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ABSTRACT

SIMULATING ATMOSPHERIC TURBULENCE USING A

BUBBLE MODEL FOR FREE SPACE OPTICAL

COMMUNICATION LINKS

Free space optical (FSO) communication has emerged as a viable technology for

broadband wireless applications. FSO technology offers the potential of high bandwidth

capacity over unlicensed optical wavelengths. On long-range FSO links, atmospheric

turbulence causes intensity fluctuations, which degrades links performance. Optical sig-

nals propagating through the atmosphere are subject to random fluctuations in phase

and amplitude. These fluctuations are caused by random temperature distributions in

the atmosphere, which manifests themselves as a random index of refraction changes

along the propagation path. In addition, experimenting on a free space optical commu-

nication system is rather tedious and difficult. The interference of plentiful elements

affects the result and causes the experimental outcomes to have bigger error variance

margins than they are supposed to have. Especially when we go into the stronger tur-

bulence regimes the simulation and analysis of the turbulence induced beams require

delicate attention [1]. For all these purposes, we propose a new geometrical model

to assess the effects of turbulence on laser beam propagation. The atmosphere along

the laser beam propagation path will be modeled as a spatial distribution of spherical

bubbles with refractive index discontinuity statistically distributed according to vari-

ous models. For each statistical representation of the atmosphere, the path of rays will

be analyzed using geometrical optics. These Monte Carlo techniques will assess the

phase of the beam as well as the aperture averaging effects at the receiver. An effective

turbulence index C2
n can be determined by correlating beam wander behavior with the

path length. The Monte Carlo analysis will be compared with the predictions of wave

theory as well as with empirical results [2].
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ÖZET

SERBEST-UZAY OPTİK İLETİŞİM HATLARI İÇİN

BALONCUK MODELİ KULLANARAK ATMOSFERİK

ÇALKALANTILARIN BENZEŞTİRİMİ

Serbest uzay optik (SUO) iletişim geniş bantlı kablosuz uygulamalarıiçin geçerli

bir teknoloji olarak belirmiştir. SUO teknolojisi, lisanssız optik dalga boyları üzerinde

yüksek bant genişliği kapasitesi potansiyelini sunmaktadır. Uzun menzilli SUO hat-

larında atmosferik çalkantı, dalgalanmaların şiddetlenmesine sebebiyet vererek hat per-

formansını düşürmektedir. Atmosferde yayılan optik işaretler faz ve genliklerinde

rasgele dalgalanmalara maruz kalmaktadır. Bu dalgalanmalar, kendilerini yayılım

yolu boyunca rasgele kırılma değişim indisi olarak ortaya çıkaran atmosferdeki rasgele

sıcaklık dağılımından kaynaklanmaktadır. Dahası, serbst uzay optik iletişim sistemi

üzerinde deney yapmak zahmetli ve zordur. Çokça elemanın sebep olduğu girişimler

sonucu etkileyip, deneysel çıktıların beklendiğinden daha büyük hata değişim pay-

larına sahip olmasına sebebiyet vermektedir. Özellikle daha şiddetli çalkantı rejimler-

ine girdiğimizde,çalkantı tarafından uyarılmış ışınların tahlili ve benzeştirimi daha has-

sas dikkat gerektirmektedir [1].Tüm bu nedenlerden dolayı, çalkantının lazer huzmesi

yayılımındaki etkilerini değerlendirebilmek için geometrik bir model ortaya atmak-

tayız. Lazer huzmesi yayılım yolu boyunca olan atmosferi, istatistiksel olarak çeşitli

dağılım modellerine uyacak kırılma indisi devamsızlığı olan küresel kabarcıkların uza-

ysal dağılımı olarak modellenecektir. Atmosferin her bir istatiksel temsili için, ışınların

yolu geometrik optik kullanılarak tahlil edilecektir.Bu Monte Carlo teknikleri huzmenin

fazını ve alıcıdaki ortalama açıklık etkilerini değerlendirebilmemizi sağlayacaktır. Etkin

bir çalkalantı indisini, C2
n yol uzunluğu ve ışın sapmasıyla ilitinli kurarak ifade edebilriiz.

Bu Monte Carlo çözümlemeleri, dalga kuramları öngörülerinin ve deneysel sonuçlarlada

karşılaştırılabilir [2].
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1. INTRODUCTION

1.1. Overview of Free Space Optical Communication

Telecommunications systems have improved rapidly in order to meet the require-

ments of high data rate, voice, and video transmission. Radio communication systems

and optical communication systems are two of the well-known systems for transmit-

ting data. Optical communication systems provide higher speeds of data transmission,

wider and license free spectrum, and are much more reliable than radio communication

systems owing to the difficulty of intercept and low power requirements. Beside these

advantages of Free Space Optics (FSO), there are some challenges of these systems.

Atmospheric effects and the bad weather conditions like fog, rain, cloud, and snow

influence performance of FSO systems adversely. In addition, line of sight path is re-

quired for FSO link because a laser beam cannot penetrate into obstructions such as

walls, buildings, trees, and other materials that do not permit the light inside. There-

fore, communications with FSO should be over short distances. Table 1.1 summarizes

the comparison of FSO and RF technologies.

