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COVID-19 MUTASYONLARININ TESPITINDE YAPAY ZEKA TABANLI
ALGORITMALARIN KULLANILMASI

OZET

Koronaviriis hastaligi 2019 (COVID-19) viriisii, son zamanlarda ortaya ¢ikan ve
bulasilicihigr oldukga yiiksek olan &liimciil bir koronaviriis tiiriidiir. COVID-19
viriisiiniin hizli yayilmasi, insanlar arasinda biiylik korku ve panige neden olmustur.
Ulkeler, COVID-19 viriisii ile miicadele etmek icin tam kapanma, sokaga ¢cikma yasagi
gibi bazi onlemler almak zorunda kalmislardir. Fakat bu alinan 6nlemlere ragmen
COVID-19 viriisii yayilmaya devam etmistir. COVID-19 viriisii ile miicadele etmenin
bagka biri yontemi ise as1 ve ilaclarin gelistirilmesidir. COVID-19 viriisiiyle
miicadelede as1 ve ilaglarin gelistirilmesi biiyiik 6nem tasimaktadir. Gelistirilen bu as1
ve ilaglarin etkinligi, COVID-19 viriisiiniin mutasyona ugramasi sonucu ya énemli
oranda azalmis yada tamamen yok olmustur. Bu nedenle, COVID-19 mutasyonlariyla
miicadele etmek oldukga &nemlidir. COVID-19 viriisiiniin yapisinda gelecekte
meydana gelebilecek mutasyonlar 6nceden tahmin edilebilirse as1 ve ilaglar daha kolay
gelistirilebilir. Boylece enfekte olan alanlar karantinaya alinabilecek ve sonugta
COVID-19 viriisityle miicadele daha kolay olabilecektir. Yapay zeka tabanh
yaklasimlar COVID-19 viriisii tespitinde de umut verici sonuglar sunmaktadir.
Literatiir incelendiginde COVID-19 viriisii ile ilgili gerceklestirilen ¢alismalarin
geneli COVID-19 viriisiiniin diger yénleri ile ilgili ¢aligmalardir. Bu nedenle
literatiirde COVID-19 viriisiiniin mutasyon tahmin edilmesi agisindan ciddi bosluk
bulunmaktadir. Bu tez ¢aligmasinda biz bu boslugu bir nebze olsun doldurmay1
amagcladik. Bu tez ¢alismasinda, COVID-19 viriisii yapisinda gelecekte meydana
gelebilecek mutasyonlar1 tahmin etmek igin yapay zeka tabanli ¢ model
(TfrAdmCov, StackGridCov ve HyperAttCov) onerilmistir.

[k énerilen TfrAdmCov modeli, adam optimizasyon algoritmasina sahip tamamen
transformer kodlayici tabanlidir. Onerilen TfrAdmCov model ile giris dizisindeki
degiskenler arasindaki bagimliliklar kolay bir sekilde yakanalabilmektedir. Onerilen
TfrAdmCov modeli, transformer tabanli olmasi sebebiyle, aym1 anda paralel
hesaplama yapabilmektedir. Ayrica, onerilen TfrAdmCov modelinin performansini
arttirmak i¢in egitim, test ve Kfold veri setlerini olusturma asamasinda agglomerative
kiimeleme algoritmasi tercih edilmistir. Ek olarak, makine 6grenmesi algoritmalarinin
en iyi hyperparametre degerlerinin ayarlamak igin GridSearchCV algoritmasinda
faydalanilmistir. Deneysel sonuglar detayli olarak incelendiginde, Onerilen
TfrAdmCov modelinin hem klasik yapay zeka tabanli modellerden hem de birkag son
teknoloji modellerden daha iyi performans elde ettigini gostermistir. Onerilen
TfrAdmCov modeli, COVID-19 test veri seti iizerinde %99.93 dogruluk degerine,
%100.00 kesinlik degerine, %97.38 hassasiyet degerine, %98.67 F1-skor degerine ve
%98.65 MCC degerine ulagsmistir. Benzer sekilde 10 rastgele deneminin ortalamasi
alindiginda da, onerilen TfrAdmCov modeli, COVID-19 test veri seti iizerinde
%99.924 ile dogruluk, %97.18 ile hassasiyet, %98.57 ile F1-skor ve %98.54 ile MCC
degeri acisindan diger modellerden daha iyi sonuglar elde etmistir. Onerilen
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TfrAdmCov modeli ile derin 6grenme modellerinin istatistiksel agidan kiyaslamak i¢in
farkli rastgele tohumlarla 10 rastgele denemenin ortalamasi alinarak elde elde edilen
sonuglar analiz edilmistir. Ortalama, standart sapma, medyan, min ve maks gibi
istatistiksel 6l¢iimler kullanilarak her model i¢in dogruluk, kesinlik, hatirlama, F1-skor
ve MCC performans o6l¢iim metrigi agisindan detayli  degerlendirme
gergeklestirilmistir.  Ayrica, Onerilen TfrAdmCov modelinin performansini
degerlendirmek i¢in influenza A/H3N2 HA veri seti lizerinde mutasyon tahmini
gerceklestirilmistir. Onerilen TfrAdmCov modeli, H3N2 HA test veri seti iizerinde
%96.33 dogruluk, %81.55 kesinlik, %52.33 hassasiyet, %63.75 F1-skor ve %63.61
MCC degerlerinde diger modellere gore daha iyi sonuglar elde etmistir. Influenza
H3N2 HA test veri seti lizerindeki sonuglar, 6nerilen TfrAdmCov modelinin oldukca
saglam oldugunu gostermistir.

Ikinci olarak, COVID-19 viriisiiniin mutasyon tahmini i¢in saglam bir StackGridCov
modeli o6nerdik. Onerilen StackGridCov modeli, tamamen topluluk &grenme
tablanlidir. Onerilen StackGridCov modelinin ve diger modellerin performansini
artirmak i¢in GridSearchCV hiperparametre ayarlama algoritmasi kullanilmistir.
Onerilen StackGridCov modelinin ve diger modellerin performansini degerlendirmek
icin, holdout tekniginin yani sira stratified 10 kath ¢apraz dogrulama tekniginden
faydalanilmistir. Ek olarak Onerilen StackGridCov modelinin performansini
degerlendirmek icin daha once ortaya ¢ikan influenza A/HIN1 HA viriisii veri seti
lizerinde mutasyon tahmini gerceklestirilmistir. GridSearchCV yontemine sahip
onerilen StackGridCov modeli, COVID-19 test veri setinde 0.6623 dogruluk degeri,
0.6723 Fl-skor degeri, 0.3273 MCC degeri ve 0.7018 AUC degeri ile diger
algoritmalardan daha iyi performans gosterimistir. Ayrica, Onerilen StackGridCov
modeli, influenza A/HLIN1 HA test veri setinde 0.9460 dogruluk degeri, 0.7969
hassasiyet degeri, 0.8093 F1-skor degeri ve 0.7780 MCC degeri agisindan diger
modellerden daha iyi performans gostermistir. Sonug olarak, GridSearchCV
hiperparametre tekniginin kullanilmasinin genel olarak 6nerilen StackGridCov modeli
ile diger modellerim performansini arttirdigi gézlemlenmistir.

Ugiincii olarak, COVID-19 viriis mutasyon tahmini igin HyperMixer ve dikkat
mekanizmalarina dayali olan HyperAttCov modeli 6nerilmistir. Onerilen
HyperAttCov modelinin performansinin en yiiksek seviyeye c¢ikartmak i¢in dikkat
mekanizmalarindan faydalanilmistir. Onerilen HyperAttCov modeli, bircok derin
ogrenme tabanli ve makine 6grenmesi modellerinden daha iyi performans elde
etmistir. Deneysel sonuglar detayli olarak incelendiginde, onerilen HyperAttCov
modelinin, COVID-19 test veri seti iizerinde %70.0 dogruluk degerine, %92.0 kesinlik
degerine ve %46.5 MCC degerine ulastigini gézlemlenmistir. Benzer sekilde, 6nerilen
HyperAttCov modeli, 10 adet rastgele denemenin ortalamasi alindiginda COVID-19
test veri seti tizerinde %70.2 dogruluk degerine, %90.4 hassasiyet degerine ve %46.2
MCC degerine ulagmistir. Ayrica, Onerilen HyperAttCov modeli literatiirdeki
calismayla karsilastirildiginda, test veri seti kiimesi {izerinde oldukg¢a basarili sonuglar
elde etmistir. Sonug olarak, onerilen TfrAdmCov, StackGridCov ve HyperAttCov
modelleri, COVID-19 veri setinde meydana gelecek mutasyonlar1 basarili bir sekilde
tahmin edebilmektedir. Elde edilen sonuglar as1 ve ilag gelistirilmesi a¢isindan umut
vericidir.
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USE OF ARTIFICIAL INTELLIGENCE-BASED ALGORITHMS IN
DETECTING COVID-19 MUTATIONS

SUMMARY

Coronavirus disease 2019 (COVID-19) virus is a deadly type of coronavirus that has
emerged recently and is highly contagious. The rapid spread of the COVID-19 virus
has caused great fear and panic among people. Countries have had to take some
measures such as complete closure and curfew to combat the COVID-19 virus.
However, despite these measures, the COVID-19 virus continued to spread. Another
method to combat the COVID-19 virus is the development of vaccines and drugs. The
development of vaccines and drugs is of great importance in combating the COVID-
19 virus. The effectiveness of these developed vaccines and drugs has either
significantly decreased or disappeared completely as a result of the mutation of the
COVID-19 virus. Therefore, it is very important to combat COVID-19 mutations. If
future mutations in the structure of the COVID-19 virus can be predicted, vaccines and
drugs can be developed more easily. Therefore, infected areas can be quarantined and
ultimately the fight against the COVID-19 virus will be easier. Artificial intelligence-
based approaches also offer promising results in detecting or predicting the COVID-
19 virus. When the literature has been examined, most of the studies on the COVID-
19 virus are studies on other aspects of the COVID-19 virus. For this reason, there is
a serious gap in the literature in terms of mutation prediction of the COVID-19 virus.
In this thesis study, we aim to fill this gap to some extent. In thesis study, three artificial
intelligence-based models (TfrAdmCov, StackGridCov and HyperAttCov) have been
proposed to predict future mutations in the COVID-19 Spike (S) protein structure.

Firstly, the proposed TfrAdmCov model is completely transformer encoder based with
Adam optimization algorithm. With the proposed TfrAdmCov model, dependencies
between the variables in the input sequence can be easily captured. The proposed
TfrAdmCov model can perform parallel calculations simultaneously because it is
transformer encoder-based architecture. In addition, in order to increase the
performance of the proposed TfrAdmCov model, agglomerative clustering algorithm
has been preferred during creation of the training, testing and Kfold datasets.
Additionally, the GridSearchCV algorithm has been used to set the best
hyperparameter values of machine learning algorithms. The experimental results in
detail shows that the proposed TfrAdmCov model achieves better performance than
both classical artificial intelligence -based models and several state-of-the-art models.
The proposed TfrAdmCov model achieved 99.93% accuracy value, 100.00% precision
value, 97.38% recall value, 98.67% F1-score value and 98.65% MCC value on the
COVID-19 testing dataset. In the COVID-19 testing dataset, the TfrAdmCov model
with the Adam optimization algorithm correctly predicted 335 samples out of 344
samples in the "mutation™ class, while it incorrectly predicted only 9 samples out of
344 samples in the "mutation” class. In addition, the proposed TfrAdmCov model with
Adam optimization algorithm correctly predicted all samples out of 12386 samples in
the “no mutation” class. Similarly, when the average of 10 random experiments have
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been taken, the proposed TfrAdmCov model achieved better results than other models
in terms of accuracy with 99.924%, recall with 97.18%, F1-score with 98.57% and
MCC value with 98.54% on the COVID-19 testing dataset. In addition, in order to
statistically compare the proposed TfrAdmCov model with the deep learning models,
the results obtained have been analyzed by taking the average of 10 random trials with
different random seeds. Detailed evaluation has been carried out for each model in
terms of accuracy, precision, recall, F1-score and MCC performance measurement
metric using statistical measurements such as mean, standard deviation, median,
mininum and maximum. The proposed TfrAdmCov model obtained an average of
0.999238, standard deviation of 0.000036, median of 0.999214, minimum of 0.999214
and maximum of 0.999293 among the 10 accuracy values obtained on the COVID-19
testing dataset. We also performed mutation prediction on the influenza A/H3N2 HA
dataset to evaluate the performance of the proposed TfrAdmCov model. The proposed
TfrAdmCov model achieved better results than other models 96.33% accuracy,
81.55% precision, 52.33% recall, 63.75% F1-score and 63.61% MCC values on the
H3N2 HA testing dataset. On the H3N2 HA testing dataset, the proposed TfrAdmCov
model correctly predicted 853 samples out of 1630 samples in the "mutation™ class,
while it incorrectly predicted 777 samples out of 1630 samples in the "mutation™ class.
In addition, the proposed TfrAdmCov model correctly predicted 24577 out of 24770
samples in the "no mutation™ class, while it incorrectly predicted 193 out of 24770
samples in the "no mutation” class. Results on the influenza H3N2 HA testing dataset
showed that the proposed TfrAdmCov model is quite robust.

Secondly, we propose a robust StackGridCov model for mutation prediction of the
COVID-19 virus. The proposed StackGridCov model is based on ensemble learning.
The proposed StackGridCov model is a very successful model that maximizes the
performance as much as possible by using many machine learning algorithms. The
main reason for this can be expressed as the proposed StackGridCov model reduces
the possibility of overfitting by combining the strengths of several base models. These
base models may make errors in different parts of the input sequences. By combining
the outputs of these base classifiers, the meta-classifier can compensate for these errors
and ultimately make a more accurate prediction. The proposed StackGridCov model
is flexible as different machine learning algorithms can be used in both the level-0
layer and the level-1 layer. The proposed StackGridCov model is more robust than
other ensemble learning and other artificial intelligence techniques as it is less affected
by overfitting. This is because the base learners are trained on the same training dataset
and the meta learner is trained on the new large dataset by combining the predictions
of these base classifiers on the training dataset, ultimately reducing the possibility of
overfitting. In this thesis study, while the base learners at level-0 have been selected
as SVM, RF, XGBoost, ANN, DT, GB, ET, AdaBoost learner has been chosen as the
meta classifier at level-1. This selection of both base classifiers and meta classifier
significantly improved the performance of the proposed StackGridCov model. In
addition, we use the GridSearchCV hyperparameter tuning algorithm to improve the
performance of the proposed StackGridCov model and other models. To evaluate the
performance of the proposed StackGridCov model and other models, the stratified 10-
fold cross-validation technique as well as the holdout technique has been used.
Additionally, to evaluate the performance of the proposed StackGridCov model,
mutation prediction has been performed on the previously emerging influenza
A/HIN1 HA virus dataset. The proposed StackGridCov model with GridSearchCV
method outperformed other algorithms in terms of accuracy value of 0.6623, F1-score
value of 0.6723, MCC value of 0.3273 and AUC value of 0.7018 on the COVID-19
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testing dataset. Moreover, the proposed StackGridCov algorithm with GridSearchCV
technique outperformed the StackGridCov model without GridSearchCV technique on
the COVID-19 testing dataset. The proposed StackGridCov model with
GridSearchCV method increased the accuracy value (from 0.6016 to 0.6623),
precision value (from 0.5833 to 0.6415), recall value (from 0.6566 to 0.7062), F1-
score value (from 0.6178 to 0.6723). ), the MCC value (from 0.2063 to 0.3273) and
the AUC value (from 0.6133 to 0.7018). The proposed StackGridCov model with the
GridSearchCV method correctly predicted 399 samples out of 565 samples in the
"mutation” class on the COVID-19 testing dataset, while it incorrectly predicted only
166 samples out of 565 samples in the "mutation™ class. In addition, the proposed
StackGridCov model with the GridSearchCV method correctly predicted 223 samples
out of 587 samples in the “no mutation” class on the COVID-19 testing dataset, while
it incorrectly predicted 364 samples out of 587 samples in the “no mutation” class.
Similarly, the proposed StackGridCov outperformed other models in terms of accuracy
value of 0.6610, a precision value of 0.6614, an F1-score value of 0.6607 and an MCC
value of 0.3226 on the KFold dataset. Moreover, the proposed StackGridCov model
outperformed other models in terms of accuracy value of 0.9460, recall value of
0.7969, F1-score value of 0.8093 and MCC value of 0.7780 on the Influenza A/HIN1
HA testing dataset. As a result, it has been observed that using the GridSearchCV
hyperparameter technique has been generally increased the performance of the
proposed StackGridCov model and other models.

Thirdly, the HyperAttCov model, which is based on LSTM, HyperMixer and attention
mechanisms, is proposed for COVID-19 virus mutation prediction. Attention
mechanisms have been used to maximize the performance of the proposed
HyperAttCov model. The proposed HyperAttCov model is able to capture the most
relevant input features and long-term temporal dependencies in the input sequence.
Additionally, in this thesis study, attention mechanisms (input attention mechanism
and temporal attention mechanism) have been used to improve the performance of the
proposed HyperAttCov model by focusing on important parts of the COVID-19
dataset. While the input attention mechanism is applied to the entire input dataset, the
temporal attention mechanism is applied to the data obtained from the HyperMixer
architecture. The proposed HyperAttCov model achieved better performance than
many deep learning-based and machine learning models. When the experimental
results have been examined in detail, it has been observed that the proposed
HyperAttCov model reached 70.0% accuracy value, 92.0% precision value and 46.5%
MCC value in the COVID-19 testing dataset. Similarly, the proposed HyperAttCov
model achieved 70.2% accuracy value, 90.4% precision value and 46.2% MCC value
on the COVID-19 testing dataset when averaged over 10 random trials. In addition,
the proposed HyperAttCov model achieved very successful results on the COVID-19
testing dataset compared to the study in the literature. As a result, the proposed
TfrAdmCov, StackGridCov and HyperAttCov models can successfully predict
mutations that will occur on both the COVID-19 S protein and the influenza datasets.
In addition, in this thesis study, it has been observed that the use of agglomerative
clustering algorithm and GridSearchCV hyperparameter technique played an effective
role in mutation prediction of the COVID-19 virus. The results obtained this thesis
study are promising for vaccines and drugs development.
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1. GIRIS

Koronaviriisler tek sarmalli pozitif polariteli Riboniikleik Asit (RNA) genom dizisi
sahiptirler. Koronaviriisler ilk kez 1960'larda kesfedilmistir (Haimed ve ark., 2021).
[k bulunan koronaviriisler HCoV-229E ve HCoV-OC43 koronaviriisleridir. Daha
sonra 2003 yilinda siddetli akut solunum sendromu koronaviriis 1 (SARS-CoV-1)
koronaviriisii, 2004 yilinda HCoV-NL63 koronaviriisii, 2005 yilinda HCoV-HKU1
koronaviriisii, 2012 yilinda MERS (orta dogu solunum sendromu koronavirus)
koronaviriisii ve son olarak da siddetli akut solunum sendromu Koronaviriis 2
koronaviriisiin (SARS-CoV-2) neden oldugu COVID-19, Aralik 2019 yilinin sonunda
tespit edildi (Haimed ve ark., 2021). Diinya Saglik Orgiitii (DSO) tarafindan yeniden
adlandirilan COVID-19 viriisii Sohrabi ve ark. (2020), ilk olarak Aralik 2019 sonunda
Cin'in Hubei eyaletinin baskenti Wuhan sehrinde ortaya ¢ikti (Wu ve ark., 2020).
COVID-19 viriisii basta Cin olmak iizere birgok hizla iilkeye yayildi. Ulkeler, COVID-
19 viriisiiyle miicadele i¢in kismen veya tamamen kapanmak zorunda kaldi. Bu durum
halk arasinda biiyiik korku ve panige neden oldu (Hai-Dong ve ark., 2022). DSO, 30
Ocak 2020'de COVID-19 salgini i¢in Diinya Acil Durumu ilan etmis, ardindan 11 Mart
2020'de ise pandemiye doniistiiglinii tim diinyaya duyurmustu (Sharma ve ark.,
2021)(Tang ve ark., 2024). 9 Haziran 2024 itibartyla diinya ¢apinda teyit edilen vaka
sayis1 775.615.736, teyit edilen 6liim sayis1 ise 7.051.323'tiir (DSO, 2023). COVID-
19 virtiist, enfekte kisilerin yaklasik %80'inde hafif semptomlara neden olurken, bazi
kisilerde akut solunum sikintisi sendromu (ARDS) neden olmustur (Sharma ve ark.,
2021). ARDS, c¢oklu organ yetmezligine ve diger ciddi hastaliklara neden
olabilmektedir (Suri ve ark., 2020). COVID-19 viriisiiniin tanisina ydnelik bircok test
kiti gelistirilmistir (Zainol Rashid ve ark., 2020). En yaygin olarak kullanilan ve
basarist kanitlanmis gercek zamanl ters transkriptaz polimeraz zincir reaksiyonu
(rRT-PCR), COVID-19 viriisiiniin tespitinde siklikla kullanilmaktadir (Serena Low ve
ark., 2021). rRT-PCR test sonuglar1 genellikle birkag saat ile 2 giin arasinda elde edilir
(Sharma ve ark., 2021). COVID-19 viriisiiniin etkinligini/yayilimm azaltmak
amaciyla fiziksel veya sosyal mesafe, tam kapanma, kapali alanlarin havalandirilmasi,

Oksiirme ve hapsirma durumunda agiz ve burnun kapatilmasi, karantina gibi énlemler



alimmustir. Ayrica gesitli asilar gelistirilmis ve COVID-19 viriisiiniin etkinligi belli
dlciide azaltilmistir. Ancak COVID-19 viriisiiniin sik stk mutasyona ugramasi, bu asi
ve ilaglarin etkinligini ya biiylik 6l¢iide azaltmis ya da yok etme seviyesine getirtmistir.
Bu nedenle, COVID-19 viriisiiyle miicadele olduk¢a zor bir hal almistir. Bu
zorluklarm {istesinden gelebilmek i¢in COVID-19 viriisii iizerinde meydana
gelebilecek mutasyonlarin 6nceden tahmin edilmesi hayati 6nem tagimaktadir. Eger
COVID-19 viriisiiniin yapisinda 6zellikle S proteininde mutasyonlar tahmin
edilebilirse, COVID-19 viriisii mutasyona ugrasa bile as1 ve ilaglar hizl1 bir sekilde
giincellenebilir. Ozellikle son zamanlarda dizi bazli mutasyon gorevlerinde yapay zeka

tabanlt modeller oldukea etkin bir sekilde kullanilmaktadir.

1.1. COVID-19 (SARS-CoV-2)

COVID-19 viriisii, Koronaviridae familyasma ait, zarfli, tek sarmalli RNA
genomlarina sahip, pozitif anlamda betakoronaviriisiin bir cinsidir (de Wit ve Cook,
2020). Koronaviriislerin alfa, beta, gama ve delta olmak tizere dort tiirii mevcuttur
(Jaimes ve ark., 2020). Insan koronaviriisleri alfa ve beta cinslerindedir (Shereen ve
ark., 2020)(Cui ve ark.). COVID-19 viriisiiniin genomu, tiim koronaviriisler arasinda
yarasa-RaTG13 koronaviriisii ile %96'nin lizerinde en yliksek genom benzerligine
sahiptir. Ayrica SARS-CoV-1 ile %79'un lizerinde ve MERS koronaviriisii ile %50'nin
tizerinde genomik benzerlik gostermektedir (Sharma ve ark., 2021). Cin'de ilk olarak
ortaya ¢ikan COVID-19 viriisiiniin genomu 29903 kilobaz uzunluk araligina sahiptir
(Nawaz ve ark., 2021). COVID-19 viriisiiniin yapisi, yapisal proteinler (Basak (S),
Zarf (E), Zar (M) ve Niikleokapsid (N)), yapisal olmayan proteinler (NSP1-NSP16)
ve yardimci proteinlerden (ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b,
ORF9c and ORF10) olusmaktadir (Wu ve ark., 2022). COVID-19 viriisiiniin genel
yapisi, Sekil 1.1°de gosterilmistir (Shereen ve ark., 2020).
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Sekil 1.1. COVID-19 viriisiiniin genel yapis1 (Shereen ve ark., 2020)(Burukanli ve
Yumusak, 2024a).

1.1.1. COVID-19 basak (spike) S proteini

COVID-19 viriisiiniin yiizeyindeki S proteini, bir transmembran glikoprotein olarak
ifade edilmektedir (Zhang ve ark., 2021). S proteini, toplamda 1273 amino asitten
olusmaktadir (Zhang ve ark., 2021). Sekil 1.2°de goriildiigii gibi, COVID-19 S
proteini, Sinyal Peptidi (SP), S1, S1/S2, S2 alt birimlerinden olusmaktadir (Huang ve
ark., 2020). S1 alt birimi, N-Terminal Alan1 (NTD), Reseptor Baglama Alan1 (RBD)
ve C-Terminal Alani 1 (CTD1) ve C-Terminal Alani1 2 (CTD2) alanlarindan olusurken,
S2 alt birimi ise Fusion Peptid (FP), Fiizyon-Peptit Proksimal Bolgesi (FPPR), Heptad
Tekrar1 1 (HR1), Merkezi Helis (CH), Konektor Alani (CD), Heptad Tekrar1 2 (HR2),
Transmembran Alan1 (TM) ve Sitoplazmik Kuyruk (CT) alanlarindan olusmaktadir
(Barnes ve ark., 2020). COVID-19 viriisiiniin yapist iizerindeki RBD alani araciligiyla,
konakg1 hiicre yilizeyindeki Anjiyotensin Dondistiiriicii Enzim 2 (ACE-2) proteinine
baglanir. Daha sonra S2 alt birimi kullanilarak konakgr hiicre ile flizyon gerceklesir ve
ardindan COVID-19 viriisii konakg1 hiicreye girer. ACE2 reseptoriine baglandiktan
sonra S proteini bazi degisikliklere ugrar ve S proteininin S1/S2 boélgesinde furin
proteazlar tarafindan béliiniir ve S1, S2 alt birimlerinin iiretilmesini saglar. COVID-
19 viriistintin konake1 hiicreye girisini kolaylastirmak amaciyla hiicre yiizeyindeki
transmembran serin proteaz-2 (TMPRSS2S2), S2 alt birimindeki S2' alanin1 bélerek S
proteininin hazirlanmasinda rol oynar. COVID-19 S RBD, bir reseptor baglama motifi
(RBM) ve bir ¢ekirdek yap1 igerir (Jackson ve ark., 2022). Sekil 1.2°de COVID-19 S

proteininin detayl1 yapisi gosterilmistir (Jackson ve ark., 2022).
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Sekil 1.2. COVID-19 S proteininin detayli yapis1 (Jackson ve ark., 2022)(Burukanli
ve Yumusak, 2024a).

1.1.2. Mutasyon

Mutasyon, kisaca bir canlinin genomundaki Deoksiriboniikleik Asit (DNA) veya RNA
dizisinde meydana gelen kalicit degisiklikler olarak ifade edilebilir. RNA viriisleri
DNA viriislerinden daha fazla mutasyona ugrar (Shaikh ve ark., 2021). Ozellikle viriis,
RNA genomunu konakge1 hiicreye kopyalarken siklikla mutasyona ugrar (Qin ve ark.,
2021). COVID-19 viriisii, birgok kez mutasyona ugramustir (Hossain ve ark., 2021).
Gelistirilen ~ test  kitleri, baskin  COVID-19 varyantlarm tam  olarak
yakalayamamaktadir. Mevcut agilarin mutasyonlara karsi etkinligi de 6nemli dlgtide
azalmistir. COVID-19 viriisiiniin genom dizilimini, davranisini, kdkenini ve ne kadar
hizli mutasyona ugradigini anlamak, as1 ve ilaclarin gelistirilmesi agisindan biiyiik
onem tagimaktadir (Haimed ve ark., 2021). COVID-19 viriisii, zaman igerisinde farkl
bolgelerde mutasyona ugrayarak yeni varyantlari ortaya cikartmistir. Bu yeni
varyantlarin biiytikk c¢ogunlugu herhangi bir olumsuz etkiye yol agmasa da
delta/omikron gibi bazi baskin varyantlarin bulasiciligi/6liimciil olmasi nedeniyle
salginin seyrini degistirmistir (Shiehzadegan ve ark., 2021). COVID-19 viriisiiniin
genom dizisinin detayli analizi ve mutasyon analizi, ag1 veya ilag gelistirilmesine katki
saglayacaktir (Ahmed ve Jeon, 2022). Su ana kadar, COVID-19 viriisiiniin neden
oldugu bazi baskin varyantlar su sekilde ifade edilebilir; ingiltere'de tespit edilen
B.1.1.7 (Alfa) varyanti, Giiney Afrika'da tespit edilen B.1.351 (Beta) varyanti ve
B.1.1.529 (Omikron) varyanti, Brezilya'da tespit edilen P.1 (Gama) varyanti Ve.
Hindistan'da tespit edilen B.1.617.2 (Delta) varyant1 olarak ifade edilebilir (Qin ve
ark., 2021)(Lopez-Rincon ve ark., 2021)(Gage ve ark., 2021)(Sokhansanj ve Rosen,
2022). Mevcut verilere gore, B.1.1.529 (Omikron) varyant: diinya ¢apinda en yaygin



olan varyanttir (Madhi ve ark., 2022). Tespit edilen varyantlara gére, COVID-19 test
kitlerinde de giincellemeler yapilmaktadir. Bu sayede mutasyona ugramis viriislerle
enfekte olan hastalarda giincellenen test kitlerinde olumsuz sonuglarin ortaya
cikmasimin niine gecilebilecektir. COVID-19 mutasyonlarinin ortaya cikmasiyla
birlikte mevcut as1 ve ilaglarin etkileri onemli dlgiide azalmistir. COVID-19
koronaviriisiiniin genom diziliminin analizi ve gelismis makine 6grenimine dayali
modellerin  kullanilmas1, doktorlarin  COVID-19 viriisiiniin genetik yapisini
anlamalarma yardimci olabilecektir. Ayrica COVID-19 viriisiiniin genom dizilisinin
anlasilmasi as1 veya gelistirilecek ilaglarin gelistirilmesine katki saglayacaktir (Ahmed

ve Jeon, 2021).

1.2. Tezin Amaci

Tezin amaci asagidaki gibi birkag madde ile siralanabilir.

e Yapay zeka tabanli algoritmalar kullanilarak COVID-19 viriisiiniin S proteini
tizerindeki mutasyonlarini tahmin etmek,
e COVID-19 mutasyonlarinin tahmini icin yapay zeka tabanli modeller

Onermek,

e COVID-19 mutasyonlar1 énceden tahmin edilerek, hizli ve etkili bir sekilde

gelistirilecek olan as1 ve ilaglarin gelistirilmesine fikir vermek,

e COVID-19 mutasyonlar: tahmini igin yapay zeka tabanli algoritmalarin
kullanilmast ve sonuclarinin elde edilip benzer literatiir g¢aligmalariyla
kiyaslanmak,

e COVID-19 viriisii ile ilgili cok az ¢calisma mevcuttur. Bu nedenle literatiire bir

nebze olsun katki saglamak olarak ifade edilebilir.

1.3. Tezin Organizasyonu

Tezin geri kalan boliimlerin okunabilirligini kolaylastirmak icin tez organizasyonu su
sekilde ifade edilebilir: Béliim 2°de COVID-19 viriisii ile diger viiriisler ile ilgili
detayl literatiir taramasindan bahsedilir. Boliim 3’te bu tez ¢alismasinda kullanilan
veri seti, klasik yapay zeka modelleri ile 6nerilen modellerden bahsedilir. Boliim 4°te

onerilen modeller ile diger modellerin kullanilan COVID-19 ve influenza veri setleri



tizerinde elde edilen bulgular detayli olarak tartigilir. Boliim 5°te ise sonug ve

Onerilerden bahsedilir.



