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YÜKSEK LİSANS PROGRAMI

2024-YL-35
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ÖZET

BANACH CEBİRLERİNDE n-JORDAN ÇARPANLARIN

KARAKTERİZASYONU

Akçay B. Aydın Adnan Menderes Üniversitesi, Fen Bilimleri Enstitüsü, Matematik

Anabilim Dalı, Yüksek Lisans Tezi, Danışman: Dr. Öğr. Üyesi Berna Arslan, Aydın,

2024.

Amaç: Bu tezde, Banach cebirleri üzerinde tanımlı n-Jordan çarpanlar üzerine günümüze
kadar yapılan çalışmalarda elde edilen bazı özellikler derlenerek, bu alanda çalışma
yapılması durumunda konu ile ilgili temel bilgilerin bir araya getirilmesi amaçlanmıştır.

Materyal ve Yöntem: Tamamen teorik olan bu tez hazırlanırken n-Jordan çarpanlar

hakkında daha önce yapılmış çalışmalar incelenmiştir. Bu konuya temel oluşturmak için

kitaplardan ve internet kaynaklarından faydalanılmıştır.

Bulgular: Banach cebirlerinde n-Jordan çarpanlar incelenmiş, bu kavrama ilişkin

örnekler sunulmuş ve bu kavram sıfır çarpım üzerindeki etkileri ile karakterize edilerek

C∗-cebirlerde ve değişmeli yerel kompakt G grubunun L1(G) grup cebirinde sağladıkları

özellikler incelenmiştir.

Sonuç: Yerel kompakt bir G grubunun L1(G) grup cebiri, idempotentler ile üretilmiş

birimli Banach cebirleri veya C∗-cebirleri gibi farklı uzaylardaki karakterizasyonlar

üzerine çalışmak, Banach cebirlerinde tanımlı çarpanlar ve Jordan çarpanların yapısının

daha iyi anlaşılmasına yardımcı olacaktır. Benzer karakterizasyonlar yapabilmek için

yeni cebirsel yapı örnekleri elde edilebilir. Ayrıca Banach cebirlerde türev çeşitleri

üzerine bilinen bilginin n-çarpanlar ve n-Jordan çarpanlar hakkında çıkaracağı sonuçlar

araştırılabilir.

Anahtar kelimeler: Banach cebiri, n-Jordan çarpan, B özelliği, amenabilite, grup

cebiri, C∗-cebiri.
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ABSTRACT

CHARACTERIZATION OF n-JORDAN MULTIPLIERS OF BANACH

ALGEBRAS

Akçay B. Aydın Adnan Menderes University, Graduate School of Natural and

Applied Sciences, Department of Mathematics, Master Thesis, Supervisor: Asst.

Prof. Berna Arslan, Aydın, 2024.

Objective: In this thesis, it is aimed to compile some of the properties obtained in the
studies on n-Jordan multipliers defined on Banach algebras so far and to bring together
the basic information about the subject in case of a study in this field.

Material and Methods: While preparing this thesis, which is purely theoretical, previous

studies on n-Jordan multipliers were examined and internet resources were utilized.

Results: We study n-Jordan multipliers in Banach algebras, present examples of this

notion, characterize it by its action on the zero product, and study the properties it provides

in C∗-algebras and in the group algebra L1(G) of a commutative locally compact group

G.

Conclusion: Studying characterizations on various spaces, such as the group algebra

L1(G) of a locally compact group G, unital Banach algebras generated by idempotents,

or C∗-algebras, will help to better understand the structure of multipliers and Jordan

multipliers defined in Banach algebras. New examples of algebraic structures can be

obtained to make similar characterizations. Furthermore, the implications of the known

knowledge on types of derivations in Banach algebras for n-multipliers and n-Jordan

multipliers can be investigated.

Keywords: Banach algebra, n-Jordan multiplier, property B, amenability, group

algebra, C∗-algebra.
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1. GİRİŞ

Çarpan kavramı, ilk olarak harmonik analizde Fourier serilerinin toplanabilirliği

konusu ile bağlantılı olarak ortaya çıkmıştır. A bir Banach cebiri ve T : A → A bir lineer

dönüşüm olsun. Eğer her a,b ∈ A için, T (ab) = aT (b) ise T dönüşümüne (sağ) çarpan

adı verilir. Daha sonra bu kavram, grup cebirlerinin homomorfizmalarının araştırılması,

Banach cebirlerinin genel teorisi gibi diğer harmonik analiz alanlarında kullanılmıştır.

Banach cebirleri üzerinde tanımlı lineer dönüşümleri, sıfır çarpım üzerindeki etkileri

ile karakterize etme konusu, son yıllarda birçok matematikçinin dikkatini çekmiştir. A

ile B birer Banach cebiri ve T : A → B bir lineer dönüşüm olmak üzere eğer T lineer

dönüşümü, a,b ∈ A ve ab = 0 iken T (a)T (b) = 0 koşulunu sağlıyor ise T dönüşümüne

sıfır çarpımı koruyan lineer dönüşüm adı verilir. Sıfır çarpımı koruyan sürekli T : A → B

lineer dönüşümleri araştırırken sürekli bir ϕ : A×A → B, ϕ(a,b) = T (a)T (b) (a,b ∈ A)

2-lineer fonksiyonu tanımlanır. Bu durumda a,b ∈ A ve ab = 0 iken ϕ(a,b) = 0 koşulu

sağlanır. Benzer bir problem olarak, n-Jordan çarpanların karakterizasyonu için literatürde

“a,b ∈ A, ab = 0 ⇒ aT (b) = 0” koşulu kullanılmıştır.

Tez çalışmasında, esas olarak A. Zivari-Kazempour’un 2022 yılında yayınlamış

olduğu “Characterization of n-Jordan multipliers” adlı çalışması ile A. Zivari-Kazempour

ve M. Valaei’in 2022 yılında yayınlamış oldukları “Characterization of n-Jordan

multipliers through zero products” adlı çalışmaları ele alınarak Banach cebirlerinde

n-Jordan çarpanlar ve sağladıkları özellikler üzerinde durulmuştur. A Banach cebirinin

ve X sol Banach A-modülün hangi koşulları sağlaması durumunda (n+1)-Jordan çarpan

olan bir T : A → X sınırlı lineer dönüşümün bir n-Jordan çarpan olduğu araştırılmıştır.

Ayrıca A dan X e tanımlı n-Jordan çarpan olan bir sınırlı lineer dönüşümün hangi koşullar

altında bir n-çarpan olduğu incelenmiştir. Uygun koşullar altında (n+1)-Jordan çarpan,

n-Jordan çarpan ve Jordan çarpan kavramlarının birbirine denk olduğu kanıtlanmıştır.

Ayrıca C∗-cebirleri üzerinde tanımlı n-Jordan çarpanlar, sıfır çarpım üzerindeki etkileri ile

karakterize edilmiştir. Bunun için A bir C∗-cebiri ve X bir Banach A-bimodül olduğunda

D : A → X bir Jordan türev ve ψ : A → X bir Jordan çarpan olmak üzere A dan X e tanımlı

n-Jordan çarpan olan bir sınırlı lineer dönüşümün hangi koşullar altında D+ψ formunda

yazılabileceği araştırılmıştır. Bu çalışmada, sınırlı bir yaklaşık birimi olan zayıf amenable

Banach cebirleri, idempotentler ile üretilmiş birimli Banach cebirleri ve W ∗-cebirleri gibi

1



uzaylardaki karakterizasyonlar da ele alınarak bu yapı hakkında genel bilgi edinilmesi

sağlanmıştır.
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2. KAYNAK ÖZETLERİ

Banach cebir teorisinde çarpan kavramı ilk kez S. Helgason tarafından 1956

yılında tanıtılmış (Helgason, 1956), J.K. Wang tarafından 1961 yılında detaylı olarak

çalışılmıştır (Wang, 1959). Bazı matematikçiler ise çarpan yerine merkezleyen terimini

kullanmaktadır. Bu terminoloji J.G. Wendel tarafından tanıtılmıştır (Wendel, 1952).