1.2. Architecture of FSO Systems

Optical Wireless Communication, also known as Free Space Optical communica-

tion, has three subsystems that are illustrated in Figure 1.1 for the transmission and

reception of information. These are transmitter, receiver, and channel. FSO systems

use the laser to transmit data. There are several lasers such as gas, chemical, dye,

metal-vapor, solid state, semiconductor lasers, etc. The most important properties of

these transmitters are power and spot size because spot size influences beam diver-

gence. On the receiver side, the turbulence-induced signal fluctuations cause intensity

fluctuations of the received signal. The receiver detects the intensity of the wave.

Intensity refers to the power transferred per unit area and it has units of watts per

meter squared (W/m2). Intensity of the wave over the receiver diameter determines the

aperture-averaging factor. Although lasers operate in an unlicensed spectrum, these
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Table 1.1. Comparison of FSO Links and RF links.

FSO RF

Date Rate 100 Mbps - 5 Gbps 1 Gbps

Network Architecture Scalable and Flexible Non-Scalable

Spectrum 28 THz - 1000 THz (Most

common ’eye-safe’ fre-

quency is 194 THz (1550

nm))

3 kHz to 300 GHz

Security Low probability of in-

terception or detection

(LPI/LPD)

Directional RF: LPI/LPD

Broadcast RF: HPI/HPD

Component Dimension Small Large

Range Up to 200 Km Up to 200 Km

Operation Need Line-of-sight, Good

in light-moderate rain,

Poor in fog or snow.

Poor in heavy rain.

Figure 1.1. Block Diagram of FSO systems.
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lasers use only short range of communication links because of the channel. Therefore,

especially FSO systems are the most affected by the channel between the communi-

cation systems. This channel has several limitation factors that include bad weather

conditions, obstructs and atmospheric turbulence. These factors degrade the received

power of the laser beam but only obstacles eliminate the signal. Because of that, we

examine the atmospheric channel in detail.

1.3. Atmospheric Channel

The fundamental effect of the FSO system is the atmospheric channel. The atmo-

sphere is a dynamic medium with a randomly varying refractive index to a propagating

laser beam. The resulting perturbations of the laser beam wavefront originating from

space or being transmitted from the ground are broadly called atmospheric ’seeing’

effects. Other effects include the irradiance fluctuations of the laser beams received

and transmitted, beam wander, and spreading of the beam widths. These effects, and

their impact on link performance, are discussed in Chapter 3.

When there is only weather condition and obstruction, we can easily calculate

the effect of atmospheric channel over the power of receiving signal,

PR =
A

πθ2L2
e−αLPT (1.1)

where PR is the power of receiving signal for a receiver area A, range L, transmitted

power PT and beam divergence angle θ, and α is a constant value over the propagation

path L. Obviously, when the transmitted power or receiver area is increased or the beam

divergence angle of transmitter beam is decreased, the received power is increased.

These increasing or decreasing of parameters are diffraction limited. This calculation

is more complex in the presence of atmospheric turbulence. In this thesis, we especially

focus on modeling atmospheric turbulence.
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2. KEY INDICATOR of ATMOSPHERIC TURBULENCE

2.1. Turbulence Eddies

Atmospheric turbulence is caused by a temperature differential between the Earth’s

surface and atmosphere. This temperature difference in the atmosphere cause large-

scale variations in the temperature of air. This process generates winds and as air

moves with the winds, two distinct motions as a viscous fluid occurs. These are lami-

nar and turbulent flow. In laminar flow, viscous forces are dominant and characterized

by uniform or regular changes in velocity flow. In turbulent flow, viscous forces are

dominant, and characterized by internal forces. Different temperature of air mixes so

the velocity filed is unstable. This situation tends to produce randomly distributed

pockets of air, called ”turbulent eddies”. These eddies have varying characteristic sizes

and density. Because of this difference in the density of air, these eddies have different

refractive indexes. Therefore, the atmosphere has a random refractive index profile. In

the earliest study of turbulent flow, the Reynolds number (Re), a dimensionless quan-

tity, has been used to characterize different flow regimes such as laminar or turbulent

flow. Laminar flow occurs at low Reynolds numbers, whereas turbulent flow occurs at

high Reynolds numbers. The Reynolds number is defined as

Re =
νι

υ
(2.1)

where ν is the characteristic velocity of the flow in units of m/s, l is the characteristic

dimension of the flow in units of m and υ is the kinematic viscosity in units of m2/s [7].

From the definition Equation 2.1, the Reynolds number grows according to the strength

of turbulence. Reynolds numbers less that 2400 correspond to a laminar flow while

those greater than 5000 correspond to turbulent flow [7]. In the view of Kolmogorov

(1941), in turbulent flow, the kinetic energy in large eddies is transferred into smaller

eddies as shown in Figure 2.2. This is known as the turbulent energy cascade. The

average size of the largest eddies, L0, is called the outer scale of turbulence. Near the

ground, L0 is on the order of the height above ground, while high above the ground,
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Figure 2.1. Diagram of Flow Regime.

Figure 2.2. Kolmogorov theory of turbulence, where L0 denotes the outer scale and l0

is the inner scale. Eddies between scale sizes L0 and l0 form the inertial sub range [3].
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it can be just tens to hundreds of meters. The average size of the smallest turbulent

eddies, l0, is called the inner scale. At very small scales, smaller than the inner scale,

the energy dissipation caused by friction prevents the turbulence from sustaining itself.

The inner scale, l0, can be a few millimeters near the ground to a few centimeters high

above the ground. Between inner and outer scales of turbulence, eddies are statistically

homogeneous and isotropic. This means that properties such as refractive index and

velocity have stationary increments. This range of scales is called the inertial sub-range.

