok sayıda yükleme 

etkisindeki yapıların optimum tasarımı, optimum kontrol teorileri ile ilgili çalışmalar 

yapılmıştır. 

 

Bendsøe ve Kikuchi (1988) topoloji optimizasyonu üzerine en önemli çalışmalardan biri 

olan, kendilerinin “Homojenleştirme Yöntemi” adını verdikleri bir yöntem ile yapıyı 

mikro büyüklükte boşluklu bir model şeklinde tanımlayarak en uygun gözeneklilik 

durumunu araştırmışlardır. Küçük boşluklar ile homojenleştirilen yapının uygun 

optimizasyon ölçütlerine göre verilen yüklemeyi karşıladığı görülmüştür. Keskin yapı 

kenarları nedeniyle üç boyutlu sistemlere uygulanması nispeten zor olan bu yöntemin 

geliştirilerek istenilen şekilde kullanılabileceğini belirtmişlerdir. 

 

Xie ve Steven (1995) topoloji optimizasyonu ve eş zamanlı  olarak şekil ve boyut 

optimizasyonu için basit yaklaşımlar sunmuşlardır. Doğal yaşamı örnek alarak temelini 

oluşturdukları bu yöntem ile optimizasyon işlemi boyunca yapının düşük gerilmelere 

maruz bölgelerini yapıdan çıkarmak suretiyle optimizasyon gerçekleştirmişlerdir. 

Çeşitli düzlem gerilme problemleri üzerinde gerçekleştirdikleri bu optimizasyon 

işleminde, kaldırılan elemanların malzeme özelliklerini sıfır alarak sabit bir sonlu 

eleman modeliyle çalışmanın mümkün olduğunu vurgulamışlardır. Sonuç olarak 

çözdükleri örnek problemlerin çoğunda en uygun tasarımda en düşük gerilme değerinin 

en büyük değere oranın % 25 olduğunu ortaya koymuşlardır. 
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Chu vd. (1996) yapının ağırlığını azaltırken rijitlik gereksinimlerini karşılayan bir 

yaklaşımla çalışmışlardır. Sonlu eleman analizinin ardından her bir elemanın 

kaldırılmasına bağlı olarak yapı rijitliğindeki değişimi gösteren bir duyarlılık numarası 

belirlenmekte ve yapı rijitliğini en az oranda değiştiren elemanlar, yapıdan ihraç 

edilmektedir. Bu çalışmada, çoklu yer değiştirme kısıtlayıcılarının, çoklu yükleme 

durumlarının ve hareketli yüklerin bulunduğu problemler çözülmüştür. Bu problemler 

iki boyutlu olmalarına rağmen söz konusu yöntem, üç boyutlu problemlere de kolayca 

uyarlanabilmektedir. Rijitlik kısıtlayıcısının kullanılmasıyla yine hacimde dikkate değer 

kazanımlar elde edilebilmektedir. Bunun akabinde aynı yöntemle ulaşılan sonuçlarda 

eleman kaldırma oranı, ağ boyutu ve eleman tipinin etkilerini araştırılmıştır (Chu vd., 

1997).  

 

Chu vd. (1997), yapı ağırlığını azaltmak için deplasman kısıtlayıcılarıyla tasarım 

değişkenlerini farklı almışlardır. Eleman boyutunu küçültmede kullanılan duyarlılık 

numaralarını uygunluk ölçütü yöntemlerini kullanarak belirlemiş ve ayrıca 

çalışmalarında basit bir sınır düzeltme tekniği de kullanmışlardır. Bu çalışmalarıyla 

boyutlandırma problemlerinde evrimsel yapı tasarımının farklı tasarım değişkenleriyle 

uyum sağlayabileceğini göstermişlerdir. Ayrıca eleman kaldırma oranının önemine de 

değinilmiş, bu oran küçüldükçe optimizasyon hassasiyetinin artacağını ancak işlemin 

zaman yönünden dezavantaj doğuracağını belirtmişlerdir. 

 

Çerçevelerde uygun tasarım için yapılan araştırmalarda, Manickajah vd. (2000), 

kısıtlayıcı olarak gerilme, yer değiştirme, rijitlik ve burkulma yükü kullanmıştır. İki 

adımda tamamlanan yöntemin ilk adımında en elverişsiz durum için tasarım 

değişkenleri düzgün şekilde ölçeklendirilmekte; ikinci adımında da dayanım, rijitlik ve 

burkulma yükü üzerindeki etkilerine bağlı olarak her eleman için bir duyarlılık numarası 

hesaplanmaktadır. En uygun tasarıma ulaşıncaya kadar bu iki adım döngü şeklinde 

tekrarlanmaktadır. 

 

1.3 Yapısal Optimizasyondan Beklentiler 

 

Ürünlerin gelişimi ve üretimi, özellikle endüstriyel alanda belirli bir maliyet sınırını 

aşmadan kalite ve güvenilirliği artırmak için hangi ölçülerin esas alınacağı hususunu sık 

sık ön plana çıkartmaktadır.  
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Sağlamlık ve performans gereksinimlerinden dolayı yük taşıyan elemanların geometrisi 

genelde karmaşıktır. Bu gereksinimler, çoğu zaman üretim maliyetinin yükselmesine 

sebep olmaktadır. Kullanım amacı, maliyet, estetik, üretim şartları ve diğer teknik 

gereklilikler gibi çeşitli amaç ve kısıtlayıcılar ışığında tasarım yapılmalıdır. 

 

Pourazady ve Fu (1996) ise mühendislikte iki ana problemle karşılaşıldığını bunların; 

‘’Gerilme yoğunluğunun azaltılması (güvenlik koşulu) ve ağırlığının azaltılması 

(ekonomi koşulu) için yapının uygun hale getirilmesidir.’’ olduğu şeklinde ifade 

etmişlerdir. 

 

Bir mühendisin yapısal optimizasyondan beklentilerini Xie ve Steven (1997), 

optimizasyonu bütün yönleriyle ele alıp bir liste oluşturulması gerektiğini, optimizasyon  

sürecinde gereken hususları aşağıdaki maddeler halinde sunmuşlardır. 

 

 Aynı problemde, yapının farklı kısımlarında gerçekleştirilen boyut, şekil ve topoloji 

optimizasyonu.  

 Yapının farklı kısımlarında farklı optimizasyon kıstasları. (Örneğin kanatlarında 

dinamik yük olan, şasisinde rijitlik ve gövdede yorulma (gerilme) bulunan uçak gibi 

bir yapı)  

 Çok yönlü yükleme durumları. 

 Çok yönlü mesnet koşulları. 

 Çeşitli malzeme ve uygulanabilirlik imkanları. 

 2 ve 3 boyutlu yapısal biçimleri.  

 Statik, dinamik ve denge durumlarına göre eş zamanlı optimizasyon. 

 Doğrusal olmayan geometrik durumlarda optimizasyon.  

 

Bu tam bir listedir ve kısıtlı matematiksel amaçlara nazaran gerçek dünyadaki amaçların 

göz önünde tutulması gerektiğini ortaya koymaktadır. Şekil 1.1.’ de tasarım sürecinin 

nasıl işlediği ile ilgili bir algoritma verilmiştir. 
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Şekil 1.1. Geleneksel tasarım süreci (Gülay, 1985) 

 

1.4 Sonlu Elemanlar Analizi 

 

Bilgisayarlar, işlem güçlerinin fazlalığından dolayı birçok tasarım işlemini gittikçe 

basitleştirmişlerdir ve mühendislik tasarımındaki tesiri gittikçe belirginleşmeye devam 

etmektedir. Tasarımcının etkinliğini artırmak için tasarım işlemine bilgisayarları dahil 

eden “Bilgisayar Destekli Tasarım (CAD)” tekniği uzun zamandır ilgi görmektedir 

(Kim vd., 2002).  

 

Sonlu elemanlar analizi küçük parçaların (elemanların) montaj ile yapının 

modellenmesine yardımcı bir tekniktir (Şekil 1.2.). Bütün elemanlar basit bir 

geometriye sahiptirler ve bu durum çözümü daha da basitleştirmektedir. Sonlu 

elemanlar analizi sürecinde, bilgisayarda çözülen bir sürü eş zamanlı matematiksel 

denklem oluşturulmaktadır. İlk olarak gerilme analizi fikriyle ortaya çıkmıştır. 

Şimdilerde ise ısı transferi, sıvı akışı, elektrik ve manyetik alanlar gibi birçok 

mühendislik dalında uygulamalar mevcuttur. Önceden klasik analitik yöntemlerle 

üstesinden gelinemeyen karmaşık problemler, şimdi sonlu elemanlar analizi sayesinde 

kolayca çözülebilmektedir. Tasarım ve üretim yapan çoğu mühendislik firması, 

günümüzde sonlu elemanlar analizi yazılımlarına ya sahiptir ya da bu erişimi sağlayan 

danışman firmalar aracılığıyla bu yazılımları kullanmaktadırlar (Xie ve Steven, 1997). 

 

Problem

Yapıya ait verilerin belirlenmesi

Ön tasarım

Analiz

Tasarım uygunmu?