Banach cebirleri üzerinde tanımlanan çarpanların (merkezleyenlerin) genel teorisi B.E.

Johnson tarafından geliştirilmiştir (B. E. Johnson, 1964). Johnson bu çalışmasında A

mertebesiz Banach cebiri üzerindeki her T : A → A çarpanının lineer ve sürekli olduğunu

kanıtlamıştır.

Her sağ (sol) çarpanın bir sağ (sol) Jordan çarpan olduğu açıktır, ancak bunun karşıtı

genel olarak doğru değildir. B. Zalar, 1991 yılında yayınladığı çalışmasında 2-burulmasız

yarı asal halka üzerindeki her sağ (sol) Jordan çarpanın bir sağ (sol) çarpan olduğunu

ispatlamıştır (Zalar, 1991). Aynı sonuca başka bir yaklaşım ise J. Vukman tarafından

yapılan çalışmada yer almaktadır (Vukman, 1999).

Sh. Hejazian, M. Mirzavaziri ve M.S. Moslehian, 2005 yılında kompleks cebirlerde

n ≥ 2 tamsayıları için n-homomorfizma kavramını tanıtmışlar, homomorfizmalar

ile bağlantısını araştırmışlardır (Hejazian, Mirzavaziri vd., 2005). Ayrıca

n-homomorfizmalar yardımı ile cebirlerde bazı değişmelilik koşullarını çalışarak

Banach cebirlerde bazı karakterizasyonlarını elde etmişlerdir. 2009 yılında M.E. Gordji,

Banach cebirlerde n-Jordan homomorfizma kavramını tanıtmış, değişmeli olmayan

bir Banach cebirinden değişmeli yarı-basit Banach cebirlerine tanımlı her 3-Jordan

homomorfizmanın bir 3-homomorfizma olduğunu kanıtlamıştır (Gordji, 2009). J.

Laali ve M. Fozouni, 2017 yılında n-homomorfizmalardan yola çıkarak bir A Banach

cebirinden bir Banach A-bimodüle n-çarpan kavramını tanıtmışlar ve bir A Banach cebiri

üzerinde tanımlı tüm n-çarpanların uzayı ile A dan C ye tanımlı sıfırdan farklı tüm

n-homomorfizmaların uzayı arasındaki bağlantıyı araştırmışlardır (Laali ve Fozouni,

2017).

Daha sonra M. Fozouni 2018 yılında bir A Banach cebirinden bir sol Banach

A-modüle sağ n-Jordan çarpan kavramını tanıtmış ve yaklaşık yerel n-Jordan çarpanlar

ile karakterizasyonunu elde etmiştir (Fozouni, 2018). 2022 yılında yayınlamış olduğu

çalışmasında, A. Zivari-Kazempour, A Banach cebirinin ve X sol Banach A-modülün bazı
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koşulları sağlaması durumunda (n+ 1)-Jordan çarpan olan bir T : A → X sınırlı lineer

dönüşümün bir n-Jordan çarpan olduğunu ve n-Jordan çarpan olan bir T sınırlı lineer

dönüşümün bir n-çarpan olduğunu ispatlamıştır (Zivari-Kazempour, 2022).

Banach cebirleri üzerindeki homomorfizmaları, türevleri ve çarpanları sıfır çarpım

üzerindeki etkileri ile karakterize etme konusu birçok matematikçi tarafından çalışılmıştır

(Alaminos, M. Brešar vd., 2009; Alaminos, J. Brešar vd., 2010; H. Ghahramani,

2013; Zivari-Kazempour, 2020). A. Zivari-Kazempour ve M. Valaei, 2022 yılında

yayınladıkları çalışmalarında Banach cebirleri üzerinde tanımlı n-Jordan çarpanları,

sıfır çarpım üzerindeki etkileri ile karakterize etmişlerdir. Ayrıca birimli C∗-cebirlerde,

idempotentler tarafından üretilen birimli Banach cebirlerde ve değişmeli yerel kompakt

G grubunun L1 (G) grup cebirinde tanımlı T sınırlı lineer dönüşümünün bazı koşulları

sağlaması durumunda n-Jordan çarpan olduğunu kanıtlamışlardır.

4



3. MATERYAL VE YÖNTEM

Çalışma tamamen teorik olup, ilgili konuda yapılan önceki çalışmalar kitaplardan

ve internet imkânlarından yararlanılarak incelenmiştir. Banach cebirleri üzerinde

tanımlanan n-Jordan çarpanlar için literatürde var olan sonuçlar araştırılmıştır. Bu amaçla,

kaynaklarda belirtilen çalışmalar detaylı bir şekilde incelenmiş ve konuyla ilgili bilgi

edinilmiş, elde edilen sonuçlar karşılaştırılarak problemin daha fazla araştırılması için

temel oluşturulmuştur.

3.1. Temel Kavramlar

Bu bölümde, Banach Cebirleri teorisinde önemli olan bazı temel kavramlar ve diğer

bölümlerde gerekecek bazı özellikler, ilgili kaynaklarla birlikte verilecektir.

Tanım 3.1.1. (Hungerford, 2012) R boş olmayan bir küme, + ve . R üzerinde tanımlı iki

ikili işlem olsun. Eğer

(i) (R,+) bir değişmeli grup;

(ii) Her a,b,c ∈ R için (a.b).c = a.(b.c);

(iii) Her a,b,c,∈ R için a.(b+ c) = a.b+a.c ve (a+b).c = a.c+b.c

koşulları sağlanıyorsa R ye bu ikili işlemlere göre bir halka denir ve (R,+, .) ile gösterilir.

Bunlara ek olarak R halkası, her a,b∈R için a.b= b.a koşulunu sağlıyorsa R ye değişmeli

halka; her a ∈ R için a.1R = 1R.a = a olacak şekilde bir 1R ∈ R elemanı bulunabiliyorsa R

halkasına birimli halka denir. R halkasının + işlemine göre birimine halkanın sıfırı denir

ve bu eleman 0R ile gösterilir.

Tanım 3.1.2. (Hungerford, 2012) Birimli ve değişmeli bir (R,+, .) halkasının sıfırdan

farklı her elemanının . işlemine göre tersi varsa o zaman bu halkaya cisim denir.

Tanım 3.1.3. (Hungerford, 2012) M bir toplamsal değişmeli grup ve R bir halka olsun.

· : R×M → M, (r,x) 7→ r · x ile tanımlanan dış işlem, her r,s ∈ R ve her x,y ∈ M için

(i) r · (x+ y) = r · x+ r · y

(ii) (r+ s) · x = r · x+ s · x

(iii) (rs) · x = r · (s · x)
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şartlarını sağlıyorsa M ye bir sol R-modül denir. Bu koşullara ek olarak R halkası birimli

ve 1R, R halkasının birimi olmak üzere

(iv) 1R · x = x

şartı da sağlanıyorsa M ye birimsel sol R-modül denir.

Aynı şekilde sağ R-modül ve birimsel sağ R-modül de, · : M ×R → M, (x,r) 7→ x · r

dış işlemi tanımlanarak oluşturulur. Eğer R halkası değişmeli olarak alınırsa, o zaman sol

R-modül yapısı sağ R-modül yapılabilir.

Eğer R(= Rveya C) bir cisim ve M bir birimsel sol veya sağ R-modül ise M ye R

üzerinde bir vektör uzayı ya da kısaca R-vektör uzayı denir. Burada M nin elemanlarına

vektör, R cisminin elemanlarına da skaler adı verilir.

Tanım 3.1.4. (Hungerford, 2012) R bir halka ve M hem sağ R-modül hem de sol R-modül

olsun. Eğer her r,s ∈ R ve her x ∈ M için,

r · (x · s) = (r · x) · s

şartı sağlanıyor ise o zaman M ye bir R-bimodül denir.