2. LITERATUR TARAMASI

Literatiir ayrintili olarak incelendiginde ¢alismalarin ¢ogunlugunun COVID-19
mutasyon tahmini disindaki ¢alismalar oldugu goriilmektedir. Ayrica influenza viriisii
tizerinde de siklikla mutasyon tahmini yapilmaktadir. Literatiirde konuyla ilgili bazi
calismalara asagida yer verilmistir. Tarek ve ark. (2023), ¢alismalarinda COVID-19
6lim tahmini i¢in evrisimsel sinir ag1 (CNN), kapili tekrarlayan birim (GRU) tabanh
hibrit modelini CNN-GRU modelini onerdiler. CNN-GRU modelini kullanarak
Hindistan veri seti iizerinde COVID-19 &liimlerini tahmin ettiler. Onerdikleri CNN-
GRU modelini mevcut modellerle karsilastirdiklarinda o6nerdikleri CNN-GRU
modelinin daha basarili oldugunu goézlemlemislerdir. ElAraby ve ark. (2022),
caligmalarinda COVID-19 Gogiis Réntgeni (CXR) goriintiilerini siniflandirmak igin
stokastik gradyan inis optimizasyon teknigine sahip Gri Olgekli Uzaysal Kullanim Ag1
(GSEN) modelini énerdiler. Onerdikleri GSEN modeli, diger modellerden daha iyi
sonuclar elde etti. Elzeki ve ark. (2021), ¢alismalarinda gogiis rontgeni (CXR)
goriintiilerinden COVID-19 viriisiinii tespit etmek igin Gogiis Réntgeni COVID Ag
ad1 verilen CXR goriintiileri (CXRVN) adli modeli dnerdiler. Onerdikleri CXRVN
modelini, {i¢ veri seti iizerinde test ettiler. Test sonucunda CXRVN modelinin,
COVID-19 viriisiinii tespit etmede olduk¢a basarili oldugu gozlemlediler. Elzeki ve
ark. (2021), calismalarinda dengesiz COVID-19 veri seti icin CXR gériintiileri elde
etmek amaciyla derin O0grenme tabanli modeli (Alt orneklenmemis Konturlet
Dontisiimii (NSCT) + CNN_VGG19) kullanarak, yeni bir algisal iki katmanli goriintii
fiizyonu onerdiler. Onerdikleri modeli, diger modellerle detayli olarak karsilagtirdilar.
Onerdikleri model, diger modellere gore daha iyi performans elde etti. Chakraborty ve
ark. (2022), ¢alismalarinda diyabetik hastalar i¢in bulanik ¢ikarim sistemi ve makine
ogrenimi modelleri yoluyla bir COVID-19 risk tahmin yaklasimi onerdiler.
Onerdikleri modelin performansini degerlendirmek icin stratified K-katli capraz
dogrulama teknigini kullandilar. Deneysel sonuglar, 6nerdikleri modelin COVID-19
risk tahmininde diger mevcut modellere gore daha basarili oldugunu gosterdi. Hassan
ve ark. (2024), calismalarinda bilgisayar tomografisi (CT) tarama goriintiilerinden

COVID-19 viriisiiniin siniflandirilmas1 i¢in bir derin evrisimli sinir agi (DCNN)



modeli dnerdiler. Sonug olarak, 6nerdikleri model COVID-19 siniflandirma gérevinde
birgok son teknoloji modelden daha iyi performans gosterdi. Shrestha ve ark. (2022),
calismalarinda beyin tiimoriinii tespit etmek i¢in derin 6grenme Tabanli Evrisim Sinir
Ag1 (DCNN) modelini 6nerdiler. Onerdikleri DCNN modeli, beyin tiimériiniin
tespitinde dikkate deger sonuglar elde etti. Hassan ve ark. (2022), ¢alismalarinda akilli
sehirler icin derin 6grenme tabanli bir otomatik COVID-19 tespit modeli énerdiler.
Onerdikleri model, ozellikle kalabalik yerlerde COVID-19 viriisiiniin otomatik
testitinde oldukga iyi sonuglar elde etti. Cai ve ark. (2024), calismalarinda gelecek
sezonun baskin influenza A virlis susunun hemaglutinin (HA) protein dizisini tahmin
etmek i¢in kodlayici-kod ¢oziicti tabanli FluPMT modeli onerdiler. Dizi kalintilart
arasindaki bagimliliklar1 arastirmak i¢in dikkat mekanizmalarim1 kullandilar ve
influenza A viriislerinin evrimini modellemek i¢in zaman serilerini kullandilar. Sonug
olarak, FIuPMT modelinin hem HIN1 veri seti hem de H3N2 veri seti tizerindeki
performansiin diger modellere gore daha iyi oldugunu gostermislerdir. Li ve ark.
(2023), calismalarinda uzun kodlamayan RNA'larin (IncRNA'lar) hiicre alti
lokalizasyonunu tahmin etmek i¢in GraphLncLoc adinda bir grafik derin 6grenme ag
tabanli modeli 6nerdiler. GraphLncLoc modeli, gizli 6zellikleri 6grenmek igin grafik
evrisimli aglart kullanir ve ardindan elde edilen yiiksek seviyeli 6zellikler, nihai
tahmini ger¢eklestirmek i¢in tamamen bagli bir katmanla beslenir. Calismada sonunda
GraphLncLoc modelinin diger modellere gore daha iyi performans elde ettigini
gosterdiler. Yin ve ark. (2022), calismalarinda influenza antijenik varyantlarini tahmin
etmek i¢in JAV-CNN olarak adlandirilan, 2 boyutlu evrisimli sinir ag1 (CNN) tabanli
bir model 6nerdiler. IAV-CNN modeli ile diger modelleri {i¢ influenza veri kiimesi
(HINZ1, H3N2 ve H5N1) iizerinde egitip ve test ettiler. Sonug olarak, IAV-CNN
modelinin, ti¢ grip veri kiimesinde en gelismis modellerden daha iyi performans
gosterdi. Abbas ve ark. (2022), ¢alismalarinda antijenik influenza HA dizi ¢iftleri
lizerinde cesitli derin 6grenme modellerini uyguladilar. Onerdikleri derin 6grenme
modelleri, influenza A viriisii tizerinde dikkate deger sonuglar elde etti. Salama ve ark.
(2016), calismalarinda RNA'y1 olusturan proteinlerin amino asit dizilerini, sinir
aglarin1 (NN) ve kaba set tekniklerini kullanarak RNA virlisii mutasyonlarini tahmin
ettiler. Calismalarinda Cin ve Giiney Kore'den elde edilen newcastle RNA viriisii
dizilerinden olusan bir veri seti kullandilar. Sonuclar1 incelendiklerinde, kaba kiime
tekniginin sinir aglarina gore daha iyi sonuglar verdigini gozlemlediler. Kaba set

tekniginin dogruluk oraninin %75'in iizerinde oldugunu géstermislerdir. Mohamed ve
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ark. (2021), calismalarinda seq2seq LSTM derin 6grenmeyi kullanarak bir sonraki
DNA dizisini tahmin ettiler. Caligmalarinda New Castle hastalik viriisii veri seti ile
H1IN1 influenza viriisii veri setini kullandilar. Onerdikleri modelinin basar1 orani
(dogrulugu) New Castle hastalik viriisii veri seti %696.9, HIN1 influenza viriisii veri
setindeki basart orani (dogruluk) ise %98.9°dur. Yin ve ark. (2020), yaptiklari
calismada influenza A/HINI1, H3N2, H5N1 viriislerinin hemaglutinin (HA) protein
dizilerini kullanarak gelecek grip sezonunda mutasyonlarin meydana gelip
gelmeyecegini tahmin etmislerdir. Influenza A viriislerinin mutasyon tahmini i¢in
etkili ve saglam bir zaman serisi mutasyon tahmin modeli olan Tempel modelini
onerdiler. Caligmalarinda {i¢ influenza veri seti (HIN1, H3N2, H5N1) tizerindeki
deneysel sonuclar incelendiginde, 6nerilen Tempel modelinin literatiirde yaygin olarak
kullanilan diger yaklasimlardan daha iyi performans elde etti. Tempel modeli, 0.991
dogruluk degerine ulasti. Yin ve ark. (2023), ¢alismalarinda viriilans tahmini i¢in genel
bir gergeve olan ViPal modelini 6nerdiler. ViPal modeli, diger modellerden daha iyi
performans gosterdi. Peng ve ark. (2023), ¢alismalarinda influenza A viriisii suslari
arasindaki antijenik mesafeyi tahmin etmek i¢in yeni bir niceliksel tahmin yontemi
onerdiler. Onerdikleri yontem, influenza A viriisii suslar1 arasindaki antijenik
mesafeleri tahmin etmede diger yontemlerden daha iyi performans gosterdi. Yin ve
ark. (2023), c¢alismalarinda influenza A viriislerinin antijenitesini tahmin etmek i¢in
(CL-CAP) olarak adlandirilan, karsilagtirmali 6grenmeye sahip bir evrigimli sinir ag1
modeli 6nerdiler. Onerdikleri CL-CAP modelini birgok giincel yaklasimla
karsilastirdilar. Onerdikleri CL-CAP modeli, diger yaklasimlardan daha iyi
performans elde etti. Saha ve ark. (2020), ¢calismalarinda Hindistan'da izole edilen 566
COVID-19 genom dizisini mutasyon analizi igin kullanmuslardir. Dizilerin
hizalanmasi, Ulusal Biyoteknoloji Bilgi Merkezi'nden (NCBI) alinan referans
(NC _45512.2) dizisi kullanilarak ¢oklu dizi hizalama yontemi (MSA) CLUSTALW
Anonim (2023a) kullanilarak gergeklestirdiler. Diziler hizalandiktan sonra mutasyon
bolgesini bulmak ve her bir COVID-19 genomunu analiz etmek igin bir fikir birligi
(consensus) dizisi olusturdular. Calisma sonucunda, Hindistan'da izole edilen 566
genom dizisinde 933 ikame/nokta mutasyon, 2449 silme mutasyonu ve 2 ekleme
mutasyonu olmak iizere toplam 3384 mutasyon noktasi tespit ettiler. Wang ve ark.
(2020), calismalarinda mutasyon analizi icin 31421 COVID-19 genom dizisini
kullanmiglardir. Ayrica, COVID-19 genlerinin mutasyon oranini ve h-indeksini

hesapladilar. Yazarlar, COVID-19 viriisiiniin yapisin1 olusturan genler arasinda en
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fazla N geninin mutasyona ugradigini ifade ettiler. Ayrica N geninin, COVID-19
genomundaki en savunmasiz gen oldugunu da belirttiler. Haimed ve ark. (2021),
calismalarinda yapay zeka ve biiyiik veriyi kullanarak, COVID-19 viriisiiniin
kaliplarimi ve evrimsel davranisini ortaya ¢ikarmak igin bir tersine miihendislik
yaklagimini dnerdiler. COVID-19 viriisiiniin bir sonraki evrimlesen rnegini tahmin
etmek icin Uzun Kisa Siireli Bellek (LSTM) yéntemini kullandilar. Ayrica, COVID-
19 viriisiiniin 29 amino asit uzunlugunda kii¢iik bir proteini olan ORF7a amino asit
dizisini kullandilar. Calismanin sonunda ORF7a proteininin olas1 evrimlesmis
ornegini %40-%50 basar1 orantyla tahmin ettiler. Bu basar1 oranini arttirmak igin
tutarli kaliplar kullanarak basari oranini %72'ye ¢ikardilar. Nawaz ve ark. (2021),
calismalarinda yapay zeka tekniklerini kullanarak COVID-19 genom dizilerinden
detayli bilgi elde ettiler. Niikleotid bazlarmin sik goriilen kaliplarini ve bunlarin
birbirleriyle olan iligkilerini ortaya ¢ikaran gizli kaliplarin olup olmadigin1 gérmek igin
bilgisayar ortaminda sirali desen madenciligi (SPM) ile ¢esitli deneyler yaptilar.
Ayrica, genom dizilerinde niikleotid bazlarinin degistigi yerleri bulmak ve mutasyon
oranini hesaplamak amaciyla genom dizilerinde mutasyon analizi i¢in bir algoritma
onerdiler. Hossain ve ark. (2021), yaptiklari ¢alismada LSTM derin 6grenme modelini
COVID-19 genom dizisine uygulayarak gelecekte olusabilecek 2000. varyantin
mutasyon oranini tahmin etmislerdir. Toplamda 259044 COVID-19 tam genom dizisi
kullandilar. Kullanilan bu 6rneklerden toplam 3334545 mutasyon tespit ettiler. Zhou
ve ark. (2023a), calismalarinda COVID-19 mutasyon tahmini igin transformer tabanli
mutasyon tahmin gergevesi olarak adlandirilan TEMPO modelini 6nerdiler. Zamansal
bilgilerle birlestirilmis viral diziler olusturmak i¢in filogenetik aga¢ bazli bir
ornekleme yontemi tasarladilar. Ayrica, dnerdikleri TEMPO modeli, daha 6nce ortaya
ctkmamis 22 mutasyonu da basariyla tahmin etti. Onerdikleri TEMPO modeli,
COVID-19 veri kiimesi iizerinde 0.655 dogruluk degerine ulasti. Burukanh ve ark.
(2022), yaptiklar1 calismada COVID-19 viriisiin ilk ortaya cikan varyant:
(NC_045512.2) ile Tiirkiye’de ortaya ¢cikan MW306668.1 ile MT955161.1 varyantlari
icin mutasyon analizi gergeklestirdiler. Gergeklestirdikleri mutasyon analizi
sonucunda, MT955161.1 varyantinin MW306668.1 varyantina gore daha fazla

mutasyona ugradiginin tespit ettiler.

Sonug olarak, literatiir detayli olarak incelendiginde c¢alismalarin ¢ogunlugunun

COVID-19 viriisiiniin diger yonleri iizerine oldugu goriilmektedir. Ancak yapay zeka
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tabanli modeller kullanilarak COVID-19 viriisiiniin mutasyon tahmini konusunda ¢ok
az calisma bulunmaktadir. Bu tez ¢alismasinda literatiirdeki bu bosluga
odaklanlmistir. COVID-19 viriisii yapisinda gelecekte meydana gelebilecek
mutasyonlar1 tahmin etmek igin yapay zeka tabanli TfrAdmCov modeli Burukanli ve
Yumusak (2024a), StackGridCov modeli Burukanli ve Yumusak (2024b), ve
HyperAttCov modeli Burukanli ve Yumusak (2024c), olmak iizere ii¢ model
onerilmistir. Onerilen TfrAdmCov modeli, Adam optimizasyon teknigene sahip
transformer kodlayici tabanli bir modeldir. Onerilen TfrAdmCov modeli, transformer
encoder  tabanli  olmasi  nedeniyle, aynm1 anda paralel hesaplama
gergeklestirebilmektedir. Deneysel sonuglar, dnerilen TfrAdmCov modelinin COVID-
19 mutasyon tahmini igin hem geleneksel yapay zeka tabanli modellerden hem de
literatiirdeki birka¢ son teknoloji modellerden daha iyi performans elde ettigini
goriilmiistiir. Tkinci olarak, 6nerilen StackGridCov modeli, stacking topluluk 6grenme
tablanli bir modeldir. Bu tez ¢alismasinda 6nerilen StackGridCov modeli ile diger
modellerin performansini iist seviyelere ¢gikartmak i¢in GridSearchCV hiperparametre
ayarlama tekniginden faydalamlmistir. Ugiincii olarak, dnerilen HyperAttCov modeli,
LSTM kodlayici, HyperMixer ve dikkat mekanizmalarina dayali bir saglam modeldir.
Onerilen HyperAttCov modeli, COVID-19 mutasyon tahmini i¢in bir¢ok derin
O0grenme tabanli ve makine O6grenmesi modellerinden daha iyi performans elde
etmistir. Onerilen modeller hakinda detayli bilgiler, Bélim 3 ve Bélim 4’te

verilmistir.
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3. MATERYAL VE YONTEM

3.1. Klasik Modeller

Bu boliimde COVID-19 mutasyon tahmini igin kullanilan klasik modellerden
bahsedilmistir.

3.1.1. Destek vektor makinesi

SVM modeli, smiflandirma ve regresyon problemlerinin ¢oziimiinde siklikla
kullanilan denetimli bir 6grenme yaklasimidir. SVM modelinin genelleme yetenegi
olduk¢a yiiksektir. SVM modelinin amaci, iki smif arasindaki ayrim marjinm
maksimuma ¢ikaracak dogrusal bir optimal hiperdiizlem bulmaktir. SVM modelinin
en 6nemli avantajlarindan biri yiiksek oranda basarili sonuglar elde etmesi, dezavantaji

ise ¢cok ge¢ sonug vermesidir (Cortes ve Vapnik, 1995).

3.1.2. Random forest
RF modeli, karar agaglarina dayali bir topluluk 6grenme yaklagimi olarak ifade
edilebilir. Genellikle siniflandirma ve tahmin problemlerinde kullanilir (Breiman,

2001).

3.1.3. Yapay sinir aglar

Y SA modeli, insan beyninin ¢alisma prensibinden ilham alinarak tasarlanmigtir. YSA
modeli, siniflandirma ve tahmin problemlerinde yaygin olarak kullanilan bir makine
ogrenmesi yaklagimidir. YSA modeli, temel olarak {i¢ katmandan olusur: giris
katmani, gizli katman ve ¢ikis katmani. Giris katmani, giris modelinin bilgilerini
tutarken, ¢ikis katmani ise siniflandirma icin gizli katmanin tuttugu giris bilgilerini
kullanir. Sinir agindaki hata oranini en aza indirmek igin gizli katman(lar) atanarak
agirliklar giincellenir (Taspinar ve ark., 2022)(Post ve ark., 2021)(Agatonovic-Kustrin
ve Beresford, 2000)

3.1.4. Karar agaci
DT modeli, siniflandirma ve regresyon problemlerinde siklikla kullanilan bir 6grenme
yaklagimidir. DT modeli, yapist entropi ve bilgi kazanci kavramina dayanmaktadir.

DT modelinin temel avantajlari hizli ve uygun maliyetli olmasi, kurallarinin anlagilir



olmast ve yiliksek boyutlu verilerle iyi ¢aligmasidir. Ancak uygun agac¢ yapisi
olusturmanin zorlugu ve egitim siiresinin uzun olmasi DT modelinin dezavantajlar

arasinda yer almaktadir (Post ve ark., 2021)(Kotsiantis, 2013).

3.1.5. Gradient boosting
GB modeli, siniflandirma ve regresyon problemleri i¢in kullanilan popiiler bir topluluk
ogrenme yontemidir. GB modeli, birkag¢ zayif algoritmay1 giiglii gegis algoritmalariyla

birlestirerek daha iyi sonuglar saglar (Friedman, 2001)(Friedman, 2002).

3.1.6. Extra tree

ET modeli, DT'lere dayanan bir topluluk 6grenme yaklagimidir. Siiflandirma
problemlerinde DT'lerin tahmini ¢ogunluk oyu kullanilarak yapilirken, regresyon
problemlerinde DT'lerin tahmininin ortalamasi alinarak gergeklestirilir. Baska bir
deyisle, giiclii bir ET modelini olusturmak igin tiim zayif DT modelleri birlestirilir
(smiflandirma problemlerinde oylama yapilarak veya regresyon problemlerinde

ortalama alinarak) (Toche Tchio ve ark., 2024).

3.1.7. K-en yakin komsu

KNN modeli, smiflandirma ve regresyon problemlerinin ¢oziimiinde siklikla
kullanilan bir 6grenme yaklagimidir. KNN modeli, ayn1 zamanda 6nceki verilerle K
yakin iligkisine bakarak siniflandirma yapan etkili bir makine 6grenmesi tabanl
ogrenme modeli olarak da ifade edilebilir (Guo ve ark., 2003). Burada K degerinin tek

haneli rakamlardan se¢ilmesine dikkat edilir.

3.1.8. XGBoost

XGBoost modeli, Gradient Boosting modelinin optimize edilmis ve performansi
gelistirilmis versiyonu olarak ifade edilen makine 6grenimi tabanli bir modeldir.
Sonuglarin hizli bir sekilde elde edilmesi, asir1 6grenmenin (ezberlemenin) dnlenmesi
ve yiikksek performans saglanmasi bu modelin 6nemli avantajlar1 arasinda yer

almaktadir (Memon ve ark., 2019).

3.1.9. Logistic regression

LR modeli, farkli alanlarda (istatistik, veri madenciligi vb.) yaygin olarak kullanilan
standart olasilik istatistiksel smiflandirma modeli olarak ifade edilmektedir. Bu
modelin herhangi bir drnek iizerindeki ¢iktis1 olasilik cinsindendir. Ozellikle ikili

smiflandirmada kullanim1 yaygindir (Feng ve ark., 2014).
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3.1.10. COVID-19 viriisiiniin mutasyon tahmini icin makine 6grenimi
modellerinin is akislari

COVID-19 viriisiiniin mutasyon tahmini icin makine dgrenimi modellerinin is akislari,
Sekil 3.1’de gosterilmistir. Sekil 3.1’de goriildiigii tizere, oncelikle Anonim (2023b)
referans web adresinden ham COVID-19 S protein suslar1 indirilmistir. Daha sonra
indirilen bu suslar CLUSTAW Anonim (2023a) coklu dizi hizalama (MSA)
yontemiyle hizalanarak veri seti elde edilmistir. Veri setinden alinan her sus igin,
COVID-19 S protein dizisini olusturan 1273 alan (amino asitler) , 5 boyutlu kiiciik dizi
bolinmistiir. Bu 5 kiigiik dizi, tist iiste ortiisen 3 gramlik (3 overlapping 3 grams)
dizilere boliinmiistiir. Ust iiste ortiisen 3 gramlik 3 kiigiik dizinin her biri, ProtVec'e
dayal1 100 boyutlu gomiilii dizilerle temsil edilmistir. Daha sonra iist liste Ortiisen 3
gramlik 3 kiiciik dizilerin toplami alinarak 100 boyutlu tek bir vektorle temsil
edilmistir. Elde edilen 100 boyutlu tek vektor verisi StandardScaler Thara ve ark.
(2019) yontemi uygulanarak standardize edilmistir. Daha sonra bu standartlagtirilmis
verilere GridSearchCV'li veya GridSearchCV'siz makine 6grenimi tabanli modeller
uygulanmistir. Daha sonra, holdout ve stratified 10 kat ¢apraz dogrulama teknikleri
kullanilarak dogruluk, kesinlik, hassasiyet, F1-skor ve MCC performans 6l¢iim

degerleri elde edilmistir.

GridSearchCV yontemine sahip olan

Veri 6n islenme ve COVID-19 veya sahip olmayan makine
veri setinin hazirlanmast ogrenmesi tabanli modeller (SVM,

KNN, XGBoost, LR)

Sekil 3.1. COVID-19 viriisiiniin mutasyon tahmini i¢in makine dgrenimi modellerinin
is akiglart (Burukanli ve Yumusak, 2024a).
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3.1.11. RNN modeli

Ileri beslemeli aglarin (FFN) aksine, tekrarlayan sinir ag1 (RNN) modeli, bir sonraki
katmandan bir 6nceki katmana bilgi saglayabilmektedir. RNN modeli, kisa vadeli
bagimliliklar modelleyebilse de, (vanishing/exploding) gradyan probleminden dolay1
uzun vadeli bagimliliklar1 modelleyemezler. RNN modelinin dizi tabanli gorevlerde

kullanim1 olduk¢a yaygindir (Zaremba ve ark., 2014).

3.1.12. LSTM modeli

LSTM modeli, kisa vadeli bagimliliklar1 yakalayabilmesinin yan1 sira uzun vadeli
bagimliliklar1 da yakalayan RNN'lerin bir ¢esidi olarak tanimlanabilir. Ancak
RNN'den farki kendi hafizasina sahip olmasidir. Yani LSTM modeli, RNN'lerden daha
giiclidiir. Ek olarak, LSTM modelinin kullanima sunulmasiyla birlikte RNN'lerdeki
(vanishing/exploding) gradyan sorunu da ortadan kaldirilmistir (Hochreiter ve
Schmidhuber, 1997).

3.1.13. GRU modeli

GRU modeli, LSTM modelinin basitlestirilmis bir versiyonudur. Ozellikle uzun vadeli
bagimliliklar1 verimli bir sekilde 6grenmek igin gelistirildi. Ayrica LSTM'den daha az
kapis1 bulunmaktadir (Chung ve ark., 2014).

3.2. Onerilen TfrAdmCov Modeli

Onerilen TfrAdmCov modeli, tamamen transformer kodlayici tabanli bir modeldir.
Transformer kodlayict model, tamamen dikkat mekanizmasi tabanli bir mimaridir ve
dogal dil isleme (NLP) gorevlerinde siklikla kullanilmaktadir (Kalyan ve ark., 2021).
Transformer kodlayici katmanindaki dikkat mekanizmasi, egitim sirasinda modelin
performansini en iist diizeye ¢ikarmak i¢in 6zellik kiimesindeki yalnizca en dnemli
ozelliklere odaklanir. Bu sayede gereksiz hesaplama kaynaklar1 azaltilir ve modelin
daha iyi genelleme performansi elde etmesine olanak tanir. Transformer kodlayici
modeli, giris dizisindeki dikkat mekanizmasi sayesinde uzun vadeli bagimliliklar
kolaylikla yakalayabilir ve biiyiik 6l¢ekli paralel hesaplama gergeklestirebilir (Zhou
ve ark., 2023a). Standart transformer mimarisi, transformer kodlayici-kod ¢oziici
(encoder-decoder) katmanlarindan olusmaktadir. Bu tez ¢alismasinda sadece
transformer kodlayici katmanini kullanilmistir. Her transformer kodlayici katmaninin
iki alt katman1 vardir: ¢oklu kafali dikkat (MHA) ve ileri beslemeli ag (FFN). Ayrica,

transformer kodlayici katmani, iki alt katmanin her birinin etrafinda bir artik
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baglantiya (residual connection) sahiptir ve ardindan katman normalizasyonu (layer
nozmalization) gergeklestirilir (Vaswani ve ark., 2017)(Pacal, 2024a). Olgekli noktali
tirtin dikkati veya 6z dikkat (scaled-dot product attention), Sekil 3.2’de gosterilmistir.
Olgekli nokta iiriin dikkat mekanizmasi, egitim sirasinda model parametrelerini
ayarlamak igin W,, Wy, W,, agirlik matrislerini kullanir. Q, K ve V vektorleri, W agirlik
matrisleri ile gomiilii x girisleri arasindaki matris ¢arpimi yoluyla elde edilir: i indeksi,
d uzunluguna sahip giris dizisindeki jeton (token) konumunu belirtir. @ = x;W,, K =
x;Wy,V = x;W,. Bir dikkat islevi, bir sorguyu (Q = {Q4,...,Qn}) Vve bir dizi
anahtar/deger ¢iftini ({K,V} = {Ky, V4, ..., Ky, Vi }) bir ¢iktiya esler. Cikti, degerlerin
agirlikli toplami olarak hesaplanir (Vaswani ve ark., 2017)(Galassi ve ark., 2021).
Dikkat (Attention) fonksiyonu denklem (3.1)’de verilmistir.

T
Vs

Burada dj, anahtar (key) boyutudur, d, ise deger (value) boyutudur. Dikkat

Attention (Q,K,V) = softmax(

W (3.1)

agirliklarini 6lgeklendirmek i¢in \/%_ kullanilir.
k

1
dy

Attention agirhiklar: =NxN boyutuna sahip Q.KI

Not: Nxd boyutuna sahip Q, K ve V matrisleri

Sekil 3.2. Olgekli noktals iiriin dikkati (scaled-dot product attention) (Burukanli ve
Yumusak, 20244a).
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Sekil 3.2'de gorildigi gibi Q,K,V matrisleri x giris dizisi kullanilarak elde

edilmektedir. Daha sonra Q.K"'nin ¢arpilmasi sonucu dikkat agirliklar1 elde edilir.

Elde edilen veriler dikkat agirliklarinin %. ile carpilmasiyla Olgeklendirilir.
k

Olgeklendirilmis veriler, softmax fonksiyonuna girdi olarak verilir. Softmax
fonksiyonu ile veriler normalize edilir ve normalize edilen bu veriler V matrisi ile
carpilarak nihai ¢ikt1 elde edilir. Burada N, giris dizisindeki jetonlarin (token) sayisidir
ve d, bu jetonlarin boyutudur. MHA mekanizmasi, modelin farkli konumlardaki farkli
temsili alt uzaylardan gelen bilgilere ortaklasa katilmasini saglayan bir mekanizma
olarak ifade edilebilir. Bagka bir deyisle MHA, giris dizisindeki her simge gorevinin,
ayn1 anda veya paralel olarak c¢alisan bir veya daha fazla 6z dikkat kullanilarak farkli
0z dikkat kafalariyla paylasilmasina olanak tanir. Bu, ¢iktinin dnceki girdiye bagh
oldugu RNN tabanli modellerin aksine, birden fazla islemin ayn1 anda
gerceklestirilmesine olanak tanir. MHA mekanizmasi, bir K anahtari, bir IV degeri ve
bir Q sorgusu lizerinde ¢aligsan bir veya daha fazla 6l¢ekli nokta ¢arpim dikkatine (6z
dikkat-self attention) dayanir (\Voita ve ark., 2020). MHA mekanizmasi, denklem (3.2)
ve (3.3)'teki formiiller kullanilarak elde edilmektedir.

MHA(Q,K,V) = Bir araya getirme(Bas;, ..., Bas,)W?° (3.2)
Bas; = Attention(QWS, KWK, vw}) (3.3)

W € R™ e, WK € R™%, WY € R¥% pe WO € R**® (Vaswani et al., 2017).
Burada WiQ, wk, W/ projeksiyon (projection) matrisleridir. W9, son (final) dogrusal
projeksiyon matrisidir (Voita ve ark., 2020). MHA mekanizmasmin gorseli, Sekil
3.3'te gosterilmistir. Bu tez calismasinda, MHA mekanizmasinda, h = 2 se¢ilmistir.
h, paralel calisan Olgekli nokta iiriin dikkat katmanlainin sayisini ifade eder.
Olgeklendirilmis noktali her iiriin dikkat katmani i¢in dk = dv = d/h = 50. d =

100 olarak ayarlanmistir.
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Lineer katmani

Lineer katmam Lineer katmani Lineer katmani

Not: Nxd boyutuna sahip Q, K ve V matrisleri

Sekil 3.3. MHA mekanizmasi (Burukanli ve Yumusak, 2024a).

Sekil 3.3'te de goriildigi gibi Q,K,V matrislerini elde etmek igin x girdi dizisi
dogrusal katmandan gegirilir. Daha sonra Olgeklendirilmis nokta iirin dikkat
katmanlarma girdi olarak Q, K,V matrisleri verilir. Olgeklendirilmis nokta iiriin dikkat
katmanlarindan elde edilen ¢iktilar birlestirilir ve ¢iktilar dogrusal katmandan
gecirilerek nihai ¢ikti elde edilir. Transformer kodlayici katmani, iki dogrusal
doniisiimden olusan tamamen bagli bir FFN katmanindan ve bu iki dogrusal doniisiim
arasinda bir diizeltilmis dogrusal birim (RELU) aktivasyon fonksiyonundan olusur.

FNN katmaninin formiilii denklem (3.4)'te verilmistir.