Kesin tasarım

Tasarım yenile

Evet

Hayır
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Şekil 1.2. Bir sonlu eleman modelinde düğüm noktaları ve elemanlar 

(www.biymed.com, 2013)  
 

Hesaplama aracı olarak sonlu elemanlar analiz yönteminin kullanılması ve 

bilgisayarların hızlarındaki artış ile birlikte verilen bir yapı üzerinde, binlerce analiz 

gerçekleştirmek mümkün hale gelmiştir.  

 

Yapısal optimizasyonun sonucunun doğruluğu, büyük oranda işlemin temelini oluşturan 

yapısal analizin sağlamlığına bağlıdır. Sayısal modelin doğruluğu kadar mekanik 

modelin özelliği de optimizasyonun kalitesinde belirleyici esastır.  

 

Sayısal analiz yöntemlerinin temelindeki hatalar da optimizasyon sonucunu olumsuz 

etkileyebilmektedir. Sonlu elemanlar yöntemi günümüzde en çok kullanılan yapısal 

optimizasyon uygulamasıdır. Sonlu eleman modellerindeki başlıca hatalar, denklemlerin 

ayrışmasından kaynaklanmaktadır. 

 

Optimum kelimesi, mümkün olanın en iyisi anlamında ilk olarak Leibniz tarafından 18. 

yüzyılda kullanılmıştır (Özkal, 2006). Kim vd. (2002), optimizasyonu, diferansiyel 

hesapla en iyi çözümü bulma işlemine verilen isimdir diye tanımlamışlardır. Barr vd. 

(1989), ise optimizasyonu, önceden belirlenen koşuları ve kısıtlayıcıları ihmal etmeden 

en iyi çözümü aramak şeklinde ifade etmişlerdir. 

 

http://www.biymed.com/
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Optimizasyon, tüm bilim alanlarında uygulanabilirliğe sahiptir ve mühendislik 

biliminde de önemli yeri vardır. Bunun en önemli sebebi ise, bir problem için en iyi 

çözümü aramak, mühendisliğin öncelikli ve değişmez bir kuralı olmasıdır.  

 

Tasarım optimizasyonu kavramı ve buna ulaşmak için geliştirilen teknikler nispeten 

uzun bir geçmişe sahiptir. İlk yaklaşımlardan biri, asgari yapı ağırlığı gibi teknik 

amaçlara cevap verebilmek için düzgün yayılı gerilme veya şekil değiştirme türü 

uygunluk koşullarını karşılamaya yönelik, en az yüz yıl öncesine uzanan dolaylı bir 

yöntemdir (Brotchie, 1997).  

 

Çeşitli yüklemeler, sınırlamalar altındaki bir yapının verimini artırmak için yapılan 

çalışmaya, yapısal optimizasyon adı verilmektedir. Yapısal optimizasyonun amacı 

yapının bütünlüğünü tehlikeye atmadan ağırlığını azaltma, üretim maliyetini düşürme 

ve yapının beklenen ömrü boyunca kullanım masrafını azaltma gibi nedenlere bağlı 

olabilmektedir. Şekil 1.3. ve 1.4.’ te bir kafes sistemin optimizasyon uygulanmadan 

önceki ve sonraki şekli görülmektedir.  

 

 

Şekil 1.3. Optimizasyondan önce (www.opteng.com.tr, 2013) 

 

 

Şekil 1.4. Optimizasyondan sonra (www.opteng.com.tr, 2013) 

Son yıllarda mühendislik, matematik, fen ve teknoloji alanlarındaki ilerlemelere bağlı 

olarak yapısal optimizasyon uygulaması daha da önemli hale gelmiştir.  

http://www.opteng.com.tr/
http://www.opteng.com.tr/
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19. yüzyıl sonları ve 20. yüzyıl başlarında mühendisler, optimizasyon ilkelerini ve  

analitik becerilerini birleştirmişlerdir. Bunun sonucunda Uygun Tasarım Teoremi olarak 

bilinen asgari ağırlıkta çerçeve biçimlendirmelerini kapsayan teoremler ortaya çıkmıştır 

(Pross, 2002).  

 

Sonraki 60 yılda başta kafes sistemler olmak üzere yapısal optimizasyon ile ilgili 

yapılan çalışmalara katkılar sürekli artmıştır. Bu çalışmalar esasen üç başlık altında 

toplanmıştır. Kafes ağırlığının azaltılması, belirli bir malzeme hacmi için şekil 

değiştirme enerjisinin düşürülmesi ve üniform dayanıma sahip hiperstatik yapıların 

optimizasyonudur. Ancak bu tekniklerin çoğu, hesap tabanlı klasik optimizasyon 

yöntemleridir (Proos, 2002). 

 

Geçtiğimiz 50 yılda optimizasyon denklemindeki değişkenlerin farklı bir şekle 

büründüğü, ilk yaklaşımlara nazaran değişim gösterdiği görülmektedir. Doğrusal ve 

doğrusal olmayan matematiksel programlama gibi yöntemlerin katkısıyla bu aşamada 

matematiksel programlama kilit bir rol oynamıştır. Doğrusal programlamanın temelini 

ise 1967’ de sunulan Simplex Yöntemi oluşturmaktadır (Özkal, 2006). Kısıtlayıcılı ve 

kısıtlayıcısız teknikler de ayrıca matematiksel programlama ile birleştirilerek 

kullanılmıştır. Bu teknikler, Lagrange Çarpan Yöntemi ve Penalt Fonksiyonu Yöntemi 

şeklinde sunulmuştur (Proos, 2002). 

 

Bilgisayar teknolojisinin gelişmesiyle birlikte son yıllarda bir çok yapısal optimizasyon 

yöntemi ortaya çıkmıştır. Bu yöntemlerin büyük bir kısmı sonlu elemanlar yöntemini 

kullanmakta ve bunlar genel olarak 3 ana başlık altında toplanmaktadır; topoloji 

optimizasyonu, şekil optimizasyonu ve boyut optimizasyonu. Yapısal optimizasyon 

yöntemleri aşağı da özet halinde açıklanmıştır (Proos, 2002).  

 

1.4.1 Topoloji optimizasyonu  

 

Topoloji optimizasyonu, bir yapıdaki topoloji bağlantısını tanımlayan süreci ifade 

etmektedir. Optimizasyon sonucu elde edilen yapı, başlangıç tasarımından çok farklı ve 

dolayısıyla da ondan bağımsızdır. Diğer bir ifadeyle, yapının ilk biçimine bağlı olarak 

nihai biçiminde hiçbir sınırlama bulunmamaktadır (Proos, 2002).  
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Duysinx ve Bendsøe (1998),  yapıların topoloji tasarımında, amaç olarak belirli bir 

tasarım alanında malzemenin en uygun şekilde dağılımının arandığını belirtmişlerdir.  

 

Topoloji optimizasyonundan, literatürde genelde plan optimizasyonu veya 

genelleştirilmiş şekil optimizasyonu olarak bahsedilmektedir. 

 

Verimli ve hafif yapılar elde etme konusunda yapısal topoloji optimizasyonu etkili bir 

tasarım aracı haline gelmiştir (Bendsøe ve Kikuchi, 1988). Kavramsal tasarım için güçlü 

bir teknik ve ayrıca geleneksel boyut ve şekil optimizasyonuna nazaran çok daha fazla 

faydalar sağlayabilmesi gerçeğiyle dikkate değer verimlilikte bir yöntem olduğu 

kanıtlanmıştır. Hatta uygun yapı tasarım problemini çözmede ve en verimli yapıyı 

üretmede de en iyi yöntem olduğu düşünülmektedir (Wang vd., 2006).  

 

Ön tasarım safhasında bir karar mekanizması olan topoloji optimizasyonu, günümüzde 

çok daha fazla rağbet görmektedir. Hiyerarşik yönden altta kalan boyut ve şekil 

optimizasyonlar ile mukayese edildiğinde yapı performansında büyük etkiye sahiptir 

(Jang ve Kwak, 2005). Şekil 1.5.’ de topoloji optimizasyonunda malzemenin en uygun 

dağılımı gösterilmektedir.  

 

 
 

Şekil 1.5. Topoloji optimizasyonu (www.blog.s-t.com.tr, 2013) 

 

Optimizasyon sonucu elde edilen tasarım, tasarımcının üretim için en uygun tasarımı 

belirleyebilmesi için kullandığı en uygun ve basit yoldur.  

 

Kendine ait özellikleri, belirli formülasyonları ve uygun çözüm teknikleri ile topoloji 

tasarımı, günümüzde çok yönlü ve yapısal optimizasyonun bir dalı olarak kabul 

edilebilmektedir. 

 

http://www.blog.s-t.com.tr/
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Daha büyük hacimler için genelleştirilmiş bir şekil optimizasyonu problemi gibi 

nitelendirilebileceğinden yapısal topoloji optimizasyonu, son birkaç yılda aşırı dikkat 

çekmiş ve büyük bir değişim geçirmiştir. Günümüze kadar muhtelif sayıda yapısal 

topoloji optimizasyonu yöntemleri geliştirilmiştir (Wang vd., 2006).  