Sol R-modül için verilen tüm özellikler benzer biçimde sağ R-modül için de

kanıtlanabileceğinden, aksi belirtilmedikçe bundan sonra R-modül denince sol R-modül

anlaşılacaktır.

Örnek 3.1.5. Her toplamsal değişmeli G grubu, · : Z×G → G, (n,a) 7→ na dış işlemi ile

bir birimsel Z-modüldür.

Örnek 3.1.6. Her R halkası bir R-modüldür.

Tanım 3.1.7. (Hungerford, 2012) M bir R-modül ve N, M nin bir alt grubu olsun. Eğer

her n ∈ N ve r ∈ R için r ·n ∈ N oluyorsa, N ye M nin alt modülü denir.

Eğer R bir cisim ve M bir R-vektör uzayı ise bu durumda N ye M nin bir alt vektör

uzayı (ya da kısaca alt uzayı) adı verilir.

Tanım 3.1.8. (Hungerford, 2012) F bir cisim, V bir F-vektör uzayı, n ≥ 1 için A =

{v1,v2, . . . ,vn} ⊂V sonlu bir küme ve /0 ̸= B ⊂V herhangi bir küme olsun.
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(i) Bir {α1,α2, . . . ,αn} skalerler kümesi için A daki vektörlerin bir lineer bileşimi (lineer

kombinasyonu) x = α1v1+α2v2+ . . .+αnvn =
n
∑

i=1
αivi ∈V formunda bir vektördür. Eğer

α1v1 +α2v2 + . . .+αnvn = 0V ⇒ α1 = α2 = . . .= αn = 0

ise A ya lineer bağımsız küme denir. A kümesi lineer bağımsız değilse A ya lineer bağımlı

küme denir.

(ii) B kümesinden alınan her sonlu sayıdaki vektörün tüm lineer bileşimlerinin kümesi

SpanB =

{
k

∑
i=1

αiui | k ∈ N, α1,α2, . . . ,αk ∈ F, u1,u2, . . . ,uk ∈ B

}

V vektör uzayının B kümesini kapsayan bir alt uzayıdır. SpanB alt uzayına, B kümesinin

lineer gereni (ürettiği alt uzay) denir. B kümesinin elemanlarına SpanB alt uzayının

üreteçleri adı verilir. Eğer B lineer bağımsız bir küme ve SpanB =V ise o zaman B ye V

vektör uzayının bir tabanı, taban eleman sayısına da V nin boyutu denir ve dimF(V ) ile

gösterilir. dimF(V ) sonlu ise bu durumda V ye sonlu boyutludur denir. Aksi halde V ye

sonsuz boyutludur denir.

Tanım 3.1.9. (Hungerford, 2012) R bir halka, M ve N iki R-modül olsun. Bir f : M → N

fonksiyonu, her x,y ∈ M ve her r ∈ R için

f (x+ y) = f (x)+ f (y) ve f (r · x) = r · f (x)

şartlarını sağlıyorsa f fonksiyonuna bir R-modül homomorfizması denir. Eğer F bir cisim

ve M ile N birer F-vektör uzayı ise f fonksiyonuna bir lineer dönüşüm denir. M den N ye

tüm lineer dönüşümlerin kümesi L(M,N) ile gösterilir. f ,g ∈ L(M,N) olsun. L(M,N)

kümesi, her x ∈ M için ( f +g)(x) = f (x)+ g(x) işlemiyle bir değişmeli gruptur ve her

α ∈ F için

• : F ×L(M,N) → L(M,N)

(α, f ) 7→ α • f : M → N

x 7→ (α • f )(x) = α · f (x)

işlemi ile L(M,N) kümesi, bir F-vektör uzayıdır. L(M,M) uzayı, kısaca L(M) şeklinde

yazılır. f : M → F lineer dönüşümüne M üzerinde lineer fonksiyonel denir. Burada F

cismi aynı zamanda bir F-vektör uzayıdır.
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Tanım 3.1.10. (Hungerford, 2012) X ,Y ve Z birer F-vektör uzayı ve T : X ×Y −→ Z bir

fonksiyon olsun. Her x,x1,x2 ∈ X , y,y1,y2 ∈ Y ve α ∈ F için,

(i) T (α · x1 + x2,y) = αT (x1,y)+T (x2,y)

(ii) T (x,α · y1 + y2) = αT (x,y1)+T (x,y2)

şartları sağlanıyorsa T fonksiyonuna 2-lineer dönüşüm denir. Eğer Z = F ise, T ye

2-lineer fonksiyonel adı verilir.

Tanım 3.1.11. (Hungerford, 2012) K birimli, değişmeli bir halka ve A herhangi bir halka

olsun. (A,+) bir birimsel K-modül ve her a ∈ K, x,y ∈ A için,

a · (xy) = (a · x)y = x(a · y)

eşitlikleri sağlanıyorsa, o zaman A, K üzerinde bir cebirdir ya da A bir K-cebirdir denir.

Eğer her x ∈ A için 1Ax = x1A = x olacak şekilde sıfırdan farklı bir 1A ∈ A elemanı

varsa 1A ya A cebirinin birim elemanı; A ya da bir birimli cebir denir. Her x,y ∈ A için

xy = yx ise A ya değişmeli cebir denir.

Örnek 3.1.12. C kompleks vektör uzayı, R reel sayılar cismi üzerinde bir cebirdir. Ayrıca

F cisminin bir K alt cismi için F cismi, K üzerinde bir cebirdir.

Örnek 3.1.13. GL(n,K), girdileri K cisminden alınan n×n tipindeki bütün terslenebilir

matrislerin kümesi olsun. Bu küme, K cismi üzerinde bir cebirdir. Ayrıca n×n tipindeki

In birim matrisi de GL(n,K) cebirine ait olduğundan GL(n,K), aynı zamanda bir birimli

cebirdir.

Tanım 3.1.14. (Hungerford, 2012) A birimli bir cebir ve 1A, A nın birimi olsun. a ∈

A olmak üzere eğer ab = ba = 1A şartını sağlayan bir b ∈ A elemanı varsa a ya A nın

tersinir elemanı denir. b ∈ A elemanına da a elemanının tersi denir ve a−1 ile gösterilir. A

cebirindeki tüm tersinir elemanların kümesi Inv(A) ile gösterilir.

Tanım 3.1.15. (Hungerford, 2012) A bir cebir ve a∈ A olsun. Eğer a2 = a ise a elemanına

A nın idempotenti denir.

Tanım 3.1.16. (Hungerford, 2012) A bir cebir ve φ ̸= B ⊆ A bir alt uzayı olsun. Her

a,b ∈ B için ab ∈ B ise B ye A nın bir alt cebiri denir.

Örnek 3.1.17. R reel sayılar cebiri, C kompleks sayılar cebirinin bir alt cebiridir.
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Tanım 3.1.18. (Hungerford, 2012) A bir cebir ve I, A nın bir alt uzayı olsun. Eğer her

a ∈ A ve her x ∈ I için, ax ∈ I sağlanıyorsa I ya A cebirinin sol ideali; xa ∈ I sağlanıyorsa I

ya A cebirinin sağ ideali denir. I alt uzayı hem sağ ideal, hem de sol ideal olma koşullarını

sağlıyorsa I ya A cebirinin ideali denir.

Bu tanımlamalara göre açıktır ki her ideal bir alt cebir olur. Fakat bunun karşıtı doğru

olmayabilir.

Tanım 3.1.19. A bir cebir olsun. A daki çarpımın sırasını tersine çevirerek oluşturulan

cebire A nın zıt cebiri denir ve Aop ile gösterilir.