FFN(x) = max(0,xW; + by )W, + b, (3.4)

Burada x, (W;, W,), (by, by) sirastyla giris gomiilii vektorii (input embedding vector),
agirliklart (weights) ve biaslar (biases) temsil eder (Vaswani ve ark., 2017). Ayrica

transformer kodlayicida artik veya atlama baglantisi (residual or skip connection), giris
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dizisinin korunmasina yardimci olarak transformer modelinin daha karmagsik
fonksiyonlart 6grenmesine olanak tanir. Ek olarak, artik baglanti, transformer
kodlayicidaki vanishing gradient sorununun 6nlenmesine yardimci olur ve transformer
modelinin performansini artirir. Bu tez ¢alismasinda makine ¢evirisi gorevi
yapmadigimiz i¢in sadece transformer kodlayici katmanini kullanilmigtir. Bu amagla
onerilen TfrAdmCov modeli yalnizca giris dizisinin 6zelliklerini 6grenir ve 6grenilen
bu 6zelliklere dayanarak COVID-19 mutasyon tahminini gerceklestirir. COVID-19

virlisliniin mutasyon tahmini i¢in 6nerilen TfrAdmCov modelinin is akig1 Sekil 3.4’te

Mutasyon tahmini

Softmax katmani

gosterilmistir.

Ekle ve katman
normalizasyonu

[leri beslemeli ag

Artik Baglanti

Ekle ve katman
normalizasyonu

Coklu kafali dikkat

TRANSFORMER KODLAYICI

Artik Baglanti
(Residual Connection) || (Residual Connection)

islenmis COVID-19 veri deti NG|

Sekil 3.4. COVID-19 viriisiiniin mutasyon tahmini igin onerilen TfrAdmCov
modelinin is akiglar1 (Burukanli ve Yumusak, 2024a).
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Sekil 3.4'teki N, giris dizisindeki jetonlarin sayisidir ve d, bu jetonlarin
boyutlulugudur. Girig dizisinin boyutu Nxd'dir. Sekil 3.4'te gortildigi gibi islenmis
COVID-19 veri seti MHA'ya girdi olarak verilmektedir. MHA'dan elde edilen veriler
katman normalizasyonuna (layer nomalization) girdi olarak verilir. Katman
normalizasyonundan elde edilen veriler FFN katmanina girdi olarak verilmektedir.
FFN katmanindan elde edilen veriler katman normalizasyonuna girdi olarak
verilmektedir. Katman normalizasyonundan elde edilen veriler dogrusal doniisiim
katmanina (linear transformation) girdi olarak verilmektedir. Dogrusal doniisim
katmanindan elde edilen veriler softmax katmanina girdi olarak verilmektedir. Daha
sonra elde edilen yeni veri seti softmax katmanindan gegirilerek son olarak COVID-

19 viriisiiniin mutasyon tahmini gergeklestirilir.

3.3. Onerilen StackGridCov Modeli

Topluluk Ogrenme, siniflandirma ve regresyon problemlerinde siklikla kullanilan bir
ogrenme yaklagimi olarak ifade edilebilir (Dong ve ark., 2020)(Dietterich,
2002)(Sewell, 2011)(Divina ve ark., 2018). Baska bir deyisle, topluluk 6grenme
kisaca, bir¢ok temel 6grenme algoritmasini birlestirerek daha saglam ve oldukga iyi
sonuglar elde eden bir 6grenme yaklagimi olusturma yontemi olarak tanimlanir (Dong
ve ark., 2020)(Dietterich, 2002)(Sewell, 2011)(Divina ve ark., 2018). Genel olarak,
topluluk 6grenme tek bir temel algoritmadan daha iyi sonuglar verir. Genelleme
yetenekleri ¢ok giiglii olan topluluk 6grenme yaklasimlari en iyi siiflandirma
yontemleri arasinda yer almaktadir. En popiiler topluluk 6grenme yaklasimlar
AdaBoost, Bagging, Voting, Stacking (Stacked Generalization) &grenme
yontemleridir (Dietterich, 2002)(Divina ve ark., 2018). Bu tez ¢alismasinda, 6nerilen
StackGridCov modeli, seviye-0 (temel 6grenici segilir) ve seviye-1 (meta dgrenici
secilir) lizerine kurulu bir Stacking topluluk 6grenimi tabanli modeldir (Divina ve ark.,
2018)(Post ve ark., 2021). Onerilen StackGridCov modeli, birgok makine 6grenmesi
algoritmasini kullanarak performansi miimkiin oldugu kadar en iist diizeye ¢ikaran
olduk¢a basarili modeldir. Bunun temel nedeni, onerilen StackGridCov modelinin
birka¢ temel modelin gii¢lii yonlerini birlestirerek asirt uyum olasilifini azaltmasi
olarak ifade edilebilir. Bu temel modeller girdi dizilerinin farkli kisimlarinda hatalar
yapabilir. Meta-model, bu temel siniflandiricilarin ¢iktilarini birlestirerek bu hatalari
telafi edebilir ve sonugta daha dogru bir tahmin yapabilir. Onerilen StackGridCov

modeli, hem seviye-0 katmaninda hem de seviye-1 katmaninda farkli makine 6grenme
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algoritmalar1 kullanilabildiginden esnektir. Onerilen StackGridCov modeli, asir1
uyumdan daha az etkilenmesi nedeniyle diger topluluk 6grenimi ve diger yapay zeka
tekniklerinden daha saglamdir. Bunun nedeni, temel 6grenicilerin ayn1 egitim veri seti
lizerinde egitilmesi ve meta modelin, bu temel smiflandiricilarin egitim veri seti
tizerindeki tahminlerini birlestirerek yeni biiyiik veri seti lizerinde egitilmesi ve
sonugta asirt uyum olasiligiin azaltilmasidir. Bu tez ¢alismasinda seviye-0'da temel
ogreniciler SVM, RF, XGBoost, YSA, DT, GB, ET olarak segilirken, seviye-1'de meta
ogrenici olarak AdaBoost siniflandirict segilmistir (Taspinar ve ark., 2022)(Post ve
ark., 2021)(Adaboost ve ark., 2009). Hem temel siniflandiricilarin hem de meta
smiflandiricinin bu sekilde se¢ilmesi, onerilen StackGridCov modelinin performansini
onemli oSlciide artirmustir. COVID-19 viriisiiniin mutasyon tahmini icin 6nerilen

StackGridCov modelinin is akis1 Sekil 3.5°te gosterilmistir.

Py
il

X
@
(9]
o}
o
@

Stratified K-Kat ¢apraz dogrulama
Stratified K-Kat ¢apraz dogrulama
Stratified K-Kat ¢apraz dogrulama
Stratified K-Kat ¢apraz dogrulama
Stratified K-Kat ¢apraz dogrulama
Stratified K-Kat capraz dogrulama
Stratified K-Kat capraz dogrulama

Tahminler

A 4 y A 4
Tahminler ” Tahminler |-

Test (%20) I—» | AdaBoost Siiflandiriciya sahip StackGridCov Modeli

Sekil 3.5. COVID-19 viriisiiniin mutasyon tahmini igin 6nerilen StackGridCov
modelinin is akisi (Burukanli ve Yumusak, 2024b).
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Sekil 3.5'te goriildiigii gibi, islenmis COVID-19 veri seti, egitim veri seti (%80) ve test
veri seti (%20) olarak boliinmistiir. Egitim veri seti, Stratified K-katli ¢apraz
dogrulama igin egitim veri seti katlamalar1 (folds) ve egitim veri seti dogrulamasi
olarak ikiye ayrilmistir. Daha sonra, her makine 6grenimi algoritmasi, egitim veri seti
katlamalar1 iizerinde egitilir ve egitim veri seti dogrulamasi {lizerinde tahmin yapilir.
Daha sonra tiim makine 6grenme algoritmalarinin tahmin sonuglari birlestirilerek yeni
tahmin veri seti elde edililir. AdaBoost smiflandiricisi sahip 6nerilen StackGridCov
modeli, bu yeni tahmin veri seti tizerinde egitilir. Daha sonra onerilen StackGridCov
modeli test veri seti (%20) iizerinde test edilir ve nihayetinde COVID-19 viriisiiniin
mutasyon tahmini gercekletirilir. Stratified K-kath capraz dogrulama teknigine sahip
onerilen StackGridCov algoritmasinin sézde kodu (pseudo-code), Sekil 3.6’da

gosterilmistir.

Giris: islenmis veri seti = {(x; v1), (X2, ¥2), e» Xp, Vn)- islenmis veri seti,
Egitim veri seti ve Test veri seti olarak bélinmiistiir. Egitim veri seti, stratified K-katlhi
capraz dogrulama icin Egitim Katlamalar: (folds) veri seti ve
Egitim dogrulamas: (validation) veri seti olarak ikiye ayrilmustir.
Temel 6grenici modeller: BLM, , BLM,, ..., BLMs ; (Seviye-0)
Meta 6grenici modeller: MLM; (Seviye-1)
Cikas: Test veri seti tlizerinde mutasyon tahmini
fori=1,...,Sdo
X; =0;
fork=1,...,Kdo
Egitilmis_BLM;, = BLM; (Egitim katlamalar: veri seti)# (Seviye-0)
Xix = Egitilmis_BLM;y (Egitim dogrulamast veri seti)
end for;
Xi =X U (X1, Xig ..o, Kig ) |
end for;
Yeni tahminler veri seti = @; # Meta siuflandirici i¢in yeni bir tahmin veri seti olusturma
Yeni tahminler veri seti = Yeni tahminler veri seti U {(X;,X, ...,X¢)}

Egitilmis_MLM = MLM(Yeni tahminler veri seti)# (Seviye-1)

Return Egitilmis_MLM(Test veri seti))

Sekil 3.6. Stratified K-katli ¢apraz dogrulama teknigine sahip onerilen StackGridCov
algoritmasimin sézde kodu (pseudo-code) (Burukanli ve Yumusak,
2024Db).
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3.3.13. GridSearchCV hyperparametre ayarlama teknigi

GridSearchCV hiperparametre ayarlama teknigi Pirjatullah ve ark. (2021), genellikle
yapay zeka tabanli modellerin hiperparametre optimizasyonu i¢in kullanilmaktadir.
GridSearchCV'de herhangi bir yapay zeka tabanli modelin hiperparametreleri, bu
hiperparametre degerlerinin tiim kombinasyonlari i¢in ayr1 ayri olusturulur. Buna gore
en basarili hiperparametre seti elde edilir. Bu hiperparametre tekniginde tiim
kombinasyonlar test edildiginden en iyi performansi saglayan hiperparametre seti elde
edilir. Bu tez calismasinda, her 6grenme algoritmasinin en iyi parametre degerlerini
segcmek icin GridSearchCV hiperparametre ayarlama teknigi kullanilmistir. Her
O0grenme algoritmasinin 6zellikleri arasindan ii¢ (3) rastgele 6zellik secilmistir. Her
ozellik icin varsayilan degerler de dahil olmak iizere bazi parametre degerleri
secilmistir. Daha sonra GridSearchCV hiperparametre ayarlama algoritmasi
kullanilarak her &zellik igin en iyi parametre degerleri elde edilmistir. Ornegin, ii¢
rastgele hiperparametre (“final estimator”, “stack method” ve cv) ve bu hiper
parametrelerin degerleri onerilen StackGridCov modeli igin ayarlanmistir. Onerilen
StackGridCov modeli i¢in hiperparametrelerin varsayilan degerleri final estimator=
LogisticRegression(),  stack_method='auto, c¢v  =None'dir.  GridSearchCV
algoritmasiyla ayarlanacak hiperparametreler ve bu hiperparametre degerleri
sunlardir: final estimator=[LogisticRegression(), AdaBoostClassifier()],
stack_method= ['auto’, 'predict_proba’, 'decision_function’, ‘predict], cv =[None , 10].
Onerilen StackGridCov modelinin hiperparametre ayarlama siirecinin daha iyi
anlasilmasi i¢in, 6nerilen StackGridCov modeli 6ncelikle 1. kombinasyonla kurulur
(final_estimator = LogisticRegression(), stack_method = 'auto’, cv = None). Daha
sonra Onerilen StackGridCov modelin dogruluk degeri 5 kat ¢apraz dogrulama
kullanilarak elde edilir. Benzer sekilde Onerilen StackGridCov modeli bu defa 2.
kombinasyonla kurulur (final_estimator = LogisticRegression(), stack_method =
'auto', cv = 10). Daha sonra 6nerilen StackGridCov modelinin dogruluk degeri 5 katl
capraz dogrulama kullanilarak elde edilir. GridSearchCV algoritmas: kullanilarak
hiperparametrelerin tiim kombinasyonlart i¢in dogruluk degerleri bu sekilde elde
edilir. Sonugta onerilen StackGridCov modeli igin en iyi dogruluk degerini elde eden
hiperparametre seti secilir. Daha sonra oOnerilen StackGridCov modeli segilen bu
hiperparametre seti ile egitilir. Onerilen StackGridCov modeli, nihayetinde test veri

kiimesi iizerinde mutasyon tahminini gergeklestirir. Her bir 6grenme algoritmasi i¢in
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secilen hiperparametreler ve bu hiperparametrelerin degerleri SVM modeli igin Tablo
B. 1’de RF modeli i¢in Tablo B.2’de, XGBoost modeli i¢in Tablo B.3’te, YSA modeli
icin Tablo B.4’te, DT modeli i¢in Tablo B.5’te, GB modeli i¢in Tablo B.6’da, ET
modeli i¢in Tablo B.7°de ve oOnerilen StackGridCov modeli i¢cin Tablo B.8’de

gosterilmistir.

3.4. Onerilen HyperAttCov Modeli

Mai ve ark. (2023), Tolstikhin ve ark. (2021) tarafindan sunulan MLP-Mixer
mimarisinden esinlenerek NLP gorevleri icin HyperMixer' tasarladilar. Tolstikhin ve
ark. (2021), bilgisayarla gorme (computer vision) gorevleri i¢in 2021 yilinda
yayinlanan ¢ok Katmanl algilayici Karistiricisini (MLP-Mixer) sundular. Onlar, MLP-
Mixer mimarisini konviilasyon (convolution) ve dikkat (attention) yerine tamamen
MLP'lere dayali olarak tasarladilar. MLP-Mixer mimarisinin standart mixer katmani,
Sekil 3.7'de gosterilmistir. MLP-Mixer katmaninda her token, 6zelliklerin bir vektorii
olarak temsil edilir. MLP-Mixer mimarisinin, her katmaninda iki adet MLP kullanir:
biri token karigtirma (token mixing) MLP'si, digeri ise 6zellik karistirma (feature
mixing) MLP'si. Token karistirma MLP'si her 6zellige bagimsiz olarak uygulanir ve
uzamsal (spatial) konumlar arasindaki etkilesimleri modellerken, 6zellik karistirma
MLP'si ise her token vektoriine bagimsiz olarak uygulanarak ozellikler (feature)
arasindaki etkilesimleri modeller. Pratikte bu durum, 6zellikleri temsil eden boyutun

ve konumlar1 temsil eden boyutun transpozesi alinarak asilir (Mai ve ark., 2023).
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Sekil 3.7. MLP-Mixer mimarisinin standart mikser katmani (Tolstikhin ve ark.,
2021)(Burukanli ve Yumusak, 2024c).

Her bir MLP, 2 adet tam baglantili katmandan (fully-connected layers) ve GELU

altivasyon fonksiyonundan olusmaktadir.
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i (token) < M ozelligini temsil eden her x] € R% vektdrii, denklem (3.5)’te
goriildigii gibi HyperMixer token mixing-MLP'ye giris olarak verilir. Burada M, giris
dizisinin degisken (variable) boyutudur (Mai ve ark., 2023).

HyperMixer token mixing — MLP(x]) = Wy (c(WSx])) (3.5)

Burada W,, W, € RM*@" agirliklar ve o ise gauss hatast dogrusal birimi (GELU)
aktivasyon fonksiyonunu temsil eder (Hendrycks ve Gimpel, 2016). Ogrenmeyi
kolaylastirmak i¢cin her MLPnin c¢evresine katman normallestirmesi (layer
normalization) Ba ve ark.(2016) ve atlama baglantilari (skip connections) He ve ark.
(2016) dahil edilir. Mai ve ark. (2023), HyperMixer'in, dinamik olarak agirliklarini
tiretmek i¢in hiper aglarini1 (hypernetworks) kullandilar (Ha ve ark., 2016). W; ve W,

agirliklar, hy, h, : RM*¢ - RMxd' parametreli fonksiyonlar1 tarafindan {iretilir.
Burada h; ve h,, jetonlar (tokens) arasindaki dogrusal olmayan etkilesimleri dikkate
alan herhangi bir fonksiyon olabilir (Mai ve ark., 2023). Bir hiper ag (hypernetwork)

fonksiyonu, denklem (3.6)'daki tanimlanabilir.

MLPi(x, + p;)
hi(x) = ; € RMxd, (3.6)

Burada MLPW:, MLPWz:R% - R% tam baglantili katmana ve GELU aktivasyon
fonksiyonuna sahip MLP'lerdir (Mai ve ark., 2023). Bu tez ¢alismasinda, tiim modeller
icin (SVM, LR ve RF hari¢) token gomme boyutu d = 100 ve hidden size d’' =
128 olarak alinmustir. p; € R4, ek bilgiyi kodlayan bir vektordiir (Ha ve ark.,
2016)(Mai ve ark., 2023)(Vaswani ve ark., 2017). Mai ve ark. (2023), HyperMixer'in
alternatif MLP tabanli modellerden daha iyi performans gosterdigini gdstermislerdir.
MLP tabanli modeller ve transformerlardan farkli olarak HyperMixer, islem siiresi,
egitim veri seti ve hiper parametre ayar1 agisindan onemli Ol¢iide daha diisiik
maliyetlerle sonuglara ulasmay1 basarmaktadir (Mai ve ark., 2023). Transformer'in
giris dizisi uzunlugunda ikinci dereceden/karesel karmasikligi (O( N?)) olmasina
ragmen, HyperMixer'in karmasikligi giris dizisi uzunlugunda dogrusaldir (O( N)). Bu,
HyperMixer't daha uzun giris dizileri {izerinde egitim icin rekabetci bir alternatif
olarak sunmaktadir. Ayrica token karistirma kisminda standart MLP-Mixer mimarisi,

girisin sabit (fixed) boyutuna ve konuma 6zgii (position-specific) agirliklara sahip bir
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MLP kullanirken, HyperMixer mimarisi ise girisin degisken (variable) boyutuna ve
konuma gore degismeyen (position-invariant) bir MLP kullanir. Bu nedenle
HyperMixer mimarisi, NLP goérevlerinde daha uygundur ¢iinkii konumdan bagimsiz,
degisken boyutlu bir esleme kiimesi olusturmayir Ogrenir (Mai ve ark., 2023).
HyperMixer token mixing, Sekil 3.8’de gosterilmistir.

HyperMixer Token Mixing

Yamalar

L e

m— n
Transpoze

Gr .

Transpoze

Jejeue|

Sekil 3.8. HyperMixer token mixing (Mai ve ark., 2023)(Burukanli ve Yumusak,
2024c).

Bu tez caligmasinda NLP gorevlerine daha uygun ve maliyeti diisiik olan HyperMixer,
LSTM ve atttention tabanli HyperAttCov modelini 6neriyoruz. Onerilen HyperAttCov
modelinin gelistirilmesinde Yin ve ark. (2020)'dan ilham alinmistir. Yin ve ark. (2020),
derin 6grenme modellerini ve dikkat mekanizmalarini oldukca basarili bir sekilde
entegre etmislerdir. Yin ve ark. (2020), tarafindan sunulan TEMPEL ve DaRnn
modelleri, giris dizisindeki uzun vadeli bagimliliklar1 yakalamak i¢in dikkat
mekanizmasina sahip RNN tabanli bir mimarilerdir (Yin ve ark., 2020). Bu tez
calismasinda, COVID-19 viriisiiniin mutasyon tahmini icin 6nerilen HyperAttCov
modelinin is akis1 Sekil 3.9'da gosterilmistir. Onerilen HyperAttCov modeli, giris
dizisindeki en ilgili giris Ozelliklerini ve uzun vadeli zamansal bagimliliklari
yakalayabilmektedir. Ayrica bu tez galismasinda COVID-19 veri setinin 6nemli
kisimlarina odaklanarak onerilen HyperAttCov modelinin performansini artirmak igin
dikkat mekanizmalarindan (girdi dikkat mekanizmast ve zamansal dikkat
mekanizmasi) yararlanilmistir. Girdi dikkat mekanizmasi, tiim giris veri setine
uygulanirken, zamansal dikkat mekanizmasi ise HyperMixer mimarisinden elde edilen
verilere uygulanir. Buradaki amag, dnerilen HyperAttCov modelinin performansini en

iist diizeye ¢ikarmaktir.
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Sekil 3.9. COVID-19 viriisiiniin mutasyon tahmini igin 6nerilen HyperAttCov
modelinin is akis1 (Burukanli ve Yumusak, 2024c).

Sekil 3.9'da goriildiigii gibi, islenmis COVID-19 veri seti ilk olarak dropout
katmanindan gecirilir (burada dropout katmani asir1 6grenmeyi engellemek igin
kullanildi). Dropout katmanindan gegirilen veri seti, girdi dikkat mekanizmasina girdi
olarak verilir (tiim girig dizisine uygulanir). Girdi dikkat mekanizmasindan elde edilen
veri seti, LSTM kodlayict mimarisine giris olarak verilir. LSTM kodlayict
mimarisinden elde edilen veri seti, HyperMixer token karistirma mimarisine girdi
olarak verilir. HyperMixer token karigtirma katmanina girdi olarak verilen islenmis
veri seti, zamansal dikkat mekanizmasimna girdi olarak verilir (HyperMixer token
karistirma katmanindan elde edilen veri seti izerine uygulanir). Daha sonra elde edilen
veriler, sirasiyla dogrusal katmani ve softmax katmanindan gegirilir ve nihayetinde

COVID-19 mutasyon tahmini gergeklestirilir.

3.4.1. Softmax fonksiyonu

Softmax fonksiyonu, derin 6grenme gorevlerinde siklikla kullanilan bir aktivasyon
fonksiyonu tiirtidiir. Gergek degerleri, 0-1 arasindaki olasilik degerlerine esler. Bu
fonksiyon son zamanlarda dikkat mekanizmalarinda da kullanilmaya baslanmistir.

Softmax formiilii denklem (3.7)'de verilmistir (Banerjee ve ark., 2020).

exp (xq)

softmax(x,) = cm———
¢ g=1 exp (xp)

(3.7)

Burada x,, x giris dizisinin a.nc1 degerini ifade eder. x;, x verilerindeki diger dizileri

belirtir. G, x dizisinin boyutudur.
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3.4.2. Kayip (loss) fonksiyonu

Ikili siniflandirma gorevlerinde, tahmin edilen her bir olasilig1 gercek sinif ¢iktisiyla
karsilastiran ve beklenen degerden uzakliga bagl olarak olasiliklar1 glincelleyen, ikili
capraz entropi (cross-entropy) adi verilen bir kayip fonksiyonunu kullanir. Bu tez
calismasinda ele alinan gorev iki sinifl1 bir problemdir (mutasyon var, mutasyon yok).
Bu nedenle, gergek y; ile tahmin edilen y, arasindaki kayip degerini hesaplamak igin
capraz entropi kullaniyoruz. Kayip fonksiyonu LF denklem (3.8)'deki formiil

kullanilarak hesaplanir.

1
LF = ——3N,

@_ .
oy 2B R, log (3, ) + (1

D® —1 (3.8)
~ Vi) log (1 B yf(z))}

Burada N, girdi 6rneklerinin sayisidir ve F ise secilen kalint1 bdlgelerinin (residue
sites) kiimesidir. D®, COVID-19 mutasyon tahmini i¢in i.inci egitim rneklerindeki

secilen pozisyonlarinin sayisidir (Yin ve ark., 2020).

3.5. Bu Tez Calismasinda Kullanilan Veri Setleri

Bu bélimde COVID-19 mutasyon tahmini igin kullanilan veri setlerinden

bahsedilmistir.

3.5.1. Onerilen TfrAdmCov modeli icin kullamlan veri seti hakkinda detayh
bilgiler

3.5.1.1. COVID-19 S protein veri seti

COVID-19 S protein veri seti, S protein dizilerinden olusur. COVID-19 S protein veri
seti, toplamda 1273 amino setinden meydana gelmektedir (Anonim, 2023b)(Zhang ve
ark., 2021). Bu tez c¢alismasinda 2020-2022 yillar1 arasinda Anonim (2023b) nolu
referans adresinden her yil icin toplam 15000 adet COVID-19 S protein dizisi
indirilmigtir. Tim S protein dizileri indirildikten sonra tiim diziler, CLUSTAW
Anonim (2023a) ¢oklu dizi hizalama (MSA) yontemi kullanilarak yillara gore

hizalanmustir.

3.5.1.2. COVID-19 S protein veri setinin hazirlanmasi ve 6n isleme adimlar
2020-2022 yillar1 arasinda 20 evrensel genetik kod tarafindan dogrudan kodlanan
amino asitlerin disinda bazi1 suslarda belirsiz birka¢ amino asit bulunmaktadir. Bu

suslardaki belirsizligi ortadan kaldirmak amaciyla belirsiz 'B' harfi yerine rastgele 'D'
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veya 'N' harflerinden biri atanmistir. Belirsiz 'Z' harfi yerine rastgele 'E' veya 'Q'
harflerinden biri atanmistir. Son olarak, 20 evrensel amino asit arasinda belirsiz 'X'
harfi yerine rastgele bir amino asit atamasi yapilmistir. Bu sekilde tiim belirsizlikler
giderilmistir (Yin ve ark., 2020). Bu tez ¢alismasinda, Yin ve ark. (2020) tarafindan
sulunan veri seti olusturma yontemi kullanilmistir. Bu yontem KMeans kiimeleme
algoritmasi kullanilarak elde edildi. Bu tez calismasinda ilk etapta KMeans kiimeleme
algoritmasini kullandik ancak makine 6grenmesi tabanli algoritmalarin performansini
istenilen diizeyde yakalayamadik. Bu nedenle veri setleri olusturma asamasinda
KMeans kiimeleme algoritmasi yerine basari oraninin arttirilmasinda dnemli bir faktor

olan agglomerative kiimeleme Sasirekha ve Baby (2013) algoritmasi tercih edilmistir.

3.5.1.3. Agglomerative kiimeleme teknigi

Agglomerative kiimeleme teknigi, hiyerarsik kiimeleme yonteminin bir gesididir
(Sasirekha ve Baby, 2013). Agglomerative kiimeleme, par¢adan biitiine veya asagidan
yukariya yaklagimi olarakta ifade edilebilir. Tiim veri kiimesindeki veri ornekleri,
kiimelere dontistiiriilir. Daha sonra olusturulan bu kiimeler mesafeye bagli olarak
birbirine yakin olan kiimelerle birlestirilerek yeni bir kiime elde edilir (Sasirekha ve
Baby, 2013). Egitim veri setinin olusturulmas1 asamasinda, COVID-19 suslar1 yillara
gore ayrigtirtlmis ve her yildaki suslarin kiimelere ayrilmasi i¢in agglomerative
kiimeleme algoritmasi kullanilmistir. Ayrica agglomerative kiimeleme algoritmasinin
parametresi ve bu parametrelerin degerleri Tablo A.1l'de gosterilmistir. Bu tez
calismasinda egitim, test ve Kfold veri setleri kullanilmistir. Yillara gore egitim, test
ve Kfold veri setlerinin miktarlar1 Tablo 3.1'de gosterilmistir. Tablo 3.1'de goriildiigi
gibi egitim veri seti igin 11250 COVID-19 S protein susu arasindan her yil i¢in 30 sus
rastgele secilmistir. Test veri seti igin, 3750 COVID-19 S protein susu arasindan her
yil i¢in 10 sus rastgele secilmistir. Kfold veri seti icin 15.000 COVID-19 S protein
susu arasindan her yil i¢in 40 sus rastgele se¢ilmistir. Bu sekilde her veri seti igin bu
veri miktarlarini  segmemizin nedeni, GridSearchCV hiperparametre ayarlama
yontemini  kullanmamizdir. Ciinkii her makine Ogrenmesi tabanli modelin
GridSearchCV yontemi araciligiyla en iy1 parametre degerlerini segerken sonuclara
ulagsmak ¢ok zaman almaktadir. Bu tez ¢alismasinda kullanilan veri setleri i¢in Sekil
3.10'da da ifade edilen aglomeratif kiimeleme algoritmasi kullanilarak her yil igin iki
(2) kiime olusturulmustur. Ornegin 2020 yilinda B1 kiimesinden segilen bir sus, 2021

yilinda bu susa en diisiik hamming mesafesine Norouzi ve ark. (2012) sahip olan Al
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veya A2 kiimesinden rastgele bir sus segilir. Benzer sekilde 2020 yilinda B1
kiimesinden segilen bir sus, 2022 yilinda ise C1 veya C2 kiimesinden bu susa en diisiik
hamming mesafesine sahip rastgele bir sus secilmistir. Bu siire¢ tiim suslar, veri
setlerine dahil edilene kadar devam eder. Sonugta farkli yillara ait veriler tek tek bir

araya getirilerek veri setleri elde edilir (Yin ve ark., 2020).

2021 Yih 2020 Yih 2022 Yih

Sekil 3.10. COVID-19 S proteini veri kiimelerinin olusturulmasina érnek (Yin et al.,
2020)(Burukanli ve Yumusak, 2024a).

Tablo 3.1. Yillara gére COVID-19 S proteini veri kiimelerinin suslarinin (strain)
sayis1 (Burukanli ve Yumusak, 2024a).

Vil Egitim veri kiimesi i¢in sug ~ Test veri kiimesi i¢in Kfold veri kiimesi
sayisi sus sayist igin sus sayisi
2020 30 10 40
2021 30 10 40
2022 30 10 40

Bu tez ¢alismasinda, 2020 ve 2021 yillarinda suslar kullanilarak egitim, test ve Kfold
veri setleri igin egitim Ornekleri olusturulmustur. Egitim, test ve Kfold veri
kiimelerinin etiket/hedef veri 6rneklerini olusturmak i¢in 2021 (sondan bir 6nceki y1l)
ve 2022 (tahmin edilecek yil) yillar1 kullanilarak elde edilmistir. Amacimiz, 2020 ve
2021 suslari kullanarak COVID-19 viriisiiniin 2022 yilindaki mutasyonlarmni tahmin
etmektir. Egitim, test ve Kfold veri setleri igin egitim 6rnekleri olusturma asamalari
Sekil 3.11'de gosterilmistir. Sekil 3.11'de gorildigi gibi, egitim veri setleri

olusturulurken her bir amino asidi temsil edecek 5 bolge/kalint1 kullanilmistir. Ornegin
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"VAIHA" dizisi "I" amino asidini temsil etmek i¢in kullanilmistir. “VAIHA” dizisi
daha sonra iist iiste ortiisen 3 gramlik (overlapping 3-gram) [VAI, AIH, IHA] kiiciik
dizilere boliinmiistir. “AIHAD” dizisi “H” amino asidini temsil etmek icin
kullanilmistir. “AIHAD” dizisi daha sonra iist liste Ortiisen 3 gramlik [AIH, ITHA,
HAD] kii¢iik dizilere béliinmiistiir. Bu siireg, COVID-19 S protein yapisinin
tamaminda bulunan tiim bolgeler i¢in bu sekilde siirdiiriilmiistiir. Bu tez ¢alismasinda
kullanilan tiim suslar, ortiisen 3 gramlik 3 bolgeye boliindiikten sonra, her 3 gram,
Asgari ve ark. (Asgari & Mofrad, 2015) tarafindan sunulan ProtVec'e dayali 100
boyutlu bir gomme vektori ile temsil edilir. Daha sonra 100 boyutlu 3 vektoriin
toplami alinarak 100 boyutlu tek bir vektor elde edilir. Bu islem, son susa kadar devam
edilir. Her yila ait egitim ve test veri kiimelerinin etiket veri drneklerini olusturmak
icin 2021 (sondan bir 6nceki yil) ve 2022 (tahmin edilecek gecen yil) kullanilmistir.
Egitim ve test veri setleri igin etiket 6rneklerinin olusturulma asamasi Sekil 3.12'de
gosterilmistir. Sekil 3.12'de de goriildiigii tizere 2021'den (sondan bir 6nceki yil) alinan
| amino asidinin mutasyona ugray1p ugramadigini kontrol etmek i¢in merkez pozisyon
(3. konum, “VAIHA” dizisinin [ amino asidi) kontrol edilmistir. 2022 yilinda (son yil)
bu merkezi konumdaki I amino asidi degistiyse mutasyon etiketi "1", degismediyse
mutasyon etiketi "0"dir. Benzer sekilde 2021'den (sondan bir onceki yil) alinan H
amino asidinin mutasyona ugrayip ugramadigini kontrol etmek amaciyla “AIHAD”
dizisinin merkez konumu (3. pozisyon, H amino asit) kontrol edilir. Bu merkezi
konumdaki H amino asidi 2022 yilinda (son yil) degismisse mutasyon etiketi "1",
degismediyse mutasyon etiketi "0"dir. Bu islem, son susa kadar devam ettirilir (Yin ve
ark., 2020).