If the scale is smaller than the inner scale, the eddies are in the viscous dissipation range

and if the scale is bigger than the outer scale, the eddies are not independent of parent

flow [8].

According to research (2009), the inner scale, l0, is between 2.7 to 4.3 cm, which

approximates to that near ground levels and the uncertainty of measurement was less

than 5% [9].

2.2. Refractive Index

As mentioned before, the atmosphere has a random refractive index profile. The

small changes in the refractive index of the Earth’s atmosphere are responsible for

random fluctuations in the signal-carrying laser beam intensity (irradiance) called

scintillation. Related turbulence-induced effects include beam spreading beyond the

spreading predicted by diffraction (which decreases spatial power density incident on

the receiver), and a continuous random motion of the beam centroid about the receiver

(beam wander). Other significant effects of these refractive index fluctuations are aper-

ture averaging, spatial coherence, angle of arrivals, absorption, and scattering. All of

these affect directly the arrival point of the laser beam at the receiver. Beam wander,

aperture averaging, Optical Path Length (OPL), Optical Phase Differences (OPD) and

Optical Phase Shift (OPS) are very important terms for our simulation. They will be

explained in more detail in upcoming sections.

Andrews described fluctuations caused by the changing refractive index [7]. Also

Ishimaru had a similar description that the reflective particles are randomly distributed
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in the medium and the medium scatters the laser propagated through [4]. The index

of reflection fluctuations can be mathematically defined by n(R,t) [7]:

n(R, t) = n0 + n1(R, t) (2.2)

where R is the point in space and t is the time parameter, n0 =< n(R, t) >= 1 is the

mean value of the refractive index and n1 = (R, t) represents the random deviation of

n(R ,t) from its mean value. Therefore, < n1(R, t) >= 0 so that the overall refractive

index has a unit mean. Time variations are often suppressed in the refractive index for

optical wave propagation. This means that the wave maintains a single frequency as

it propagates. In the atmosphere, Equation 2.2 can be expressed as,

n(R) = n0 + n1(R) (2.3)

where n(R) has been normalized by its mean value n0. Fluctuations in the refractive

index are related to corresponding temperature and pressure fluctuations. In particular,

the refractive index of atmosphere n at a point R in space for optical wavelengths can

be approximated as follows [7],

n(R) = 1 + 79× 10−6
PR
TR

(2.4)

where P is the pressure in millibars and T is the temperature in Kelvin.

2.3. Turbulence Theory Overview

Theoretical studies of optical wave propagation are traditionally classified as be-

longing to either weak or strong fluctuation theories based on the value of the Rytov

variance defined as,

σ2
1 = 1.23C2

nk
7
6L

11
6 (2.5)
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where C2
n is the refractive index structure parameter. The Rytov variance represents the

intensity fluctuations (scintillation index) associated with an unbounded plane wave

that has propagated a distance L. Weak fluctuation conditions are associated with

σ2
1 < 1 and strong fluctuations conditions with σ2

1 >> 1, also known as saturation.

Physically, the refractive index structure parameter C2
n is a measure of the strength of

the fluctuations of the refractive index. By using optical devices such as a scintillometer,

we can directly estimate the value of C2
n [10,11]. Optical turbulence in atmosphere can

be characterized by three parameters. These are outer scale, L0, inner scale, l0, and

the structure parameter of refractive index fluctuations, C2
n. Refractive index structure

parameter is a measure of the strength of the optical turbulence. The refractive index

structure parameter is considered the most critical parameter along the propagation

path in characterizing the effects of atmospheric turbulence. It is usually defined as the

proportionality constant in the refractive index structure function. Therefore, C2
n is also

called the structure constant. For statistically homogeneous and isotropic turbulence,

the refractive index structure function Dn exhibits the asymptotic behavior,

Dn(R) = C2
nR

2/3 (2.6)

There are four different spectrums, which are defined differently according to wavenum-

ber properties. These are Kolmogorov spectrum, Tatarski Spectrum, Von Karman

Spectrum and Modified Atmospheric Spectrum. Kolmogorov defined the power spec-

tral density for refractive index fluctuations over the inertial range by [7]:

Θn(κ) = 0.033C2
nκ

−11/3,
1

L0

≤ κ ≤ 1

l0
(2.7)

where κ is wave number (κ = 2π/eddysize). The Kolmogorov spectrum is used when

the inner scale is zero and the outer scale is infinite, or as long as the wave number is

within the inertial subrange. Tatarski defined the power spectral density for refractive

index fluctuations over the dissipation range κ ≤ 1
l0

by [7]:

Θn(κ) = 0.033C2
nκ

−11/3exp(−κ2/κ2m), κ ≥ 1

L0

(2.8)
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Figure 2.3. Spectrum of the refractive index fluctuation. The energy input range,

Inertial subrange, and energy dissipation ranges are indicated [4].

where κm = 5.92/l0. Von Karman modified the Tatarski spectrum such that it is finite

for κ ≥ 1
L0

to make it valid over both the inner and outer scale parameters,

Θn(κ) = 0.033C2
nκ

−11/3exp(−κ2/κ2m), κ ≥ 1

L0

(2.9)

where κ0 = 1/L0 (or κ0 = 2π/L0). Within the inertial subrange, both Tatarski and

Von Karman spectra reduce to the Kolmogorov spectrum. Both the Tatarski and Von

Karman spectra are based on mathematical convenience, not physical models [7].
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3. GEOMETRICAL SIMULATION MODEL