Tanım 3.1.20. X bir F-vektör uzayı ve ∥.∥ : X →R bir fonksiyon olsun. Eğer her x,y ∈ X

ve her λ ∈ F için,

(i) ∥x∥ ≥ 0

(ii) ∥x∥= 0 ⇔ x = 0

(iii) ∥λx∥= |λ |∥x∥

(iv) ∥x+ y∥ ≤ ∥x∥+∥y∥

şartları sağlanıyorsa ∥.∥ fonksiyonuna X üzerinde bir norm denir. Üzerinde bir ∥.∥ normu

tanımlanmış olan X vektör uzayına normlu uzay adı verilir ve (X ,∥.∥) ile gösterilir.

Eğer (ii) koşulu “x = 0 ⇒ ∥x∥ = 0” şeklinde değiştirilirse diğer (i), (iii) ve (iv)

koşulları ile birlikte ∥.∥ ya X üzerinde bir yarı-norm adı verilir.

Tanım 3.1.21. (X ,∥.∥) bir normlu uzay olsun. Herhangi x ∈ X ve herhangi r ∈ R+ için,

Br(x) = {y ∈ X | ∥x− y∥< r}

kümesine x merkezli r yarıçaplı açık yuvar denir.

Tanım 3.1.22. (X ,∥.∥) bir normlu uzay ve A ⊂ X olsun.

(i) Her x ∈ A için Bε(x)⊂ A olacak biçimde bir ε > 0 sayısı varsa A kümesine açık küme

denir.

(ii) X \A kümesi açık ise A kümesine kapalı küme denir.

(iii) x ∈ X olsun. Her ε > 0 için ∥x− y∥< ε olacak şekilde bir y ∈ A var ise, ya da buna

denk olarak yn → x ∈ X olacak şekilde bir {yn} ⊂ A dizisi var ise o zaman x noktasına

A nın bir kapanış noktası denir. A nın tüm kapanış noktalarının kümesine A kümesinin
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kapanışı adı verilir ve A ile gösterilir. A bir kapalı kümedir ve A kümesini kapsayan X in

tüm kapalı altkümelerinin arakesitine eşittir. Yani

A = ∩{K | A ⊂ K, K kapalı küme}

dir. Bu nedenle, A, A kümesini kapsayan en küçük kapalı kümedir.

(iv) A kümesinin kapalı olması için gerek ve yeter koşul A = A olmasıdır. Buna göre, A

kapalıdır ⇔ {yn} ⊂ A dizisi için yn → x ∈ X olduğunda x ∈ A dır.

(v) A = X ise A kümesi X uzayında yoğun bir kümedir denir.

Tanım 3.1.23. (X ,∥.∥) normlu uzayında bir dizi {xn} olsun.

(i) x ∈ X olmak üzere her ε > 0 sayısına karşılık her n ≥ n0 için ∥xn − x∥ < ε olacak

biçimde bir n0 ∈N varsa {xn} dizisi x∈X noktasına yakınsar ya da {xn} dizisi yakınsaktır

denir. Bu durumda lim
n→∞

xn = x ya da xn → x yazılır.

(ii) Her ε > 0 sayısına karşılık her m,n≥ n0 için ∥xm − xn∥< ε olacak biçimde bir n0 ∈N

varsa {xn} dizisine bir Cauchy dizisi denir.

Teorem 3.1.24. (X ,∥.∥) normlu uzayında yakınsak her bir {xn} dizisi bir Cauchy

dizisidir.

İspat: {xn}, (X ,∥.∥) de yakınsak bir dizi ve xn → x ∈ X olsun. O halde verilen her ε > 0

sayısına karşılık her n,m≥N için ∥xn − x∥< ε

2 ve ∥xm − x∥< ε

2 olacak biçimde bir N ∈N

sayısı vardır. Dolayısıyla aynı N doğal sayısı için

∥xn − xm∥ ≤ ∥xn − x∥+∥xm − x∥< ε

2
+

ε

2
= ε

olur. Bu ise {xn} dizisinin bir Cauchy dizisi olduğunu gösterir. 2

Not. Teorem 3.1.24 ün karşıtı doğru değildir. Yani her Cauchy dizisi yakınsak değildir.

Örneğin, X = (0,1) kümesi üzerindeki normun ∥.∥ : X → R, ∥x∥ = |x| (x ∈ X)

fonksiyonu olduğunu kabul edersek
(1

n

)
dizisi, X normlu uzayında bir Cauchy dizisidir:

∀ε > 0 için n,m ≥ N olmak üzere

∥xn − xm∥= |xn − xm|=
∣∣∣∣1n − 1

m

∣∣∣∣≤ 1
n
+

1
m

≤ 1
N
+

1
N

=
2
N
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olur. Burada N > 2
ε

olacak şekilde N ∈ N seçilirse ∥xn − xm∥ ≤ 2
N < ε olup {xn} bir

Cauchy dizisidir; ancak n→∞ iken 1
n → 0 /∈ (0,1) olduğundan bu dizi X normlu uzayında

yakınsak değildir.

Tanım 3.1.25. (Kreyszig, 1991) Bir (X ,∥.∥) normlu uzayı tam ise, yani X teki her Cauchy

dizisi X in bir elemanına yakınsıyor ise, X e bir Banach uzayı denir.

Tanım 3.1.26. (Kreyszig, 1991) (X ,∥.∥X) ve (Y,∥.∥Y ) birer normlu uzay, f : X → Y bir

fonksiyon ve belli bir x0 ∈ X noktası verilsin. Eğer verilen her ε > 0 sayısına karşılık her

x ∈ X için,

∥x− x0∥X < δ ⇒∥ f (x)− f (x0)∥Y < ε

olacak şekilde bir δ > 0 sayısı varsa, f fonksiyonuna x0 ∈ X noktasında süreklidir denir.

Eğer f fonksiyonu X kümesinin her noktasında sürekli ise f (X üzerinde) süreklidir denir.

Önerme 3.1.27. Norm fonksiyonu süreklidir.

İspat: (X ,∥.∥) bir normlu uzay olsun. Her n ∈N için xn ∈ X olmak üzere x ∈ X elemanına

yakınsayan bir {xn} dizisi alalım. Yani xn → x olsun. O halde n → ∞ iken ∥xn − x∥ → 0

olur. Ayrıca

|∥xn∥−∥x∥| ≤ ∥xn − x∥

dır. n → ∞ iken ∥xn − x∥ → 0 olduğundan |∥xn∥−∥x∥| → 0 dır. Böylece

lim
n→∞

|∥xn∥−∥x∥| = 0 olup lim
n→∞

∥xn∥ = ∥x∥ olur. Yani ∥.∥ fonksiyonu süreklidir.

Dolayısıyla lim
n→∞

xn = x iken lim
n→∞

∥xn∥=
∥∥∥ lim

n→∞
xn

∥∥∥ olup limit alma ile norm alma birbiriyle

yer değişebilen işlemlerdir. 2

Tanım 3.1.28. (Kreyszig, 1991) (X ,∥.∥X) ve (Y,∥.∥Y ) normlu uzaylar ve T : X → Y bir

lineer dönüşüm olsun. Eğer her x ∈ X için ∥T (x)∥Y ≤ k∥x∥X olacak şekilde bir k ∈ R+

varsa T ye sınırlıdır denir.

Teorem 3.1.29. (Kreyszig, 1991) X ve Y iki normlu uzay ve T : X →Y bir lineer dönüşüm

olsun. O halde aşağıdaki ifadeler birbirine denktir:

(i) T sınırlıdır.

(ii) T düzgün süreklidir.

(iii) T süreklidir.

(iv) T , bir x0 ∈ X noktasında süreklidir.
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Tanım 3.1.30. X ve Y , aynı (F,+, ·) cismi üzerinde iki normlu uzay olsun. X den Y ye

tüm sınırlı lineer dönüşümlerin kümesi B(X ,Y ) ile gösterilecektir. Teorem 3.1.29 dan

dolayı B(X ,Y ) deki elemanlar sürekli lineer dönüşüm adını da alır. S,T ∈B(X ,Y ) olsun.