MF......VAIHADL.L YT (1273 sites) -

'VAI HA AIHAD 2. Her diziyi 5'lik kiigiik alt dizilere
"""" [ o ' ayirma

[100,100,100] — 4 Her 3 gramlik kiigiik dizinin ProtVec'e dayali 100
boyutlu gémiili bir diziyle temsil edilmesi

Sekil 3.11. Egitim ve test veri kiimeleri i¢in egitim ve test 6rneklerinin olugturulmasi
asamalar1 (Burukanli ve Yumusak, 2024a).
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VA

HA 2. Sondan bir onceki (2021) yila ait

COVID-19 drnek dizist

VA

_—

HA AIHAD

Sekil 3.12. Veri

kiimelerinin egitimi ve test edilmesi i¢in etiket Orneklerinin

olusturulma asamasi (Burukanl ve Yumusak, 2024a).

Islenmis COVID-19 viriis veri seti ve detaylar1 Sekil 3.13'te gosterilmistir. Sekil

3.13'te de goriildiigii iizere islenmis COVID-19 veri kiimesi, etiket ve giris verilerinden

olusmaktadir. Etiket degeri 1 ise “mutasyon var”, 0 ise “mutasyon yok” anlamina

gelmektedir. Her giris verisi, 5 egitim 6rneginden olusur (3 ortiisen - 3 gram). Her ii¢

gram, Asgari ve ark. (2015) tarafindan sunulan ProtVec'e dayali 100 boyutlu bir

gomme vektoriiyle temsil edilir. Modelin egitim asamasinda her ii¢c gramlik 100

boyutlu vektor toplanarak 100 boyutlu tek bir vektor kullanilir.

Giris verisi

'[9048, 9048, 5791]","
'[9048, 5791, 3763]","
'[5791, 3763, 1236]","
'[3763, 1236, 1504]",
'[1236, 1504, 55]","[1236, 1504, 55]"
'[1504, 55, 29]","[1504, 55, 29]"
'[s5, 29, 111]","[55, 29, 111]"

'[29, 111, 139]","[29, 111, 139]"

[9048, 9048, 5791]"
[9048, 5791, 3763]"
[5791, 3763, 1236]"
"[3763, 1236, 1504]"

[111, 133, 62711, [[111, 139, 627]"

3 drtiisen 3 grﬂmli;r

Sekil 3.13. Islenmis COVID-19 Veri Kiimesi (Burukanli ve Yumusak, 2024a).

Bu tez calismasinda derin 6grenme ve makine 6grenmesi tabanli modellere girdi

olarak verilen egitim, test ve Kfold veri setlerindeki toplam veri miktari sirasiyla Tablo

3.2, Tablo 3.3 ve Tablo 3.4’te olarak gosterilmistir.
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Tablo 3.2. Yillara gore toplam egitim veri seti miktar1 (Burukanl ve Yumusak,

2024a).
Vil Sus sayis1 X Kalinti Toplam Egitim veri
bolgelerinin sayisi kiimesi miktar1
2020 30X1273 38190
2021 30X1273 38190
2022 30X1273 38190

Tablo 3.3. Yillara gore toplam test veri seti miktar1 (Burukanli ve Yumusak, 2024a).

Vil Sus say1st X Kalint Toplam test veri
bolgelerinin sayist kiimesi miktar1
2020 10X1273 12730
2021 10X1273 12730
2022 10X1273 12730

Tablo 3.4. Yillara gore toplam Kfold veri seti miktar1 (Burukanli ve Yumusak, 20244a).

vil Sus sayis1 X Kalinti Toplam Kfold veri
bélgelerinin say1st kiimesi miktar1

2020 40X1273 50920

2021 40X1273 50920

2022 40X1273 50920

3.5.1.4. influenza A/ H3N2 HA veri seti

Bu tez ¢alismasinda, 6nerilen TfrAdmCov modelinin performansini1 6lgmek icin daha
Once ortaya ¢ikmis influenza A/ H3N2 HA protein veri seti kullanilmistir. Yin ve ark.
(2020) tarafindan sunulan infulenza A/H3N2 veri seti, 1991 ile 2016 yillar1 arasindaki
HA protein dizilerinden olugsmaktadir. Bu veri seti toplam 132.000 dizi 6rneginden

olusmaktadir (3" ortiisen 3 gram) (Yin ve ark., 2020). Islenmis influenza A/ H3N2
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HA protein veri seti ve detaylar Sekil 3.14'te gosterilmistir. Sekil 3.14'te de gorildiigi
tizere islenmis influenza A/ H3N2 HA protein veri seti, etiket ve giris verilerinden
olusmaktadir. Etiket degeri 1 ise “mutasyon var”, 0 ise “mutasyon yok” anlamina
geliyor. Her giris verisi, 5 egitim 6rneginden olusur (3 ortiisen - 3 gram). Her ti¢ gram,
Asgari ve ark. (2015) tarafindan sunulan ProtVec'e dayali 100 boyutlu bir gomme
vektoriiyle temsil edilir. Modelin egitim agamasinda her li¢ gramlik 100 boyutlu vektor

toplanarak 100 boyutlu tek bir vektor kullanilir.

Etiket G verisi

23436788

0] 1556, 1342, 2353]" {1355, 1340, T353]" " 1386, 1340, 2053]" (1555, 140, 2253]" 1385, 1540, TISR]" ‘1386, 134, Z053]" 1355, 542, ZI53]" 1386, 1341, 053" LS8, 1342, 105" 1356, 13, 053]
0] 1542, 7253, 3567 (1341, 2053, 567" 1342, 2053, 3567 (1541, 058, 367" 1342, 053, 35671342, 2053 3567”1342, 2253, 36671342, 2053, 56T LM, 1108, 70" 1343, 2253, 56T
0} 1253, 3567, 46307 2053, 3567, AG3L]" 1053, 3567, A53L] (1053, 3557, 453112053, 3567, L6311 1253, 3567, A005[" 2053, 3567, A631]" 2053, 3587, 4008]""LL03, 1707, 2075]" 2253, 3567, 4205
O} 3567, 4651, 2543] (3567, 4631, 2643]" 3567, 631, 2543]" 3567, 4631, 2543]" 3567, d6B1, 2643]" 3567, 4005, 15211" 3587, 4631, 2643]" 3867, 205, 301]" 707, 2475, 1524]" 3667, 205, 301
0} a1, 2643, 2093] (4631, 2643, 2095]" 4631, 2643, 2093]" (4631, 2643, 2095]" 4631, 2643, 2095]" 4205, 1301, 1300]" 4631, 2643, 2095]" 4005, 1301, L300]" LTS, 321, 1500]" A0S, 1301, 300
0} o6e3, 2093, 9307 (2643, 2093, 930" (2543, 2093, R0 2643, 2093, 50543, 095, 930" 1321, 1500, 930]" (1643, 2098, B30]" 1321, 1300, 50 (1321, 1300, 90" {132, 1300, 80"
0} 20s3, 530, 3512093, 930, B56]" 2093, 30, EGE]" (2093, 230, 35| 2093, 930, B66]""1300, 930, EGE]" 2093, 230, 3611300, 930, B66]" 1300, 530, GG 1300, 530, 35
1

030 66, 204] (830,36, 20941830, 35, 294" 1630, B, 20041030, 365, 20041030, 36, 0041530, B, 104650, 865, 004" 930, 36, 004]" 50, 86, 104
100 20, 1598, 07,204, 50, 0720k 50, 20T P38, 07 J0 2508, 24T 1204 598, D071 2004, 59, 007204, 508, 00) 2084, 55, 20T 225 238 20T

3 irtiisen 3 gramlar

B T = P R

Sekil 3.14. Islenmis influenza A/ H3N2 HA protein veri seti (Burukanli ve Yumusak,
202443).

Yin ve ark. (2020) tarafindan sunulan influenza A/H3N2 HA protein veri kiimesinin

egitim ve test veri kiimeleri i¢in sinif miktarlar1 Tablo 3.5'te gosterilmistir

Tablo 3.5. influenza A/H3N2 HA protein veri kiimesinin Egitim ve Test veri
kiimeleri i¢in sinif miktarlar1 ve toplam veri miktar1 (Burukanl ve

Yumusak, 20243).
Veri seti “Mutasyon var” sinifi ~ “Mutasyon yok™ simift  Toplam veri
Egitim 6325 99275 105600
Test 1630 24770 26400

3.5.1.5. Holdout yontemi ile stratified 10 kath ¢capraz dogrulama yontemi
Bu tez calismasinda, makine Ogrenimi tabanli modellerin performanslarini
degerlendirmek i¢in holdout ve stratified 10 katli ¢apraz dogrulama teknikleri

kullanilmigtir. Holdout tekniginde Kohavi (1995), egitim ve test veri kiimeleri
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kullanilir. Derin 6grenme ve makine 6grenimi tabanli modeller, ilk olarak egitim veri
kiimesinde egitilir. Daha sonra daha once hi¢ gérmedigi test veri seti lizerinde derin
O0grenme ve makine 6grenmesi tabanli modeller test edilir ve her algoritma igin
performans Ol¢iimleri elde edilir. Stratified 10-katli ¢apraz dogrulama tekniginde
Kohavi (1995) ise, K-katli veri seti kullanilir. Veri seti, 10 pargaya boliiniir. Bu
durumda K=10 olarak ayarlanir. Derin 6grenme ve makine 6grenmesi tabanli modeller
igin veri seti 9 parga egitim 1 parca ise dogrulama/test igin ayarlanir. Bu modeller,
toplamda 10 defa test edilerek performans degerleri elde edilir. Elde edilen bu
performans degerlerinin ortalamasi alinarak nihai performans degeri elde edilir. Bu tez
calismasinda Tablo 3.6'da da goriildiigii iizere, COVID-19 S protein veri setlerinde
smif dengesizligi bulunmaktadir. Model degerlendirmesinde holdout teknigi
kullanildiginda tiim siniflardan 6rnekler garanti edilmez. Bu biiyiik bir problem. Bu
sorunun iistesinden gelmek icin, COVID-19 S protein veri setlerinin her bir sinifinin
ornek ylizdelerini koruyarak verilerin kullanilmasina olanak taniyan stratified 10 katl
capraz dogrulama teknigi de tercih edilmistir (Tholke ve ark., 2022)(Mbow ve ark.,
2021). Tablo 3.6'da holdout teknigine ait egitim ve test veri setinin yillara gore toplam

miktarlar1 gosterilmistir.

Tablo 3.6. Holdout teknigi i¢in yillara gore toplam egitim ve test veri seti miktari
(Burukanli ve Yumusak, 2024a).

Yil Teknik Veri seti Toplam veri miktari

Egitim 38190

2020 Holdout
Test 12730
Egitim 38190

2021 Holdout
Test 12730
Egitim 38190

2022 Holdout
Test 12730

Tablo 3.7, stratified 10 kat capraz dogrulama teknigi igin yillara gére COVID-19 S

proteini Kfold veri kiimesinin miktarlarin1 gostermektedir.
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Tablo 3.7. Stratified 10 katli ¢apraz dogrulama teknigi igin yillara gore toplam K
kat veri kiimesi miktar1 (Burukanli ve Yumusak, 2024a).

Yil Teknik Veriseti  Toplam veri miktari

Stratified 10 katli ¢capraz

2020 Kfold 50920
dogrulama

Stratified 10 kath ¢apraz
2021 Kfold 50920
dogrulama

Stratified 10 katli ¢capraz

2022 Kfold 50920
dogrulama

Tablo 3.8, COVID-19 viriisii icin egitim, test ve Kfold veri kiimeleri icin smif

miktarlarini ve yaklasik yiizdeleri gosterir.

Tablo 3.8. COVID-19 viriisii igin egitim, test ve Kfold veri kiimeleri igin sinif
miktarlar ve yaklasik yiizdeleri (Burukanli ve Yumusak, 2024a).

4 “Mutasyon var” “Mutasyon yok” ]
Veri seti Toplam veri
sinifi sinifi
Egitim 1035 (2.71%) 37155 (97.29%) 38190 (100%0)
Test 344 (2.70%) 12386 (97.30%) 12730 (100%)
Kfold 1374 (2.70%) 49546 (97.30%) 50920 (100%)

3.5.1.6. GridSearchCV hyperparametere ayarlama teknigi

Bu tez caligmasinda, herbir makine 6grenmesi modelinin en iyi hiperparametre
degerlerinini se¢gmek i¢in GridSearchCV algoritmasinin varsayilan degerleri
kullanilmistir. Her makine 6grenmesi modelinin 6zellikleri arasinda 3 rastgele 6zellik
secilmistir. Tercih edilen her 6zellik i¢in varsayilan degerler dahil toplam 5 parametre
degeri se¢ilmistir. Daha sonra GridSearchCV algoritmasi kullanilarak her bir 6zellik
icin en iyi parametre degerleri elde edilmistir. Makine 6grenimi modellerine iliskin

hiperparametreler ve hiperparametrelerin degerleri Tablo 3.9'da gosterilmistir.
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Tablo 3.9. Makine 6grenimi modelleri ig¢in hiper-parametreler (Burukanli ve

Yumusak, 20244a).
Model Hiper-parametreler ve degerleri
C =[1.0,2.0,3.0,4.0,5.0]
SVM kernel =['linear', 'poly', 'rbf', 'sigmoid’, ‘precomputed’]
probability =[True, False]
n_neighbors =[3,5,7,9,11]
KNN weights = ['uniform’, ‘distance’]

algorithm = ['auto’, 'ball_tree', 'kd_tree', 'brute’]
booster=[‘gbtree’, ‘gblinear’,’dart’,None]
XGBoost learning_rate=[0.001,0.01,0.1,1,None]

n_estimators=[50,100,150,200,250]
C = np.linspace(1, 10, num=5)

LR solver = ['newton-cg’, 'Ibfgs’, 'liblinear’, 'sag’, 'saga’]

max_iter=[100, 1000, 10000, 100000, 1000000]

Tablo 3.9da da goriildiigii gibi her bir makine O6grenimi modeli igin tiim
hiperparametreler arasindan rastgele ii¢ hiperparametre se¢ilmistir. Daha sonra bu
hiperparametre degerleri arasindan en iyi olan degerler GridSearchCV algoritmasi
kullanilarak secilmistir. Her makine Ogrenimi tabanli model icin secilen
hiperparametreler ve hiperparametrelerin degerleri, SVM modeli i¢in Tablo A.2'de,
KNN modeli i¢in Tablo A. 3'te, XGBoost modeli i¢in Tablo A. 4’te ve LR modeli i¢in
Tablo A.5'te gosterilmistir (Burukanl ve Yumusak, 2024).

3.5.2. Onerilen StackGridCov ile HyperAttCov modeli icin kullanilan veri seti
hakkinda detayh bilgiler

3.5.2.1. COVID-19 (SARS-CoV-2) S protein veri seti

Bu tez ¢alismasinda Zhou ve ark. (2023a), tarafindan hazirlanan COVID-19 S protein
veri seti Zhou ve ark. (2023b), COVID-19 mutasyon tahmini i¢in kullanilmistir. Zhou
ve ark. (2023a), Ocak 2020'den Subat 2022'ye kadar GISAID veri tabanindan toplam
8 milyondan fazla COVID-19 S protein susu/dizisini indirdiler (Shu ve McCauley,
2017). Onlar, 8 milyondan fazla COVID-19 S protein dizisini, 6n isleme
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asamalarindan gecirdiler. Daha sonra tasarladiklari filogenetik aga¢ tabanli 6rnekleme
yontemini kullanarak toplam 5 uzunlukta 5758 (3 oOrtiisen-3 gram) egitim ve test veri
seti olusturdular. Bu tez ¢alismasinda Zhou ve ark. (2023a) tarafindan hazirlanan
onceden islenmis 5758 adet (3 ortiisen-3 gram) COVID-19 S protein verisi
kullanilmigtir. Bu asamada egitim ve test veri kiimelerinin onerilen StackGridCov ve
HyperAttCov modelleri ile diger modellerin egitim ve test islemleri igin bazi 6n islem
adimlarindan gegirilmesi gerekmektedir. Bu nedenle biz egitim ve test veri setlerini
bazi 6n isleme adimlarina tabi tuttuk. Egitim ve test veri setleri igin egitim ve test veri
ornekleri olusturma asamalar1 Sekil 3.15'te ve etiket veri 6rnekleri olusturma asamalari

ise Sekil 3.16'da gosterilmistir.
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Sekil 3.15. Egitim ve test veri kiimeleri i¢in egitim ve test veri drnekleri olusturma
asamalar1 (Burukanli ve Yumusak, 2024c).

MF"‘E:Q-:I:Né:#;".YT (SiteS)-
_

Sekil 3.16. Veri kiimelerini egitmek ve test etmek igin etiket veri Ornekleri
olusturmanin agamalar1 (Burukanli ve Yumusak, 2024b).
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Bu tez calismasinda kullanilan COVID-19 veri seti iki smniftan olusmaktadir
(“mutasyon” smift ve “mutasyon yok™ smifi). "mutasyon" sinifinda egitim i¢in 2314
veri (3 ortiisme-3 gram) ve test i¢in 565 veri (3 Ortiisme-3 gram) olmak {izere toplam
2879 veri (3 ortiisme-3 gram) bulunmaktadir. "mutasyon yok" sinifinda egitim igin
2292 veri (3 ortlisme-3 gram) ve test i¢in 587 veri (3 Ortiisme-3 gram) olmak iizere
toplam 2879 veri (3 Ortlisme-3 gram) bulunmaktadir. Bu veri setinde 5758 adet (3
ortiisen-3 gram), "mutasyon" smifinda 2879, "mutasyon yok" sinifinda ise 2879 adet
veri bulunmaktadir. Zhou ve ark. (2023a) tarafindan sunulan islenmis COVID-19 viriis
veri seti ve detaylar1 Sekil 3.17'de gosterilmistir. Sekil 3.17'de de goriildigi tizere
islenmis COVID-19 veri kiimesi, etiket ve giris verilerinden olusmaktadir. Etiket
degeri 1 ise “mutasyon var”, 0 ise “mutasyon yok™ anlamina geliyor. Her giris verisi,
5 egitim 6rneginden olusur (3 ortlisen - 3 gram). Her ii¢ gram, Asgari ve ark. (2015)
tarafindan sunulan ProtVec'e dayali 100 boyutlu bir gdmme vektoriiyle temsil edilir.
Modelin egitim agamasinda her ii¢ gramlik 100 boyutlu vektor toplanarak 100 boyutlu

tek bir vektor kullanilir.

Etiket Giris verisi

1Y [y D, 1,.2,3.4

2| |of 1602, 1017, 13781, "[602, 1017, 1378]","[602, 1017, 1378]","[602, 1017, 1378]","[2020, 2334, 552]"

3| |of 11078, 312, 9031","[1078, 312, 903]",."[1078, 312, 1437]","[1078, 312, 903]","[1078, 312, 903]"
allolN1as1, 477, 267117, "[461, 477, 2671]"."[461, 477, 2671]","[461, 477, 2671]1","[461, 477, 2671]"

sf|| 1l 11466, 2042, 2173]1","[1466, 2042, 2173]","[1466, 2042, 2173]","[1466, 2042, 2173]","[1466, 2042, 2173]"
6 |1{'[242, 582, 2805]","[242, 582, 2805]","[242, 582, 2805]","[242, 582, 2805]"."[242, 582, 2805]"

7)o [771, 1033, 118]","[771, 1033, 118]","[771, 1033, 118]","[771, 1033, 118]","[771, 1033, 118]"

2f |04 [7814, 6853, 2270]",."[7814, 6853, 2270]","[7814, 6853, 2270]","[7692, 6853, 2270]","[7314, 6853, 2270]"
9 |1 [765, 1837, 2433]","[765, 1837, 2433]","[765, 1837, 2433]","[765, 1837, 2433]","[765, 1837, 2433]"

1q | 1f'[6092, 2395, 472]" J'[6092, 2395, 472]"J'[6092, 2395, 472]",|'[6092, 2395, 472]'L"[6092, 2395, 472]"

3 drtiisen 3 gramlar

Sekil 3.17. islenmis COVID-19 viriis veri seti.
COVID-19 veri setinin egitim, test, Kfold ve toplam miktarlar1 ve yaklasik yiizdeleri

Tablo 1'de gosterilmistir.

Tablo 3.10. COVID-19 veri setinin egitim, test, Kfold ve toplam miktarlar1 ve
yaklasik ylizdeleri (Burukanli ve Yumusak, 2024b) (Burukanli ve

Yumusak, 2024c).
Veri seti “Mutasyon var” sinift “Mutasyon yok” sinifi Toplam veri
Egitim 2314 (50.24%) 2292 (49.76%) 4606 (100%)
Test 565 (49.05%) 587 (50.95%) 1152 (100%)
Kfold 2879 (50%) 2879 (50%) 5758 (100%)
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3.5.2.2. influenza A/ HIN1 HA veri seti

Bu tez calismasinda 6nerilen StackGridCov modelinin performansini 6l¢gmek amaciyla
daha 6nce ortaya ¢ikan influenza A/HIN1 HA viriis alt tipinin HA protein veri setleri
tizerinde test edilmistir. Yin ve ark. (2020) tarafindan sunulan influenza veri kiimeleri,
1991 ile 2016 yillar1 arasindaki HA protein dizilerinden olusmaktadir. Influenza
A/HIN1 HA veri kiimesi, egitim veri kiimesinde 128.800 dizi 6rneginden (3 gram
ortiisen) ve test veri kiimesinde 32.200 dizi 6rneginden (3 gram ortiisen) olmak iizere
toplamda 161.000 dizi 6rneginden (3 gram ortiisen) olusmaktadir (Yin et al., 2020).
Egitim veri seti, mutasyon sinifinda 18.886 6rnek ve mutasyon olmayan sinifta
109.914 6rnek olmak tizere toplamda 128.800 6rnekten meydana gelmektedir. Benzer
sekilde, test veri seti mutasyon sinifinda 4.634 6rnek ve mutasyon olmayan sinifta
27.566 drnek olmak iizere toplamda 32.200 6rnekten meyadana gelmektedir. Islenmis
influenza A/HIN1 HA viriis veri seti ve detaylar1 Sekil 3.18'de gosterilmistir. Sekil
3.18'de de goriildiigii iizere islenmis COVID-19 veri kiimesi, etiket ve giris
verilerinden olugmaktadir. Etiket degeri 1 ise “mutasyon var”, 0 ise “mutasyon yok”
anlamina geliyor. Her giris verisi, 5 egitim drneginden olusur (3 ortiisen - 3 gram). Her
tic gram, Asgari ve ark. (2015) tarafindan sunulan ProtVec'e dayali 100 boyutlu bir
gomme vektoriiyle temsil edilir. Modelin egitim asamasinda her ii¢ gramlik 100

boyutlu vektor toplanarak 100 boyutlu tek bir vektor kullanilir.

Etiket Giris verisi

yhL23456789

0,)[1485, 1772, 828", [ 1465, 1772, 828" 1485, 1772, 828" [1485, 1263, 273]" [ 1465, 1772, 4369]","[1465, 1772, 828]","[1465, 1772, 828]""[1465, 1772, 828]","[1465, 1263, 273]""[1465, 1263, 273]"
{1772, 828, 280]" (1772, 828, 280]" "[1772, 828, 280]" (1263, 273, 115]" 11772, 4968, 425" "[L772, 828, 280]" "[1772, 828, 280)" "[1772, 828, 280]" (1263, 27, 115]" 11263, 273, 115"
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Sekil 3.18. Islenmis Influenza A/HIN1 HA viriis veri seti.

Yin ve ark. (2020) tarafindan sunulan influenza A/HLIN1 HA protein veri setinin

egitim ve test veri setleri i¢in sinif miktarlari, Tablo 3.11’de gosterilmistir.
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Tablo 3.11. influenza A/HIN1 HA protein veri kiimesinin veri kiimelerinin
egitimi ve test edilmesi i¢in sinif miktarlar1 (Burukanli ve
Yumusak, 2024b).

“Mutasyon var” “Mutasyon

Veri seti Toplam veri
smifi yok” sinifi
Egitim 18886 109914 128800
Test 4634 27566 32200
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4. ARASTIRMA BULGULARI VE TARTISMA

Bu tez calismasinda Onerilen TfrAdmCov Burukanli ve Yumusak (2024a),
StackGridCov Burukanli ve Yumusak (2024b) ve HyperAttCov Burukanli ve
Yumusak (2024c¢) modelleri ile diger yapay zeka tabanli modelerin hem COVID-19
virlisi hemde inflenza viriisii lizerinde mutasyon tahmini i¢in elde edilen bulgular

tartisilmastir.

4.1. OnerilenTfrAdmCov Modeli i¢in Elde Edilen Bulgular

4.1.1. Uygulama detaylar

Bu tez ¢alismasinda, derin 6grenme modellerinin (RNN, LSTM, GRU, Transformer)
performansini en {ist diizeye ¢ikarmak amactyla hiperparametre degerleri (hidden size,
dropout, batch size vb.) birgok kez (deneme yanilma) test edilmistir ve en iyi hiper
parametre degerleri se¢ilmistir. Tiim derin 6grenme modellerinde (geleneksel makine
ogrenme modelleri harig), model optimizasyonu igin batch size boyutu 32 (H3N2 HA
veri seti icin 256) olan Adam kullanilmistir. Onerilen TfrAdmCov modelinin ve tiim
derin 6grenme modellerinin kodlayicisinda 6grenme oran1 0.001 ve hidden size 128
olarak ayarlanmistir. Amag fonksiyonu olarak (kayiplari en aza indirmek i¢in) capraz
entropi kullanilmistir. Onerilen TfrAdmCov modelinin ve tiim derin &grenme
modellerinin egitimi i¢in 0.5 dropout degeri ve 500 epok degeri (H3N2 HA veri seti
icin 350 epok) kullanilmistir. Ayrica transformer kodlayici katmaninda kullanilan
coklu kafa dikkatinin (multi head attention) sayis1 (agik kaynak kiitiiphanesinde
(Vaswani ve ark., 2017) varsayilan degeri dahil = 8) birgok kez test edilmis ve en iyi
hiperparametre degeri (¢oklu kafa dikkati = 2) segilmistir. Tiim deneysel sonuglarin,
derin 6grenme modelleri i¢in farkli rastgele tohumlara (seeds) sahip 10 rastgele
denemenin ortalamasi alinmistir. Onerilen TfrAdmCov modelinin ve diger modellerin

hiperparametreleri ve bu hiperparemetrelerin degerleri Tablo 4.1'de gdsterilmistir.



Tablo 4.1. Onerilen TfrAdmCov modelinin ve diger modellerin hiperparametreleri
(Burukanli ve Yumusak, 2024a).

Hiper-parametre ad1 Degeri
Hidden Size 128
Dropout 0.5
Batch Size 32
Ogrenme orani 0.001
Epok 500
Optimizer algoritmasi Adam
Kayip fonksiyonu Cross entropy
Coklu kafa dikkat sayis1 (Transformer kodlayict i¢in) 2
Transformer kodlayici sayisi 1

4.1.2. Modellerin performanslarim degerlendirme

Bu tez ¢aligmasinda egitim, test ve Kfold veri setlerinin egitim ve test islemleri 2-
cekirdekli Intel(R) Core(TM) i5 7200U CPU@ 2.5 GHz islemcili, 12GB Ram ve
Intel(R) HD Graphics 620 GPU sahip bir bilgisayarda gergeklestirilmistir. Tiim egitim,
test ve similasyonlar, makine 6grenmesi ve derin 6grenme modelleri i¢in oldukga
populer olan Python’un Scikit-learn Pedregosa ve ark. (2011) ve PyTorch Paszke ve
ark. (2017) kitiphaneleri kullanilarak elde edilmistir. Bu tez ¢aligmasinda derin
O0grenme ve makine Ogrenmesi tabanli modellerin (dogruluk (accuracy), kesinlik
(precision), hassasiyet (recall), F1-skor ve matthews korelasyon katsayisi (MCC))

performans Ol¢imleri Tablo 4.2'deki hata (confusion) matrisi kullanilarak elde

edilmistir.
Tablo 4.2. Hata matrisi (Luque ve ark., 2019).
Tahmin edilen sinif
Pozitif Negatif
Gergek sinif Pozitif Gergek Pozitif (TP) Yanlis Negatif (FN)
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Tablo 4.2. (Devami) Hata matrisi (Luque ve ark., 2019).

Tahmin edilen sinif

Pozitif Negatif

Gergek sinif Negatif Yanlis Pozitif (FP) Gergek Negatif (TN)

Gergek Pozitif (TP), aslinda pozitif (mutasyon) olan ve tahmin edildiginde de pozitif
(mutasyon) olarak siniflandirtlan numuneleri ifade eder. Yanlis Negatif (FN), ger¢ekte
pozitif (mutasyon) olan ve tahmin edildiginde de negatif (mutasyon yok) olarak
smiflandirilan numuneleri ifade eder. Yanlis Pozitif (FP), aslinda negatif olan
(mutasyon yok) ve tahmin edildiginde de pozitif (mutasyon) olarak siniflandirilan
numuneleri ifade eder. Gergek Negatif (TN), aslinda negatif olan (mutasyon yok) ve
tahmin edildiginde negatif (mutasyon yok) olarak siniflandirilan numuneleri ifade eder
(Chicco ve Jurman, 2020). Bu tez c¢alismasinda kullanilan dogruluk, kesinlik,
hassasiyet, F1-skor ve MCC performans degerlendirme metrikleri sirastyla denklem
(4.1), denklem (4.2), denklem (4.3), denklem (4.4), denklem (4.5)’te verilmistir (Pacal,
2024Db).

Dogruluk (A = TP+TN (4.1)
ogruluk (Accuracy) = gp N T FP ¥ TN '
TP
inli isi = 4.2
Kesinlik (Precision) TP+ FP (4.2)
H iyet (Recall or Sensitivity) = TP (4.3)
assasiyet (Recall or Sensitivity) = TP T FN .

Kesinlik * Hassasiyet
F1 — Skor =2 — - (4.4)
Kesinlik + Hassasiyet

TP « TN — FP = FN

McC =
J(TP + FP) = (TP + FN) = (TN + FP) x (TN + FN)

(4.5)

4.1.3. Deneysel bulgular
GridSearchCV'li veya GridSearchCV'siz SVM modelinin performans degerleri, Tablo
4.3’te gosterilmistir.
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Tablo 4.3. GridSearchCV'li veya GridSearchCV'siz SVM modelinin performans
degerleri (Burukanli ve Yumusak, 20244a).