 

1.4.2 Şekil optimizasyonu  

 

Şekil optimizasyonu, topoloji optimizasyonunun sınırlanmış bir halidir. Belirli sabit bir 

topoloji için yapının uygun sınırlarının belirlenmesi, yani sadece yapı sınırlarıyla 

çalışılmasıdır. Bu optimizasyon yönteminde, tasarımcı tarafından belirlenen amaca 

cevap verebilecek nitelikte bir şekil aranmaktadır (Proos, 2002). Şekil 1.6.’ de şekil 

optimizasyonu uygulanmış bir çelik yapı örneği gösterilmiştir.  

 

 
 

Şekil 1.6. Şekil optimizasyonu (www.opteng.com.tr, 2013) 

 

Tasarım değişkenleri genellikle iki veya üç boyutlu herhangi bir yapı şeklini tanımlayan 

eğri kontrol noktalarıdır. Boyut optimizasyonundan farklı olarak sonlu eleman modelini 

değiştirmekte ve bu yüzden optimizasyon sistemiyle ağ oluşumunu ve sonlu elemanlar 

analizini birleştirmede zorluklar doğurmaktadır (Kim vd., 2002). Ancak başta da 

belirtildiği üzere topoloji optimizasyonu ile mukayese edildiği takdirde de hiyerarşik 

yönden alt sırada kalmaktadır.  

 

 

http://www.opteng.com.tr/
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1.4.3 Boyut optimizasyonu  

 

Daha yüksek verim alabilmek için yapısal elemanların kesit boyutlarının  

düzenlenmesiyle gerçekleştirilen boyut optimizasyonu, yapısal optimizasyonun ilk  

halidir. Boyut optimizasyonu, kirişlerde en uygun kesit alanını elde  

edebilmek için genellikle kafes türündeki yapılara uygulanmaktadır. Boyutlandırmadaki  

tasarım değişkenleri, plak kalınlığı veya kiriş kesit alanı olabilmektedir. Boyutta  

değişiklik yapılırken yapının sonlu eleman modelinde değişikliğe gerek yoktur ve bu  

nedenle boyut optimizasyonu nispeten daha kolay ve açık bir yönteme sahiptir (Kim 

vd., 2002).  

 

Boyut optimizasyonu kavramı, özetle en uygun tasarıma ulaşmak için yapı boyutlarının 

değiştirilmesini ifade etmektedir. En iyi ve mümkün olan boyut birleşiminin bulunması 

hedeflenmektedir (Proos, 2002). 

 

Aşağıdaki şekilde ise birleştirilmiş optimizasyonun bir kabuk üzerindeki gösterimi 

görülmektedir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 1.7. Silindirik bir kabuk için nihai tasarımlar (Lee vd., 2000) 
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BÖLÜM II 

 

KAFES SİSTEMLER 

 

Bu bölümde kafes yapıların analizi sunulmaktadır.  Şekil 2.1.’ de tipik bir düzlem kafes 

gösterilmektedir. Kafes çubukları yalnızca iki kuvvet üyesinden oluşmaktadır. Yani, her 

kafes elemanı direkt basınç veya çekme etkisi altındadır (Şekil 2.2.). Bir kafeste, 

yalnızca bağlantılara tüm yük ve reaksiyonların uygulanması ve tüm üyelerin beraberce, 

sürtünmesiz pim bağlantıları ile bunların uçlarına bağlanması gerekir (Chandrupatla ve 

Belegundu, 1991). 

 

 
 

Şekil 2.1. İki boyutlu bir kafes (Chandrupatla ve Belegundu, 1991) 

 

P

P

 
 

Şekil 2.2. Çubuk eleman kuvvetleri (Chandrupatla ve Belegundu, 1991) 

 

Statik derslerinde düğüm yöntemi ve kesim yöntemi kullanılarak kafesler analiz 

edilmektedir. Statiğin temellerini gösterirken, bu yöntemler statik olarak belirsiz kafes 

yapısına uygulandıklarında, sıkıcı ve zor hale gelirler.  Bunun dışında, bağlantı noktası 

1 2 3 4 5

876

Q1

Q2i

Q2i-1i

P1 P2 P3

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9
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değişiklikleri kolaylıkla sağlanamaz. Diğer yandan, statik olarak belirli veya belirsiz 

benzer yapılara sonlu eleman metodu uygulanabilmektedir. Sonlu eleman metodu ayrıca 

bağlantı noktası sapmaları da sağlamaktadır. Sıcaklığın etkileri ve mesnet çökmeleri 

hesaplara katılabilmektedir.  

 

2.1 Düzlem Kafesler 

 

2.1.1 Yerel ve global koordinat sistemleri 

 

Tek boyutlu yapılar ve kafesler arasındaki temel fark kafes elemanlarının değişik 

yönelimlere sahip olmasıdır.  Bu farklı yönelimlerin açıklamasını yapmak için, yerel ve 

global koordinat sistemleri aşağıdaki gibi ortaya koyulmaktadır. 

  

Şekil 2.3.’ teki yerel ve global koordinat sistemlerinde tipik bir düzlem kafes elemanı 

gösterilmektedir. Yerel numaralandırma yönteminde, elemanın iki düğümü 1 ve 2 

olarak numaralandırılır. Yerel koordinat sistemi 1. düğümden 2. düğüme kadar olan 

eleman boyunca uzanan x' ekseninden ibarettir.  Yerel koordinat sistemindeki tüm 

değerler bir asal üssü ( ' ) işareti ile belirtilmektedir.  Global x-y koordinat sistemi 

sabittir ve elemanın yönelimine bağlıdır.  x ve y’ nin kağıdın dışına çıkan z ekseni ile 

sağda bir koordinat sistemi oluşturduğuna dikkat ediniz.  Global koordinat sisteminde 

her düğüm iki serbestlik derecesine sahiptir. Burada sistematik bir numaralandırma 

yöntemi izlenmektedir. Global düğüm sayısı j olan bir düğüm, 2j-1 ve 2j serbestlik 

derecesi ile ilişkilendirilmiştir. Dahası, j düğümü ile ilişkilendirilen global yer 

değiştirmeler, Şekil 2.2.’de görüldüğü gibi Q2j-1 ve Q2j olur. Dolayısıyla, yerel 

koordinat sisteminde eleman yer değiştirme vektörü aşağıdaki gibi gösterilmektedir 

(Chandrupatla ve Belegundu, 1991). 

 

q' = [q1' , q2']                (2.1) 
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Şekil 2.3. Yerel ve global koordinat sisteminde iki boyutlu kafes elemanı (Chandrupatla 

ve Belegundu, 1991) 

 

Global koordinat sisteminde ki eleman yer değişim vektörü aşağıdaki ile gösterilen bir 

(4x1) vektördür.  

 

q = [q1,q2,q3,q4]
T 

                                                                                                          (2.2) 

 

q' ve q arasındaki ilişki aşağıdaki gibi gösterilebilir. Şekil 2.3.’ te, qi, x' ekseni üzerinde 

q1 ve q2’ nin izdüşümleri toplamına eşittir. Dolayısıyla, bu durum denklem (2.3) ile elde 

edilir. 

 

q1' = q1 cosθ + q2 sinθ                                                                                                   (2.3) 

 

Benzer bir şekilde denklem (2.4)’ e ulaşılabilir. 

 

q2' = q3 cosθ + q4 sinθ                                                                                                (2.4) 

 

Bu aşamada, doğrultman kosinüsü ℓ ve m, ℓ=cosθ, m=cosφ(=sinθ) olarak 

gösterilmektedirler. Bu doğrultman kosinüsleri sırasıyla yerel x' eksenini global x, y 

eksenleri ile yaptığı açıların kosinüsleridir. Denklem (2.3) ve (2.4) artık aşağıdaki gibi 

matris şeklinde yazılabilir. 
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q' = Lq                                                                                                                          (2.5) 

  

Burada dönüşüm matrisi L  denklem (2.6) ile verilmektedir.  

 

L =[
    
    

]                                                                                                      (2.6)  

 

Düğüm koordinat verilerinden ℓ ve   doğrultman kosinüslerini hesaplamak için artık 

basit formüller verilmektedir.  Şekil 2.4.’e istinaden, (x1, y1) ve (x2, y2) sırasıyla 1 ve 2 

düğümlerin koordinatları olsun, o halde aşağıdaki denklemler elde edilir. 

 

  
     

  
             (2.7a) 

  
     

  
                                                                                                                   (2.7b) 

 

Uzunluk ℓe aşağıdaki denklemden bulunabilir. 

 

 e =  √                                   (2.8) 

 

Denklem (2.7) ve (2.8)’ deki ifadeler düğüm koordinat verilerinden elde edilmektedir ve 

bir bilgisayar programında kolaylıkla gerçekleştirilebilir.  

 
Şekil 2.4. Doğrultman kosinüsleri (Chandrupatla ve Belegundu, 1991) 
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2.1.2 Elemanın rijitlik matrisi 

 

Kafes elemanı yerel koordinat sisteminde incelendiğinde tek boyutlu bir elemandır. 

Yerel koordinat sistemindeki bir kafes elemanı için eleman rijitlik matrisi denklem (2.9) 

ile verilmektedir (Chandrupatla ve Belegundu, 1991). 