Her x ∈ X ve her α ∈ F için,

(T +S)(x) = T (x)+S (x) ve (α •T )(x) = α ·T (x)

işlemleriyle B(X ,Y ) kümesi, bir F-vektör uzayıdır:

B(X ,Y ) nin elemanları üzerine bir sınırlılık kısıtlaması getirildiğinden, aşikar olarak,

B(X ,Y ) ⊆ L(X ,Y ) dir. Dolayısıyla, B(X ,Y ) nin bir alt uzay olduğunu göstermek

yeterlidir. Bunun için, her T,S ∈B(X ,Y ) ve her α ∈ F için α •T +S ∈B(X ,Y ) olduğunu

görelim: Öncelikle α •T +S operatörü lineerdir, çünkü her x,y ∈ X ve her λ skaleri için,

(α •T +S)(λx+ y) =(α •T )(λx+ y)+S(λx+ y)

=α ·T (λx+ y)+S(λx+ y)

=α · (λ ·T (x)+T (y))+(λ ·S(x)+S(y))

=α · (λ ·T (x))+α ·T (y)+(λ ·S(x)+S(y))

=λ · (α ·T (x)+S(x))+α ·T (y)+S(y)

=λ · ((α •T )(x)+S(x))+(α •T )(y)+S(y)

=λ · (α •T +S)(x)+(α •T +S)(y)

eşitliği sağlanır. Şimdi αT + S operatörünün sınırlı olduğunu gösterelim. T ve S

operatörleri sınırlı olduğundan her x ∈ X için ∥T (x)∥ ≤ c1 ∥x∥ ve ∥S(x)∥ ≤ c2 ∥x∥ olacak

şekilde c1,c2 > 0 reel sayıları vardır. O halde her x ∈ X için,

∥(α •T +S)(x)∥ = ∥(α •T )(x)+S(x)∥= ∥α ·T (x)+S(x)∥

≤ |α|∥T (x)∥+∥S(x)∥ ≤ (|α|c1 + c2)∥x∥

olup, c = |α|c1 + c2 > 0 seçerek ∥(α •T +S)(x)∥ ≤ c∥x∥ elde edilir. Yani, α • T + S

operatörü sınırlıdır. Sonuç olarak, α • T + S ∈ B(X ,Y ) olur ve böylece B(X ,Y ) bir

F-vektör uzayıdır. B(X ,X) uzayı, kısaca B(X) şeklinde yazılır.
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Tanım 3.1.31. (Kreyszig, 1991) X ve Y aynı F cismi üzerinde iki normlu uzay olsun. Bir

T : X → Y sınırlı lineer dönüşümü için

∥T (x)∥ ≤ c∥x∥ (3.1)

koşulunu gerçekleyen bir c ∈ R+ sayısına T operatörünün bir sınırı ve bunların

en büyük alt sınırına da T nin normu denir ve ∥T∥ ile gösterilir. ∥T∥ :=

inf{c ∈ R+ |∥T (x)∥ ≤ c∥x∥ ,x ∈ X } dir.

Önerme 3.1.32. (Kreyszig, 1991) X ve Y aynı F cismi üzerinde iki normlu uzay, 0X ̸= x ∈

X ve T : X → Y sınırlı bir lineer dönüşüm olsun. O zaman,

∥T∥= sup
{
∥T (x)∥
∥x∥

| x ̸= 0X

}
= sup{∥T (x)∥ | ∥x∥ ≤ 1}= sup{∥T (x)∥ | ∥x∥= 1}

yazılabilir.

Sonuç 3.1.33. X ve Y iki normlu uzay olsun. Bir T : X → Y lineer dönüşümünün sürekli

(ya da buna denk olarak sınırlı) olması için gerek ve yeter koşul her x ∈ X için ∥T (x)∥ ≤

∥T∥∥x∥ olmasıdır.

Önerme 3.1.34. (Kreyszig, 1991) ∥.∥ : B(X ,Y ) → R, ∥T∥ = sup{∥T (x)∥ | ∥x∥ = 1}

fonksiyonu, B(X ,Y ) uzayı üzerinde bir norm tanımlar. Bu norma operatör normu denir.

İspat: Aşikar olarak, ∥T∥ ≥ 0 dır. Ayrıca

∥T∥= 0 ⇔ sup
∥x∥=1

∥T (x)∥= 0 ⇔∀x ∈ X , ∥T (x)∥= 0 ⇔∀x ∈ X , T (x) = 0 ⇔ T = 0

dır. Her α skaleri için ∥(αT )(x)∥ = ∥α ·T (x)∥ = |α|∥T (x)∥ olup her iki tarafın

supremumu alınırsa,

sup
∥x∥=1

∥(αT )(x)∥= sup
∥x∥=1

|α|∥T (x)∥= |α| sup
∥x∥=1

∥T (x)∥

⇒ ∥αT∥= |α|∥T∥
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elde edilir. ∥x∥ = 1 olacak şekilde her x ∈ X ve her S,T ∈B(X ,Y ) için, ∥(S+T )(x)∥ =

∥S(x)+T (x)∥ ≤ ∥S(x)∥+∥T (x)∥ olup

∥S+T∥= sup
∥x∥=1

∥(S+T )(x)∥

≤ sup
∥x∥=1

(∥S(x)∥+∥T (x)∥)

= sup
∥x∥=1

∥S(x)∥+ sup
∥x∥=1

∥T (x)∥

= ∥S∥+∥T∥

dir. O halde ∥.∥ fonksiyonu, B(X ,Y ) uzayı üzerinde bir normdur. 2

Örnek 3.1.35. Normlu bir X ̸= {0X} uzayı üzerindeki I : X → X birim operatörü sınırlı

olup ∥I∥= 1 dir. Çünkü, her x ∈ X için I(x) = x olduğundan

∥I(x)∥= ∥x∥ ≤ 2∥x∥ ≤ . . .

olup her m ≥ 1 sayısı, ∥I∥ için bir üst sınırdır. Yani I sınırlıdır. Üstelik,

∥I∥= sup
x ̸=0X

∥I(x)∥
∥x∥

= sup
x ̸=0X

∥x∥
∥x∥

= 1

dir.

Teorem 3.1.36. (Kreyszig, 1991) Eğer X bir normlu uzay ve Y bir Banach uzayı ise o

zaman B(X ,Y ) bir Banach uzayıdır.

Tanım 3.1.37. X , F cismi üzerinde bir normlu uzay olsun. B(X ,F) vektör uzayına X

in dual uzayı denir ve X∗(= X (1)) ile gösterilir. X∗ uzayının elemanlarına X üzerinde bir

sınırlı lineer fonksiyonel adı verilir.

Sonuç 3.1.38. X∗ bir Banach uzayıdır.

Tanım 3.1.39. Herhangi bir X normlu uzayı için, X∗∗ = X (2) = (X∗)∗ uzayına X in ikinci

duali denir.

Not. Bir X normlu uzayı üzerindeki herhangi bir ϕ lineer fonksiyoneli için

⟨x,ϕ⟩ := ϕ (x) (x ∈ X)
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notasyonu kullanılacaktır.

Tanım 3.1.40. X ve Y birer normlu uzay ve T ∈B(X ,Y ) olsun.

(i) x ∈ X , f ∈ Y ∗ olmak üzere ⟨x,T ∗ ( f )⟩ = ⟨T (x) , f ⟩ olacak şekilde bir tek T ∗ ∈

B(Y ∗,X∗) operatörü vardır. T ∗ operatörüne T nin duali denir.

(ii) g ∈ Y ∗, h ∈ X∗∗ olmak üzere ⟨g,T ∗∗ (h)⟩ = ⟨T ∗ (g) ,h⟩ olacak şekilde bir tek T ∗∗ ∈

B(X∗∗,Y ∗∗) operatörü vardır. T ∗∗ operatörüne T nin ikinci duali denir.