Hyper-parametre . Dogruluk Kesinlik Hassasiyet F1-Skor MCC
Model Veri seti
ayarlama (%) (%) (%) (%) (%)
GridSearchCV’li Test 99.91 100.00 96.51 98.22  98.19
SVM
GridSearchCV’siz Test 99.90 100.00 96.22 98.07 98.04

Tablo 4.3'te de goriildiigii tizere, GridSearchCV'li veya GridSearchCV'siz SVM
modeli egitim veri seti iizerinde egitilmis ve test veri seti tizerinde test edilmistir.
GridSearchCV yontemine sahip SVM modelinin, test veri kiimesinde GridSearchCV
yontemine sahip olmayan SVM modeline gore dogruluk degerini (%99.90'dan
%99.91'e), hassasiyet degerini (%96.22'den %96.51'e), F1-skor degerini (%98.07'den
%98.22'ye) ve MCC degerini (%98.04'ten %98.19'a) yiikseltmistir. Sonug¢ olarak,
GridSearchCV yontemine sahip olan SVM modelinin egitim veri seti ve test veri seti
tizerinde performansi 6nemli dl¢iide arttirdigi gézlemlenmistir. GridSearchCV'li veya

GridSearchCV'siz KNN modelinin performans degerleri, Tablo 4.4’te gosterilmistir.

Tablo 4.4. GridSearchCV'li veya GridSearchCV'siz KNN modelinin performans
degerleri (Burukanli ve Yumusak, 20244a).

Hyper-parametre ~_ Dogruluk Kesinlik Hassasiyet F1-Skor MCC
Model Veri seti
ayarlama (%) (%) (%) (%) (%)
GridSearchCV’li Test 99.91 99.40 97.09 98.24  98.19
KNN
GridSearchCV’siz Test 99.90 99.40 96.80 98.09 98.04

Tablo 4.4'te de gorildiigii tizere, GridSearchCV'li veya GridSearchCV'siz KNN
modeli egitim veri seti lizerinde egitilmis ve test veri seti iizerinde test edilmistir.
GridSearchCV yontemine sahip KNN modelinin test veri kiimesinde GridSearchCV
yontemine sahip olmayan KNN modeline gore dogruluk degerini (%99,90'dan
%99,91'e), hassasiyet degerini (%96.80'den %97.09'a), F1-skor degerini (%98.09'dan
%98.24'e) ve MCC degerini (%98.04'ten %98.19'a) artmustir. Sonug¢ olarak,
GridSearchCV yontemine sahip KNN modelinin egitim veri seti ve test veri seti

tizerinde performansi 6nemli 6lgiide arttirdigr gozlemlenmistir. GridSearchCV'li veya
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GridSearchCV'siz  XGBoost modelinin performans degerleri, Tablo 4.5°te

gosterilmistir.

Tablo 4.5. GridSearchCV'li veya GridSearchCV'siz XGBoost modelinin performans
degerleri (Burukanli ve Yumusak, 2024a).

Model Hyper-parametre  Veri  Dogruluk  Kesinli  Hassasiyet F1-Skor MCC
ode

ayarlama seti (%) k (%) (%) (%) (%)
GridSearchCV’li ~ Test 99.91 100.00 96.51 98.22 98.19
XGBoost
GridSearchCV’siz ~ Test 99.90 99.70 96.51 98.08 98.04

Tablo 4.5'te de goriildigii tizere, GridSearchCV'li veya GridSearchCV'siz XGBoost
modeli egitim veri seti lizerinde egitilmig ve test veri seti iizerinde test edilmistir.
GridSearchCV yontemine sahip XGBoost modelinin test veri seti iizerinde
GridSearchCV yontemi olmayan XGBoost modeline gore dogruluk degerini
(9%99.90'dan %99.91'e), hassasiyet degerini (%99.70'ten %100.00'a), F1-skor degerini
(%98.08'den %98.22'ye) ve MCC degerini (%098.04'ten %98.19'a) yiikseltmistir.
Sonug olarak, GridSearchCV yontemi ile XGBoost modelinin test veri seti iizerinde
performanst Onemli Olgiide arttirdigi  gozlemlenmistir. GridSearchCV'li  veya

GridSearchCV'siz LR modelinin performans degerleri, Tablo 4.6’da gésterilmistir.

Tablo 4.6. GridSearchCV'li veya GridSearchCV'siz LR modelinin performans
degerleri (Burukanli ve Yumusak, 2024a).

Model Hyper-parametre ~ Veri  Dogruluk Kesinlik Hassasiyet F1-Skor MCC
ode

ayarlama seti (%) (%) (%) (%) (%)
GridSearchCV’li ~ Test 99.79 98.18 93.90 95.99 95.90
LR
GridSearchCV’siz ~ Test 99.57 98.65 85.17 91.42 91.46

Tablo 4.6'da da goriildiigii tizere, GridSearchCV'li veya GridSearchCV'siz LR modeli
egitim veri seti lizerinde egitilmis ve test veri seti lizerinde test edilmistir.
GridSearchCV yontemine sahip LR modelinin test veri seti lizerinde GridSearchCV
yontemi olmayan LR modeline gore dogruluk degerini (%99.57'den -%99.79'a),
hassasiyet degerini (%85.17'den %93.90'a), F1-skor degerini (%91.42'den %95.99'a)
ve MCC degerini (%91.64'ten %95.90'a) yiikseltmistir. Sonug olarak, GridSearchCV

yontemine sahip LR modelinin egitim veri seti ve test veri seti lizerinde performansi

47



onemli Ol¢lide arttirdigi gozlemlenmistir. GridSearchCV'li veya GridSearchCV'siz
makine 6grenimi tabanli modellerin performans degerlerinin karsilagtirilmasi, Tablo

4.7°de gosterilmistir.

Tablo 4.7. GridSearchCV'li veya GridSearchCV'siz Makine 06grenimi tabanli
modellerin performans degerlerinin karsilastirilmas1 (Burukanli ve
Yumusak, 20244a).

Veri  Hyper-parametre  Dogruluk  Kesinlik Hassasiyet F1-Skor MCC

Model ]
seti ayarlama (%) (%) (%) (%) (%)

GridSearchCV’li 99.893 99.92 96.14 97.97 97.95

SVM Kfold
GridSearchCV’siz 99.84 99.92 94.32 97.00 96.98
GridSearchCV’li 99.89 99.69 96.22 97.91 97.88

KNN Kfold
GridSearchCV’siz 99.86 99.75 94.91 97.24 97.21
GridSearchCV’li 99.88 99.62 96.00 97.75 97.72

XGBoost  Kfold
GridSearchCV’siz 99.88 99.69 95.93 97.75 97.72
GridSearchCV’li 99.79 97.14 94.90 95.99 95.89

LR Kfold
GridSearchCV’siz 99.42 98.27 79.76 88.04 88.25

Tablo 4.7'de de goriildigii gibi, GridSearchCV'li ve GridSearchCV'siz makine
O0grenimi tabanli modeller (SVM, KNN, XGBoost, LR) kullanilarak Kfold veri seti
tizerinde dogruluk, kesinlik, hassasiyet, F1-skor ve MCC degerlerinin karsilastirilmasi
yapilmistir. GridSearchCV yontemine sahip SVM modeli, Kfold veri seti iizerinde
%99.893 dogruluk degeriyle en yiiksek performansi elde etmistir. GridSearchCV’li
veya GridSearchCV’siz SVM modeli, Kfold veri kiimesinde %99.92 kesinlik
degeriyle en yiiksek performansi elde etmistir. GridSearchCV y6ntemine sahip SVM
modeli, Kfold veri kiimesinde %97.97 F1-skor degeriyle en yiiksek performansi elde
etmistir. GridSearchCV yontemine sahip KNN modeli ise Kfold veri seti tizerinde
%96.22 F1-skor degeriyle en yiiksek performansi elde etti. GridSearchCV yontemine
sahip SVM modeli, Kfold veri kiimesinde %97.95 MCC degeriyle en yiiksek
performans1 elde etti. Sonuglar detayli analiz edildiginde, GridSearchCV

hyperparametre ayarlama metodu modellerin basarimlarini arttirmada ¢iddi oranda
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etkili olmustur. Test veri kiimesi {izerinde 6nerilen TfrAdmCov modeli ile derin

o6grenme modellerinin performans karsilastirmasi, Tablo 4.8’de gosterilmistir.

Tablo 4.8. Test veri kiimesi tizerinde onerilen TfrAdmCov modeli ile derin 6grenme
modellerinin performans karsilastirmasi (Burukanli ve Yumusak, 20244a).

Dogruluk Kesinlik Hassasiyet F1-Skor MCC

Model (%) (%) (%) ) )
RNN 99.92 100.00 97.09 98.53 98.50
LSTM 99.91 100.00 96.80 98.38 98.34
GRU 99.91 100.00 96.80 98.38 98.34
TfrAdmCov 99.93 100.00 97.38 98.67 98.65

Tablo 4.8'de goriildiigii iizere, dnerilen TfrAdmCov modeli, COVID-19 test veri
setinde %99.93 ile dogruluk, %97.38 ile hassasiyet, %98.67 ile F1-skor ve %98.65 ile
MCC degeri agisindan diger modellere gore daha iyi sonuglar elde etmistir. Ayrica
onerilen TfrAdmCov modeli, RNN, LSTM, GRU, COVID-19 test veri setinde
%100.00 ile kesinlik agisindan ayni sonuglari elde etmistir. Test veri seti tizerinde
Adam, RMSprop, AdamW optimizasyon algoritmasina sahip onerilen TfrAdmCov

modelinin performans karsilagtirmasi, Tablo 4.9°da gosterilmistir.

Tablo 4.9. Test veri seti lizerinde Adam, RMSprop, AdamW optimizasyon
algoritmasina sahip Onerilen TfrAdmCov modelinin performans
karsilagtirmasi (Burukanli ve Yumusak, 2024a).

Optimizasyon Dogruluk Kesinlik Hassasiyet F1-Skor ~ MCC

algoritmasi (%) (%) (%) (%) (%)
Adam 99.93 100 97.383 98.67 98.65
RMSprop 99.92 100 97.09 98.53 98.50
Adamw 99.92 100 97.09 98.53 98.50

Tablo 4.9, onerilen TfrAdmCov modeli i¢in ti¢ optimizasyon algoritmasi (Adam,
RMSprop, AdamW) arasindan en iyi performansi elde eden optimizasyon algoritmay1
se¢meyi amaglamaktadir. Tablo 4.9'da da goriildiigi lizere, Adam optimizasyon

algoritmasimna sahip TfrAdmCov modeli, RMSprop, AdamW optimizasyon
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algoritmalarina sahip TfrAdmCov modelinden daha iyi performans gostermistir. Bu
nedenle, onerilen TfrAdmCov modeli i¢in Adam optimizasyon algoritmasi tercih
edilmistir. COVID-19 test veri seti {izerinde Adam optimizasyon algoritmasina sahip

TfrAdmCov modeli kullanilarak elde edilen hata matrisi, Sekil 4.1’de gosterilmistir.

COVIiD-19 test veri seti Gizerinde Adam optimizasyon algoritmasina
sahip TfrAdmCov modeli kullanilarak elde edilen hata matrisi
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Tahmin Edilen Degerler

Sekil 4.1. COVID-19 test veri kiimesinde Adam optimizasyon algoritmasina sahip
TfrAdmCov modeli kullanilarak elde edilen hata matrisi (Burukanli ve
Yumusak, 2024a).

Sekil 4.1°de goriildiigii gibi, COVID-19 test veri setinde, Adam optimizasyon
algoritmasina sahip TfrAdmCov modeli, “mutasyon” smifindaki 344 6rnekten 335
ornegi dogru tahmin ederken, “mutasyon” sinifindaki 344 6rnekten 9 6rnegi hatali
tahmin etmistir. Ek olarak, Adam optimizasyon algoritmasina sahip Onerilen
TfrAdmCov modeli, “mutasyon yok” siniftaki 12386 6rnekten tiim drnekleri dogru bir
sekilde tahmin etmistir. COVID-19 test veri kiimesinde RMSprop optimizasyon
algoritmasina sahip TfrAdmCov modeli kullanilarak elde edilen hata matrisi, Sekil

4.2’de gosterilmigtir.

COVID-19 test veri seti izerinde RMSprop optimizasyon algoritmasina
sahip TfrAdmCov modeli kullanilarak elde edilen hata matrisi

12000
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8000
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' =0
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Sekil 4.2. COVID-19 test veri kiimesinde RMSprop optimizasyon algoritmasina sahip
TfrAdmCov modeli kullanilarak elde edilen hata matrisi (Burukanl ve
Yumusak, 20244a).
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Sekil 4.2'de goriildiigii gibi iizere COVID-19 test veri setinde, RMSprop optimizasyon
algoritmasima sahip Onerilen TfrAdmCov modeli, “mutasyon” sinifindaki 344
ornekten 334 6rnegi dogru tahmin ederken, “mutasyon” siifindaki 344 6rnekten 10
ornegi hatali tahmin etmistir. Ek olarak, RMSprop optimizasyon algoritmasina sahip
onerilen TfrAdmCov modeli, “mutasyon yok” siniftaki 12386 6rnekten tiim 6rnekleri
dogru bir sekilde tahmin etmistir. COVID-19 test veri kiimesinde AdamW optimizer
algoritmasina sahip TfrAdmCov modeli kullanilarak elde edilen hata matrisi, Sekil

4.3’te gosterilmistir.

COVID-19 test veri seti lizerinde AdamW optimizasyon algoritmasina
sahip TfrAdmCov modeli kullanilarak elde edilen hata matrisi
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Sekil 4.3. COVID-19 test veri kiimesinde AdamW optimizer algoritmasia sahip
TfrAdmCov modeli kullanilarak elde edilen hata matrisi (Burukanl ve
Yumusak, 20243).

Sekil 4.3'te de goriildiigii gibi, COVID-19 test veri setinde, AdamW optimizasyon
algoritmasina sahip Onerilen TfrAdmCov modeli, “mutasyon” smifindaki 344
ornekten 334 6rnegi dogru tahmin ederken, “mutasyon” sinifindaki 344 6rnekten 10
ornegi hatali tahmin etmistir. Ek olarak, AdamW optimizasyon algoritmasina sahip
onerilen TfrAdmCov modeli, “mutasyon yok” siniftaki 12386 6rnekten tiim 6rnekleri
dogru bir sekilde tahmin etmistir. Test veri kiimesi tizerinde farkli rastgele tohumlara
(different random seeds ) icin 10 rastgele denemeye (10 random trail) sahip onerilen
TfrAdmCov modelli ile RNN, LSTM, GRU modellerinin performans karsilagtirmast,
Tablo 4.10°da gosterilmistir.
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Tablo 4.10. Test veri kiimesi iizerinde farkli rastgele tohumlara (different random
seeds) i¢in 10 rastgele denemeye (10 random trail) sahip Onerilen
TfrAdmCov modelli ile RNN, LSTM, GRU modellerinin performans
karsilastirmasi (Burukanli ve Yumusak, 20244a).

Dogruluk Kesinlik Hassasiyet F1-Skor  MCC

Model
(%) (%) (%) (%) (%)
RNN 99.918 100.00 96.95 98.45 98.42
LSTM 99.916 100.00 96.89 98.42 98.39
GRU 99.914 100.00 96.83 98.39 98.36
TfrAdmCov 99.924 100.00 97.18 98.57 98.54

Tablo 4.10'da goriildiigii gibi, 6nerilen TfrAdmCov modeli, COVID-19 test veri
setinde %99.924 ile dogruluk, %97.18 hassasiyet, %98.57 ile f1-skor ve %98.54 ile
MCC agisindan diger modellere gore daha iyi sonuglar elde etmistir. Ayrica onerilen
TfrAdmCov modeli, RNN, LSTM, GRU, COVID-19 test veri seti iizerinde %100.00
kesinlik agisindan ayn1 sonuglari elde etmistir. Onerilen TfrAdmCov modeli ile derin
ogrenme modelleri ve GridSearchCV yontemine sahip makine dgrenmesi tabanl
modellerin test veri seti tizerindeki performans karsilastirmalari, Tablo 4.11°de

gosterilmistir.

Tablo 4.11. Onerilen TfrAdmCov modeli ile derin 6grenme modelleri ve
GridSearchCV  yontemine sahip makine 6grenmesi tabanh

modellerin test veri seti lizerindeki performans karsilastirmalari
(Burukanli ve Yumusak, 2024a).

Dogruluk Kesinlik Hassasiyet F1-Skor MCC

Model (%) (%) (%) % )
SVM 99.91 100.00 96.51 98.22 98.19
KNN 99.91 99.40 97.09 98.24 98.19
XGBoost 99.91 100.00 96.51 98.22 98.19
LR 99.79 98.18 93.90 95.99 95.90
RNN 99.92 100.00 97.09 98.53 98.50
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Tablo 4.11. (Devami) Onerilen TfrAdmCov modeli ile derin 6grenme modelleri ve
GridSearchCV yontemine sahip makine 6grenmesi tabanli
modellerin  test veri seti iizerindeki performans
karsilastirmalar1 (Burukanli ve Yumusak, 2024a).

Dogruluk Kesinlik Hassasiyet F1-Skor ~ MCC
Model

(%) (%) (%) (%) (%)
LSTM 99.91 100.00 96.80 98.38  98.34
GRU 99.91 100.00 96.80 98.38  98.34
TfrAdmCov 99.93 100.00 97.38 98.67  98.65

Tablo 4.11'de de goriildiigii gibi, onerilen TfrAdmCov modeli, COVID-19 test veri
setinde %99.93 ile dogruluk, %97.38 ile hassasiyet, %98.67 ile f1-skor ve %98.65 ile
MCC degeri agisindan diger modellere gore daha iyi sonuglar elde etmistir. Ayrica
onerilen TfrAdmCov modeli, SVM, XGBoost, RNN, LSTM, GRU, COVID-19 test
veri seti iizerinde %100.00 kesinlik agisindan ayni sonuglari elde etmistir. Ote yandan
LR modeli, COVID-19 test veri setinde %99.79 ile dogruluk, %98.18 ile kesinlik,
993,90 ile hassasiyet, %95.99 ile f1-skor ve %95.90 ile MCC degeri agisindan diger
modellere gore daha kotii sonuglar elde etmistir. Sonug olarak, 6nerilen TfrAdmCov
modeli, dizi bazli COVID-19 veri seti iizerinde oldukga basarili sonuclar elde etmistir.
Onerilen TfrAdmCov modeli ile diger modellerin COVID-19 test veri kiimesi

tizerindeki dogruluk degerleri, Sekil 4.4’te gosterilmistir.

COVID-19 test veri kiimesi Gzerinde 6nerilen TfrAdmCov
modeli ile diger modeller igin dogruluk degerleri

99.93% 99.92% 99.91% 99.91% 99.91% 99.91% 99.91% 99.79%
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Sekil 4.4. Onerilen TfrAdmCov modeli ile diger modellerin COVID-19 test veri
kiimesi tizerindeki dogruluk degerleri (Burukanli ve Yumusak, 2024a).
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Sekil 4.4'te de goriildiigii gibi 6nerilen TfrAdmCov modeli %99.93 ile en iyi dogruluk
degerine ulasirken, LR modeli %99.79 ile en kotii dogruluk degerine ulagsmistir. Farkli
rastgele tohumlar (different random seeds) igin 10 rastgele denemeye (random trail)
sahip onerilen TfrAdmCov modeli ile derin 6grenme modelleri ve stratified 10 kat
capraz dogrulama teknigine sahip makine 6grenmesi algoritmalarinin test veri kiimesi

tizerinde ortalama degerlerinin karsilastirilmasi, Tablo 4.12°de gosterilmistir.

Tablo 4.12. Farkli rastgele tohumlar (different random seeds) i¢in 10 rastgele
denemeye (random trail) sahip onerilen TfrAdmCov modeli ile derin
ogrenme modelleri ve stratified 10 kat ¢apraz dogrulama teknigine sahip
makine 6grenmesi algoritmalarinin test veri kiimesi iizerinde ortalama
degerlerinin karsilastirilmasi (Burukanl ve Yumusak, 2024a).

Dogruluk Kesinlik Hassasiyet F1-Skor MCC

"N (%) (%) (%) o) %)
SVM 99.89 99.92 96.14 97.97 97.95
KNN 99.89 99.69 96.22 97.91 97.88
XGBoost 99.88 99.62 96.00 97.75 97.72
LR 99.79 97.14 94.90 95.99 95.89
RNN 99.918 100.00 96.95 98.45 98.42
LSTM 99.916 100.00 96.89 98.42 98.39
GRU 99.914 100.00 96.83 98.39 98.36
TfrAdmCov 99.924 100.00 97.18 98.57 98.54

Tablo 4.12°de de goriildiigii gibi, onerilen TfrAdmCov modeli, COVID-19 test veri
seti tizerinde %99.924 ile ortalama dogruluk, %97.18 ile ortalama hassasiyet, %98.57
ile ortalama F1-skor ve %98.54 ile ortalama MCC degeri acisindan diger modellerden
daha iyi sonuglar elde etmistir. Ayrica onerilen TfrAdmCov modeli, SVM, XGBoost,
RNN, LSTM, GRU, COVID-19 test veri seti tizerinde %100.00 ile ortalama kesinlik
acisindan ayni sonuglari elde etmistir. Ote yandan LR modeli, COVID-19 test veri
setinde %99.79 ile ortalama dogruluk, %98.14 ortalama kesinlik, %94.90 ile ortalama
hassasiyet, %95.99 ile ortalama F1-skor ve %95.89 ile ortalama MCC degeri agisindan

diger modellere gore daha kotli sonucglar elde etmistir. Sonug¢ olarak, Onerilen
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TfrAdmCov modeli dizi bazli COVID-19 veri seti iizerinde oldukca basarilidir.
Onerilen TfrAdmCov modeli ile diger modellerin COVID-19 test veri kiimesi

tizerinde ortalama dogruluk degerleri, Sekil 4.5’te gdsterilmistir.

COVID-19 test veri kiimesi Gizerinde énerilen TfrAdmCov
modeli ile diger modeller icin ortalama dogruluk degerleri

99.924% 99.918% 99.916% 99.914% 99.890% 99.890% 99.880% 99.790%
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Sekil 4.5. Onerilen TfrAdmCov modeli ile diger modellerin COVID-19 test veri
kiimesi lizerinde ortalama dogruluk degerleri (Burukanli ve Yumusak,
202443).

Sekil 4.5'te de gortldigi gibi, onerilen TfrAdmCov modeli %99.924 ile en iyi
ortalama dogruluk degerine ulasirken, LR modeli %99.79 ile en kotii ortalama

dogruluk degerine ulagsmstir.

4.1.4. Onerilen TfrAdmCov modeli ile derin 63renme modelleri icin istatistiksel
analizler

Bu tez calismasinda elde edilen sonuglar, hem 6nerilen TfrAdmCov modeli hem de
derin 6grenme modelleri i¢in farkli rastgele tohumlara sahip 10 rastgele denemenin
ortalamasi alinarak elde edilmistir. Ortalama, standart sapma, medyan, minimum ve
maksimum gibi istatistiksel 6l¢timler kullanilarak her model i¢in dogruluk, kesinlik,
hassasiyet, F1-puan1 ve MCC performans 6lgiim metrigi agisindan detayl analizler
yapilmistir. Test veri kiimesi ilizerinde farkli rastgele tohumlar i¢in 10 rastgele
denemeye sahip onerilen TfrAdmCov modelinin istatistiksel analizi, Tablo 4.13’te

gosterilmistir.
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Tablo 4.13. Test veri kiimesi iizerinde farkli rastgele tohumlar i¢in 10 rastgele
denemeye sahip Onerilen TfrAdmCov modelinin istatistiksel analizi
(Burukanli ve Yumusak, 2024a).

Performans degerlendirme metrikleri

Istatiksel Olgiim Dogruluk Kesinlik Hassasiyet F1-Skor MCC
Ortalama 0.999238 1.000000 0.971802 0.985699 0.985414
Standart sapma 0.000036 0.000000 0.001332 0.000685 0.000694
Medyan 0.999214 1.000000 0.970930 0.985251 0.984960
Minimum 0.999214 1.000000 0.970930 0.985251 0.984960
Maksimum 0.999293 1.000000 0.973837 0.986745 0.986474

Tablo 4.13'te de goriildigii gibi, 6nerilen TfrAdmCov modeli, test veri kiimesi
tizerinde elde edilen 10 dogruluk degeri arasinda ortalama 0.999238, standart sapma
0.000036, medyan 0.999214, minimum 0.999214 ve maksimum 0.999293 olarak elde
edilmistir. Test veri kiimesi iizerinde farkli rastgele tohumlar i¢in 10 rastgele
denemeye sahip onerilen TfrAdmCov modelinin istatistiksel analizi, Tablo 4.14’te

gosterilmistir.

Tablo 4.14. Test veri kiimesi lizerinde farkli rastgele tohumlar igin 10 rastgele
denemeye sahip RNN modelinin istatistiksel analizi (Burukanli ve
Yumusak, 20243).

Performans degerlendirme metrikleri

Istatiksel Olg¢iim Dogruluk Kesinlik Hassasiyet F1-Skor MCC
Ortalama 0.999175 1.000000 0.969476 0.984502 0.984202
Standart sapma 0.000039 0.000000 0.001453 0.000750 0.000757
Medyan 0.999175 1.000000 0.969476 0.984501 0.984202
Minimum 0.999136 1.000000 0.968023 0.983752 0.983445
Maksimum 0.999214 1.000000 0.970930 0.985251 0.984960
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Tablo 4.14'te de goriildiigii gibi, onerilen RNN modeli, elde edilen 10 dogruluk degeri
arasinda ortalama 0.999175, standart sapma 0.000039, medyan 0.999175, minimum
0.999136 ve maksimum 0.999214 olarak elde edilmistir. Test veri kiimesi iizerinde
farkli rastgele tohumlar i¢in 10 rastgele denemeye sahip RNN modelinin istatistiksel

analizi, Tablo 4.15’te gosterilmistir.

Tablo 4.15. Test veri kiimesi iizerinde farkli rastgele tohumlar i¢in 10 rastgele
denemeye sahip LSTM modelinin istatistiksel analizi (Burukanli ve
Yumusak, 20244a).

Performans degerlendirme metrikleri

Istatiksel Ol¢iim Dogruluk Kesinlik Hassasiyet F1-Skor MCC
Ortalama 0.999159 1.000000 0.968895 0.984202 0.983899
Standart sapma 0.000036 0.000000 0.001332 0.000687 0.000694
Medyan 0.999136 1.000000 0.968023 0.983752 0.983445
Minimum 0.999136 1.000000 0.968023 0.983752 0.983445
Maksimum 0.999214 1.000000 0.970930 0.985251 0.984960

Tablo 4.15'te de gorildiig gibi, 6nerilen LSTM modeli, elde edilen 10 dogruluk
degeri arasinda ortalama 0.999159, standart sapma 0.000036, medyan 0.999136,
minimum 0.999136 ve maksimum 0.999214 olarak elde edilmistir. Test veri kiimesi
tizerinde farkli rastgele tohumlar i¢in 10 rastgele denemeye sahip LSTM modelinin

istatistiksel analizi, Tablo 4.16°da gosterilmistir.

Tablo 4.16. Test veri kiimesi iizerinde farkli rastgele tohumlar i¢in 10 rastgele
denemeye sahip GRU modelinin istatistiksel analizi (Burukanli ve
Yumusak, 20244a).

Performans degerlendirme metrikleri

Istatiksel Olg¢iim Dogruluk Kesinlik Hassasiyet F1-Skor MCC
Ortalama 0.999144 1.000000 0.968314 0.983902 0.983596

Standart sapma 0.000023 0.000000 0.000872 0.000450 0.000454
Medyan 0.999136 1.000000 0.968023 0.983752 0.983445
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Tablo 4.16. (Devami) Test veri kiimesi iizerinde farkli rastgele tohumlar igin 10
rastgele denemeye sahip GRU modelinin istatistiksel analizi (Burukanli
ve Yumusak, 2024a).

Performans degerlendirme metrikleri

Istatiksel Olgiim Dogruluk Kesinlik Hassasiyet F1-Skor MCC
Minimum 0.999136 1.000000 0.968023 0.983752 0.983445
Maksimum 0.999214 1.000000 0.970930 0.985251 0.984960

Tablo 4.16'da da goriildiigi gibi 6nerilen GRU modeli, elde edilen 10 dogruluk degeri
arasindan ortalama 0.999144, standart sapma 0.000023, medyan 0.999136, minimum
0.999136 ve maksimum 0.999214 olarak elde edilmistir.

4.1.5. Egitim, test ve Kfold veri setlerinin olusturulmasinda kmeans kiimeleme
algoritmasimin yerine agglomerative kiimeleme algoritmasinin tercih
edilmesinin nedeni

Bu tez ¢aligmasinda egitim, test ve Kfold veri kiimelerini olugturmak i¢in ilk olarak
Kmeans algoritmasii kullandik. Ancak Tablo 4.17’de de goriildiigii gibi Onerilen
TfrAdmCov modelinin performans: agglomerative kiimeleme algoritmasi tercih
edildiginde daha yiiksek basarimlar elde edilmistir. Bu nedenle egitim, test ve Kfold
veri setlerini olusturmak i¢in agglomerative kiimeleme algoritmasi tercih edilmistir.
Onerilen TfrAdmCov modeli igin kmeans ve agglomerative kiimeleme algoritmalari
kullanilarak olusturulan test veri kiimesi tizerinde performans karsilastirmasi, Tablo

4.17°de gosterilmistir.

Tablo 4.17. Onerilen TfrAdmCov modeli i¢in kmeans ve agglomerative kiimeleme
algoritmalar1 kullanilarak olusturulan test veri kiimesi {iizerinde
performans karsilastirmasi (Burukanli ve Yumusak, 2024a).

Kiimeleme Dogruluk Kesinlik Hassasiyet F1-Skor  MCC

algoritmasi (%) (%) (%) (%) (%)
KMeans 99.62 88.52 96.38 92.28 92.17
Agglomerative 99.93 100.00 97.38 98.67 98.65
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4.1.6. Onerilen TfrAdmCov modelinin influenza A/ H3N2 HA veri seti iizerinde
performans degerlendirmesi

Onerilen TfrAdmCov modeli ile diger modellerin H3N2 HA test veri kiimesindeki
performans degerleri, Tablo 4.18’de gosterilmistir.

Tablo 4.18. Onerilen TfrAdmCov modeli ile diger modellerin H3N2 HA test veri
kiimesi tizerindeki performans degerleri (Burukanli ve Yumusak, 20244a).

Dogruluk Kesinlik Hassasiyet F1-Skor  MCC

Model (%) (%) (%) ) (%)
SVM 96.08 80.96 47.30 60.05 60.39
KNN 95.66 70.11 51.66 59.48 57.99
XGBoost 96.22 81.54 50.12 62.08 62.19
LR 93.79 46.98 4.29 7.87 12.77
RNN 96.03 77.12 50.67 61.16 60.62
LSTM 96.16 78.68 51.84 62.50 62.03
GRU 96.14 79.79 50.12 61.57 61.44
TfrAdmCov 96.33 81.55 52.33 63.75 63.61

Tablo 4.18°de de goriildiigii gibi, 6nerilen TfrAdmCov modeli, H3N2 HA test veri seti
tizerinde %96.33 ile dogruluk, %81.55 ile kesinlik, %52.33 hassasiyet, %63.75 ile F1-
skor ve %63.61 ile MCC degerlerinde diger modellere gore daha iyi sonuglar elde
etmistir. Diger taraftan, LR modeli, test veri seti lizerinde %93.79 ile dogruluk, %46.98
ile kesinlik, %4.29 ile hassasiyet, %7.87 ile Fl-skor ve %12.77 ile MCC degeri
bakimindan en kétii sonucu elde etmistir. influenza H3N2 HA test veri seti iizerindeki
sonuclar, onerilen TfrAdmCov modelinin olduk¢a saglam oldugunu gostermistir.
H3N2 HA test veri seti iizerinde 6nerilen TfrAdmCov modeli kullanilarak elde edilen

hata matrisi, Sekil 4.6’da gosterilmistir.
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influenza H3N2 HA test veri seti (izerinde énerilen
TfrAdmCov modeli kullanilarak elde edilen hata matrisi
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Sekil 4.6. H3N2 HA test veri seti tizerinde Onerilen TfrAdmCov modeli kullanilarak
elde edilen hata matrisi (Burukanl ve Yumusak, 2024a).