 

   
    

  
[
      
      

]              (2.9) 

 

Burada Ae kesit alanıdır, Ee ise elastisite modülüdür. Eldeki problemde global koordinat 

sistemindeki eleman rijittik matrisi için bir ifade geliştirmiştir. Bu, elemanda ki 

potansiyel enerjiyi hesaba katarak elde edilebilir. Özellikle, yerel koordinatlardaki 

eleman potansiyel enerjisi denklem (2.10) ile verilmektedir. 

 

Ue = 
 

  
 q'

T 
k'q'                       (2.10)  

 

q' = Lq' bağıntısı denklem (2.10)’ da yerine konularak denklem (2.11) elde edilebilir. 

 

Ue = 
 

 
 q

T 
[L

T
k'L]q            (2.11) 

 

Global koordinatlardaki potansiyel enerji ise şu şekilde yazılabilir. 

 

Ue = 
 

 
q

T 
kq                                                                                                                 (2.12) 

 

Burada k global koordinatlardaki elemanın rijitlik matrisidir. Yukarıdaki denklemden, 

global koordinatlardaki eleman rijitlik matrisi şu şekilde ifade edilir. 

 

k = L
T
k'L             (2.13) 

        

Denklem (2.6)’ dan L ve denklem (2.9)’ dan k' yerine konularak aşağıdaki bağıntı elde 

edilebilir. 
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[

                
                    

                
                 

]         (2.14) 

 

 

Eleman rijitlik matrisleri, yapısal rijitlik matrisini elde etmek için olağan bir şekilde 

birleştirilmektedir.  

 

2.1.3 Gerilme hesaplamaları 

 

Yerel koordinatlarda, bir çubuk elemanındaki kuvvetler Şekil 2.2.’ de gösterilmiştir. 

Dolayısıyla, bir kafes elemanındaki gerilme aşağıdaki gibi verilmektedir (Chandrupatla 

ve Belegundu, 1991). 

 

σ = Ee ɛ             (2.15) 

 

ɛ, birim uzama oranı olarak verilmiş olup denklem (2.15)’ e aşağıdaki gibi ilave 

edilebilir.  

 

σ  
     

    
  

  
                (2.16) 

σ = Ee[       ] (
  

 

  
 
)            (2.17) 

 

Yukarıdaki denklem q' = LqK dönüşümü kullanılarak, global yer değiştirmelere göre 

gerilemeler ifade edilecek olursa, 

 

σ= 
  

  
[       ]Lq                                                                                                        (2.18)  

 

Şeklinde yazılabilir. Denklem (2.6)’ dan L yerine koyularak, 

  

σ= 
  

  
[                     ]q           (2.19) 

                                                                                                                 

gerilmeler hesaplanır. Yer değiştirmeler sonlu eleman denklemlerini çözerek 

belirlendikten sonra, her bir eleman için  gerilmeler denklem (2.19)’ dan sağlanabilir. 



20 

 

Negatif gerilmenin basınç, pozitif gerilmenin ise çekme anlamına geldiği dikkate 

alınmalıdır.  

 

2.1.3 Sıcaklık etkileri 

 

Burada ısıl gerilme problemi dikkate alınmaktadır. Bir kafes elemanı yerel koordinat 

sisteminde basit bir şekilde tek boyutlu olduğu için, yerel koordinat sistemindeki 

eleman sıcaklığı aşağıdaki gibi verilmektedir. 

 

Θ'= EeAeɛₒ {
  
    

}                                                                                                                                                             (2.20)  

 

Burada sıcaklık değişimi ile ilişkilendirilen ɛₒ  başlangıç birim şekil değiştirme 

aşağıdaki gibi verilmektedir. 

 

ɛₒ= α∆T                                                                                                                      (2.21)  

 

α elemandaki ısıl genleşme katsayısı ve ΔT ise sıcaklıktaki ortalama değişikliktir. 

Ayrıca ɛₒ  başlangıç birim şekil değiştirmesinin de, üretim hatası nedeniyle de meydana 

gelebileceği bilinmektedir. 

 

Global koordinat sisteminde yük vektörü ifade edilir. Bu yük ile ilişkilendirilen 

potansiyel enerji gerek yerel gerekse de global koordinat sistemlerinde ölçülen 

büyüklükle aynı olduğu için, aşağıdaki bağıntı elde edilir. 

 

q'
T
 Θ' = q

T
 Θ                                                                                                               (2.22) 

 

Burada Θ global koordinat sistemindeki yük vektörüdür. q' = Lq yukarıda yerine yazılır 

ise,  

 

q
T
L

T
Θ' = q

T
Θ                                                                                                             (2.23)

           
 

ifadesi elde edilir. Yukarıdaki denklemin sağ ve sol tarafları karşılaştırılır ise; 
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Θ = L
T
Θ'                                                                                                                     (2.24)  

 

elde edilir. Denklem (2.6)’ dan L’ nin yeri değiştirilerek, eleman sıcaklık yükü için şu 

ifade yazabilir; 

 

Θ
e 
= EeAeɛₒ[

  
  
    
    

]                                                                                                       (2.25)  

 

Dıştan uygulanan diğer yükler ile birlikte sıcaklık yükleri de F düğüm yük vektörünü 

elde etmek amacıyla olağan şekilde birleştirilirler. Yer değiştirmeler sonlu eleman 

denklemlerini çözerek elde edilir edilmez, her bir kafes elemanındaki gerilme elde 

edilir. 

 

σ= E(ɛ-ɛₒ)                                                                                                                   (2.26)  

 

Elemanlardaki gerilmeler denklem (2.19) kullanılarak ve ɛₒ=αΔT’ yi dikkate alarak 

sıcaklık etkisinde gerilme denklemi elde edilir. 

 

σ= 
  

  
[      ]q - Eeα∆T                                                                            (2.27)  
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BÖLÜM III 

 

SAYISAL ÖRNEK  

 

3.1 Optimizasyon Probleminin Tanımlanması 

 

Yapıların optimum tasarımında problemin doğasına veya mühendisin önceliklerine göre 

bir veya birkaç tane amaç fonksiyonu belirlenir. Ağırlığın, deplasmanın, ivmenin veya 

tanımlanan diğer amaçların minimizasyonu veya bazı davranış ve amaçların 

maksimizasyonu yapılabilir. Kritik yükün maksimizasyonu, tasarım ve imalat 

aşamasında üretimde karın maksimizasyonu da yapılabilmektedir. 

 

Bu optimizasyon çalışmasında kafes sistemlerde çubukların kesit alanlarının toplamı 

veya diğer bir ifadeyle çubuk eleman sayısı n olan bir düzlem kafes için amaç 

fonksiyonu; 

 

Min  (∑   
 
   )  i=1,…..,n           (3.1) 

 

şeklinde verilebilir. Burada Ai çubuk eleman kesit alanını ifade eder. Tasarım değişkeni 

Ai’ ler için alt sınır kısıtlamaları; 

 

Ai ≤ 0  i=1,….,n            (3.2) 

 

şeklinde verilebilir. Gerilmelerin sınır gerilmeleri geçmesi istenmediğinden gerilmeler 

için aşağıdaki kısıtlamalar verilebilir; 

 

σi - σa ≤ 0 i=1,….,n            (3.3) 

 

burada σi, i elemanındaki normal gerilmeyi, σa ise sınır gerilmeyi ifade eder. Ayrıca 

kafes sistem düğümlerindeki i. deplasman için bir deplasman kısıtlaması; 

 

   ≤   ̅   i=1,….,n           (3.4) 

 

şeklinde verilebilir. Rijitlik kısıtlaması ise; 
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KQ = F              (3.5) 

 

şeklinde verilebilir. Q deplasman vektörünü ifade ederken, K global rijitlik matrisini, F 

ise dış yük vektörünü gösterir. 

 

Mevcut kısıtlamalar altında tanımlanan bu optimizasyon problemi nümerik bir 

optimizasyon yöntemi kullanılarak çözülebilir. Sıcaklığın değişimi gerilmeyi 

dolayısıyla optimizasyon tasarımlarını etkiler. 

 

Bu çalışmada optimizasyon üzerinde, kafes sisteme etki eden yüklerin ve sıcaklığın 

etkisi araştılırken Mathematica programında kodlama yapılmıştır. Mathematica’ nın 

bünyesinde yer alan diferansiyel evrim, optimum değere yeterince yaklaşmasından 

dolayı tercih edilmiştir. 

 

Diferansiyel evrim (Differential Evolution, (DE)) ilk olarak 1995 yılında K. Price 

tarafından ortaya konmuştur. Diferansiyel evrim algoritması çaprazlama, mutasyon ve 

seçim gibi genetik algoritmalarda bulunan benzer operatörleri kullanan ve son 

zamanlarda popüler olan popülasyon tabanlı bir algoritmadır. DE’ nin önemli 

parametreleri; popülasyon büyüklüğü, çaprazlama sabiti ve ölçekleme faktörü olarak 

sayılabilir. Bir DE algoritmasının temel adımları aşağıdaki gibidir (Eke, 2011). 