Tanım 3.1.41. (H. G. Dales, 2000) E, F ve G birer normlu uzay ve B : E ×F → G sürekli

bir 2-lineer dönüşüm olsun. B1 : G∗×E →F∗, B2 : F∗∗×G∗ →E∗ ve B̃ : E∗∗×F∗∗ →G∗∗

dönüşümleri, her x ∈ E, y ∈ F , z ∈ G, f ∈ E∗, g ∈ F∗, h ∈ G∗, M ∈ E∗∗ ve N ∈ F∗∗ için,

⟨y,B1(h,x)⟩= ⟨B(x,y),h⟩ ;

⟨x,B2(N,h)⟩= ⟨N,B1(h,x)⟩ ;〈
B̃(M,N),h

〉
= ⟨M,B2(N,h)⟩

şeklinde tanımlansın. B1,B2 ve B̃ dönüşümlerinin her biri sürekli ve 2-lineerdir. Üstelik

her x ∈ E, y ∈ F için B̃(x,y) = B(x,y) dir. Ayrıca
∥∥∥B̃
∥∥∥ = ∥B∥ dir. B̃ : E∗∗×F∗∗ → G∗∗

sürekli 2-lineer dönüşümüne B nin genişlemesi denir.

Önerme 3.1.42. (H. G. Dales, 2000) E1, . . . ,E6 normlu uzaylar ve P : E1 ×E2 → E4,

Q : E2 ×E3 → E5, R : E4 ×E3 → E6 ve S : E1 ×E5 → E6 sürekli 2-lineer dönüşümler

olsun ve her x ∈ E1,y ∈ E2,z ∈ E3 için

R(P(x,y) ,z) = S (x,Q(y,z))

olsun. O halde her F ∈ E∗∗
1 ,G ∈ E∗∗

2 ,H ∈ E∗∗
3 için R̃

(
P̃(F,G) ,H

)
= S̃

(
F, Q̃(G,H)

)
olur.

Tanım 3.1.43. (H. G. Dales, 2000) E, F ve G birer normlu uzay ve B : E × F → G

sürekli bir 2-lineer dönüşüm olsun. C : F ×E → G, (y,x) 7→ B(x,y) 2-lineer dönüşümü

tanımlansın. C 2-lineer dönüşümü, Tanım 3.1.41 de olduğu gibi C̃ : F∗∗ × E∗∗ → G∗∗

2-lineer dönüşümüne genişletilebilir. Buna göre, B̂ : E∗∗×F∗∗ → G∗∗, (M,N) 7→ C̃(N,M)

ile tanımlanan dönüşüm sürekli ve 2-lineerdir.

Tanım 3.1.44. Λ bir küme ve ≤ de Λ üzerinde bir bağıntı olsun. Eğer
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(i) ∀p ∈ Λ için p ≤ p dir;

(ii) p ≤ q ve q ≤ r özelliğindeki her p,q,r ∈ Λ için p ≤ r dir;

(iii) ∀p,q ∈ Λ için p ≤ s ve q ≤ s olacak şekilde bir s ∈ Λ vardır

şartları sağlanıyorsa Λ kümesine ≤ bağıntısı ile yönlenmiş küme denir. ≤ bağıntısına da

Λ kümesini yönlendiriyor denir.

Tanım 3.1.45. X herhangi bir küme ve Λ da yönlenmiş bir küme olsun. Her λ ∈ Λ için

x(λ ) = xλ olmak üzere x : Λ→ X şeklindeki her bir fonksiyona X içinde bir ağ (net) denir

ve (xλ )λ∈Λ
veya kısaca (xλ ) şeklinde gösterilir.

Örnek 3.1.46. N, Z ve R kümeleri bilinen “≤” bağıntısı ile yönlenmiş kümelerdir.

Böylece her x : N → X dizisi, X kümesi içinde bir ağdır. O halde ağ kavramı, dizi

kavramından daha geneldir.

Tanım 3.1.47. Λ bir yönlenmiş küme, (X ,τ) bir topolojik uzay ve X içinde bir ağ (xλ )λ∈Λ

olsun. x ∈U özelliğindeki her U ∈ τ için bir λN ∈ Λ elemanı,

∀λ ≥ λN için xλ ∈U

olacak şekilde varsa (xλ )λ∈Λ
ağı x ∈ X noktasına yakınsar denir. Bu durumda (xλ )λ∈Λ

ağına yakınsak, x noktasına da (xλ )λ∈Λ
ağının limiti denir ve xλ → x ile gösterilir.

Tanım 3.1.48. X ̸= /0 bir küme ve τ , X in alt kümelerinin bir ailesi olsun. Eğer

(i) /0,X ∈ τ;

(ii) A1, . . . ,An ∈ τ ise
n⋂

i=1
Ai ∈ τ;

(iii) I bir indis kümesi olmak üzere her i ∈ I için Ai ∈ τ ise
⋃
i∈I

Ai ∈ τ

koşulları sağlanıyorsa τ ailesine X kümesi üzerinde bir topoloji denir. (X ,τ) ikilisine bir

topolojik uzay adı verilir.

Tanım 3.1.49. (X ,τ) bir topolojik uzay olsun.

(i) x ∈ X olsun. x ∈ W ⊂ A olacak şekilde bir W ∈ τ kümesi ve X in bir kompakt A

alt kümesi varsa X uzayına x noktasında yerel kompakt denir. Her x ∈ X için X uzayı x

noktasında yerel kompakt ise (X ,τ) uzayına yerel kompakt uzay denir.

(ii) x ̸= y özelliğindeki her x,y ∈ X için x ∈U , y ∈V ve U ∩V = /0 olacak şekilde U,V ∈ τ

kümeleri varsa (X ,τ) uzayına bir Hausdorff uzayı denir.
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3.2. Banach Cebirleri

Tanım 3.2.1. (Kaniuth, 2009) A bir C-cebir ve ∥.∥ normu ile bir normlu uzay olsun. Her

x,y ∈ A için

∥xy∥ ≤ ∥x∥∥y∥

ise A ya bir normlu cebir denir. Eğer (A,∥.∥) normlu cebiri aynı zamanda bir Banach

uzayı ise A ya bir Banach cebiri denir.

Eğer her x∈A için xeA = eAx= x olacak şekilde ∥eA∥= 1 olan bir 0A ̸= eA ∈A elemanı

varsa, A ya bir birimli (unital) Banach cebiri denir.

Tanım 3.2.2. A bir Banach cebiri olsun. Eğer B, A nın kapalı bir alt cebiri ise o zaman B

tam uzay olup (A daki işlemler ve norm ile) bir Banach cebiri belirtir. Bu durumda B ye

A nın bir Banach alt cebiri denir.

Örnek 3.2.3. R ve C uzayları, bilinen toplama, çarpma işlemleri ve alışılmış norm ile

birer birimli, değişmeli Banach cebiridir.

Örnek 3.2.4. X boş olmayan bir kompakt Hausdorff uzayı ve C(X) =

{ f | f : X → C sürekli fonksiyon } olsun. f ,g ∈ C(X) olmak üzere, her x ∈ X ve

her α skaleri için,

( f +g)(x) = f (x)+g(x) ve (α f )(x) = α( f (x))

işlemleri ile ( f g)(x) = f (x)g(x) çarpma işlemi tanımlansın. ∥·∥ : C(X) → R, ∥ f∥ :=

sup
x∈X

| f (x)| fonksiyonu, C(X) üzerinde bir normdur ve C(X) uzayı bir birimli, değişmeli

Banach cebiridir.

Örnek 3.2.5. Mn(C), kompleks sayılar kümesi üzerinde tüm n× n tipindeki matrislerin

kümesi olsun. Matrislerde bilinen toplama, çarpma ve skalerle çarpma işlemleri ile

Mn(C), birimi In birim matrisi olan bir birimli cebirdir. Eğer A = (ai j) ∈ Mn(C) (i, j =

1,2, . . . ,n) ise,

∥A∥∞ = sup
i

n

∑
j=1

|ai j| ve ∥A∥1 = sup
j

n

∑
i=1

|ai j|

fonksiyonlarının herbiri Mn(C) üzerinde birer normdur. Mn(C) uzayı sonlu boyutlu

olduğundan her A ∈ Mn(C) için m.∥A∥
∞
≤ ∥A∥1 ≤ M.∥A∥

∞
olacak şekilde m,M > 0

sayıları var olup bu normlar birbirine denktir. Dolayısıyla bu normların herhangi biri için
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A,B ∈ Mn(C) olmak üzere

∥AB∥ ≤ ∥A∥∥B∥

şartı sağlanır ve Mn(C) değişmeli olmayan bir Banach cebiridir.