3.1. Introduction

Free-space optical communication systems provide higher speeds of data trans-

mission, wider license free spectrum, and are much more reliable owing to the difficulty

of interception and the low power requirements. The main drawback of FSO systems is

atmospheric turbulence. Therefore, since the 1960s, many scientists have been studying

the effects of atmospheric turbulence on optical wave propagation [4,12,13]. Recently,

the new term for FSO systems is full-optical free space optical communication systems

since using full-optical free space communication systems is the best way to improve

the communication speed [14, 15]. The main differences between full optical FSO and

FSO systems are at the receiver side. Full-optical FSO systems have a fiber termination

point instead of photo detectors [16]. Because of the new advances of FSO systems,

estimating the atmospheric turbulence effect on the optical wave propagation through

atmosphere turbulence becomes more important. There are many studies regarding

the analysis of atmospheric turbulence effects on FSO systems but these studies ana-

lyze only some effects of atmospheric turbulence such as the strength of atmospheric

turbulence (C2
n), beam wander, angle of arrival or aperture averaging [14, 16, 17]. Our

simulation model is based on an existing model of generating atmospheric turbulent

eddies using geometrically generated spherical bubbles [6]. The main difference of our

new model is that the bubbles are generated randomly with certain coverage percent-

ages. Then generated environment is saved and the beam is propagated through the

simulated media to calculate different parameters. Using our new model, we can ef-

fectively control the level of turbulence by adjusting the coverage percentages of the

bubbles as well as their refractive indexes. This new geometrical simulation model

is capable of assessing aperture-averaging, phase shift and beam wander for different

atmospheric regimes. Our new model results are more consistent than the existing

model especially for the aperture averaging and phase shift parameters.
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3.2. Spherical Bubble Model

Figure 3.1. Spherical Bubble Model in Matlab Simulation.

The Spherical Bubble Model allows us to understand the effects of turbulence

on laser beam propagation. This model includes a spatial distribution of spherical

bubbles along the laser beam propagation path, which represent actual atmospheric

eddies. The size and refractive index discontinuities represented by each bubble are

statistically distributed according to various models. For each statistical representation

of the atmosphere, the path of a single ray, or a bundle of rays, is analyzed using

geometrical optics. These Monte Carlo techniques allow us to assess beam wander,

beam spread, and phase shifts along the path. An effective C2
n can be determined

by correlating beam wander behavior with the path length. This model has already

proved capable of assessing beam wander, in particular the (Range3) dependence of

mean-squared beam wander, and in estimating lateral phase decorrelations that develop

across the laser phasefront as it propagates through turbulence. A Ray Interface Model,
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which is a geometrical simulation model, was modeled by Walid Atia [6]. This model

does not represent real eddy structure formation in the atmosphere because of their

structure, which are curved interfaces. However, the new bubble model allows us to

control the coverage percentage of the bubbles, which better describes the real eddy

structure formation in the atmosphere. The sizes of the bubbles are chosen from a

uniform distribution with a minimum diameter of 1 mm representing the inner scale of

turbulence, l0, and a maximum value of 1 m representing the outer scale of turbulence,

L0. The refractive indexes of the bubbles are chosen from a Gaussian distribution with

a mean value corresponding to the index of air, which has been taken in the simulation

from an experimental result [18]. Therefore, the mean index of refraction is taken as

µn = 1.00026 and the standard deviation as σn = 0.000016. Figure 3.1 illustrates the

Spherical Bubble Model.

3.2.1. Geometrical Analysis of Atmospheric Turbulence Simulation Model

In describing the procedure of our model, we make use of some of the described

geometrical structures used in Heba Yuksel’s existing model [5] with emphasis on the

difference between the two techniques. The geometrical analysis is described in detail

since it will be used in all of the simulations for calculating beam wander, aperture

averaging, Optical Path Length (OPL), Optical Phase Differences (OPD), and Optical

Phase Shift (OPS) in this chapter [6].

The uniform and Gaussian (normal) distributions will be used in the simulation

model to evaluate the refractive indices and sizes of the spheres. For this reason, their

definition is defined before generating the spheres [5].

A uniform distribution in the range of [0, 1], which we call here U(0,1) simply

returns a number within the specified range with equal probability. In order to modify

such a distribution to increase the range, a multiplicative constant needs to be applied

to the uniform distribution, U(0,1). In addition, the end points can simply be modified

by adding and subtracting the appropriate values to the random uniform distribution
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[5].

f(χ) =
1

σ
√

2π
exp

[
−1

2

(
χ− µ
σ

)2
]
for −∞ ≤ χ ≤ ∞ (3.1)

where µ is the mean, σ2 is the variance, and χ here is said to possess a normal dis-

tribution which we denote here as N(µ, σ2). A normal distribution can be obtained

using several methods, one of which is described in detail by Morgan [19]. Morgan has

defined a method of forming a normal distribution from two uniform distributions. If

we call the uniform distributions, V1 = U(-1,1) and V2 = U(-1,1), then we can gener-

ate a pair of independent normal variables with zero mean and unit variance from the

relation [19],

N1 = V1

(
−2lnW

W

) 1
2

, (3.2)

N2 = V2

(
−2lnW

W

) 1
2

, (3.3)

where W = V 2
1 + V 2

2 . To generate a normal variable with mean µ other than zero, we

can simply add µ to N1 and N2. To create a normal variable with standard deviation

σ, we need to multiply the standard normal by σ.