 

• Başlangıç popülasyonunun oluşturulması 

• Değerlendirme 

• Durma kriteri sağlanıncaya kadar tekrarla 

• Mutasyon 

• Çaprazlama 

• Seçim 

  

3.2 Problemin Tanımlanması 

 

Şekil 3.1.’ de gösterilen dört çubuklu bir kafesin tüm elemanları için E=29.5x10
6
 psi 

olarak verilmektedir. 
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Şekil 3.1. Dört çubuklu bir kafes 

  

Verilen bu sistemde kesit alanları tasarım değişkeni olarak seçilmektedir. Amaçlanan 

yöntem ile optimum kesit alanları, toplam alan minimize edilerek bulunacaktır. Yapısal 

özellikler ve dış yükler aşağıda verilmiştir.  

 

Tasarım değişkenleri olarak elastisite modülü ve ısı genleşme katsayısı; 

 

E=29.5x10
6
 psi             (3.6) 

α = 0.00000667             (3.7) 

 

Çubuk boyları sırasıyla; 

 

le1 = 40 in.              (3.8) 

le2 = 30 in.              (3.9) 

le3 = 50 in.            (3.10) 

le4 = 40 in.            (3.11) 

 

Q6

Q7

Q8

3
0

 i
n

.

40 in.

Q4

Q3 20000 lb X

Y

Q5

25000 lb

Q2

Q1 1

2
3

4

1 2
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Malzeme akma dayanımları ise ısı etkisi altındayken 0.8 ile çarpılarak yani % 20 

azaltılarak aşağıdaki gibi verilmiştir. 

 

σa = 0.8*10000 psi           (3.12) 

σa = 0.8*15000 psi           (3.13) 

σa = 0.8*20000 psi           (3.14) 

σa = 10000 psi            (3.15) 

σa = 15000 psi            (3.16) 

σa = 20000 psi            (3.17) 

 

Sisteme üniform etki ettirilen sıcaklık farkları ; 

 

∆T = 100 ºF            (3.18) 

∆T = 150 ºF            (3.19) 

∆T = 200 ºF            (3.20) 

∆T = 250 ºF            (3.21) 

∆T = 500 ºF            (3.22) 

 

olarak verilmiştir. Dış yük olarak sisteme etki ettirilen çekme ve basınç kuvvetleri; 

  

F1 = 20000 lb, F2 = -25000 lb          (3.23) 

F1 = 30000 lb, F2 = -35000 lb          (3.24) 

F1 = 40000 lb, F2 = -45000 lb          (3.25) 

 

şeklinde verilmiştir. Düğüm noktasında ki deplasmanların üst sınırı; 

 

ds = 0,1 in.            (3.26) 

 

olarak seçilmiştir. Amaç fonksiyonu; 

 

Min F(x) = ΣA = A1+A2+A3+A4         (3.27) 

 

olarak tüm çubuk kesit alanlarının toplamına eşittir. Boyut kısıtlamaları; 
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g1 = A1 ≥ 0            (3.28) 

g2 = A2 ≥ 0            (3.29) 

g3 = A3 ≥ 0            (3.30) 

g4 = A4 ≥ 0            (3.31) 

 

şeklinde verilmiştir. Çubuklardaki normal gerilme ve düğüm deplasmanlarındaki 

kısıtlamalar; 

 

g5 = σ1 - σa  ≤ 0           (3.32) 

g6 = -σ1 - σa  ≤ 0           (3.33) 

g7 = σ2 - σa  ≤ 0           (3.34) 

g8 = -σ2 - σa  ≤ 0           (3.35) 

g9 = σ3 - σa  ≤ 0           (3.36) 

g10 = -σ3 - σa  ≤ 0           (3.37) 

g11 = σ4 - σa  ≤ 0           (3.37) 

g12 = -σ4 - σa  ≤ 0           (3.39)  

g13 = -ds ≤ Q3   ≤ ds           (3.40)  

g14 = -ds ≤ Q5   ≤ ds           (3.41) 

g15 = -ds ≤ Q6   ≤ ds           (3.42) 

 

şeklinde ifade edilmiştir. Çizelge 3.1. ve 3.2. ve düğün numaralarına bağlı olarak 

kodlamada kullanılan verileri göstermektedir. 

 

Çizelge 3.1. Çubuk elemanlarının düğüm noktaları ve düğüm koordinat verileri 

 

Düğüm x y 

1 0 0 

2 40 0 

3 40 30 

4 0 30 

 

Çizelge 3.2. Eleman ve düğüm numaraları  

 

Eleman 1 2 

1 1 2 

2 3 2 

3 1 3 

4 4 3 
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Eleman bağlantı durumunu tanımlama konusunda herhangi bir seçim yapılabilir. 

Örneğin, eleman 2’ nin bağlanırlığı yukarıdaki gibi 3-2 yerine 2-3 olarak 

tanımlanabilirdi. Ancak, doğrultu kosinüslerinin hesaplamaları seçilen bağlanırlık 

şeması ile tutarlı olmalıdır. Denklem (2.7) ve (2.8)’ deki formülleri kullanarak, yukarıda 

verilen düğüm koordinat verileri ve eleman bağlanırlık bilgisi ile birlikte,  aşağıdaki 

doğrultu kosinüsleri tablosu elde edilebilir. 

     

Çizelge 3.3. Doğrultman kosinüsleri 

 

Eleman le l m 

1 40 1 0 

2 30 0 -1 

3 50 0.8 0.6 

4 40 1 0 

 

Verilen kafes sistemin elaman rijitlik matrisleri aşağıdaki gibi tasarım değişkenlerine 

bağlı olarak yazılabilir. 

 

k1=[

                             
                   

                            
                   

]       (3.43) 

k2=[

                   
                                 

                   
                                

]       (3.44) 

k3=[

                                               

                                               

                                                

                                             

]    (3.45) 

k4=[

                                
                  

                                
                   

]       (3.46) 

 

Global rijitlik matrisi ise aşağıdaki gibi tasarım değişkenlerine bağlı olarak yazılabilir. 

 

  [
            

                   
                          

]    (3.47) 
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Yer değiştirmeler denklem (3.48)’den hesaplanır. 

 

[

            

                   
                          

] [

  

  

  

]=[
       
     
       

]       (3.48) 

 

Çubuk elemanlardaki gerilmeler aşağıdaki gibi hesaplanır. 

 

σ1= 
  

  
{             }{        } – E1α∆T        (3.49) 

σ2= 
  

  
{             }{          } – E2α∆T        (3.50) 

σ3= 
  

  
{             }{         } – E3α∆T        (3.51) 

σ4= 
  

  
{             }{         } – E4α∆T        (3.52) 
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Şekil 3.2. Sıcaklık etkisi altındaki dört çubuklu kafes 

 

Tüm elemanlar için farklı yük ve sıcaklık kombinasyonları altında değerler aşağıdaki 

grafikler ve tablolarda sunulmuştur. Sisteme sadece F1=20000 lb ve F2=-25000 lb yük 

uygulandığında malzeme dayanımıyla doğru orantılı olarak, akma dayanımı arttıkça 

çubuk kesit alanın azaldığı gözlenmiştir. Şekil 3.3. ve Şekil 3.4.’ te her bir çubuk için 

toplam kesit alanının ve buna bağlı olarak toplam maliyetin kaç iteresyon sonucunda 
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bulunduğu sunulmuştur. Çizelge 3.4.’ de ise grafiklerde elde edilen değerlerin tablosal 

hali gösterilmiştir. 

 

Çizelge 3.4. Dış yük altındaki (F1=20000 lb F2=-25000 lb) yapısal değerler 

 

Akma Dayanımı σa (psi) 10000 15000 20000 

Kuvvet F1 (lb)  20000 20000 20000 

Kuvvet F2 (lb)  -25000 -25000 -25000 

Sıcaklık (°F) 0 0 0 

A1 (in.²) 2,00018 1,33338 1,00001 

A2 (in.²) 2,50007 1,66668 1,25003 

A3 (in.²) 0 0,000012 0,0000042 

A4 (in.²) 0,000097 0,000008 0,000013 

Maliyet ΣA (in.²) 4,500347 3,000080 2,250057 

 

 
Şekil 3.3. Dış yük altındaki (F1=20000 lb F2=-25000 lb) tasarım değişkenlerinin 

optimizasyon esnasındaki değişimi 
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Şekil 3.4. Dış yük altındaki (F1=20000 lb F2=-25000 lb) kafes sistemde amaç 

fonksiyonunun optimizasyon esnasındaki değişimi 

 

Sisteme sadece F1=30000 lb ve F2= -35000 lb yük uygulandığında malzeme 

dayanımıyla doğru orantılı olarak, akma dayanımı arttıkça çubuk kesit alanın azaldığı 

gözlenmiştir. Şekil 3.5. ve Şekil 3.6.’ de her bir çubuk için toplam kesit alanın ve buna 

bağlı olarak toplam maliyetin kaç iteresyon sonucunda bulunduğu sunulmuştur. Çizelge 

3.5.’ de ise grafiklerde elde edilen değerlerin tablosal hali gösterilmiştir. 