Örnek 3.2.6. X bir Banach uzayı olsun. B(X) Banach uzayı üzerinde çarpma işlemi,

S,T ∈B(X) olmak üzere

(T S)(x) := T (S (x)) (x ∈ X)

şeklinde tanımlansın. Her T,S ∈B(X) ve her α skaleri için,

(α (T S))(x) = α ((T S)(x)) = α (T (S (x))) = (αT )(S (x)) := ((αT )S)(x)

ve

(T (αS))(x) :=T ((αS)(x))=T (α (S (x)))=α (T (S (x))) :=α ((T S)(x))= (α (T S))(x)

eşitlikleri sağlandığından B(X) bir cebirdir. Üstelik her T,S ∈B(X) için,

∥T S∥ = sup
∥x∥=1

∥(T S)(x)∥ := sup
∥x∥=1

∥T (S (x))∥ ≤ ∥T∥ sup
∥x∥=1

∥S (x)∥

≤ ∥T∥∥S∥ sup
∥x∥=1

∥x∥= ∥T∥∥S∥

olduğundan B(X) bir Banach cebiridir.

Önerme 3.2.7. (Bonsall ve Duncan, 1973) A birimli bir Banach cebiri ve birimi eA olsun.

∥eA − x∥< 1 eşitsizliğini sağlayan her x∈A elemanı tersinirdir ve x−1 = eA+
∞

∑
n=1

(eA−x)n

dir.

Tanım 3.2.8. A bir Banach cebir olsun. Eğer her x ∈ A için xA = {0} (Ax = {0}) iken

x = 0 oluyorsa A ya mertebesiz Banach cebir denir.

Tanım 3.2.9. A bir Banach cebir olsun. Eğer A2, A cebirinde yoğun bir küme ise, yani

A2 = A ise, A ya esas (essential) Banach cebir denir.

Tanım 3.2.10. A bir Banach cebir ve A2 ̸= {0} olsun. Eğer A nın {0} ve A dan başka

kapalı ideali yoksa A ya topolojik basit Banach cebir denir.
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Tanım 3.2.11. A bir Banach cebiri ve X bir A-bimodül olsun. w ∈ A alalım. Eğer x ∈ X

için w · x = 0 (x ·w = 0) iken x = 0 oluyorsa w elemanına X in sol (sağ) ayrılma noktası

denir.

Tanım 3.2.12. (Bonsall ve Duncan, 1973) A bir Banach cebiri ve X bir Banach uzayı

olsun. Eğer X bir A-bimodül ve her a ∈ A, x ∈ X için

∥a · x∥ ≤ K∥a∥∥x∥ ve ∥x ·a∥ ≤ K∥x∥∥a∥ (3.2)

olacak şekilde bir K > 0 sabiti var ise X e bir Banach A-bimodül denir. (3.2) deki

eşitsizliklerden yalnızca soldaki geçerli olduğu durumda X sol A-modüle bir sol Banach

A-modül; yalnızca sağdaki geçerli olduğunda X sağ A-modüle bir sağ Banach A-modül

adı verilir.

Tanım 3.2.13. A bir Banach cebiri ve X bir Banach A-bimodül olsun. a ∈ A, x ∈ X ve

f ∈ X∗ için,

(a• f )(x) = f (x ·a) ve ( f •a)(x) = f (a · x)

işlemleriyle X∗ bir sol A-modül ve bir sağ A-modüldür. Üstelik her a,b ∈ A, x ∈ X , f ∈ X∗

için,

(a• ( f •b))(x) = ( f •b)(x ·a) = f (b · (x ·a)) = f ((b · x) ·a)

= (a• f )(b · x) = ((a• f )•b)(x)

sağlandığından a•( f •b)= (a• f )•b elde edilir. O halde X∗=B(X ,C) bir A-bimodüldür.

∥x∥= 1 şartını sağlayan her x ∈ X ve her a ∈ A, f ∈ X∗ için,

∥(a• f )(x)∥= ∥ f (x ·a)∥ ≤ ∥ f∥∥x ·a∥

olup X bir Banach A-bimodül olduğundan

∥a• f∥= sup
∥x∥=1

∥(a• f )(x)∥ ≤ K ∥ f∥∥a∥

olacak şekilde bir K > 0 sabiti vardır. O halde X∗ bir Banach A-bimodüldür ve bu durumda

X∗ dual uzayına X in dual modülü adı verilir.
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Eğer A Banach cebiri birimli ve X Banach A-bimodülü birimsel ise, o zaman her x∈X ,

f ∈ X∗ için

(eA • f )(x) = f (x · eA) = f (x) = f (eA · x) = ( f • eA)(x)

olduğundan her f ∈ X∗ için eA • f = f •eA = f olur. Böylece X∗ dual modülü bir birimsel

Banach A-bimodül olur.

Tanım 3.2.14. A bir Banach cebiri ve X bir A-bimodül olsun. Eğer her a ∈ A, x ∈ X için

a · x = x ·a ise X e simetriktir denir.

Önerme 3.2.15. A bir değişmeli Banach cebiri olsun. O halde A∗ dual modülü bir

simetrik A-bimodüldür.

İspat: Her a ∈ A ve her f ∈ A∗ için, a · f = f · a olduğunu gösterelim. A Banach cebiri

değişmeli olduğundan, her b ∈ A için,

(a · f )(b) = f (ba) = f (ab) = ( f ·a)(b)

olup A∗, A-bimodülünün simetrik olduğu görülür. 2

Tanım 3.2.16. [Bonsall ve Duncan 1973, Tanım I.11.8] (A,∥·∥) bir normlu cebir ve

(ρi)i∈Λ
, A içinde bir ağ olsun. Eğer her a ∈ A için

a = lim
i∈Λ

ρia = lim
i∈Λ

aρi

ise (ρi)i∈Λ
ağına A nın bir yaklaşık birimi denir. Eğer her i ∈ Λ için ∥ρi∥ ≤ M olacak

şekilde bir M > 0 sabiti var ise (ρi)i∈Λ
yaklaşık birimine sınırlıdır denir.

Teorem 3.2.17. [Bonsall ve Duncan 1973, Tanım I.11.10] (Cohen Çarpanlama Teoremi)

A bir Banach cebiri, X bir sol (sağ) Banach A-modül, z ∈ X ve δ > 0 olsun. Eğer A nın

X için bir sınırlı sol (sağ) yaklaşık birimi var ise, o zaman z = ay(z = ya) ve ∥z− y∥ ≤ δ

olacak şekilde a ∈ A, y ∈ X vardır.

Sonuç 3.2.18. [Bonsall ve Duncan 1973, Tanım I.11.11] A bir Banach cebiri, z ∈ A ve

δ > 0 olsun. Eğer A nın sınırlı bir sol (sağ) yaklaşık birimi var ise, o zaman z= xy(z = yx)

ve ∥z− y∥≤ δ olacak şekilde x,y∈A vardır, ve y elemanı, A nın z yi içeren en küçük kapalı

sol (sağ) idealine aittir.

Tanım 3.2.19. (H. G. Dales, 2000) A bir Banach cebir olsun. A∗∗ Banach uzayı üzerinde

iki çarpım tanımlanabilir. İlk olarak, mA : A × A → A, (a,b) 7→ ab ile tanımlı çarpım
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dönüşümü sürekli bir 2-lineer dönüşümdür. Bu nedenle, Tanım 3.1.41 de olduğu gibi,

mA nın sürekli bir 2-lineer dönüşüm olan m̃A : A∗∗×A∗∗ → A∗∗ ya bir genişlemesi vardır.