Sekil 4.6'da da goriildigi gibi, H3N2 HA test veri setinde onerilen TfrAdmCov
modeli, “mutasyon” smifindaki 1630 6rnekten 853 6rnegi dogru tahmin ederken,
“mutasyon” smifindaki 1630 6rnekten 777'sini hatali tahmin etmistir. Ayrica onerilen
TfrAdmCov modeli, “mutasyon yok” sinifindaki ise 24770 ornekten 24577 Ornegi
dogru tahmin ederken, “mutasyon yok” sinifindaki 24770 6rnekten 193 6rnegi hatal
tahmin etmistir. Onerilen TfrAdmCov modeli ile diger modellerin H3N2 HA test veri

kiimesi tizerindeki dogruluk degerleri, Sekil 4.7°de gosterilmistir.

influenza H3N2 HA test veri kimesi Gizerinde énerilen TfrAdmCov
modeli ile diger modeller icin dogruluk degerleri

96.33% 96.22% 96.16% 96.14% 96.08% 96.03% 95.66%
93.79%
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Sekil 4.7. Onerilen TfrAdmCov modeli ile diger modellerin H3N2 HA test veri kiimesi
iizerindeki dogruluk degerleri (Burukanli ve Yumusak, 2024a).

Sekil 4.7'de de goriildiigii gibi 6nerilen TfrAdmCov modeli %96.33 ile en iyi dogruluk

degerine ulagirken, LR modeli ise %93.79 ile en koétii dogruluk degerine ulasmistir.
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Onerilen TfrAdmCov modelinin son teknoloji (literatiir) calismalarla karsilastirilmasi,

Tablo 4.19°da gosterilmistir.

Tablo 4.19. Onerilen TfrAdmCov modelinin son teknoloji (literatiir) calismalarla
karsilagtiritlmasi (Burukanli ve Yumusak, 2024a).

Makale Model Veri seti Dogruluk (%)

Influenza genom dizisi
Mohamed ve ark. (2021) LSTM 98.99
(DNA) (HIN1)

) COVID-19 ORF7a Protein
Haimed ve ark. (2021) LSTM dizisi 72
izisi

Influenza Protein dizisi

Yin ve ark. (2020) TEMPEL 99.1
(H5N1)
) Influenza Protein dizisi Rouge value
Cai ve ark. (2024) FIUPMT
(HIN1) (98.7)
Li ve ark. (2023) GraphLncLoc RNA dizisi 61.2

) Influenza Protein disisi
Yin ve ark. (2022) IAV-CNN 91.7
(HIN1)

Zhou ve ark. (2023a) TEMPO COVID-19 S Protein dizisi 65.5

COVID-19 S Protein dizisi
Bizim ¢alisma TfrAdmCov 99.93
(test veri seti lizerinde)

COVID-19 S Protein dizisi
(farkli rastgele tohumlarla
Bizim ¢alisma TfrAdmCov . ) 99.924
sahip 10 rastgele denemenin

ortalamasi alinarak)

Tablo 4.19'da da goriildiigi gibi, Onerilen TfrAdmCov modeli test veri kiimesi
tizerinde %99.93 dogruluk degerini elde etmistir. Ayrica 6nerilen TfrAdmCov modeli,
farkli rastgele tohumlarla sahip 10 rastgele denemenin ortalamasini alindiginda da
%99.924 dogruluk degerine ulagmistir. Ayrica, Tablo 4.19'da da gorildigi gibi
onerilen TfrAdmCov modeli, en son teknolojiye sahip c¢aligmalardan daha iyi
performans gostermistir. Literatiirde yaymnlanan ¢alismalarin ¢ogunlugu ya COVID-

19 viriisiiniin diger yonleriyle ya da diger viriislerin mutasyonlariyla ilgilidir.
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Literatiirdeki bu eksikligi bir nebze olsun gidererek bu c¢alismay1 gergeklestirdik.
Sonug olarak, dnerilen TfrAdmCov modeli, COVID-19 veri seti iizerinde mutasyon

tahminini bagariyla gerceklestirebilmektedir.

4.2. Onerilen StackGridCov Modeli i¢in Elde Edilen Bulgular

4.2.1. Uygulama detaylar:

Bu tez calismasinda, tim modeller i¢in (makine 6grenimi ve topluluk 6grenme
modelleri hari¢) COVID-19 S protein veri kiimesinde, her biri i¢in minimum batch
size 256 olan Adam optimizasyonu (influenza A/HIN1 HA veri kiimesi i¢in RAdam)
kullanilmistir. Modellerin kodlayicisinda 6grenme oran1 0.001 olarak ayarlanmis ve
hiden size 128 olarak secilmistir. Kaybi (l0sS) en aza indiren amag fonksiyonu olarak
capraz entropi se¢ilmistir. Tiim derin 6grenme modellerinin egitimi i¢in dropout =0.5
ve epok =100 (influenza A/HIN1 HA veri kiimesi i¢in epok =50) kullanilmistir. Derin
ogrenme modelleri igin tiim deneysel sonuglar, tiim epoklar i¢in elde edilen degerlerin
(dogruluk, kesinlik, hatirlama, F1-skor, MCC) ortalamasi alinarak hesaplanmistir.
Onerilen StackGridCov modelinin ve diger algoritmanin performansm 6lgmek icin
alici igletim karakteristik egrisi altindaki alan (AUC) kullanilmistir. Hesaplanan AUC

degeri 1'e ne kadar yakinsa hesaplanan performans o kadar iyidir (Fan et al., 2006).

4.2.2. Elde edilen bulgular
Bu béliimde énerilen StackGridCov modeli ile diger modellerin hem COVID-19 S
protein veri seti hem de influenza A/HIN1 HA veri seti tizerinde elde edilen sonuglar

ve bu sonuglarin detayli analizi tartisilmaktadir.

4.2.3. Onerilen StackGridCov modeli ile diger modellerin COVID-19 S protein
veri seti iizerinde performans analizi

Her bir 6grenme algoritmasinin (makine 6grenmesi, topluluk 6grenmesi ve derin
O0grenme) performansi analiz edilmistir. Ek olarak, GridSearchCV hiperparametre
ayarlama teknigine sahip olan veya olmayan her bir makine 6grenmesi ve topluluk
Ogrenme algoritmasinin hata matrisleri sekillerle gosterilmistir. GridSearchCV'li veya
GridSearchCV'siz SVM algoritmasinin test veri seti iizerindeki performans degerleri,

Tablo 4.20°de gosterilmistir.
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Tablo 4.20. GridSearchCV'li veya GridSearchCV'siz SVM algoritmasinin test veri
seti tizerindeki performans degerleri (Burukanli ve Yumusak, 2024b).

Hyper-parametre ~ Dogrulu L . F1-
Model Kesinlik  Hassasiyet MCC AUC
ayarlama k Skor

GridSearchCV’li 0.6042 0.5835 0.6743 0.6256 0.2128 0.6114
SVM

GridSearchCV’siz~ 0.5304 0.5188 0.5877 0.5510 0.0633 0.5443

Tablo 4.20'de de goriildiigii gibi, GridSearchCV yontemine sahip SVM algoritmasi,
test veri kiimesinde GridSearchCV yontemine sahip olmayan SVM algoritmasindan
daha iyi performans gostermektedir. GridSearchCV yontemine sahip SVM algoritmasi
dogruluk degerini (0.5304'ten 0.6042'ye), kesinlik degerini (0.5188'den 0.5835'¢e),
hassasiyet degerini (0.5877'den 0.6743'e), F1-Skor degerini (0.5510'dan 0.6256'ya),
MCC degerini (0.0633'ten 0.2128'e) ve AUC degerini (0.5443'ten 0.6114'e kadar)
arttirmistir. Sonug olarak, GridSearchCV yontemine sahip SVM algoritmasinin test
veri seti iizerinde performansi 6nemli dlgiide arttirdig: gézlemlenmistir. COVID-19
test veri kiimesi iizerinde GridSearchCV ydntemine sahip SVM modeli kullanilarak
elde edilen hata matrisi, Sekil 4.8°de gosterilmistir. COVID-19 test veri kiimesi
tizerinde GridSearchCV yoOntemine sahip olmayan SVM modeli kullanilarak elde
edilen hata matrisi, Sekil 4.9’da gosterilmistir.

COVID-19 test veri seti tizerinde GridSearchCV yéntemine sahip
SVM modeli kullanilarak elde edilen hata matrisi
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Sekil 4.8. COVID-19 test veri kiimesi iizerinde GridSearchCV yéntemine sahip SVM
modeli kullanilarak elde edilen hata matrisi (Burukanli ve Yumusak,
2024b).
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COVID-19 test veri seti izerinde GridSearchCV yéntemine sahip
olmayan SVM modeli kullanilarak elde edilen hata matrisi
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Sekil 4.9. COVID-19 test veri kiimesi iizerinde GridSearchCV ydntemine sahip
olmayan SVM modeli kullanilarak elde edilen hata matrisi (Burukanlh ve
Yumusak, 2024b).

GridSearchCV'li veya GridSearchCV'siz RF algoritmasinin performans degerleri,

Tablo 4.21°de gosterilmistir.

Tablo 4.21. GridSearchCV'li veya GridSearchCV'siz RF algoritmasinin performans
degerleri (Burukanli ve Yumusak, 2024b).

Hyper-parametre o ) F1-
Model Dogruluk  Kesinlik  Hassasiyet MCC AUC
ayarlama Skor

GridSearchCV’li 0.5677 0.5489 0.6655 0.6016 0.1416 0.5725
RF

GridSearchCV’siz 0.5443 0.5337 0.5611 0.5470 0.0892 0.5609

Tablo 4.21'de de goriildigii gibi, GridSearchCV ydntemine sahip RF algoritmasi, test
veri kiimesinde GridSearchCV yontemine sahip olmayan RF algoritmasindan daha iyi
performans gostermektedir. GridSearchCV yontemine sahip RF algoritmast dogruluk
degerini (0.5443'ten 0.5677'ye), kesinlik degerini (0.5337'den 0.5489'a), hassasiyet
degerini (0.5611'den 0.6655'e), F1-skor degerini (0.5470'den 0.6016'ya), MCC
degerini (0.0892'den 0.1416'ya) ve AUC degerini (0.5609'dan 0.5725'e) arttirmustir.
Sonug olarak, GridSearchCV ydntemine sahip RF algoritmasinin test veri seti iizerinde

performansi dnemli dlgiide arttirdig1 gozlemlenmistir. COVID-19 test veri kiimesi
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tizerinde GridSearchCV yontemine sahip RF modeli kullanilarak elde edilen hata
matrisi, Sekil 4.10°da gésterilmistir. COVID-19 test veri kiimesi iizerinde
GridSearchCV yontemine sahip olmayan RF modeli kullanilarak elde edilen hata
matrisi, Sekil 4.11’de gosterilmistir.

COVID-19 test veri seti lizerinde GridSearchCV ydntemine sahip
RF modeli kullanilarak elde edilen hata matrisi
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Sekil 4.10. COVID-19 test veri kiimesi iizerinde GridSearchCV yéntemine sahip RF
modeli kullanilarak elde edilen hata matrisi (Burukanli ve Yumusak,
2024b).

COVID-19 test veri seti lizerinde GridSearchCV yéntemine sahip
olmayan RF modeli kullanilarak elde edilen hata matrisi
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Sekil 4.11. COVID-19 test veri kiimesi iizerinde GridSearchCV ydntemine sahip
olmayan RF modeli kullanilarak elde edilen hata matrisi (Burukanli
ve Yumusak, 2024b).

65



GridSearchCV'li veya GridSearchCV'siz XGBoost algoritmasimin performans

degerleri, Tablo 4.22°de gosterilmistir.

Tablo 4.22. GridSearchCV'li veya GridSearchCV'siz XGBoost algoritmasinin
performans degerleri (Burukanl ve Yumusak, 2024b).

Hyper-parametre o ] F1-
Model Dogruluk  Kesinlik  Hassasiyet MCC  AUC
ayarlama Skor

GridSearchCV’li 0.5686 0.5561 0.5965 0.5756 0.1384 0.5763
XGBoost
GridSearchCV’siz 0.5538 0.5445 0.5522 0.5483 0.1076 0.5609

Tablo 4.22'de de gorildiigii gibi, GridSearchCV yontemine sahip XGBoost
algoritmasi, test veri kiimesinde GridSearchCV yontemine sahip olmayan XGBoost
algoritmasindan daha iyi performans gostermektedir. GridSearchCV yontemine sahip
XGBoost algoritmasi dogruluk degerini (0.5538'den 0.5538'e), kesinlik degerini
(0.5445'ten 0.5561'e), hassasiyet degerini (0.5522'den 0.5965'e), F1-Skor degerini
(0.5483'ten 0.5756'ya), MCC degerini (0.1076'dan 0.1384'¢) ve AUC degerini
(0.5609'dan 0.5763'e kadar) yiikseltmistir. Sonug¢ olarak, GridSearchCV yontemine
sahip XGBoost algoritmasinin test veri seti lizerinde performansi 6nemli 6lgiide
arttirdigt goézlemlenmistir. COVID-19 test veri kiimesi iizerinde GridSearchCV
yontemine sahip XGBoost modeli kullanilarak elde edilen hata matrisi, Sekil 4.12°de
gosterilmistir. COVID-19 test veri kiimesi iizerinde GridSearchCV y&ntemine sahip
olmayan XGBoost modeli kullanilarak elde edilen hata matrisi, Sekil 4.13’te

gosterilmistir.

COVID-19 test veri seti tizerinde GridSearchCV yéntemine sahip
XGBoost modeli kullanilarak elde edilen hata matrisi
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Sekil 4.12. COVID-19 test veri kiimesi iizerinde GridSearchCV yéntemine sahip
XGBoost modeli kullanilarak elde edilen hata matrisi (Burukanl ve
Yumusak, 2024b).
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COVID-19 test veri seti tizerinde GridSearchCV ydntemine sahip
olmayan XGBoost modeli kullanilarak elde edilen hata matrisi
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Sekil 4.13. COVID-19 test veri kiimesi iizerinde GridSearchCV y&ntemine sahip
olmayan XGBoost modeli kullanilarak elde edilen hata matrisi (Burukanli
ve Yumusak, 2024b).

GridSearchCV'li veya GridSearchCV'siz YSA algoritmasimin performans degerleri,

Tablo 4.23’te gosterilmistir.

Tablo 4.23. GridSearchCV'li veya GridSearchCV'siz YSA algoritmasinin performans
degerleri (Burukanli ve Yumusak, 2024b).

Hyper-parametre o ) F1-
Model Dogruluk  Kesinlik  Hassasiyet MCC AUC
ayarlama Skor

GridSearchCV’li 0.5981 0.5810 0.6478 0.6126 0.1989 0.6054
YSA

GridSearchCV’siz 0.5686 0.5582 0.5770 0.5675 0.1375 0.5836

Tablo 4.23'te de goriildigii gibi, GridSearchCV yontemine sahip YSA algoritmasi, test
veri kiimesinde GridSearchCV yo6ntemine sahip olmayan YSA algoritmasindan daha
Iyi performans gostermektedir. GridSearchCV yontemine sahip YSA algoritmasi,
dogruluk degerini (0.5686'dan 0.5981'e), kesinlik degerini (0.5582'den 0.5810'a),
hassasiyet degerini (0.5770'den 0.6478'e), Fl-skor degerini(0.5675'ten 0.6126'ya),
MCC degerini (0.1375ten 0.1989'a) ve AUC degerini (0.5836'dan 0.6054'¢)
artirmigtir. Sonug olarak GridSearchCV yontemine sahip YSA algoritmasinin test veri
seti lizerindeki performans1 6nemli 6l¢iide arttirdig1 gézlemlenmistir. COVID-19 test

veri kiimesi tlizerinde GridSearchCV yontemine sahip YSA modeli kullanilarak elde
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edilen hata matrisi, Sekil 4.14’te gosterilmistir. COVID-19 test veri kiimesi iizerinde
GridSearchCV yoOntemine sahip olmayan YSA modeli kullanilarak elde edilen hata
matrisi, Sekil 4.15’te gosterilmistir.

COVID-19 test veri seti zerinde GridSearchCV yéntemine sahip
YSA modeli kullanilarak elde edilen hata matrisi
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Sekil 4.14. COVID-19 test veri kiimesi iizerinde GridSearchCV ydntemine sahip YSA
modeli kullanilarak elde edilen hata matrisi (Burukanli ve Yumusak,
2024b).

COVID-19 test veri seti (izerinde GridSearchCV yéntemine sahip
olmayan YSA modeli kullanilarak elde edilen hata matrisi
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Sekil 4.15. COVID-19 test veri kiimesi iizerinde GridSearchCV y&ntemine sahip
olmayan YSA modeli kullanilarak elde edilen hata matrisi (Burukanl ve
Yumusak, 2024b).
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GridSearchCV’li veya GridSearchCV’siz DT algoritmasinin performans degerleri,
Tablo 4.24’te gosterilmistir.

Tablo 4.24. GridSearchCV’li veya GridSearchCV’siz DT algoritmasinin performans
degerleri (Burukanli ve Yumusak, 2024b).

Hyper-parametre o ] F1-
Model Dogruluk  Kesinlik  Hassasiyet MCC  AUC
ayarlama Skor

GridSearchCV’li 0.5373 0.5254 0.5858 0.5540 0.0768 0.5676
DT
GridSearchCV’siz~ 0.5061 0.4957 0.4053 0.4460 0.0085 0.5435

Tablo 4.24'te de goriildiigi gibi, GridSearchCV yontemine sahip DT algoritmasi, test
veri kiimesinde GridSearchCV yontemine sahip olmayan DT algoritmasindan daha iyi
performans gostermektedir. GridSearchCV yontemine sahip DT algoritmast dogruluk
degerini (0.5061'den 0.5373'e), kesinlik degerini (0.4957'den 0.5254'¢), hassasiyet
degerini (0.4053'ten 0.5858'¢), F1-skor degerini (0.4460'dan 0.5540'a), MCC degerini
(0.0085'ten 0.0768'c) ve AUC degerini (0.5435'ten 0.5676'ya) arttirmistir. Sonug
olarak, GridSearchCV yontemine sahip DT algoritmasinin test veri seti tizerindeki
performans1 onemli dlgiide arttirdigi gézlemlenmistir. COVID-19 test veri kiimesi
tizerinde GridSearchCV yontemine sahip DT modeli kullanilarak elde edilen hata
matrisi, Sekil 4.16’da gosterilmisti. COVID-19 test veri kiimesi iizerinde
GridSearchCV yontemine sahip olmayan DT modeli kullanilarak elde edilen hata

matrisi, Sekil 4.17°de gosterilmistir.

COVID-19 test veri seti (izerinde GridSearchCV yéntemine sahip
DT modeli kullanilarak elde edilen hata matrisi
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Sekil 4.16. COVID-19 test veri kiimesi iizerinde GridSearchCV yéntemine sahip DT
modeli kullanilarak elde edilen hata matrisi (Burukanli ve Yumusak,
2024Db).
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COVID-19 test veri seti lizerinde GridSearchCV yéntemine sahip
olmayan DT modeli kullanilarak elde edilen hata matrisi
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Sekil 4.17. COVID-19 test veri kiimesi iizerinde GridSearchCV y&ntemine sahip
olmayan DT modeli kullanilarak elde edilen hata matrisi (Burukanli ve
Yumusak, 2024b).

GridSearchCV’li veya GridSearchCV’siz GB algoritmasinin performans degerleri,

Tablo 4.25’te gosterilmistir.

Tablo 4.25. GridSearchCV’li veya GridSearchCV’siz GB algoritmasinin performans
degerleri (Burukanl ve Yumusak, 2024b).

Hyper-parametre o ) F1-
Model Dogruluk  Kesinlik  Hassasiyet MCC AUC
ayarlama Skor

GridSearchCV’li 0.5720 0.5570 0.6230 0.5881 0.1467 0.5781
GB
GridSearchCV’siz 0.5694 0.5547 0.6195 0.5853 0.1414 0.5840

Tablo 4.25'te de goriildiigii gibi, GridSearchCV yontemine sahip GB algoritmasi, test
veri kiimesinde GridSearchCV yontemine sahip olmayan GB algoritmasindan daha iyi
performans gostermektedir. GridSearchCV yontemine sahip GB algoritmasi, dogruluk
degerini (0.5694'ten 0.5720'ye), kesinlik degerini (0.5547'den 0.5570'e), hassasiyet
degerini (0.6195'ten 0.6230'a), F1-skor degerini (0.5853'ten 0.5881'e) ve MCC
degerini (0.1414'ten 0.1467'ye) artirmistir. Sonug olarak, GridSearchCV yontemine
sahip GB algoritmasinin test veri seti tizerindeki performansi énemli 6l¢giide arttirdigt
gozlemlenmistir. COVID-19 test veri kiimesi iizerinde GridSearchCV ydntemine

sahip GB modeli kullanilarak elde edilen hata matrisi, Sekil 4.18’de gosterilmistir.
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COVID-19 test veri kiimesi iizerinde GridSearchCV y&ntemine sahip olmayan GB

modeli kullanilarak elde edilen hata matrisi, Sekil 4.19°da gosterilmistir.

COVID-19 test veri seti tizerinde GridSearchCV yéntemine sahip
GB modeli kullanilarak elde edilen hata matrisi
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Sekil 4.18. COVID-19 test veri kiimesi iizerinde GridSearchCV yéntemine sahip GB
modeli kullanilarak elde edilen hata matrisi (Burukanli ve Yumusak,
2024Db).

COVID-19 test veri seti lizerinde GridSearchCV yéntemine sahip
olmayan GB modeli kullanilarak elde edilen hata matrisi
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Sekil 4.19. COVID-19 test veri kiimesi iizerinde GridSearchCV yéntemine sahip
olmayan GB modeli kullanilarak elde edilen hata matrisi (Burukanli ve
Yumusak, 2024b).

GridSearchCV'li veya GridSearchCV'siz ET algoritmasinin performans degerleri,
Tablo 4.26°da gosterilmistir.
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Tablo 4.26. GridSearchCV'li veya GridSearchCV'siz ET algoritmasinin performans
degerleri (Burukanli ve Yumusak, 2024b).

Hyper-parametre L ) F1-
Model Dogruluk  Kesinlik  Hassasiyet MCC  AUC
ayarlama Skor

GridSearchCV’li 0.5564 0.5366 0.7009 0.6078 0.1232 0.5628
ET
GridSearchCV’siz 0.5104 0.5011 0.4195 0.4566 0.0177 0.5593

Tablo 4.26'da da goriildiigi gibi, GridSearchCV yontemine sahip ET algoritmasi, test
veri kiimesinde GridSearchCV yontemine sahip olmayan ET algoritmasindan daha iyi
performans gostermektedir. GridSearchCV yontemine sahip ET algoritmasi dogruluk
degerini (0.5104'ten 0.5564'¢), kesinlik degerini (0.5011'den 0.5366'ya), hassasiyet
degerini (0.4195'ten 0.7009'a), F1-skor degerini (0.4566'dan 0.6078'e), MCC degerini
(0.0177'den 0.1232'ye) ve AUC degerini (0.5593'ten 0.5628'e) arttirmistir. Sonug
olarak, GridSearchCV yontemine sahip ET algoritmasinin test veri seti lizerindeki
performans1 onemli dlgiide arttirdig gdzlemlenmistir. COVID-19 test veri kiimesi
tizerinde GridSearchCV yontemine sahip ET modeli kullanilarak elde edilen hata
matrisi, Sekil 4.20°de gosterilmisti. COVID-19 test veri kiimesi iizerinde
GridSearchCV yontemine sahip olmayan ET modeli kullanilarak elde edilen hata
matrisi, Sekil 4.21°de gosterilmistir.

COVID-19 test veri seti tizerinde GridSearchCV yéntemine sahip
ET modeli kullanilarak elde edilen hata matrisi
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Sekil 4.20. COVID-19 test veri kiimesi iizerinde GridSearchCV ydntemine sahip ET
modeli kullanilarak elde edilen hata matrisi (Burukanli ve Yumusak,
2024Db).
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COVID-19 test veri seti lizerinde GridSearchCV yéntemine sahip
olmayan ET modeli kullanilarak elde edilen hata matrisi
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Sekil 4.21. COVID-19 test veri kiimesi iizerinde GridSearchCV y&ntemine sahip
olmayan ET modeli kullanilarak elde edilen hata matrisi (Burukanli ve
Yumusak, 2024b).

GridSearchCV'li veya GridSearchCV'siz StackGridCov algoritmasinin performans

degerleri, Tablo 4.27°de gosterilmistir.

Tablo 4.27. GridSearchCV'li veya GridSearchCV'siz StackGridCov algoritmasinin
performans degerleri (Burukanli ve Yumusak, 2024b).

Hyper- F1
Model parametre  Dogruluk  Kesinlik  Hassasiyet Sk MCC AUC
or
ayarlama
GridSearch
0.6623 0.6415 0.7062 0.6723 0.3273 0.7018
CV’li
StackGridCov
GridSearch
0.6016 0.5833 0.6566 0.6178 0.2063 0.6133
CV’siz

Tablo 4.27'de de gorildigi gibi, GridSearchCV teknigine sahip Onerilen
StackGridCov algoritmasi, test veri kiimesinde GridSearchCV sahip olmayan
StackGridCov algoritmasindan daha 1yi performans gostermektedir. GridSearchCV
yontemine sahip Onerilen StackGridCov algoritmasi dogruluk degerini (0.6016'dan

0.6623'e), kesinlik degerini (0.5833'ten 0.6415'e), hassasiyet degerini (0.6566'dan
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0.7062'ye), Fl-skor degerini (0.6178'den 0.6723'e), MCC degerini (0.2063'ten
0.3273'¢) ve AUC degerini (0.6133'ten 0.7018'e) yiikseltmistir. Sonug¢ olarak,
GridSearchCV yontemine sahip Onerilen StackGridCov algoritmasinin test veri seti
tizerindeki performans1 6nemli dlgiide arttirdig1 gdzlemlenmistir. COVID-19 test veri
kiimesi tizerinde GridSearchCV yontemine sahip StackGridCov modeli kullanilarak

elde edilen hata matrisi, Sekil 4.22’de gosterilmistir.

COVID-19 test veri seti izerinde GridSearchCV yéntemine sahip
StackGridCov modeli kullanilarak elde edilen hata matrisi
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Sekil 4.22. COVID-19 test veri kiimesi iizerinde GridSearchCV y&ntemine sahip
StackGridCov modeli kullanilarak elde edilen hata matrisi (Burukanl ve
Yumusak, 2024b).

Sekil 4.22°de de goriildiigii lizere, COVID-19 test veri kiimesi iizerinde GridSearchCV
yontemine sahip StackGridCov modeli, “mutasyon” sinifindaki 565 6rnekten 399
ornegi dogru tahmin ederken, “mutasyon” siifindaki 565 6rnekten sadece 166 6rnegi
hatali tahmin etmistir. Ek olarak, GridSearchCV yontemine sahip StackGridCov
modeli, “mutasyon yok™ smiftaki 587 6rnekten 223 6rnenegi dogru bir sekilde tahmin
ederken, “mutasyon yok” siniftaki 587 ornekten 364 6rnenegi hatali tahmin etmistir.
COVID-19 test veri kiimesi iizerinde GridSearchCV yontemine sahip olmayan
StackGridCov modeli kullanilarak elde edilen hata matrisi, Sekil 4.23’te gosterilmistir.

74



COVID-19 test veri seti lizerinde GridSearchCV yéntemine sahip
olmayan StackGridCov modeli kullanilarak elde edilen hata matrisi
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Sekil 4.23. COVID-19 test veri kiimesi iizerinde GridSearchCV y&ntemine sahip
olmayan StackGridCov modeli kullanilarak elde edilen hata matrisi
(Burukanli ve Yumusak, 2024D).

Sekil 4.23’te de goriildiigii iizere, COVID-19 test veri kiimesi iizerinde GridSearchCV
yontemine sahip olmayan StackGridCov modeli, “mutasyon” sinifindaki 565 6rnekten
371 6rnegi dogru tahmin ederken, “mutasyon” smifindaki 565 6rnekten sadece 194
Ornegi hatali tahmin etmistir. Ek olarak, GridSearchCV yontemine sahip olmayan
StackGridCov modeli, “mutasyon yok” siniftaki 587 drnekten 265 6rnenegi dogru bir
sekilde tahmin ederken, “mutasyon yok” siniftaki 587 ornekten 322 6rnenegi hatali
tahmin etmistir. Derin 6grenme modellerinin (RNN, LSTM, GRU ve Transformer)

test veri kiimesi tizerindeki performans degerleri, Tablo 4.28”de gosterilmistir.

Tablo 4.28. Derin 6grenme modellerinin (RNN, LSTM, GRU ve Transformer) test
veri kiimesi lizerindeki performans degerleri (Burukanl ve Yumusak,

2024b).
Model Dogruluk  Kesinlik  Hassasiyet ~ F1-Skor MCC AUC
RNN 0.5889 0.5648 0.7101 0.6285 0.1882 0.5418
LSTM 0.6218 0.6040 0.6825 0.6378 0.2503 0.5177
GRU 0.6327 0.6294 0.6246 0.6254 0.2663 0.4863
Transformer 0.6395 0.6601 0.5708 0.6067 0.2837 0.4605
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Tablo 4.28'de de goriildiigii gibi Transformer modeli, test veri setinde 0.6395 dogruluk
degeri, 0.6601 kesinlik degeri ve 0.2837 MCC degeri agisindan RNN modeli, LSTM
modeli ve GRU modelinden daha iyi performans gostermektedir. RNN modeli, test
veri setinde 0.7101 hassasiyet degeri ve 0.5418 AUC degeri agisindan Transformer
modeli, LSTM modeli ve GRU modelinden daha iyi performans gostermektedir.
Ayrica LSTM modeli, test veri setinde 0.6378 F1-skor degeri acisindan Transformer
modeli, RNN modeli ve GRU modelinden daha iyi performans gostermektedir. RNN
modeli, 0.5889 dogruluk degeri, 0.5648 kesinlik degeri ve 0.1882 MCC degeri
acisindan diger derin 6grenme modellerine gore daha kotii performans gostermistir.
Benzer sekilde transformer modeli, 0.5708 hassasiyet degeri, 0.6067 F1-skor degeri
ve 0.4605 AUC degeri acisindan diger derin 6grenme modellerine gore daha koti
performans gostermistir. Onerilen StackGridCov modeli ile diger modellerin test veri

kiimesi tizerindeki performans karsilastirmalari, Tablo 4.29°da gosterilmistir.

Tablo 4.29. Onerilen StackGridCov modeli ile diger modellerin test veri seti
tizerindeki performans karsilastirmalari (Burukanli ve Yumusak, 2024b).