 

Çizelge 3.5. Dış yük altındaki (F1=30000 lb F2=-35000 lb) yapısal değerler 

 

Akma Dayanımı σa (psi) 10000 15000 20000 

Kuvvet F1 (lb)  30000 30000 30000 

Kuvvet F2 (lb)  -35000 -35000 -35000 

Sıcaklık (°F) 0 0 0 

A1 (in.²) 3,00018 2,00016 1,50002 

A2 (in.²) 3,50007 2,33363 1,75009 

A3 (in.²) 0,000106 0,000005 0,0000005 

A4 (in.²) 0,0000258 0,0000092 0 

Maliyet ΣA (in.²) 6,500382 4,333804 3,250111 
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Şekil 3.5. Dış yük altındaki (F1=30000 lb F2=-35000 lb) tasarım değişkenlerinin 

optimizasyon esnasındaki değişimi 

  

 
 

Şekil 3.6. Dış yük altındaki (F1=30000 lb F2=-35000 lb) kafes sistemde amaç 

fonksiyonunun optimizasyon esnasındaki değişimi 

 

Sisteme sadece F1=40000 lb ve F2=-45000 lb yük uygulandığında malzeme dayanımıyla 

doğru orantılı olarak, akma dayanımı arttıkça çubuk kesit alanın azaldığı gözlenmiştir. 
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Şekil 3.7. ve Şekil 3.8.’ te her bir çubuk için toplam kesit alanın ve buna bağlı olarak 

toplam maliyetin kaç iteresyon sonucunda bulunduğu sunulmuştur. Çizelge 3.6.’ da ise 

grafiklerde elde edilen değerlerin tablosal hali gösterilmiştir. 

 

Çizelge 3.6. Dış yük altındaki (F1=40000 lb F2=-45000 lb) yapısal değerler 

 

Akma Dayanımı σa (psi) 10000 15000 20000 

Kuvvet F1 (lb)  40000 40000 40000 

Kuvvet F2 (lb) -45000 -45000 -45000 

Sıcaklık (°F) 0 0 0 

A1 (in.²) 4,00221 2,66672 2,00001 

A2 (in.²) 4,5013 3,00004 2,25006 

A3 (in.²) 0,000092 0,000028 0,000001 

A4 (in.²) 0,0000007 0,0000001 0 

Maliyet ΣA (in.²) 8,503603 5,666788 4,250071 

 

 
Şekil 3.7. Dış yük altındaki (F1=40000 lb F2=-45000 lb) tasarım değişkenlerinin 

optimizasyon esnasındaki değişimi 
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Şekil 3.8. Dış yük altındaki (F1=40000 lb F2=-45000 lb) kafes sistemde amaç 

fonksiyonunun optimizasyon esnasındaki değişimi 

 

Çubukların akma dayanımları 10000 psi, 15000 psi ve 20000 psi olarak belirlenmiş olup 

sisteme sadece yük etki ettirilmiş ve çubuk kesitlerinde, farklı akma dayanımlarında 

farklı yüklemelerde nasıl etkiler olduğu gözlenmiştir. 

 

10000 psi’ lik akma dayanımına sahip çubuklarda toplam kesit alanın 4.50 in.
2
’ den 

8.50 in.
2
’ ye çıktığı, 15000 psi’ lik akma dayanımına sahip çubuklarda toplam kesit 

alanın 3.00 in.
2
’ den 5.60 in.

2
’ ye çıktığı ve 20000 psi’ lik akma dayanımına sahip 

çubuklarda ise toplam kesit alanın 2.20 in.
2
’ den 4.25 in.

2
’ ye çıktığı görülmüştür. 

Beklenildiği gibi yük artırıldıkça kesit alanlarında artmalar meydana gelmiştir. 

Malzeme dayanımı arttıkça çubuk kesit alanlarında azalmalar, aynı akma dayanımında 

yük iki katına çıkartıldığında ihtiyaç duyulan kesitinde iki katına çıktığı tespit 

edilmiştir. Şekil 3.9.’ da farklı akma dayanımlarında kesitlerde ihtiyaç duyulan artmalar 

grafiksel olarak sunulmuştur. Çizelge 3.7.’ de ise maliyet artışlarının yüzdesel ifadesi 

tablosal olarak gösterilmiştir. 
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Şekil 3.9. Sınır gerilmeler ile minimum maliyetler arasındaki değişim 

 

Çizelge 3.7. Farklı yükler altındaki çubukların minimum maliyet yüzdeleri 

 

Akma Dayanımı σa (psi) 10000 15000 20000 

∆T °F 0 0 0 

Maliyet Farkı ΣA (in.²) 4,00 2,666708 2,000014 

Maliyet Artışı % 88,95 88,89 88,89 

 

Sistemden yük kaldırılarak sadece 100 ºF sıcaklık uygulandığında her bir çubukta 

ihtiyaç duyulan kesit alanları Şekil 3.10.’ da, Şekil 3.11.’ de ise toplam maliyetin farklı 

akma dayanımlarında nasıl değişkenlik gösterdiği grafiksel olarak sunulmuştur. Çizelge 

3.8.’ de farklı akma dayanımlarında ihtiyaç duyulan kesit alanlarının tablosal gösterimi 

sunulmuştur. Aynı sıcaklık etki ettirildiğinde malzeme dayanımı arttıkça toplam kesit 

alanlarında azalmalar tespit edilmiştir. 

 

Çizelge 3.8. Sıcaklık altındaki (∆T=100 °F) yapısal değerler 

 

Akma Dayanımı σa (psi) 0.8*10000  0.8*15000  0.8*20000  

Kuvvet F1 (lb) 0 0 0 

Kuvvet F2 (lb) 0 0 0 

Sıcaklık (°F) 100 100 100 

A1 (in.²) 0,710882 0,621053 0,551497 

A2 (in.²) 0,17775 0,155273 0,137853 

A3 (in.²) 1,60007 1,39735 1,2408 

A4 (in.²) 0 0,000013 0 

Maliyet ΣA (in.²) 2,488702 2,173689 1,930150 
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Şekil 3.10. Sıcaklık altındaki (∆T=100 °F) tasarım değişkenlerinin optimizasyon 

esnasındaki değişimi 

 

 
Şekil 3.11. Sıcaklık altındaki (∆T=100 °F) kafes sistemde amaç fonksiyonunun 

optimizasyon esnasındaki değişimi 

 

Sistemden yük kaldırılarak sadece 150 ºF sıcaklık uygulandığında her bir çubukta 

ihtiyaç duyulan kesit alanları Şekil 3.12.’ de, Şekil 3.13.’ de ise toplam maliyetin farklı 
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akma dayanımlarında nasıl değişkenlik gösterdiği grafiksel olarak sunulmuştur. Çizelge 

3.9.’ da farklı akma dayanımlarında ihtiyaç duyulan kesit alanlarının tablosal gösterimi 

sunulmuştur. Aynı sıcaklık etki ettirildiğinde malzeme kalitesi arttıkça toplam kesit 

alanlarında azalmalar tespit edilmiştir. 

 

Çizelge 3.9. Sıcaklık altındaki (∆T=150 °F) yapısal değerler 

 

Akma Dayanımı σa (psi) 0.8*10000  0.8*15000  0.8*20000  

Kuvvet F1 (lb)  0 0 0 

Kuvvet F2 (lb) 0 0 0 

Sıcaklık (°F) 150 150 150 

A1 (in.²) 0,787057 0,710844 0,648361 

A2 (in.²) 0,196672 0,177712 0,162125 

A3 (in.²) 1,77078 1,59943 1,45885 

A4 (in.²) 0 0 0,000021 

Maliyet ΣA (in.²) 2,754509 2,487986 2,269357 

 

 
Şekil 3.12. Sıcaklık altındaki (∆T=150 °F) tasarım değişkenlerinin optimizasyon 

esnasındaki değişimi 
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Şekil 3.13. Sıcaklık altındaki (∆T=150 °F) kafes sistemde amaç fonksiyonunun 

optimizasyon esnasındaki değişimi 

 

Sistemden yük kaldırılarak sadece 200 ºF sıcaklık uygulandığında her bir çubukta 

ihtiyaç duyulan kesit alanları Şekil 3.14.’ de, Şekil 3.15.’ de ise toplam maliyetin farklı 

akma dayanımlarında nasıl değişkenlik gösterdiği grafiksel olarak sunulmuştur. Çizelge 

3.10.’ da farklı akma dayanımlarında ihtiyaç duyulan kesit alanlarının tablosal gösterimi 

sunulmuştur. Aynı sıcaklık etki ettirildiğinde malzeme kalitesi arttıkça toplam kesit 

alanlarında azalmalar tespit edilmiştir. 

 

Çizelge 3.10. Sıcaklık altındaki (∆T=200 °F) yapısal değerler 

 

Akma Dayanımı σa (psi) 0.8*10000  0.8*15000  0.8*20000  

Kuvvet F1 (lb)  0 0 0 

Kuvvet (lb.) 0 0 0 

Sıcaklık (°F) 200 200 200 

A1 (in.²) 0,83105 0,766261 0,710843 

A2 (in.²) 0,207751 0,191743 0,177711 

A3 (in.²) 1,86986 1,72377 1,59951 

A4 (in.²) 0 0,000242 0 

Maliyet ΣA (in.²) 2,908661 2,682016 2,488064 
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Şekil 3.14. Sıcaklık altındaki (∆T=200 °F) tasarım değişkenlerinin optimizasyon 

esnasındaki değişimi 

 

 
Şekil 3.15. Sıcaklık altındaki (∆T=200 °F) kafes sistemde amaç fonksiyonunun 

optimizasyon esnasındaki değişimi 

 

Sistemden yük kaldırılarak sadece 250 ºF sıcaklık uygulandığında her bir çubukta 
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akma dayanımlarında nasıl değişkenlik gösterdiği grafiksel olarak sunulmuştur. Çizelge 

3.11.’ de farklı akma dayanımlarında ihtiyaç duyulan kesit alanlarının tablosal gösterimi 

sunulmuştur. Aynı sıcaklık etki ettirildiğinde malzeme kalitesi arttıkça toplam kesit 

alanlarında azalmalar tespit edilmiştir. 