The three-dimensional space is first filled with spherical bubbles of varying size

ranging between 1 mm and 1 m. There is a coverage percentage chosen for the per-

centage of bubbles filling the three-dimensional space. The bubbles are chosen such

that they do not intersect or touch each other. The bubbles are then sorted by the

z-coordinates of their centers. The starting x and y coordinates of the rays (x0, y0) are

each selected from a random Gaussian distribution with means (µx = 0), (µy = 0),

respectively and variance σ2 = w2, where w is the beam spot size at the transmitter

(starting point) taken as 20 mm. The starting z-coordinate of all of the rays is at z=0.
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After filling the space with spheres by using uniform and gaussian distributions,

the second part is to solve the intersection point between the incident ray and the

sphere. Each ray is checked for intersection with any of the bubbles and the bubble

with the smallest z-coordinate is chosen for the ray to refract through it according to

Snell’s law. Such a check is done until no more spheres can be intersected by the ray

within the chosen three-dimensional space. Then, the ray is made to propagate to the

target length L. This can be done by solving the sphere equation with the ray vector

equation. The line equation can be defined as,

x2 − x1
l

=
y2 − y1
m

=
z2 − z1
n

, (3.4)

where (x1, y1, z1) and (x2, y2, z2) are 2 points on the line, and l,m, n are the directional

cosines of the line. The directional cosines are defined as l = cosα, m = cosβ, n = cosγ,

where α, β, γ are the angles that the vector makes with the positive x−, y−, z−axes,

respectively. In addition, we have the following inequality,

cos2α + cos2β + cos2γ = 1. (3.5)

The sphere equation is defined as,

(x2 − x0)2 + (y2 − y0)2 + (z2 − z0)2 = R2, (3.6)

where (x2, y2, z2) is a point on the sphere, (x0, y0, z0) is the center of the sphere and R

is the radius of the sphere. A solution is checked for z2 in Equation 3.4 into Equation

3.6. If a solution exists, the smaller root of z2 is taken from which x2 and y2 can be

solved for. The other part of the simulation procedure is applying the three-dimensional

Snell’s law to calculate the refracted vector.

A three-dimensional Snell’s law is applied to calculate the refracted output vec-

tor given the incident vector and the normal to the sphere. When a ray traveling

in free-space encounters a dielectric interface, it refracts due to the change of index
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it encounters. The boundary conditions state that the tangential component of the

electric field and the normal component of the magnetic field are continuous. In order

to satisfy such conditions, Snell’s law defines the relation between the incident and

refracted angle as follows,

n1sin(θ1) = n2sin(θ2), (3.7)

where n1 and n2 are the indices of refraction of air and the sphere respectively when

the ray is entering the sphere and reversely when the ray is exiting the sphere. θ1 and

θ2 are the incident and refracted angles with the normal to the spheres, respectively. In

addition, the boundary conditions require that the refracted ray −→r2 to lie in the same

plane as the plane of incidence which includes the incident ray −→r1 and the normal to

the sphere −→n . We define
−→
P1 to be the perpendicular vector to the plane of incidence

with magnitude sin(θ1) and
−→
P2 to be in the same direction as

−→
P1 but with magnitude

sin(θ2). If we use unit vectors for the incident ray (r̂1), refracted ray (r̂2) as well as the

sphere’s normal (n̂), then we can write
−→
P1 and

−→
P2 as,

−→
P1 = r̂1 × n̂, (3.8)

−→
P2 = r̂2 × n̂. (3.9)

Given the incident ray r̂1 and the sphere’s normal n̂,
−→
P1 can be determined through

Equation 3.8. The incident angle is then θ1 where,

sin(θ1) = |
−→
P1|. (3.10)

The refracted angle θ2 can then be calculated through the application of Snell’s law,

Equation 3.7. Therefore,
−→
P2 is,

sin(θ1) = |
−→
P1|. (3.11)



16

where P̂1 =
−→
P1/|
−→
P1| is the normalized unit vector of

−→
P1. Figure 3.2 shows the three-

dimensional Snell’s Law which can be used to determine the refracted ray r̂2. The

refracted unit vector r̂2 can be evaluated through adding the n̂ ×
−→
P2 vector which is

the plane of incidence to a scaled version (by a constant λ) of the unit vector of the

sphere’s normal n̂,

r̂2 = λn̂+ n̂×
−→
P2 (3.12)

Therefore, in order to calculate the output vector r̂2, we only need to know the incident

vector, the normal to the sphere, and the refractive indices of the spheres assuming air

of index 1.00016 between the spheres.

Figure 3.2. Three dimensional Snell’s Law [5].
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Equation 3.12 can be rewritten as

|r̂2|2 = |n̂×
−→
P2|2 + |λn̂|2 + 2|λn̂| · |n̂×

−→
P2| (3.13)

where |r̂2| = 1. But the last term in Equation 3.13 is zero since the n̂ vector is

perpendicular to the n̂×
−→
P2 vector as shown in Figure 3.2. If we specify n̂×

−→
P2 = [a, b, c]

and n̂ = [nx, ny, nz], then,

λ2 + a2 + b2 + c2 − 1 = 0. (3.14)

Defining ã = 1, b̃ = 2anx + 2bny + 2cnz = 0 and c̃ = a2 + b2 + c2 − 1, and noting that

n2
x + n2

y + n2
z = 1, the solution for λ can be written as,

λ =
−b̃±

√
b̃2 − 4ãc̃

2ã
. (3.15)

This equation yields two solutions for r̂2, but only the solution that gives a positive

z component is correct and is chosen. Using Figure 3.2, the unit vector r̂2 can be

multiplied by a scaling factor to determine the full refracted vector −→r2 ,

−→r2 = r̂2 · (2Rcos(θ2)), (3.16)

where R is the radius of the sphere.