Hyper- =
Model parametre  Dogruluk  Kesinlik  Hassasiyet Sk MCC AUC
or
ayarlama
GridSearch
0.6042 0.5835 0.6743 0.6256 0.2128 0.6114
CV’li
SVM
GridSearch
0.5304 0.5188 0.5877 0.5510 0.0633 0.5443
CV’siz
GridSearch
0.5677 0.5489 0.6655 0.6016 0.1416 0.5725
CV’li
RF
GridSearch
0.5443 0.5337 0.5611 0.5470 0.0892 0.5609
CV’siz
GridSearch
0.5686 0.5561 0.5965 0.5756 0.1384 0.5763
CV’li
XGBoost
GridSearch
0.5538 0.5445 0.5522 0.5483 0.1076  0.5609
CV’siz
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Tablo 4.29. (Devami) Onerilen StackGridCov modeli ile diger modelelerin test veri
kiimesi tizerindeki performans karsilastirmalar1 (Burukanh ve Yumusak,

2024b).
Hyper- F1
Model parametre  Dogruluk  Kesinlik  Hassasiyet Sk MCC AUC
or
ayarlama
GridSearch
0.5981 0.5810 0.6478 0.6126  0.1989 0.6054
CV’li
YSA
GridSearch
0.5686 0.5582 0.5770 0.5675 0.1375 0.5836
CV’siz
GridSearch
0.5373 0.5254 0.5858 0.5540 0.0768 0.5676
CV’li
DT
GridSearch
0.5061 0.4957 0.4053 0.4460 0.0085 0.5435
CV’siz
GridSearch
0.5720 0.5570 0.6230 0.5881 0.1467 0.5781
CV’li
GB
GridSearch
0.5694 0.5547 0.6195 0.5853 0.1414 0.5840
CV’siz
GridSearch
0.5564 0.5366 0.7009 0.6078 0.1232 0.5628
CV’li
ET
GridSearch
0.5104 0.5011 0.4195 0.4566 0.0177 0.5593
CV’siz
GridSearch
RNN . 0.5889 0.5648 0.7101 0.6285 0.1882 0.5418
CV’siz
GridSearch
LSTM . 0.6218 0.6040 0.6825 0.6378 0.2503 0.5177
CV’siz
GridSearch
GRU . 0.6327 0.6294 0.6246 0.6254 0.2663 0.4863
CV’siz
GridSearch
Transformer CVrsi 0.6395 0.6601 0.5708 0.6067 0.2837 0.4605
’Siz
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Tablo 4.29. (Devami) Onerilen StackGridCov modeli ile diger modelelerin test veri
kiimesi tizerindeki performans karsilagtirmalar1 (Burukanli ve Yumusak,

2024b).
Hyper- F1
Model parametre  Dogruluk  Kesinlik  Hassasiyet Sk MCC  AUC
or
ayarlama
GridSearch
0.6623 0.6415 0.7062 0.6723 0.3273  0.7018
CV’ili
StackGridCov
GridSearch
0.6016 0.5833 0.6566 0.6178 0.2063  0.6133
CV’siz

Tablo 4.29'da da gorildigi gibi, GridSearchCV teknigine sahip Onerilen
StackGridCov, test veri setinde 0.6623 dogruluk degeri, 0.6723 F1-skor degeri, 0.3273
MCC degeri ve 0.7018 AUC degeri ile diger algoritmalardan daha iyi performans
gosterimistir. Transformer modeli, test veri seti lizerinde 0.6601 kesinlik deegri
acisindan diger algoritmalardan daha iyi performans gostermistir. Ote yandan
GridSearchCV yontemine sahip olmayan DT modeli, test veri setinde diger
algoritmalara gére 0.5061 dogruluk degeri, 0.4957 kesinlik degeri, 0.4053 hassasiyet
degeri, 0.4460 F1-skor degeri ve 0.0085 MCC degeri agisindan daha kotii performans
gostermistir. Ayrica transformer modeli, test veri seti {izerinde 0.4605 AUC degeri
acisindan diger algoritmalara gore daha kotii performans gostermistir. Sonug olarak
GridSearchCV hiperparametre tekniginin kullanilmasimin genel olarak onerilen
StackGridCov modeli ile diger yontemlerin performansini arttirdigi gézlemlenmistir.
Onerilen StackGridCov modeli ile diger modelerin COVID-19 test veri kiimesindeki

dogruluk degerleri, Sekil 4.24°te gosterilmistir.

COVID-19 test veri kiimesi tizerinde 6nerilen StackGridCov modeli ile diger modeller icin dogruluk degerleri
06623
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Sekil 4.24. Onerilen StackGridCov modeli ile diger modelerin COVID-19 test veri
kiimesindeki dogruluk degerleri (Burukanli ve Yumusak, 2024b).
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Onerilen StackGridCov modeli ile diger modellerin KFold veri seti iizerindeki

performans degerlerinin karsilastirilmasi, Tablo 4.30°da gosterilmistir.

Tablo 4.30. Onerilen StackGridCov modeli ile diger modellerin KFold veri seti
tizerindeki performans degerlerinin karsilagtirilmast (Burukanli ve

Yumusak, 2024b).
Hyper-parametre o ) F1-
Model Dogruluk  Kesinlik  Hassasiyet MCC
ayarlama Skor
GridSearchCV’li 0.5934 0.5811 0.6721 0.6232  0.1892
SVM
GridSearchCV’siz 0.5590 0.5526 0.6200 0.5843  0.1190
GridSearchCV’li 0.5818 0.5696 0.6707 0.6159  0.1663
RF
GridSearchCV’siz 0.5398 0.5379 0.5703 0.5533  0.0798
GridSearchCV’li 0.5573 0.5554 0.5832 0.5684  0.1149
XGBoost
GridSearchCV’siz 0.5417 0.5414 0.5544 0.5475  0.0835
GridSearchCV’li 0.5669 0.5644 0.5884 0.5759  0.1340
YSA
GridSearchCV’siz 0.5488 0.5470 0.5679 0.5565  0.0981
GridSearchCV’li 0.5486 0.5401 0.6617 0.5926  0.1013
DT
GridSearchCV’siz 0.5092 0.5076 0.4456 0.4722  0.0189
GridSearchCV’li 0.5681 0.5638 0.6065 0.5840  0.1367
GB
GridSearchCV’siz 0.5667 0.5630 0.6020 0.5813  0.1339
GridSearchCV’li 0.5637 0.5550 0.6457 0.5968  0.1292
ET
GridSearchCV’siz 0.4927 0.4922 0.4161 0.4505 -0.0146
GridSearchCV’li 0.6610 0.6614 0.6613 0.6607  0.3226
StackGridCov
GridSearchCV’siz 0.5969 0.5884 0.6481 0.6165 0.1951

Tablo 4.30'da da gortildiigii gibi onerilen StackGridCov modeli, KFold veri setinde
0.6610 dogruluk degeri, 0.6614 kesinlik degeri, 0.6607 F1-skor degeri ve 0.3226 MCC
degeri ile diger yaklasimlardan daha iyi basarim elde etmistir. Ayrica SVM modeli,
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KFold veri kiimesinde 0.6721 hassasiyet degeri agisindan diger algoritmalardan daha
iyi performans gostermistir. Ote yandan, GridSearchCV yéntemine sahip olmayan ET
modeli, diger algoritmalarla karsilastirildiginda KFold veri setinde 0.4927 dogruluk
degeri, 0.4922 kesinlik degeri, 0.4161 hassasiyet degeri, 0.4505 F1-skor degeri ve -
0.0146 MCC degeri agisindan daha kotii performans gostermistir. Sonug olarak,
GridSearchCV hiperparametre tekniginin kullanilmasinin genel olarak Onerilen

StackGridCov modeli ile diger yontemlerin performansini arttirdigi gézlemlenmistir.

4.2.4. Onerilen StackGridCov modeli ile diger modellerin influenza A/HIN1 HA
veri seti iizerindeki performans analizi

Bu boéliimde onerilen StackGridCov modelinin ve diger modellerin performansini
degerlendirmek i¢in influenza A/HIN1 HA veri seti kullamlmistir. Elde edilen
sonuglar incelendiginde, 6nerilen StackGridCov modelinin sadece COVID-19 viriisii
tizerindeki mutasyonu tahmin etmekle kalmayip ayn1 zamanda influenza A/HIN1
viriisii ilizerindeki mutasyonu da tahmin ettigi goriilmektedir. Bu da Onerilen
StackGridCov modelin ne kadar saglam oldugunu kanitlamaktadir. Onerilen
StackGridCov modeli ile diger modellerin influenza A/HIN1 HA test veri kiimesi

tizerindeki performans karsilastirmalari, Tablo 4.31°de gosterilmistir.

Tablo 4.31. Onerilen StackGridCov modeli ile diger modellerin influenza A/HIN1
HA test veri kiimesi iizerindeki performans karsilastirmalar1 (Burukanli

ve Yumusak, 2024b).
Model Dogruluk  Kesinlik  Hassasiyet ~ F1-Skor MCC
SVM 0.9450 0.8269 0.7816 0.8036 0.7721
RF 0.9426 0.8140 0.7790 0.7961 0.7630
XGBoost 0.9444 0.8216 0.7842 0.8025 0.7705
YSA 0.9404 0.8026 0.7773 0.7897 0.7552
DT 0.9373 0.7960 0.7585 0.7768 0.7406
GB 0.9396 0.8295 0.7305 0.7768 0.7441
ET 0.9414 0.8138 0.7687 0.7906 0.7570
RNN 0.9354 0.7881 0.7534 0.7696 0.7328
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Tablo 4.31. (Devami) Onerilen StackGridCov modeli ile diger modellerin influenza

A/HIN1 HA test veri kiimesi lizerindeki performans karsilastirmalari
(Burukanli ve Yumusak, 2024b).

Model Dogruluk Kesinlik ~ Hassasiyet F1-Skor MCC
LSTM 0.9418 0.8132 0.7739 0.7928 0.7595
GRU 0.9403 0.8116 0.7613 0.7851 0.7514
Transformer 0.9452 0.8219 0.7903 0.8058 0.7741
StackGridCov 0.9460 0.8221 0.7969 0.8093 0.7780

Tablo 4.31'de de goriildiigii gibi 6nerilen StackGridCov modeli, influenza A/HIN1
HA test veri setinde 0.9460 dogruluk degeri, 0.7969 hassasiyet degeri, 0.8093 F1-skor
degeri ve 0.7780 MCC degeri agisindan diger modellerden daha iyi performans
gostermistir. Ayrica, GB modeli, influenza A/HIN1 HA test veri setinde 0.8295
kesinlik degeri agisindan diger algoritmalardan daha iyi performans gostermistir. Ote
yandan RNN modeli, diger algoritmalarla karsilagtirildiginda influenza A/HIN1 HA
test veri setinde 0.9354 dogruluk degeri, 0.7881 kesinlik degeri, 0.7696 F1-skor deegri
ve 0.7328 MCC degeri agisindan daha kotii performans gostermistir. Benzer sekilde
GB modeli, diger algoritmalarla karsilagtirildiginda influenza A/HIN1 HA test veri
setinde 0.7305 hassasiyet degeri agisindan daha kotii performans gostermistir. Sonug
olarak, onerilen StackGridCov modelinin, hem COVID-19 test veri kiimesinde hem
de Influenza A/HIN1 HA test veri kiimesinde mutasyon tahmini gorevinde genel
olarak diger modellerden daha iyi performans elde etmistir. Onerilen StackGridCov
modeli ile diger modellerin influenza A/HIN1 HA test veri kiimesi iizerindeki

dogruluk degerleri, Sekil 4.25’te gosterilmistir.

influenza H1IN1 HA test veri kimesi Gzerinde 6nerilen StackGridCov modeli ile diger modeller icin dogruluk degerleri
0.9460 0.9452 0.9450 0.9444 0.9426 0.9418 0.9414 0.9404 0.9403 0.9396 0.9373
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Sekil 4.25. Onerilen StackGridCov modeli ile diger modellerin influenza A/HIN1 HA
test veri kiimesi tizerindeki dogruluk degerleri (Burukanli ve Yumusak,
2024Db).
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Influenza A/HIN1 HA test veri kiimesi tizerinde elde edilen onerilen StackGridCov

modelinin hata matrisi, Sekil 4.26’da gosterilmistir.

influenza H1IN1 HA test veri seti (izerinde
StackGridCov modeli kullanilarak elde edilen hata matrisi
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Sekil 4.26. influenza A/HIN1 HA test veri kiimesi iizerinde elde edilen 6nerilen
StackGridCov modelinin hata matrisi (Burukanli ve Yumusak, 2024b).

Onerilen StackGridCov modelinin literatiirle karsilastirilmasi, Tablo 4.32’de

gosterilmistir.

Tablo 4.32. Onerilen StackGridCov modelinin literatiirle karsilastirilmasi (Burukanli

ve Yumusak, 2024b).
Aragtirma Model Dogruluk  Kesinlik  Hassasiyet F1-Skor MCC
ode
makalesi (%) (%) (%) (%) (%)
Zhou ve ark.
TEMPO 65.5 65.8 61.4 63.6 30.9
(2023a)
o GridSearchCV’li
Bizim model ) 66.23 64.15 70.62 67.23 32.73
StackGridCov

Tablo 4.32'de de goriildigi gibi, GridSearchCV yo6ntemine sahip Onerilen
StackGridCov modeli, test veri kiimesinde 9%66.23 dogruluk degeri, %70.62
hassasiyet degeri, %67.23 Fl-skor degeri ve %32.73 MCC degeri ile TEMPO
modelinden daha iyi performans gostermistir. Ote yandan, TEMPO modeli, test veri

seti lizerinde yalnizca %065.8 kesinlik degeri agisindan oOnerilen StackGridCov

82



modelinden daha iyi performans gostermistir. Sonug olarak, test veri seti iizerinde
GridSearchCV modeline sahip 6nerilen StackGridCov modeli, TEMPO modeli ile
karsilastirildiginda, performansin %1.1 oraninda dogruluk degeri, %15 oraninda
hassasiyet degeri, %5.7 oraninda F1-skor degeri ve %5.9 oraninda MCC degerini
arttig1 gorillmiistiir. Sonug olarak onerilen StackGridCov modeli, test veri setinde
(%65.8 kesinlik degeri hari¢) son teknoloji ¢alisma TEMPO modelinden daha iyi
performans gostermistir. Nihai olarak, GridSearchCV hiperparametre ayarlama
algoritmasimin hem onerilen StackGridCov modelinin hemde diger modellerin
performansini Onemli Olgiide iyilestirdigi ve GridSearchCV algoritmasina sahip
onerilen StackGridCov modelinin, hem COVID-19 viriis veri seti tizerindeki
mutasyonlart tahmin etmede hemde influenza A/HIN1 HA viriisii veri kiimesi

tizerindeki mutasyonlari1 tahmin etmede olduk¢a basarili oldugu gozlemlenmistir.

4.3. Onerilen HyperAttCov Modeli i¢in Elde Edilen Bulgular

Bu tez ¢alismasinda, derin 6grenme modellerinin (RNN, LSTM vb.) performansini en
iist diizeye ¢ikarmak amaciyla hiperparametre degerleri (hidden size, dropout, batch
size vb.) bir¢ok kez (deneme yanilma) test edilmis ve en iyi hiper parametre degerleri
secilmistir. Tiim modeller i¢in (SVM ve LR modelleri hari¢), model optimizasyonu
icin minimum batch size degeri 32 olan Adam optimizasyon algoritmasi kullanilmistir.
Onerilen HyperAttCov modeli ile diger modellerin kodlayicisinda (encoder’da)
ogrenme oran1 0,0015 ve hidden size degeri 128 olarak ayarlanmistir. Amag
fonksiyonu olarak (kayiplari en aza indirmek igin) ¢apraz entropi (Cross entropy)
kullanilmigtir. Téim modellerin egitimi igin dropout degeri 0.4 ve epok degeri 120
tercih edilmistir. Ayrica transformer kodlayici katmaninda kullanilan ¢oklu kafa
dikkat sayis1 (multi head attention) (varsayilan degerleri dahil) bir¢ok kez test edilmis
ve en iyi hiper parametre degeri olan ¢oklu kafa dikkat = 2 olarak segilmistir. Onerilen
HyperAttCov modeli i¢in (varsayilan degerler dahil) bir¢ok kez test edilmis ve en iyi
hiperparametre degeri num_heads sayisi1 = 2 olarak segilmistir. Onerilen HyperAttCov
modelinin ve diger modellerin hiperparametre ve bu hiperparametrelerin degerleri,

Tablo 4.33’te verilmistir.
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Tablo 4.33. Onerilen HyperAttCov modelinin ve diger modellerin hiperparametre ve

degerleri (Burukanli ve Yumusak, 2024c).

Hyper-parametre ad1 Degeri
Hidden Size 128
Dropout 0.4
Batch Size 32
Ogrenme orani 0.0015
Epok 120
Optimizasyon algoritmasi Adam

Kayip fonksiyonu

Onerilen HyperAttCov igin num_heads saysi
HyperMixer i¢cin num_heads sayisi
Transformer kodlayici sayist

Coklu kafali dikkat say1st

cross entropy

4.3.1. Elde edilen bulgular

Bu tez ¢aligmasinda dnerilen HyperAttCov modeli ile diger modellerin COVID-19 test

veri seti lizerinde (holdout teknigi kullanilarak) test edilerek performans degerleri elde

edilmistir. Holdout teknigi kullanilmasi durumunda veri seti diizgiin dagilmis olabilme

ihtimaline karsin, 6nerilen HyperAttCov modelinin performansi ile diger modellerin

performanslarini adil bir sekilde degerlendirmek i¢in, tiim deneysel sonuglar farkli

rastgele tohumlara sahip 10 rastgele denemenin ortalamasi alinarak hesaplanmistir.

Ayrica tiim derin 6grenme modellerinin performans: hesaplanirken en iyi dogruluk

degerleri kullanilarak tiim derin 6grenme modellerinin performans degerleri elde

edilmistir. Onerilen HyperAttCov modeli ile diger modellerin COVID-19 test veri seti

tizerinde elde edilen performans degerleri, Tablo 4.34’te gosterilmistir.
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Tablo 4.34. Onerilen HyperAttCov modeli ile diger modellerin COVID-19 test veri
seti tizerinde elde edilen performans degerleri (Burukanli ve Yumusak,

2024c).

Model Dogruluk Kesinlik Hassasiyet F1-Skor MCC
(%) (%) (%) (%) (%)

SVM 53.0 51.9 58.8 55.1 6.3
LR 54.2 53.0 57.5 55.2 8.5

RF 54.4 534 56.1 54.7 8.9
RNN 63.5 65.9 53.1 58.8 27.3
LSTM 63.9 64.8 57.9 61.1 27.8
GRU 66.3 73.1 49.6 59.1 34.0
Transformer 64.8 73.7 44.1 55.1 31.7

HyperMixer (Mai

etal., 2023) 60.1 59.5 58.4 58.9 20.1
HyperAttCov 70.0 92.0 42.5 58.1 46.5

Tablo 4.34’te de goriildiigii iizere 6nerilen HyperAttCov modeli, COVID-19 S protein
testi veri seti lizerinde %70.0 ile dogruluk degeri, %92.0 ile kesinlik degeri ve %46,5
ile MCC degeri agisindan diger modellere gore daha iyi sonuglar elde etmistir. Ote
yandan, SVM modeli, COVID-19 test veri setinde %58.8 ile hassasiyet degeri
bakimindan diger yaklagimlarindan gére daha iyi performans elde etmistir. Ek olarak,
LSTM modeli, COVID-19 test veri setinde %61.1 ile F1-Skor degeri ile diger
modellere gore daha iyi performans gostermistir. Sonu¢ olarak deneysel sonuglar
detayli olarak incelendiginde derin 6grenmeye dayali modellerin genellikle diger
geleneksel makine 6grenimi modellerinden daha iyi performans elde etmistir. Onerilen
HyperAttCov modeli, COVID-19 test veri seti iizerinde standart HyperMixer (Mai et
al., 2023) modeliyle karsilastirildiginda performans degerlerinde dogrulukta %16.47,
kesinlikte %54.62 ve MCC'de %131.34 artis oldugu goriilmiistiir. Ayrica Onerilen
HyperAttCov modeli, COVID-19 test veri seti iizerinde standart LSTM modeli ile
karsilastirildiginda, performans degerlerinin ortalamasi dogrulukta %9.55, kesinlikte
%41.98 ve MCC degerinde %67.27 artis oldugu gdzlemlenmistir. Onerilen
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HyperAttCov modelinin COVID-19 test veri seti iizerinde elde edilen hata matrisi,
Sekil 4.27°de gosterilmistir.

COVID-19 test veri seti (izerinde
HyperAttCov modeli kullanilarak elde edilen hata matrisi
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Sekil 4.27. Onerilen HyperAttCov modelinin COVID-19 test veri seti iizerinde elde
edilen hata matrisi

Sekil 4.27°de de goriildiigii iizere, COVID-19 test veri setinde énerilen HyperAttCov
modeli, “mutasyon” sinifindaki 565 Ornekten 240 6rnegi dogru tahmin ederken,
“mutasyon” sinifindaki 565 Ornekten 325 Ornegi hatali tahmin etmistir. Ayrica
onerilen HyperAttCov modeli, “mutasyon yok” sinifta ise 587 ornekten 566 Grnegi
dogru tahmin ederken, “mutasyonun yok” sinifindan 587 6rnekten sadece 21 6rnegi
hatal1 tahmin etmistir. Onerilen HyperAttCov modeli ile diger modellerin COVID-19

test veri kiimesi lizerindeki dogruluk degerleri, Sekil 4.28’de gosterilmistir.

COVID-19 test veri kiimesi tizerinde 6nerilen HyperAttCov modeli ile
diger modeller icin dogruluk degerleri
70.0%

66.3%
64.8%  63.9%  63.5%

60.1%
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\M"e(“\\
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Sekil 4.28. Onerilen HyperAttCov modeli ile diger modellerin COVID-19 test veri
kiimesi tizerindeki dogruluk degerleri (Burukanli ve Yumusak, 2024c).
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COVID-19 test veri seti iizerinde &nerilen HyperAttCov modeli igin elde edilen
dogruluk-epok egrisi, Sekil 4.29°de gosterilmistir. COVID-19 test veri setinde
onerilen HyperAttCov modeli i¢in elde edilen kayip-epok egrisi, Sekil 4.30’da

gosterilmistir.

HyperAttCov model
0.70 -

0.65 -

0.60 -

0.55 -

Dogruluk (Accuracy)

0.50 - —— Egitim (Training)
—— Dogrulama (Validation)

0 20 40 60 80 100 120
Epok (Epoch)

Sekil 4.29. COVID-19 test veri seti iizerinde dnerilen HyperAttCov modeli igin elde
edilen dogruluk-epok egrisi (Burukanli ve Yumusak, 2024c).

HyperAttCov model

—— Egitim (Training)
—— Dogrulama (Validation)

(IJ 2|0 4|0 6I0 BIO 1 D 0 1 2 0
Epok (Epoch)

Sekil 4.30. COVID-19 test veri setinde &nerilen HyperAttCov modeli i¢in elde edilen
kayip-epok egrisi (Burukanli ve Yumusak, 2024c).
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Onerilen HyperAttCov modeli ile diger modeller icin COVID-19 test veri kiimesinde
farkli rastgele tohumlara sahip 10 rastgele deneme ile elde edilen ortalama performans

degerleri, Tablo 4.35’te gosterilmistir.

Tablo 4.35. Onerilen HyperAttCov modeli ile diger modeller icin COVID-19 test veri
kiimesinde farkli rastgele tohumlara sahip 10 rastgele deneme ile elde
edilen ortalama performans degerleri (Burukanli ve Yumusak, 2024c).

Dogruluk Kesinlik Hassasiyet MCC
Model F1-Skor (%)
(%) (%) (%) (%)
SVM 53.0 51.9 58.8 55.1 6.3
LR 54.2 53.0 57.5 55.2 8.5
RF 54.5 53.4 56.1 54.7 9.0
RNN 64.2 67.8 51.9 58.7 29.0
LSTM 64.3 65.2 58.3 61.6 28.5
GRU 66.2 73.4 48.8 58.6 33.9
Transformer 64.7 70.4 49.3 57.6 30.8
HyperMixer (Mai
59.9 59.0 60.4 60.0 19.9
etal., 2023)
HyperAttCov 70.2 90.4 43.9 59.1 46.2

Tablo 4.35’te de goriildiigii gibi onerilen HyperAttCov modeli, COVID-19 S protein
testi veri setinde %70.2 ile ortalama dogruluk degeri, %90.4 ile ortalama kesinlik
degerive %46.2 ile ortalama MCC degeri agisindan diger modellere gore daha iyi
sonuglar elde etmistir. Ote yandan, HyperMixer (Mai et al., 2023) modeli COVID-19
test veri setinde %60.4 ile ortalama hassasiyet degeri ile diger modellere gore daha iyi
performans gostermistir. Ayrica, LSTM modeli, COVID-19 test veri setinde %61.6 ile
ortalama F1-skor degeri ile diger modellere gore daha iyi performans gostermistir. Ote
yandan, SVM modeli, ortalama dogruluk, ortalama hassasiyet ve ortalama MCC
degerleri bazinda en kotii performansi gostermistir. Deneysel sonuglar, derin
o0grenmeye dayali modellerin genellikle diger geleneksel makine Ogrenimi
modellerinden daha iyi performans elde ettigini gostermistir. Onerilen HyperAttCov
modeli, COVID-19 test veri seti iizerinde standart HyperMixer [86] modeli ile
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karsilastirildiginda, performans degerlerinin ortalama olarak %17.20 ile dogruluk,
%53.22 ile kesinlik ve %132.16 ile MCC artig goriilmistiir. Ayrica Onerilen
HyperAttCov modeli, COVID-19 test veri seti iizerinde standart LSTM modeli ile
karsilastirildiginda, performans degerlerinin ortalama olarak %9.18 ile dogruluk,
%38.65 ile kesinlik ve %62.11 ile MCC artis1 gostermistir. Onerilen HyperAttCov
modeli ile diger modellerin COVID-19 test veri kiimesi iizerinde ortalama 10 rastgele

deneme i¢in elde edilen dogruluk degerleri, Sekil 4.31°de gosterilmistir.

COVID-19 test veri kimesi Gizerinde 10 rastgele denemeye sahip
Onerilen HyperAttCov modeli ile diger modeller icin ortalama dogruluk degerleri

70.2%
66.2%

64.7%  64.3%  64.2%
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Sekil 4.31. Onerilen HyperAttCov modeli ile diger modellerin COVID-19 test veri
kiimesi tizerinde 10 rastgele deneme i¢in elde edilen ortalama dogruluk
degerleri (Burukanli ve Yumusak, 2024c).

Onerilen HyperAttCov modelinin COVID-19 test veri seti iizerine literatiirdeki

(TEMPO) ¢alisma ile performans karsilastirmasi, Tablo 4.36°da gosterilmistir.

Tablo 4.36. Onerilen HyperAttCov modelinin COVID-19 test veri seti iizerine
literatlirdeki (TEMPO) caligma ile performans karsilastirmasi (Burukanh

ve Yumusak, 2024c).
Arastirma makalesi Model Dogruluk  Kesinlik Hassasiyet F1-Skor MCC
ode

(%) (%) (%) (%) (%)

Zhou ve ark.
TEMPO 65.5 65.8 61.4 63.6 30.9

(2023a)
Bizim model HyperAttCov 70.0 92.0 42.5 58.1 46.5
Bizim model (10

rastgele denemenin  HyperAttCov 70.2 90.4 43.9 59.1 46.2

ortalamasi)
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Tablo 4.36'da da goriildiigii gibi onerilen HyperAttCov modeli, COVID-19 test veri
setinde dogruluk, kesinlik ve MCC degeri agisindan TEMPO modelinden daha iyi
performans gostermistir. Deneysel sonuglar gostermistir ki, 6nerilen HyperAttCov
modeli TEMPO modeli ile karsilastirildiginda, COVID-19 test veri setinde performans
degerleri %6.87 oraninda dogruluk degeri, %39.82 oraninda kesinlik degeri, %50.49
oraninda MCC degeri artis1 gozlemlenmistir. Benzer sekilde, 10 rastgele denemenin
ortalamasi alinmasi durumda ise Onerilen HyperAttCov modeli, TEMPO modeliyle
karsilastinnldiginda, COVID-19 test veri setinde performans degerlerinin ortalamasi
olarak %7.18 oraninda dogruluk degeri, %37.39 oraninda kesinlik degeri ve %49.51
oraninda ise MCC degeri artirilmistir. Sonug olarak, HyperMixer ve dikkat
mekanizmalarinin kullanilmasi, 6nerilen HyperAttCov modelinin performansini

Onemli Olgiide arrtirmastir.
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5. SONUC VE ONERILER

COVID-19 viriisiiniin mutasyonlariyla bas etmede as1 ve ilaglarin gelistirilmesi
olduk¢a dnemlidir. Giiniimiizde pek ¢ok as1 gelisrilmis olup, COVID-19 viriisiiniin
mutasyona sik sik mutasyona ugramasi sonucu etkindikleri 6nemli oranda azalmustur.
Gelisen teknoloji ile beraber basaris1 kanitlanmis yapay zeka tabanli modeler oldukga
sik saglik alanma uygulanmistir. Bu tez ¢alismasinda, COVID-19 viriisiiniin yapisinda
meydana gelebilecek mutasyonlari tahmin etmek i¢in ii¢ adet yapay zeka tabanli model

(TfrAdmCov, StackGridCov ve HyperAttCov) 6nerdik.

Onerilen TfrAdmCov modelini kullanarak 2022 yilinda COVID-19 S (Spike)
proteininde meydana gelebilecek mutasyonlari tahmin etmeyi amagladik. Veri
kiimelerini olusturmak i¢in aglomeratif kiimeleme algoritmasini kullandik. Ayrica
makine Ogrenimi tabanli modellerin performansint artirmak i¢in GridSearchCV
hiperparametre ayarlama yontemini kullandik. Her makine 6grenimi tabanli modelin
performansint degerlendirmek i¢in holdout teknigi ve stratified 10 katli gapraz
dogrulama teknigi kullanilmistir. Onerilen TfrAdmCov modelinin ve derin grenmeye
dayali modellerin performansini dogrulamak icin istatistiksel analizler de
gerceklestirdik. Deneysel sonuglar incelendiginde, onerilen TfrAdmCov modelinin
hem temel hem de bazi son teknoloji yontemlerden daha iyi performans gosterdigi
goriilmiistiir. Onerilen TfrAdmCov modeli, COVID-19 test veri kiimesinde %99.93
ile dogruluk degerine, %100.00 kesinlik degerine, %97.38 hassasiyet degerine,
%98.67 F1-skor degerine ve %9.65 MCC degerine ulasmistir. Benzer sekilde, onerilen
TfrAdmCov modeli, influenza A/H3N2 HA protein veri seti lizerinde %96.33 ile
dogruluk degeri, %81.55 ile kesinlik degeri, %52.33 ile hassasiyet degeri, %63.75 ile
F1-skor degeri ve %63.61 ile MCC degeri agisindan diger modellerden daha iyi
sonuclar elde etmistir. Sonuc olarak, dnerilen TfrAdmCov modeli, hem COVID-19
veri kiimesinde hem de influenza A/H3N2 HA veri kiimesinde meydana gelen

mutasyonlar1 basarili bir sekilde tahmin etmistir.