 

Çizelge 3.11. Sıcaklık altındaki (∆T=250 °F) yapısal değerler 

 

Akma Dayanımı σa (psi) 0.8*10000  0.8*15000  0.8*20000  

Kuvvet F1 (lb)  0 0 0 

Kuvvet F2 (lb) 0 0 0 

Sıcaklık (°F) 250 250 250 

A1 (in.²) 0,860058 0,803816 0,754476 

A2 (in.²) 0,215015 0,200955 0,188619 

A3 (in.²) 1,93526 1,80909 1,69759 

A4 (in.²) 0 0 0 

Maliyet ΣA (in.²) 3,010333 2,813861 2,640685 

 

 
Şekil 3.16. Sıcaklık altındaki (∆T=250 °F) tasarım değişkenlerinin optimizasyon 

esnasındaki değişimi 

 

0 2000 4000 6000 8000 10000

iterasyon no

0.5

1

1.5

2

2.5

3

3.5

4

A
3

Ti 250 F

a 0.8 20000 psi

a 0.8 15000 psi

a 0.8 10000 psi

0 2000 4000 6000 8000 10000

iterasyon no

0.5

1

1.5

2

2.5

3

3.5

4

A
4

Ti 250 F

a 0.8 20000 psi

a 0.8 15000 psi

a 0.8 10000 psi

0 2000 4000 6000 8000 10000

iterasyon no

0.5

1

1.5

2

2.5

3

3.5

4

A
1

Ti 250 F

a 0.8 20000 psi

a 0.8 15000 psi

a 0.8 10000 psi

0 2000 4000 6000 8000 10000

iterasyon no

0.5

1

1.5

2

2.5

3

3.5

4

A
2

Ti 250 F

a 0.8 20000 psi

a 0.8 15000 psi

a 0.8 10000 psi



40 

 

 
Şekil 3.17. Sıcaklık altındaki (∆T=250 °F) kafes sistemde amaç fonksiyonunun 

optimizasyon esnasındaki değişimi 

 

Sisteme sadece sıcaklık etki ettirilerek incelendiğinde ise 10000 psi’ lik akma 

dayanımına sahip çubukta toplam sıcaklık farkı 150 °F için kesit alanlarında 0.52 in. , 

15000 psi’ lik akma dayanımına sahip çubukta 0.64 in.  ve 20000 psi’ lik akma 

dayanımına sahip çubukta ise 0.71 in. ’ lik kesit artışına ihtiyaç olduğu görülmüştür. 

Sıcaklığın artmasıyla kesitlerde artış görülmüştür. Malzeme dayanımının artmasıyla 

çubuk kesitlerinde duyulan ihtiyacın arttığının gözlenmesi malzeme kalitesinin sıcaklık 

etki ettirildikçe önemini yitirdiği gözlenmiştir. Toplam ihtiyaç duyulan kesit 

alanlarından yola çıkarak malzeme kalitesine bağlı olarak sıcaklığın maliyeti malzeme 

dayanımı 10000 psi’ lik çubukta  % 20.96, 15000 psi’ lik çubukta % 29.45 ve 20000 

psi’ lik çubukta % 36.81 etkilediği görülmüştür. Farklı akma dayanımlarına sahip 

çubukların farklı sıcaklıklar etki ettirildiğinde toplam kesit alanlarındaki değişimlerin 

grafiği Şekil 3.18.’ de, maliyet artışlarının tablolaştırılmış hali ise Çizelge 3.12.’ de 

gösterilmiştir. 

 

0 2000 4000 6000 8000 10000

iterasyon no

2

4

6

8

10

teyila
M

A
1

A
2

A
3

A
4

Ti 250 F

a 0.8 20000 psi

a 0.8 15000 psi

a 0.8 10000 psi



41 

 

  
 

Şekil 3.18. Sınır gerilmeler ile minimum maliyetler arasındaki değişim 

 

Çizelge 3.12. Farklı sıcaklık altındaki çubukların minimum maliyet yüzdeleri 

 

Akma Dayanımı σa (psi) 0.8*10000  0.8*15000  0.8*20000  

∆T °F 150 150 150 

Maliyet Farkı ΣA (in.²) 0,521631 0,640172 0,710535 

Maliyet Artışı % 20,96 29,45 36,81 

 

Sisteme F1= 20000 lb F2= -25000 lb yük ve 100 ºF sıcaklık beraber etki ettirildiğinde 

her bir çubukta ihtiyaç duyulan kesit alanı Şekil 3.19.’ da, Şekil 3.20.’ de ise toplam 

ihtiyaç duyulan kesit alanın grafiksel gösterimi sunulmuştur. Çizelge 3.13.’ de ise farklı 

akma dayanımlarında her bir çubukta ve toplam maliyette ihtiyaç duyulan değerler 

gösterilmiştir. Yük ve sıcaklık beraber etki ettirildiğinde malzeme kalitesi arttıkça 

çubuk kesitlerindeki azalmalar görülmüştür. 

 

Çizelge 3.13. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=100 

°F) yapısal değerler 

 

Akma Dayanımı σa (psi) 0.8*10000  0.8*15000  0.8*20000  

Kuvvet F1 (lb)  20000 20000 20000 

Kuvvet F2 (lb) -25000 -25000 -25000 

Sıcaklık (°F) 100 100 100 

A1 (in.²) 1,43378 1,2527 1,11217 

A2 (in.²) 0 0,000021 0 

A3 (in.²) 0,389612 0,340333 0,302185 

A4 (in.²) 0,967908 0,845674 0,750786 

Maliyet ΣA (in.²) 2,791300 2,438728 2,165141 
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Şekil 3.19. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=100 °F) 

tasarım değişkenlerinin optimizasyon esnasındaki değişimi 

 

 

Şekil 3.20. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=100 °F) 

kafes sistemde amaç fonksiyonunun optimizasyon esnasındaki değişimi 

 

Sisteme F1= 20000 lb F2= -25000 lb yük ve 150 ºF sıcaklık beraber etki ettirildiğinde 

her bir çubukta ihtiyaç duyulan kesit alanı Şekil 3.21.’ de, Şekil 3.22.’ de ise toplam 
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ihtiyaç duyulan kesit alanın grafiksel gösterimi sunulmuştur. Çizelge 3.14.’ de ise farklı 

akma dayanımlarında her bir çubukta ve toplam maliyette ihtiyaç duyulan değerler 

tablosal olarak gösterilmiştir. Yük ve sıcaklık beraber etki ettirildiğinde malzeme 

kalitesi arttıkça çubuk kesitlerindeki azalmalar görülmüştür. 

 

Çizelge 3.14. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=150 

°F) yapısal değerler 

 

Akma Dayanımı σa (psi) 0.8*10000  0.8*15000  0.8*20000  

Kuvvet F1 (lb)  20000 20000 20000 

Kuvvet F2 (lb) -25000 -25000 -25000 

Sıcaklık (°F) 150 150 150 

A1 (in.²) 1,32 1,19277 1,08792 

A2 (in.²) 0,0000925 0,000023 0 

A3 (in.²) 0,986512 0,891827 0,813912 

A4 (in.²) 0,62979 0,566296 0,516484 

Maliyet ΣA (in.²) 2,936395 2,650916 2,418316 

 

 
Şekil 3.21. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=150 °F) 

tasarım değişkenlerinin optimizasyon esnasındaki değişimi 
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Şekil 3.22. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=150 °F) 

kafes sistemde amaç fonksiyonunun optimizasyon esnasındaki değişimi 

 

Sisteme F1= 20000 lb F2= -25000 lb yük ve 200 ºF sıcaklık beraber etki ettirildiğinde 

her bir çubukta ihtiyaç duyulan kesit alanı Şekil 3.23.’ de, Şekil 3.24.’ de ise toplam 

ihtiyaç duyulan kesit alanın grafiksel gösterimi sunulmuştur. Çizelge 3.15.’ de ise farklı 

akma dayanımlarında her bir çubukta ve toplam maliyette ihtiyaç duyulan değerler 

tablosal olarak gösterilmiştir. Yük ve sıcaklık beraber etki ettirildiğinde malzeme 

kalitesi arttıkça çubuk kesitlerindeki azalmalar görülmüştür. 