The last part of the simulation procedure is where a ray intersects the end point.

This can be achieved through solving the ray’s incident vector with the plane z=k,

where k is the propagation path in the z-direction. For example, let us assume the

incident unit vector for the ray to be (Vx, Vy, Vz), and its starting point as (x1, y1, z1).

Then the end point for the ray is,

(x2, y2, z3) = (x1 + Vx.t, y1 + Vy.T, k), (3.17)
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where t = (k − z1)/Vz.

3.2.2. Beam Wander

When an optical beam propagates through the atmosphere, turbulence eddies

causes random deflection of the beam. Therefore, the beam centroid will wander ran-

domly from the propagation direction. This wander can be characterized statistically

by variance of the displacement or component along a single axis [20].

Chernov and Beckmann used a geometrical optics approach to calculate the wan-

der of a single ray [12,21]. However, this formulation does not include the effects of the

finite beam diameter. Andreev and Gelfer used a Huygens-Fresnel approach to calcu-

late the beam wander of a Gaussian beam. They based the wander on the gradient of

the refractive index along the beam, so that their calculation is equivalent to that of

Chernov in that beam size effects are not considered [22]. They conclude incorrectly

that the wander does not depend on the curvature of the initial beam.

The mean squared beam wander is defined by Ishimaru as [4],

< ρ21 >=
W 2

0

2
[(α1z)2 + (1− α2z)2] + 2.2C2

nl
−1
3

0 z3, (3.18)

where z is the propagation distance, l0 is the inner scale, α2 = 1/R0, where R0 is the

radius of the equivalent Gaussian wave, W0 is the spot-size, and α1 = λ/(πW 2
0 ). For

plane waves, the equation for the mean square beam wander simplifies to [23],

< ρ21 >= 2.2C2
nl

−1
3

0 z3. (3.19)

In our simulation, we will deal only with the plane wave case. Under the weak turbu-

lence condition with C2
n = 10−17 at the range of 1 km and l0 = 1mm, the root-mean-

square (RMS) beam wander is about 0.47 mm. Under the intermediate turbulence

condition with C2
n = 10−15 at the range of 1 km and l0 = 1mm, the root-mean-square

(RMS) beam wander is about 4.7 mm. Under the strong turbulence condition with
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C2
n = 10−13 at the range of 1 km and l0 = 1mm, the root-mean-square (RMS) beam

wander is about 47 mm.

3.2.2.1. Beam Wander Simulation Model. The atmosphere has a random refractive

index profile. The small changes in the refractive index of the Earth’s atmosphere are

responsible for random fluctuations in the signal-carrying laser beam intensity (irradi-

ance) called scintillation. Related turbulence-induced effects include beam spreading

beyond the spreading predicted by diffraction (which decreases spatial power density

incident on the receiver), and a continuous random motion of the beam centroid about

the receiver (beam wander). We use the mean square beam wander equation for a

plane wave, Equation 3.19, for calculating C2
n.

Our simulation model calculates the three dimensional trajectory for a single

ray or a bundle of rays traveling a distance L through a simulated random medium

modeled as a series of random spheres/bubbles of random refractive index. For each

statistical representation of the atmosphere, the path of a single ray or a bundle of rays

is analyzed using geometrical optics. The mean square beam wander is averaged over

many simulation runs. Figure 3.3 illustrates the beam wander simulation.

3.2.2.2. Measuring Turbulence Strength. The mean squared beam wander (Equation2.5)

is calculated for varying σn values from beam wander simulation model. C2
n can then

be calculated through the Rytov variance equation where the inner scale of turbulence

lo which represents the smallest sphere size is taken as 1 mm. Table 3.1 shows C2
n for

varying coverage percentages of bubbles.

3.2.2.3. Beam Wander Simulation Results. Figure 3.4 plots the beam wander simu-

lation results using the following parameters: L=1 km, µ = 1.00027 (mean index of

refraction for the spheres), σ = 0.000016, Nrays=1000 rays/simulation and Nrun=1000.

The radius of the spheres is chosen in the range of 1 mm to 1 m. It is clear that the

simulation results show excellent agreement with the cubic fit described in theory in

Equation 3.19. In Fig 3.4, the cubic fit expected by theory is shown for the weak
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Figure 3.3. Beam Wander Simulation Model [6].

Table 3.1. C2
n for varying coverage percentage of bubbles.

Coverage Percentage

of Bubbles

C2
n (Strength of Atmo-

spheric Turbulence)

Level of Turbulence

Regime

%30 1.10e-12 Strong

%3 5.91e-14 Intermediate

%0.2 9.92e-16 Weak
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turbulence results.

Figure 3.4. Mean Square Beam Wander Curve and Cubic Fit Curve for a 1 km range

using the Spherical/Bubble Model .

Figure 3.5 reinforces the fact that as turbulence gets stronger, the Mean Square

Beam wander gets significantly larger. A factor of 10 increase in C2
n gives almost a

factor of 10 increase in the mean square beam wander.