Ayrica, bu tez calismasimda, COVID-19 viriisiiniin mutasyon tahmini i¢in saglam bir

StackGridCov modeli &nerdik. Onerilen StackGridCov modelinin ve diger



algoritmalarin performansini artirmak i¢in GridSearchCV hiperparametre ayarlama
algoritmasini kullandik. Onerilen StackGridCov modelinin ve diger algoritmalarin
performansini degerlendirmek i¢in, holdout tekniginin yani sira stratified 10-kath
capraz dogrulama teknigini de kullandik. Onerilen StackGridCov modeli ile diger
algoritmalar1 dogruluk, kesinlik, hassasiyet, F1l-skor, MCC ve AUC degerleri
acisindan karsilastirdik. Deneysel sonuglar incelendiginde, onerilen StackGridCov
modelinin test veri seti tizerinde 0.6623 ile dogruluk degeri, 0.6723 ile F1-skor degeri,
0.3273 ile MCC degeri ve 0.7018 ile AUC degeri ile diger algoritmalardan daha iyi
performans gosterdigi goriilmiistiir. Ayrica onerilen StackGridCov modeli, KFold veri
setinde 0.6610 ile dogruluk degeri, 0.6614 ile hassasiyet degeri, 0.6607 ile F1-skor
degeri ve 0.3226 ile MCC degeri agisindan diger algoritmalardan daha iyi performans
gostermistir. Sonuglar detayli incelendiginde, Onerilen StackGridCov modelinin
literatlirdeki ¢alismaya (TEMPO) gore daha iyi performans gosterdigi goriilmektedir.
Ek olarak, onerilen StackGridCov modelinin ve diger modellerin performansini
degerlendirmek icin daha once ortaya ¢ikan influenza A/HIN1 HA viriisii veri seti
lizerinde mutasyon tahmini gerceklestirlmistir. Onerilen StackGridCov modeli,
influenza A/HIN1 HA test veri setinde 0.9460 ile dogruluk degeri, 0.7969 ile
hassasiyet degeri, 0.8093 ile F1-skor degeri ve 0.7780 ile MCC degeri ile diger
algoritmalardan daha 1yi performans gostermistir. Sonug¢ olarak, Onerilen
StackGridCov modeli, hem COVID-19 viriisii veri kiimelerindeki hem de influenza
A/HINI1 HA viriisii veri kiimesindeki mutasyonlari tahmin etmede oldukga basarili

olmustur.

Ek olarak, bu tez caligmasinda, COVID-19 mutasyon tahmini igin HyperAttCov
modelini 6nerdik. Onerilen HyperAttCov modeli, birgok yontemden daha iyi
performans gostermistir. Deneysel sonuclar, Onerilen HyperAttCov modelinin,
COVID-19 test veri setinde %70.0 dogruluk degerine, %92.0 kesinlik degerine ve
%46.5 MCC degerine ulastigin1 gostermistir. Benzer sekilde dnerilen HyperAttCov
modeli, ortalama 10 rastgele deneme ile COVID-19 test veri setinde %70.2 dogruluk
degerine, %90.4 hassasiyet degerine ve %46.2 MCC degerine ulagsmistir. Ayrica
deneysel sonuglar, onerilen HyperAttCov modelinin TEMPO modeliyle
karsilastinildiginda, performans degerlerinin COVID-19 test veri setinde %6.87
dogruluk, %39.82 kesinlik ve MCC %50.49 oraninda arttigin1 gostermistir. Benzer
sekilde Onerilen 10 rastgele deneme ile HyperAttCov modeli TEMPO modeliyle
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karsilastirildiginda, performans degerlerinin ortalamasi, COVID-19 test veri setinde
dogruluk %7.18, kesinlik %37.39, MCC %49.51 oraninda arttirmistir. Elde edilen bu
sonuglar, 6nerilen HyperAttCov modelinin COVID-19 mutasyon tahmini agisindan
oldukea basarili oldugunu gostermistir. Bu sonuglar COVID-19 viriisiiyle miicadele

acisindan umut vericidir.

COVID-19 viriisiine yénelik as1 ve ilag gelistirilmesinde yardimei olmak veya fikir
vermek olduk¢a 6nemlidir. Sonug olarak énerilen modellerin COVID-19 S proteininde
meydana gelecek mutasyonlar1 basarili bir sekilde tahmin edebildigini gozlemledik.
GridSearchCV algoritmasi1 ile her makine 6grenme algoritmasinin sadece 3
hiperparametresi iizerinden en uygun hiperparametre degerlerini elde ettik. Onerilen
StackGridCov'un tiim hiperparametreleri ve her makine 6grenimi algoritmas tizerinde
parametre ayarlamasi yapmadik ¢ilinkii bu ¢ok zaman alictydi. Bu nedenle, gelecekteki
calismada onerilen StackGridCov modelinin performansini daha da artirmak igin
oncelikle bu tez ¢alismasinda test edilmeyen diger hiperparametreler arastirilabilir.
Ikinci olarak 2023 ve 2024 yillar1 i¢in yeni COVID-19 veri seti iizerinde 6nerilen
StackGridCov modelini kullanarak COVID-19 viriisii iizerinde mutasyon tahmini
yapilabilir. Ayrica, Onerilen HyperAttCov modelinin genel performansinin
iyilestirilmesine ve hassasiyet probleminin ¢6ziilmesine odaklanilabilir. Ek olarak,
onerilen TfrAdmCov, StackGridCov ve HyperAttCov modelleri, daha 6nce ortaya
¢ikmig ve yeni ortaya ¢ikan viriisler tizerinde mutasyon tahmini gergeklestirilebilir.
Onerilen bu ii¢ model kullanilarak, COVID-19, infulenza vb. viriislerin daha biiyiik
veri setleri {izerinde mutasyona tahmini yapilabilir. Son olarak 6nerilen TfrAdmCov,
StackGridCov ve HyperAttCov modelleri kullanilarak, COVID-19 viriisiiniin diger
proteinleri (M proteini, N proteini vb.) {izerinde mutasyon tahminini

gerceklestirilebilir.
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EKLER

EK A. Onerilen TfrAdmCov modeli icin ek tablolar

Tablo A.l. Agglomerative kiimeleme algoritmasinin parametreleri ve bu
parametrelerin degerleri (Burukanli ve Yumusak, 2024c).

Parametre adi Degeri
n_clusters 2
affinity euclidean
memory None
connectivity None
compute_full_tree auto
linkage ward
distance_threshold None
compute_distances False

Tablo A.2. SVM modelinin rastgele segilen 3 6zelligi i¢in GridSearchCV algoritmasi
kullanilarak elde edilen en 1y1 degerler (Burukanli ve Yumusak, 2024c).

Test edilen
] GridSearchCV algoritmasi ile
parametrelerin ) GridSearchCV kullanilarak elde edilen en iyi
test edilecek parametreler ve
varsayilan degerler
bu parametrelerin degerleri
degerleri
Stratified 10-kat ¢apraz
C=1.0, C =[1.0,2.0,3.0,4.0,5.0] Holdout
dogrulama
kernel ='rbf', kernel =['linear', 'poly', 'rbf',
probability = sigmoid", ‘precomputed] C=3.0, K=1 i¢in C= 4.0, kernel="rbf’,

True probability =[True, False] probability= True,




Tablo A.2. (Devami) SVM modelinin rastgele secilen 3 6zelligi i¢in GridSearchCV
algoritmas1 kullanilarak elde edilen en iyi degerler (Burukanli ve

Yumusak, 2024c).
Test edilen
. GridSearchCV algoritmast ile ) ) .
parametrelerin ] GridSearchCV kullanilarak elde edilen en iyi
test edilecek parametreler ve
varsayilan degerler

) bu parametrelerin degerleri
degerleri

Stratified 10-kat ¢apraz

Holdout
dogrulama

K=2 i¢in C= 4.0, kernel="rbf’,

probability= True,
K=3 i¢in C= 5.0, kernel="rbf’,

probability= True,
K=4 i¢in C=5.0, kernel="rbf',

probability= True,
K=5 i¢in C= 4.0, kernel="rbf’,

kernel= probability= True,
rbf, K=6 icin C= 5.0, kernel="rbf'

probability= probability= True,
True K=7 i¢in C= 4.0, kernel="rbf’,

probability= True,

K=8 i¢in C= 4.0, kernel="rbf',
probability= True,

K=9 i¢in C= 5.0, kernel="rbf',
probability= True,

K=10 i¢in C= 5.0, kernel= "rbf’,
probability= True
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Tablo A. 3. KNN modelinin rastgele segilen 3 6zelligi i¢in GridSearchCV algoritmast
kullanilarak elde edilen en iyi degerler (Burukanli ve Yumusak, 2024c).

Test edilen GridSearchCV algoritmasi

parametrelerin ile test edilecek parametreler GridSearchCV kullanilarak elde edilen en iyi
varsayilan ve bu parametrelerin degerler
degerleri degerleri

Holdout Stratified 10-kat ¢apraz dogrulama

K=1 i¢in n_neighbors = 3, weights

= 'distance’, algorithm = "auto’,

K=2 i¢in n_neighbors = 3, weights
='distance’, algorithm = "auto’,

K=3 i¢in n_neighbors = 5, weights

= 'distance’, algorithm = "auto’,

n_neighbors K=4 i¢in n_neighbors = 3, weights
=5 n_neighbors  =[3,5,7,9,11] |, peighbors = 'distance’, algorithm = ‘auto’,

weights weights p [uniform’, - =3, K=5 i¢in n_neighbors = 3, weights
=uniform, istapgss weights = = distance’, algorithm = auto’,

algorithm algorithm = [‘auto’, ‘distance’,  K=6 icin n_neighbors = 3, weights
='auto’ ‘ball_tree’, 'kd_tree', 'brute’] oy . . .
algorithm = = 'distance’, algorithm = ‘auto’,

auto’ K=7 i¢in n_neighbors = 3, weights

= 'distance’, algorithm = "auto’,
K=8 i¢in n_neighbors = 5, weights
= 'distance’, algorithm = "auto’,
K=9 i¢in n_neighbors = 5, weights
= 'distance’, algorithm = "auto’,

K=10 i¢in n_neighbors =3, weights

= 'distance’, algorithm = "auto’
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Tablo A. 4. XGBoost modelinin rastgele secilen 3 6zelligi i¢in GridSearchCV
algoritmas1 kullanilarak elde edilen en iyi degerler (Burukanhi ve

Yumusak, 2024c).

Test edilen
parametreler
in varsayilan

degerleri

booster

None,

learning_rate

= None,

n_estimators
=100

GridSearchCV algoritmasi ile
test edilecek parametreler ve bu

parametrelerin degerleri

GridSearchCV kullanilarak elde edilen en iyi

degerler

Holdout

Stratified 10-kat ¢apraz

dogrulama

booster=[ ‘gbtree’,
‘gblinear’,’dart’,None]
learning_rate=[0.001,0.01,0.1,
1,None]

n_estimators=[50,100,150,200
,250]

booster =

'gbtree’,

learning_rate
=0.1,

n_estimators
=250

K=1 i¢in booster = 'gbtree' ,
learning_rate = 1, n_estimators =
100, K=2 i¢in booster = 'gbtree’,
learning_rate = 1, n_estimators =

50,

K=3 i¢in booster = 'gbtree’,
learning_rate = 1, n_estimators =

50,

K=4 i¢in booster = 'gbtree’,
learning_rate = 1, n_estimators
=100, K=5 i¢in booster =
'gbtree’, learning_rate = 0.1,
n_estimators = 150, K=6 i¢in
booster = 'gbtree’, learning_rate
=1, n_estimators =250, K=7
i¢in booster = 'gbtree’,
learning_rate = None,
n_estimators = 250, K=8 igin
booster = 'gbtree’, learning_rate
= None, n_estimators =150,
K=9 i¢in booster = 'gbtree’,
learning_rate = None,
n_estimators =50, K=10 i¢in
booster = 'gbtree’, learning_rate

= None, n_estimators =250
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Tablo A.5. LR modelinin rastgele segilen 3 6zelligi i¢in GridSearchCV algoritmasi
kullanilarak elde edilen en iyi degerler (Burukanli ve Yumusak, 2024c).

Test edilen
parametrelerin
varsayilan

degerleri

C=1.0,
solver ='Ibfgs’,

max_iter =100

GridSearchCV algoritmasi ile

GridSearchCV kullanilarak elde edilen en iyi

test edilecek parametreler ve bu

parametrelerin degerleri

degerler

Holdout

Stratified 10-kat ¢apraz dogrulama

C = np.linspace(1, 10, num=5)

solver = [newton-cg', 'Ibfgs’, =100,

'liblinear’, 'sag’, 'saga’]
solver =
max_iter=[100, 1000, 10000, 'Ibfgs’,

100000, 1000000]
max_iter

=100

K=1 i¢in C= 10.0, solver ='Ibfgs’,
max_iter =1000,

K=2 i¢in C= 10.0, solver ='saga’,
max_iter =10000,

K=3 i¢in C=7.75, solver ='newton-

cg', max_iter =100,

K=4 i¢in C= 7.75, solver

='liblinear', max_iter =100,

K=5i¢in C=7.75, solver ='newton-
cg', max_iter =100,

K=6 i¢in C= 7.75, solver ='saga’,
max_iter =10000, K=7 igin C=
10.0, solver ='newton-cg', max_iter
=100,

K=8 i¢in C=10.0, solver ='newton-
cg', max_iter =100,

K=9 i¢in C= 10.0, solver ='sag',
max_iter =10000,

K=10 igin C=7.75, solver

='newton-cg', max_iter =100

109



EK B. Onerilen StackGridCov modeli i¢in tablolar

Tablo B. 1. SVM algoritmasinin rastgele segilen 3 6zelligi i¢in GridSearchCV
algoritmas1 kullanilarak elde edilen en iyi degerler (Burukanli ve

Yumusak, 2024b).
Test edilen
. GridSearchCV algoritmasi ile
parametrelerin ) GridSearchCV kullanilarak elde edilen en iyi
test edilecek parametreler ve
varsayilan degerler
bu parametrelerin degerleri
degerleri
Stratified 10-kat ¢apraz
Holdout
dogrulama
K=1 i¢in gamma = ‘auto',
class_weight = None,
probability=False,
K=2 i¢in gamma = ‘auto,
class_weight = ‘balanced’,
probability= True,
K=3 i¢in gamma = ‘auto
class_weight = None,
gamma F gamma “=Pscale’, “auto’, probability= False,
'scale’, _
10.0,20.0,30.0] gamma = K=4 igin gamma = 'scale’,
class_weight = ‘auto’, i - ' '
X _Welg class_weight ~['balanced!, class_weight balanced',
robability = = 'balanced', —C i - '
P Y probability =[True, False] K=5 igin gamma auto’,
False probability ~ class_weight = ‘balanced’,

= True probability= False,

K=6 i¢in gamma = ‘auto
class_weight = None,

probability= True,

K=7 i¢in gamma = ‘'auto
class_weight = None,

probability= False,
K=8 i¢in gamma = ‘auto
class_weight = 'balanced’,

probability= True,
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Tablo B.1. (Devami) SVM algoritmasinin rastgele segilen 3 6zelligi i¢in GridSearchCV
algoritmasi kullanilarak elde edilen en iyi degerler (Burukanli ve Yumusak,
2024b).

Test edilen ) ) )
. GridSearchCV algoritmast ile ) ) .
parametrelerin GridSearchCV kullanilarak elde edilen en iyi

test edilecek parametreler ve bu

varsayilan ) ) degerler
) parametrelerin degerleri
degerleri
Holdout  Stratified 10-kat ¢capraz dogrulama
K=9 igin gamma = ‘scale,
class_weight = ‘balanced’,

probability= True,

K=10 i¢in gamma = 'auto’,

class_weight = 'balanced,

probability= False

Tablo B.2. RF algoritmasmin rastgele segilen 3 ozelligi i¢in GridSearchCV
algoritmasi kullanilarak elde edilen en iyi degerler (Burukanli ve

Yumusak, 2024b).
GridSearchCV
Test edilen algoritmasi ile test

parametrelerin

varsayilan degerleri

max_leaf nodes=

None
min_samples_leaf=1

n_estimators= 100

edilecek parametreler
ve bu parametrelerin

degerleri

max_leaf_nodes=
[5,10,15,20,None]

min_samples_leaf=
[1,2,3,4,5]

n_estimators=
[50,100,200,300,400]

GridSearchCV kullanilarak elde edilen en iyi

degerler

Holdout

Stratified 10-kat ¢apraz

dogrulama

max_leaf_nodes=
10

min_samples_leaf=

n_estimators= 400

K=1 i¢in max_leaf nodes=
15, min_samples_leaf= 4,

n_estimators= 100,

K=2 i¢in max_leaf nodes=
20, min_samples_leaf= 5,

n_estimators= 50,

K=3 i¢gin max_leaf nodes=
20, min_samples_leaf= 3,

n_estimators= 100,
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Tablo B.2. (Devam) RF algoritmasinin rastgele secilen 3 6zelligi i¢in GridSearchCV
algoritmasi kullanilarak elde edilen en 1yi degerler (Burukanl ve Yumusak,

2024b).
. GridSearchCV
Test edilen ) ]
] algoritmasi ile test ) ) o
parametrelerin ] GridSearchCV kullanilarak elde edilen en iyi
edilecek parametreler
varsayilan . degerler
) ve bu parametrelerin
degerleri

degerleri

Stratified 10-kat ¢apraz

Holdout
dogrulama
K=4 icin
max_leaf nodes= 20,
min_samples_leaf= 1,

n_estimators=  200,K=5
icin ~ max_leaf_nodes=
10, min_samples_leaf= 2,

n_estimators= 400,

K=6 igin
max_leaf_nodes= 15,
min_samples_leaf= 4,

n_estimators= 400,

K=7 igin
max_leaf nodes= 20,
min_samples_leaf= 1,

n_estimators= 400,

K=8 igin
max_leaf_nodes= 20,
min_samples_leaf= 5,

n_estimators=  400,K=9
icin ~ max_leaf_nodes=
10, min_samples_leaf= 2,

n_estimators= 300,

K=10 igin
max_leaf_nodes= 15,
min_samples_leaf= 2,

n_estimators= 300
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Tablo B.3. XGBoost algoritmasinin rastgele segilen 3 6zelligi i¢in GridSearchCV
algoritmasi1 kullanilarak elde edilen en iyi degerler (Burukanh ve

Yumusak, 2024b).

Test edilen
~ GridSearchCV algoritmast ile
parametrelerin .
test edilecek parametreler ve

GridSearchCV kullanilarak elde edilen en iyi

varsayilan ) ) degerler
) bu parametrelerin degerleri
degerleri
Stratified 10-kat ¢apraz
Holdout
dogrulama
K=1 i¢in max_depth= 3,
n_estimators= 50, tree_method=
‘auto’,
K=2 igin max_depth= 3,
n_estimators= 50, tree_method=
‘hist', K=3 i¢in max_depth= 3,
n_estimators= 50, tree_method=
‘hist’,
K=4 igin max_depth= 3,
max_depth= max_depth= [3,5,6,9,None] n estimators= 100,
None n_estimators= max_depth=  tree_method= ‘approx,
n_estimators=  [50,100,150,200,250] 3 K=5 i¢in max_depth= 3,

100

tree_method= ["auto", n_estimators=

50

tree_method= "exact", "approx", "hist",

None "gpu_hist",None]

tree_method=
"hist'

n_estimators=
‘approx’,

K=6
n_estimators=
‘hist,

igin

K=7 i¢in
n_estimators=
‘auto’,

K=8 igin

n_estimators=
‘hist,
K=9 i¢in

n_estimators=

‘approx’,

50, tree_method=

max_depth= 3,
50, tree_method=

max_depth= 3,
50, tree_method=

max_depth= 3,
50, tree_method=

max_depth= 3,
50, tree_method=
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Tablo B.3. (Devami) XGBoost algoritmasinin rastgele segilen 3 6zelligi igin
GridSearchCV algoritmas1 kullanilarak elde edilen en iyi degerler
(Burukanli ve Yumusak, 2024D).

Test edilen
. GridSearchCV algoritmasi ile ) ) .
parametrelerin . GridSearchCV kullanilarak elde edilen en iyi
test edilecek parametreler ve
varsayilan ) ) degerler
) bu parametrelerin degerleri
degerleri

Stratified 10-kat ¢apraz
Holdout
dogrulama

K=10 i¢in max_depth= 3,
n_estimators= 50, tree_method=
‘hist’

Tablo B.4. YSA algoritmasinin rastgele segilen 3 6zelligi i¢in GridSearchCV
algoritmas1 kullanilarak elde edilen en iyi degerler (Burukanli ve
Yumusak, 2024b).

Test edilen GridSearchCV algoritmasi ile )
] ¢ GridSearchCV kullanilarak elde edilen en
parametrelerin test edilecek parametreler ve bu o
) ) i iyi degerler
varsayilan degerleri parametrelerin degerleri

Stratified 10-kat
Holdout
capraz dogrulama

K=1 icin
hidden_layer_sizes

hidden_layer_sizes= - (250,), max_iter=

hidden_layer_sizes  [(50,),(100,),(150,),(200,),(250, 100, solver= 'sgd,

= (100,) )] : :
hidden_layer_sizes K=2 icin
max_iter= 200 max_iter= = (200, hidden_layer_sizes
solver= ‘adam’ [100,200,300,400,500] max_iter= 200 = (150,), max_iter=

solver= ['lbfgs', 'sgd’, 'adam’] 200, solver='sgd',

solver='sgd'
K=3 igin
hidden_layer_sizes
= (200,), max_iter=
200, solver='sgd',
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Tablo B.4. (Devam) YSA algoritmasimin rastgele segilen 3 6zelligi icin
GridSearchCV algoritmasi1 kullanilarak elde edilen en iyi degerler
(Burukanli ve Yumusak, 2024D).

Test edilen
] GridSearchCV algoritmasi ile ) )
parametrelerin ) GridSearchCV kullanilarak elde edilen en
test edilecek parametreler ve bu o
varsayilan ) ) iyi degerler
) parametrelerin degerleri
degerleri

Stratified 10-kat ¢apraz
Holdout
dogrulama

K=4 igin
hidden_layer_sizes=
(100,), max_iter= 500,
solver= 'sgd’,

K=5 igin
hidden_layer_sizes=
(100,), max_iter= 200,
solver='sgd’,

K=6 igin
hidden_layer_sizes=
(250,), max_iter= 100,

solver= 'sgd',

K=7 igin
hidden_layer_sizes=
(250,), max_iter= 200,
solver= 'sgd',K=8 i¢in
hidden_layer_sizes=
(150,), max_iter= 200,
solver= 'sgd’,

K=9 icin
hidden_layer_sizes=
(100,), max_iter= 200,
solver= 'sgd',

K=10 igin
hidden_layer_sizes=
(200,), max_iter= 100,

solver='sgd'
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Tablo B.5. DT algoritmasmin rastgele secilen 3 6zelligi i¢in GridSearchCV
algoritmas1 kullanilarak elde edilen en iyi degerler (Burukanli ve
Yumusak, 2024b).

Test edilen
parametrelerin

varsayilan degerleri

max_leaf_nodes=

None

min_impurity_decreas
e=0.0

min_samples_split= 2

GridSearchCV
algoritmasi ile test
edilecek parametreler
ve bu parametrelerin

degerleri

max_leaf_nodes=
[5,10,15,20,None]

min_impurity_decreas
e=1[0.0,0.1,0.2,0.3,0.4]

min_samples_split=
[1,2,3,4,5]

GridSearchCV kullanilarak elde edilen en iyi

degerler

Holdout

Stratified 10-kat

capraz dogrulama

max_leaf_nodes= 15

min_impurity_decreas
e=0.0

min_samples_split= 2

K=1

max_leaf _nodes= 5,

igin

min_impurity_decreas
e= 0.0,
min_samples_split= 2,
K=2

max_leaf_nodes= 10,

igin

min_impurity_decreas
e= 0.0,
min_samples_split= 2,
K=3

max_leaf _nodes= 20,

i¢in

min_impurity_decreas
e= 0.0,

min_samples_split= 2,

K=4 igin
max_leaf_nodes= 20,
min_impurity_decreas
e= 0.0,

min_samples_split= 2,

K=5 igin
max_leaf nodes= 15,
min_impurity_decreas
e= 0.0,

min_samples_split= 2,
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Tablo B.5. (Devami) DT algoritmasinin rastgele sec¢ilen 3 6zelligi i¢in GridSearchCV
algoritmas1 kullanilarak elde edilen en iyi degerler (Burukanli ve

Yumusak, 2024b).
GridSearchCV
Test edilen algoritmasi ile test

parametrelerin

varsayilan degerleri

GridSearchCV kullanilarak elde edilen en iyi

edilecek parametreler
ve bu parametrelerin

degerleri

degerler

Holdout

Stratified 10-kat ¢apraz

dogrulama

K=6 igin
max_leaf_nodes=>5,
min_impurity_decrease=

0.0, min_samples_split= 2,

K=7 i¢in max_leaf nodes=
20,
min_impurity_decrease=

0.0, min_samples_split= 2,

K=8 i¢in max_leaf nodes=
20,
min_impurity_decrease=
0.0, min_samples_split=
5,K=8 i¢in
max_leaf nodes= 20,
min_impurity_decrease=
0.0, min_samples_split= 5,
K=9 igin
max_leaf_nodes=10,
min_impurity_decrease=

0.0, min_samples_split= 2,

K=10 i¢in
max_leaf nodes= 20,
min_impurity decrease=

0.0, min_samples_split= 2
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Tablo B.6. GB algoritmasmin rastgele segilen 3 6zelligi igin GridSearchCV
algoritmasi1 kullanilarak elde edilen en iyi degerler (Burukanli ve

Yumusak, 2024b).
GridSearchCV
Test edilen algoritmasi ile test

parametrelerin

varsayilan degerleri

Loss= 'log_loss'
min_samples_leaf=1

min_samples_split=2

edilecek parametreler
ve bu parametrelerin

degerleri

Loss=
‘deviance’,

‘exponential]

min_samples_leaf=
[0,1,2,3,4]

min_samples_split=
[1,2,3,4,5]

['log_loss'

GridSearchCV kullanilarak elde edilen en iyi

degerler

Stratified 10-kat ¢apraz

Holdout
dogrulama
K=1 icin Loss=
‘exponential’,
min_samples_leaf= 1,

Loss= 'deviance'

min_samples_leaf=
4

min_samples_split=
2

min_samples_split= 4,

K=2 icin Loss=
‘exponential’,
min_samples_leaf= 1,

min_samples_split=4,

K=3 i¢in Loss= 'deviance’,
min_samples_leaf= 4,

min_samples_split=2,

K=4 i¢in Loss= 'deviance',
min_samples_leaf=4,
min_samples_split=4,

K=5

Loss="exponential’,

igin

min_samples_leaf=2,

min_samples_split=4,

K=6 igin Loss= 'deviance',
min_samples_leaf=4,

min_samples_split=4,
K=7 i¢in Loss= 'deviance',
min_samples_leaf=3,

min_samples_split=2,
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Tablo B.6. (Devami) GB algoritmasinin rastgele se¢ilen 3 6zelligi igin GridSearchCV
algoritmasi kullanilarak elde edilen en 1yi degerler (Burukanl ve Yumusak,

2024b).
GridSearchCV
Test edilen algoritmasi ile test
. . GridSearchCV kullanilarak elde edilen en iyi
parametrelerin edilecek parametreler

. . degerler
varsayilan degerleri ve bu parametrelerin

degerleri

Stratified 10-kat ¢apraz
Holdout
dogrulama

K=8 i¢in Loss= ‘deviance’,
min_samples_leaf=2,

min_samples_split=4,

K=9 i¢in Loss= 'deviance',
min_samples_leaf=1,

min_samples_split=4,

K=10 igin Loss=
‘exponential’,
min_samples_leaf=4,

min_samples_split=4

Tablo B.7. ET algoritmasimin rastgele segilen 3 ozelligi i¢in GridSearchCV
algoritmas1 kullanilarak elde edilen en iyi degerler (Burukanli ve

Yumusak, 2024b).
] GridSearchCV
Test edilen ) )
. algoritmasi ile test ) ) )
parametrelerin ) GridSearchCV kullanilarak elde edilen en iyi
edilecek parametreler ve
varsayilan ] degerler
) bu parametrelerin
degerleri )
degerleri
Criterion= ["gini", Stratified 10-kat ¢apraz
o o Holdout
Criterion="gini"  "entropy", "log_loss"] dogrulama
max_depth= max_depth= o o
Criterion= "gini' PR .
None [5,10,15,20,None] K=1 i¢in Criterion= ‘gini’,
) ] max_depth=5 max_depth=5, n_estimators=
n_estimators=100 n_estimators= 100

[50,100,150,200,250] n_estimators=200
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Tablo B.7. (Devam) ET algoritmasinin rastgele secilen 3 6zelligi i¢in GridSearchCV
algoritmasi kullanilarak elde edilen en 1yi degerler (Burukanl ve Yumusak,
2024b).

Test edilen
parametrelerin
varsayilan

degerleri

GridSearchCV

algoritmasi ile test

edilecek parametreler  GridSearchCV kullanilarak elde edilen en iyi degerler

ve bu parametrelerin

degerleri

Holdout

Stratified 10-kat ¢apraz

dogrulama

K=2 igin Criterion= 'gini’,
max_depth=>5, n_estimators=
100,

K=3 igin Criterion= 'gini’,

max_depth=5, n_estimators=200,

K=4 i¢in Criterion= ‘entropy’,

max_depth=5, n_estimators=200,

For K=5 i¢in Criterion= 'entropy’,
max_depth=5, n_estimators=
250,

K=6 ig¢in Criterion= ‘entropy’,

max_depth=5, n_estimators=50,

K=7 igin Criterion= ‘entropy’,

max_depth=10, n_estimators=50,

K=8 i¢in Criterion= ‘entropy’,
max_depth=10,

n_estimators=150,

K=9 igin Criterion= 'entropy’,

max_depth=5, n_estimators=250,

K=10 i¢in Criterion= "entropy’,

max_depth=5, n_estimators=250
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Tablo B.8. Onerilen StackGridCov algoritmasmin rastgele segilen 3 6zelligi igin
GridSearchCV algoritmast kullanilarak elde edilen en iyi degerler
(Burukanli ve Yumusak, 2024D).

Test edilen
parametrelerin
varsayilan

degerleri

final_estimator

LogisticRegres

sion()

stack_method=

‘auto

cv =None

GridSearchCV algoritmasi
ile test edilecek parametreler
ve bu parametrelerin

degerleri

GridSearchCV kullanilarak elde edilen en iyi

degerler

final_estimator=[LogisticRe

gression(),

AdaBoostClassifier()]

Stratified 10-kat ¢apraz

stack_method= ['auto’, Holdout §
dogrulama
'predict_proba’,
‘decision_function’, 'predict]
cv =[None, 10]
StackGridCov K=1 ig¢in final_estimator=
simiflandiricilar AdaBoostClassifier(),stack_me

estimators =[SVC(). final_estimator

RandomForestClassifier(), AdaBoostClass

XGBClassifier(), ifier()

MLPClassifier(), stack_method="
DecisionTreeClassifier(), auto
GradientBoostingClassifier( cv =10

),

ExtraTreesClassifier()]

thod="auto, cv =10,

K=2

AdaBoostClassifier(),stack_me

icin  final_estimator=

thod="auto, cv =10,

K=3
AdaBoostClassifier(),stack_me

icin  final_estimator=

thod="auto, cv =10,

K=4

AdaBoostClassifier(),stack_me

icin  final_estimator=

thod="auto, cv =10,

K=5
AdaBoostClassifier(),stack_me

icin  final_estimator=

thod="auto, cv =10,

K=6

AdaBoostClassifier(),stack_me

icin  final_estimator=

thod="auto, cv =10,

K=7

AdaBoostClassifier(),stack_me

icin  final_estimator=

thod="auto, cv =10,
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Tablo B.8. (Devami) Onerilen StackGridCov algoritmasinin rastgele secilen 3 6zelligi
icin GridSearchCV algoritmasi kullanilarak elde edilen en iyi degerler
(Burukanli ve Yumusak, 2024b).

GridSearchCV

algoritmas ile test

Test edilen

parametrelerin .
edilecek parametreler GridSearchCV kullanilarak elde edilen en iyi degerler

varsayilan ]
ve bu parametrelerin
degerleri
degerleri
Holdout Stratified 10-kat ¢apraz dogrulama
StackGridCov K=8 igin final_estimator=
smiflandiricilar AdaBoostClassifier(),stack_method="auto,
cv =10,
K=9 i¢in final_estimator=

AdaBoostClassifier(),stack_method="auto,
cv =10,

K=10 igin final_estimator=
AdaBoostClassifier(),stack_method="auto,
cv =10,
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