 

Çizelge 3.15. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=200 

°F) yapısal değerler 

 

Akma Dayanımı σa (psi) 0.8*10000  0.8*15000  0.8*20000  

Kuvvet F1 (lb)  20000 20000 20000 

Kuvvet F2 (lb) -25000 -25000 -25000 

Sıcaklık (°F) 200 200 200 

A1 (in.²) 1,25352 1,20142 1,07229 

A2 (in.²) 0,02693064 0,0517612 0 

A3 (in.²) 1,29079 1,18787 1,14291 

A4 (in.²) 0,463145 0,466756 0,365462 

Maliyet ΣA (in.²) 3,034386 2,907807 2,580662 
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Şekil 3.23. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=200 °F) 

tasarım değişkenlerinin optimizasyon esnasındaki değişimi 

 

 
Şekil 3.24. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=200 °F) 

kafes sistemde amaç fonksiyonunun optimizasyon esnasındaki değişimi 

 

Sisteme F1= 20000 lb F2= -25000 lb yük ve 250 ºF sıcaklık beraber etki ettirildiğinde 

her bir çubukta ihtiyaç duyulan kesit alanı Şekil 3.25.’ de, Şekil 3.26.’ da ise toplam 

ihtiyaç duyulan kesit alanın grafiksel gösterimi sunulmuştur. Çizelge 3.16.’ da ise farklı 
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akma dayanımlarında her bir çubukta ve toplam maliyette ihtiyaç duyulan değerler 

tablosal olarak gösterilmiştir. Yük ve sıcaklık beraber etki ettirildiğinde 15000 psi akma 

dayanımına sahip çubuktaki kesit ihtiyacı 10000 psi akma dayanımına sahip çubuktaki 

kesit ihtiyacına göre daha azdır. Fakat 20000 psi akma dayanımına sahip çubuğun 

15000 psi akma dayanımına sahip çubuktaki kesite göre daha fazla kesite ihtiyaç 

duyduğu görülmüştür.  

 

Çizelge 3.16. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=250 

°F) yapısal değerler 

 

Akma Dayanımı σa (psi) 0.8*10000  0.8*15000  0.8*20000  

Kuvvet F1 (lb)  20000 20000 20000 

Kuvvet F2 (lb) -25000 -25000 -25000 

Sıcaklık (°F) 250 250 250 

A1 (in.²) 1,20991 1,1308 1,0674 

A2 (in.²) 0,17557 0 0,33139 

A3 (in.²) 1,27201 1,46608 0,898135 

A4 (in.²) 0,530497 0,277122 0,687466 

Maliyet ΣA (in.²) 3,187987 2,874002 2,984391 

 

 
Şekil 3.25. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=250 °F) 

tasarım değişkenlerinin optimizasyon esnasındaki değişimi 
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Şekil 3.26. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=250 °F) 

kafes sistemde amaç fonksiyonunun optimizasyon esnasındaki değişimi 

 

Sisteme F1= 20000 lb F2= -25000 lb yük ve 500 ºF sıcaklık beraber etki ettirildiğinde 

her bir çubukta ihtiyaç duyulan kesit alanı Şekil 3.27.’ de, Şekil 3.28.’ de ise toplam 

ihtiyaç duyulan kesit alanın grafiksel gösterimi sunulmuştur. Çizelge 3.17.’ de ise farklı 

akma dayanımlarında her bir çubukta ve toplam maliyette ihtiyaç duyulan değerler 

tablosal olarak gösterilmiştir. Yük ve sıcaklık beraber etki ettirildiğinde 15000 psi akma 

dayanımına sahip çubuktaki kesit ihtiyacı 10000 psi akma dayanımına sahip çubuktaki 

kesit ihtiyacına göre daha azdır. Fakat 20000 psi akma dayanımına sahip çubuğun 

15000 psi akma dayanımına sahip çubuğa göre daha az kesite ihtiyaç duyduğu 

görülmüştür.  

 

Çizelge 3.17. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=500 

°F) çubuk değerleri 

 

Akma Dayanımı σa (psi) 0.8*10000  0.8*15000  0.8*20000  

Kuvvet F1 (lb)  20000 20000 20000 

Kuvvet F2 (lb) -25000 -25000 -25000 

Sıcaklık (°F) 500 500 500 

A1 (in.²) 1,30996 1,37076 1,43725 

A2 (in.²) 0,507893 0,135871 0,102023 

A3 (in.²) 1,48965 2,19116 2,31576 

A4 (in.²) 0,734979 0,212058 0,168949 

Maliyet ΣA (in.²) 4,042482 3,909849 4,023982 
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Şekil 3.27. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=500 °F) 

tasarım değişkenlerinin optimizasyon esnasındaki değişimi 

 

 
Şekil 3.28. Hem yük hem de sıcaklık altındaki (F1=20000 lb F2=-25000 lb, ∆T=500 °F) 

kafes sistemde amaç fonksiyonunun optimizasyon esnasındaki değişimi 

 

Yük sabit tutularak farklı sıcaklıklar, 10000 psi, 15000 psi ve 20000 psi akma 

dayanımına sahip çubuklara etki ettirildiğinde ise toplam sıcaklık farkının 400 °F’ a 
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ulaştığı durumda 10000 psi’ lik akma dayanımına sahip çubuğun 1.25 in.
2
, 15000 psi’ 

lik akma dayanımına sahip çubuğun 1.47 in.
2
  ve 20000 psi’ lik akma dayanımına sahip 

çubuğun 1.85 in.
2 

daha kesite ihtiyaç duyduğu görülmüştür. Malzeme akma 

dayanımının aynı olduğu çubuklarda sıcaklık artırıldıkça daha fazla kesite ihtiyaç 

olduğu anlaşılmıştır.  Toplam ihtiyaç duyulan kesit alanlarından yola çıkarak malzeme 

kalitesine bağlı olarak sıcaklığın maliyeti, malzeme dayanımı 10000 psi’ lik çubukta  % 

44.82, 15000 psi’ lik çubukta % 60.32 ve 20000 psi’ lik çubukta % 85.85 etkilediği 

görülmüştür. Farklı akma dayanımlarına sahip çubukların, farklı sıcaklıklar etki 

ettirildiğinde toplam kesit alanlarındaki değişimlerinin grafiği Şekil 3.29.’ da, maliyet 

artışlarının tablolaştırılmış hali ise Çizelge 3.18.’ de gösterilmiştir. 

 

 

 

Şekil 3.29. Sınır gerilmeler ile minimum maliyetler arasındaki değişim 

 

Çizelge 3.18. Hem yük hem de sıcaklık altındaki çubukların minimum maliyet 

yüzdeleri 

 

Akma Dayanımı σa (psi) 0.8*10000  0.8*15000  0.8*20000  

∆T °F 400 400 400 

Maliyet Farkı ΣA (in.²) 1,251182 1,471121 1,858841 

Maliyet Artışı % 44,82 60,32 85,85 
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BÖLÜM IV 

 

SONUÇLAR 

 

Yapısal optimizasyondan beklentiler artılarıyla eksileriyle incelendiğinde ürünlerin 

imalatı ve geliştirilmesi, özellikle endüstriyel alanda sınırları belirlenen maliyeti, kalite 

ve güvenilirliği artırmak için hangi kriterlerin ön plana çıkartılması gerektiğini ortaya 

koymaktadır. 

 

Yük taşıyan elemanların, verimlilik ve dayanıklılık özellikleri nedeniyle geometrileri 

genelde karmaşıktır. Bu nedenle üretim maliyetleri de yüksek çıkmaktadır. Elemanın 

neye hizmet edeceği, üretim koşulları, teknik ihtiyaçları ve maliyeti göz önünde 

bulundurularak çeşitli amaç ve kısıtlamalar altında tasarlanmalıdır.  

 

Kafes sistemler üzerine yapısal optimizasyon ile ilgili çalışmalar her geçen gün hızla 

artmaktadır. Bu çalışmaların da öncelikli hedefleri sistemlerin dayanımlarının üniform 

olması, kafes ağırlıklarının azaltılması, şekil değiştirme enerjilerinin azaltılması 

şeklindedir. 

 

Yapılan sayısal analizler göstermiştir ki sıcaklığa maruz düzlem kafes sistemlerin 

optimum tasarımında sıcaklıklar önemli bir faktördür. 

 

Bu çalışmada kafeslerin optimum tasarımı için bir optimizasyon problemi Mathematica 

programı ile kodlanmış ve sonuçları incelenmiştir. Lineer olmayan denklemler ihtiva 

eden optimizasyon problemi Differential Evolution metodu ile çözülmüştür. 

 

Sıcaklık etkisi altındaki düzlem kafes sistemlerin optimum tasarımı incelelendi ve şu 

sonuçlara ulaşıldı: 

 

Aynı akma dayanımına sahip çubuklarda yük artırıldığı zaman daha fazla kesite ihtiyaç 

duyulduğu, kesit alanlarında, sadece yük etkisinde malzeme dayanımının artırılmasıyla 

azalmaların olacağı, 
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Sisteme sadece sıcaklık artırılarak etki ettirildiği vakit aynı akma dayanımına sahip 

çubuklarda daha büyük kesite ihtiyaç duyulduğu, malzeme dayanımının artmasıyla 

akma dayanımı yüksek malzemede oransal olarak daha fazla kesite ihtiyaç duyulduğu, 

 

Hem sıcaklık hem de yük birlikte uygulandıklarında ise aynı akma dayanımına sahip 

çubuklarda daha büyük kesite ihtiyaç duyulduğu, malzeme dayanımının artmasının belli 

bir sıcaklıktan sonra önemini yitirdiği tespit edilmiştir.  
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