Figure 3.6 shows the beam wander results for different turbulent regimes con-

trolled by the bubble coverage percentages. It is clearly shown that the stronger the

turbulence level, the greater the mean square beam wander.

3.2.3. Aperture Averaging Simulation Model

This model calculates the aperture-averaging factor for a number of rays propa-

gating through turbulence simulated spherical bubbles into a circular receiver of varying

aperture sizes. The three-dimensional trajectory of each ray is analyzed using geomet-

rical optics. The numbers of rays that reach the target length L, within the selected

receiver aperture size are summed. The variance of the total rays within each aperture

size is then calculated over N simulation runs. Such variances are then normalized by
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Figure 3.5. Mean Square Beam Wander Curves for Weak, Intermediate and Strong

Turbulence.

Figure 3.6. Mean Square Beam Wander Curves for Weak and Intermediate

Turbulence.
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Figure 3.7. Aperture Averaging Simulation using the Spherical Bubble Model [5].

the variance of the smallest chosen aperture size to evaluate the aperture-averaging

factor,

F =
σ2
I (D)

σ2
I (D = 0)

(3.20)

After the rays reach the receiver, each ray’s beam wander from the center
√
x2 + y2

is checked for whether or not it lies within some selected circular aperture sizes at

the receiver. If so, it gets counted. The same procedure is repeated for each of the

rays. Then the whole simulation is repeated N times for different rays’ distributions.

The variance of the total rays within each aperture size is then calculated over the

simulation runs. Such variances are then normalized by the variance of the smallest

chosen aperture size to evaluate the aperture-averaging factor, F.

3.2.3.1. Aperture Averaging Simulation Results. The sample variance form is used in

calculating the variance of for each particular aperture diameter over 1000 simulation

runs. It is then normalized by the mean squared to calculate the normalized aperture-
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averaged variance,

σI i
2(D) =

∑
(xij−µi)2
N−1

µ2
i

(3.21)

where i is the aperture diameter index and j is the simulation run index. Equation

3.21 is then divided by the normalized variance of the minimum aperture diameter to

evaluate the aperture averaging factor F (Equation 3.20).

Through plugging Equation 3.21 in Equation 3.20, the aperture averaging factor

is calculated and plotted in Figure 3.8 for weak, intermediate and strong turbulence

regimes respectively. We change the coverage percentage of the bubbles to change

the number of eddies in the simulated turbulent media, which changes the turbulent

strength. Our results show the expected nonlinear reduction of the aperture-averaging

factor with aperture diameter. The weaker the turbulence, the steeper the initial

decline, and the faster saturation occurs.

Figure 3.8. Aperture Averaging Factor F versus the aperture radius.
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3.2.4. Optical Phase Difference Theory

A geometrical model for understanding the optical phase difference between two

beams propagating through a simulated turbulent media as their separation distance

is changed. Beam separations less than the inner of scale of turbulence should be

very well correlated because these ranges are likely to be within the same eddy. Large

separations should tend to become completely uncorrelated. The geometrical model

can give us more insight into the correlation between two beams propagating in different

atmospheric turbulent regimes as their separation distance is changed.

The mean square phase difference for a plane wave propagating through weak

turbulence is equivalent to the phase structure function, Dp(r). Only those eddies

with scale sizes exceeding or on the order of the separation distance, r, contribute to

any correlation, l = 2π
κ
≥ r. The phase structure function yields a relative phase

difference for the plane wave [13],

Dp(r) = 0.64C2
nk

2Lr
5
3 . (3.22)

If instead of a plane wave, we considered a pair of collimated parallel pencil thin beams

separated by a distance r, Equation 3.22 would exactly result in,

Dp(r) = 0.32C2
nk

2Lr
5
3 . (3.23)

The Optical Phase Difference (OPD) is proportional to the difference in the respective

path lengths traversed by two rays, which are initially in phase. We calculate the

Optical Path Length for a bundle of rays propagating through a simulated turbulent

media. The Optical Path Length (OPL) traversed by a ray traveling a distance L in a

medium of refractive index n is,

L = OPL = nmedium · lmedium. (3.24)
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If light travels through ’m’ different media, the total OPL is the sum of the optical

paths in each of the different media:

Ltotal = OPLtotal = n1l1 + n2l2 + · · ·+ nmlm =
m∑
i=1

nili. (3.25)

Then the Optical Phase Difference (OPD) ∆φ of two rays, initially in phase, that have

traversed optical path lengths L1 and L2, respectively, is:

∆φ =
2π

λ
∆L, (3.26)

where ∆l = L1 − L2 is the optical path difference.

3.2.4.1. Optical Phase Difference Simulation Model. The trajectories of two parallel

rays propagating through the simulated random medium are computed simultaneously.

Figure 3.9 illustrates the OPD simulation procedure. The difference in the path length

traveled ∆L will yield the phase difference ∆φ between the rays using Equation 3.26.

A single simulation run is comprised of the following steps: The user inputs the length

of the target L, the mean index of refraction µn and standard deviation for the refrac-

tive index σn, the starting separation between the beams r and the step size between

separations ∆r, and the number of run desired N. Two beams are started out sepa-

rated by a distance r at the coordinates (0,0,0) and (-r,0,0). The index of refraction

of the spheres/bubbles for both beams is chosen from a Gaussian distribution. Simi-

larly, the sphere’s radius and center are chosen from a uniform distribution with the

condition that the first propagating ray starting at (0,0,0) must hit the randomly gen-

erated sphere. A single path length is chosen from a Gaussian distribution, and two

beams travel this length to intersect the sphere. Snell’s law is then invoked to find each

beam’s new output vector. The square difference between the beams is then averaged

and saved for the particular value of separation r, after which r is decremented by ∆r

and the simulation is restarted until r = 0 (for which ∆φ = 0). The beam separation

was chosen to range from 10λL = 25cm to 0 (no separation) assuming a He-Ne laser

beam propagating with λ = 632.8nm.
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Figure 3.9. Optical Phase Difference Simulation Model [6].

Figure 3.10. Optical Phase Difference and Phase Structure Function .



28

3.2.4.2. Optical Phase Difference Simulation Model Results. Figure 3.10 shows the mean

square phase differences versus the separation distance, r. The weak turbulence data

seem to follow the 5/3 slope predicted by theory. However, for very strong turbulence,

at large separations, the two rays seem to show no correlation as expected. Therefore,

for such conditions, in real FSO systems, the fluctuations are uncorrelated, but the

data is correlated.

3.2.5. Optical Phase Shift Theory

This model calculate the OPL from Equation3.26 because after the EM wave

travels through a certain optical path, we can calculate the optical phase shift (OPS)

which is described by,

φ = 2π radians /cycle × number of cycles the wave has travelled

= 2π
OPL

λ
= 2π

nl

λ
, (3.27)

where the wavelength of a He-Ne laser, λ = 632.8nm is used in the simulation. If the

beam travels through ’m’ different media, the total ”optical phase shift” is,

φtotal =
2π

λ
OPLtotal =

2π

λ
·
m∑
i=1

nili. (3.28)

3.2.5.1. Optical Phase Shift Simulation Model. The Optical Phase shift simulation

model calculates the total phase shift of a bundle of rays propagating through the

simulated turbulent media shown in Figure 1. For each statistical representation of

the atmosphere, the path of a bundle of rays is analyzed using geometrical optics. The

mean of the optical phase shift is calculated for 1000 rays and 1000 runs and the stan-

dard deviation of the total optical phase shift is calculated for 1 ray over 1000 runs.
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Figure 3.11 illustrates the phase shift model.

Figure 3.11. Optical Phase Shift Simulation Model.

3.2.5.2. Optical Phase Shift Simulation Results. A particular simulation run is com-

prised of the following: The user inputs the length of the target L, the mean index

of refraction of the spheres µn taken as the air index and standard deviation for the

refractive index σn, and the number of runs desired N. The index of refraction of the

spheres is chosen from a Gaussian distribution, and the sphere’s center and radius

are chosen from a uniform distribution. The spherical bubbles are then formed us-

ing the above parameters for different chosen coverage percentages reflecting varying

turbulence conditions. For every simulated media, the turbulence index parameter,

C2
n, is calculated using Equation 3.19 along with our beam wander simulation model

introduced in our previous work [6]. A beam, formed of a bundle of rays uniformly

distributed, is then started out at location (0,0,0) in the z-direction. Snell’s law is

then used to evaluate the new output vectors at the entering and exiting points of the

spheres. The ray then travels through the simulated random medium and the opti-
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cal path length is evaluated for each ray using Equation 3.28 until the target length

is reached. The mean and standard deviation of the optical phase shift is updated,

and the next run begins. Figure 3.12 plots the mean optical phase shift simulation

Figure 3.12. Mean Phase Shift of 1000 rays and 100 runs versus the propagation

distance.

results using the following parameters: L = 1 km, µn = 1.00026 (free-space index),

σn = 0.000016, numberofrays = 1000 and N = 1000. The radius of the randomly

selected spheres is chosen in the range of 1 mm to 1 m. The results show a linear

increase of the phase shift with the propagation length.
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Figure 3.13. Standard Deviation of Optical Phase Shift over 1000 rays and 100 runs

for different turbulence levels.
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4. CONCLUSIONS

We have developed a new model to assess the effects of turbulence on laser beam

propagation in Free-Space. We modeled the atmosphere along the laser beam prop-

agation path as a spatial distribution of spherical bubbles. A Monte Carlo numeri-

cal simulation of the beam propagating through the random medium was presented.

Monte Carlo simulations have proved capable of assessing beam wander, in particular

the (Range)3 dependence of mean square beam wander. Aperture averaging simulation

results show the expected reduction of intensity fluctuations with increasing aperture

diameter and quantitatively the differences in behavior between different turbulence

regimes. Also, this new model has proved capable of assessing the structure of the

phase fluctuations between two beams, and the results agreed well with the theoretical

expression for weak turbulence. This result is remarkable because the model used was

completely unrelated to the Kolmogorov model, yet yielded the same five-thirds power

law dependency.

All these results are noteworthy because there are some limitations. The main

limitation faced in the geometrical Monte Carlo simulations has been the limitation

of the spheres coverage percentage to 30%, the Rays to 1000 and the Runs to 100.

This limitation was due to the long run time, which was about 40 minutes for each

choice of the bubbles’ standard deviation of their refractive index fluctuations. Such

a program could be further optimized to reduce run time, as well as computers with

faster processing time or super computers could be used to increase the number of

simulation runs. This would allow the simulation results to be smoother giving better

results as well as allowing the study of more turbulence levels through a larger variation

in the simulation parameters.
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