Böylece her Φ ,Ψ ∈ A∗∗ için

Φ �Ψ := m̃A (Φ ,Ψ)

tanımlanır. a ∈ A ve Φ ∈ A∗∗ için

a�Φ = a ·Φ ve Φ �a = Φ ·a

olur. Burada ·, A∗∗ daki modül çarpımını gösterir. Önerme 3.1.42 gereği (E1 = . . .= E6 =

A ve P = Q = R = S = mA alınarak) her Φ ,Ψ ,ϒ ∈ A∗∗ için

(Φ �Ψ)�ϒ = Φ � (Ψ �ϒ )

olduğu görülür. ∥m̃A∥= 1 olduğundan, her Φ ,Ψ ∈ A∗∗ için ∥Φ �Ψ∥ ≤ ∥Φ∥∥Ψ∥ dir, ve

böylece (A∗∗,�), A yı kapalı bir alt cebir olarak içeren bir Banach cebiridir. Eğer A birimli

ise, o zaman eA, (A∗∗,�) Banach cebirinin birim elemanıdır.

(A∗∗,⋄) cebirini oluşturmak için A∗∗ içinde bir çarpım tanımlamanın ikinci bir yolu

daha vardır:

(A∗∗,⋄) =
(
(Aop)∗∗ ,�

)op
.

Böylece ⋄, Tanım 3.1.43 de tanımlanan mA nın m̂A genişlemesine karşılık gelir. O zaman

(A∗∗,⋄), A yı kapalı bir alt cebir olarak içeren bir Banach cebiridir. Genel olarak, � ve ⋄

çarpımları farklıdır.

Tanım 3.2.20. (H. G. Dales, 2000) A bir Banach cebiri olsun. O halde � ve ⋄ çarpımları

A∗∗ üzerinde, sırasıyla, birinci ve ikinci Arens çarpımlarıdır. Eğer bu iki çarpım A∗∗

üzerinde çakışıyorsa A cebiri Arens regülerdir.

3.3. C∗-Cebirler

Tanım 3.3.1. (Murphy, 1990) A bir C-cebir ve ∗ : A → A

x 7→ x∗
bir fonksiyon olsun. Eğer her

a,b ∈ A ve her α,β ∈ C için,

(i) (αa+βb)∗ = αa∗+βb∗

(ii) (ab)∗ = b∗a∗
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(iii) (a∗)∗ = a∗∗ = a

şartları sağlanıyorsa ∗ fonksiyonuna A üzerinde bir involüsyon ve A ya da bir ∗-cebir

denir.

Tanım 3.3.2. (Murphy, 1990) A bir ∗-cebir ve a ∈ A ise a∗ elemanına a nın eki denir.

Eğer a = a∗ ise a elemanına kendine-ek eleman denir. A daki tüm kendine-ek elemanların

kümesi Asa ile gösterilir. Eğer a ∈ Asa ve a idempotent ise a elemanına izdüşüm adı verilir.

Tanım 3.3.3. (Murphy, 1990) A bir Banach cebiri ve ∗, A üzerinde bir involüsyon olsun.

Eğer her a ∈ A için ∥a∗a∥= ∥a∥2 koşulu sağlanıyorsa A ya bir C∗-cebir denir.

Önerme 3.3.4. A bir C∗-cebir olsun. O halde her a ∈ A için,

∥a∗∥= ∥a∥

dır.

İspat: A bir C∗-cebir olduğundan her a ∈ A için,

∥a∥2 = ∥a∗a∥ ≤ ∥a∗∥∥a∥

dır. Böylece

∥a∥ ≤ ∥a∗∥ (3.3)

elde edilir. (3.3) de a yerine a∗ yazılırsa,

∥a∗∥ ≤ ∥a∗∗∥= ∥a∥ (3.4)

olur. (3.3) ve (3.4) den, her a ∈ A için ∥a∥= ∥a∗∥ olduğu görülür. 2

Tanım 3.3.5. A bir C∗-cebir olsun. Eğer her a ∈ A için a1A = 1Aa = a olacak şekilde bir

0A ̸= 1A ∈ A elemanı varsa A ya birimli C∗-cebirdir denir.

Not. Eğer bir A C∗-cebirinde 1A birim elemanı varsa daima ∥1A∥ = 1 dir. Bunun için

a1A = 1Aa = a eşitliğinde a = 1∗A alınırsa,

1∗A1A = 1∗A (3.5)
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olur. (3.5) eşitliğinde (1∗A1A)
∗ = 1∗A1A olduğu kullanılırsa 1∗A1A = (1∗A)

∗ = 1A elde edilir.

Böylece 1∗A = 1A dır. Buradan

∥1A∥= ∥1A1A∥= ∥1∗A1A∥= ∥1A∥2

olup ∥1A∥= 1 olduğu görülür.

Örnek 3.3.6. C kompleks sayılar cismi üzerinde tanımlı ∗ : C→ C, z 7→ z̄ (z̄, z nin

kompleks eşleniği) fonksiyonu bir involüsyon olup C bir birimli C∗-cebirdir.

Örnek 3.3.7. H ̸= {0}, < ·, · > iç çarpımı ile bir Hilbert uzayı olmak üzere B(H), H

üzerindeki tüm sınırlı lineer operatörlerin vektör uzayı olsun. Her T ∈B(H) için teklikle

belli bir T ∗ ∈B(H) vardır öyle ki her x,y ∈ H için

⟨T (x),y⟩= ⟨x,T ∗(y)⟩

eşitliği sağlanır.

∗ : B(H)→B(H) , T 7→ T ∗

fonksiyonu, B(H) üzerinde bir involüsyondur. Ayrıca ∥·∥ : B(H) → R, ∥T∥ =

sup
∥x∥=1

∥T (x)∥ (x ∈ H) fonksiyonu, B(H) uzayı üzerinde bir norm tanımlar. Böylece

B(H) bir C∗-cebirdir.

Teorem 3.3.8. [Murphy 1990, Teorem 3.1.2] Her C∗-cebirin sınırlı bir yaklaşık birimi

vardır.

Teorem 3.3.9. A bir ∗-cebir olsun. Her a ∈ A elemanı, x,y ∈ Asa olmak üzere a = x+ iy

formunda tek türlü yazılır.

İspat: A bir ∗-cebir ve a∈A olsun. Eğer x=
1
2
(a+a∗) ve y=

1
2i
(a−a∗) alınırsa, o zaman

x,y ∈ Asa olup a = x+ iy elde edilir. Diğer taraftan, a = b+ ic ve b,c ∈ Asa ise a∗ = b− ic

olur. Buradan b =
1
2
(a+a∗) ve c =

1
2i
(a−a∗) bulunur. 2

Tanım 3.3.10. M bir C∗-cebir olsun. Eğer M bir Banach uzayı olarak bir dual uzay ise,

yani (M∗)
∗ = M olacak şekilde bir M∗ Banach uzayı varsa, M ye bir W ∗-cebir denir.

Burada (M∗)
∗, M∗ ın dual uzayını göstermektedir.

Örnek 3.3.11. [H. G. Dales 2000, Örnek 2.6.22] Her A C∗-cebiri Arens regülerdir.

Teorem 3.3.12. [Civin ve Yood 1961, Teorem 7.1] A bir C∗-cebir olsun. A nın ikinci duali

olan A∗∗ uzayı da bir C∗-cebirdir.
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3.4. L1(G) Grup Cebiri

Bu bölümde, ilk olarak yerel kompakt Hausdorff uzaylarda ölçü ve integrasyon ile

ilgili bazı temel kavramlar hatırlatılacaktır. Daha sonra, bir G yerel kompakt grubun L1(G)

grup cebiri tanıtılacaktır.

Tanım 3.4.1. (Cohn, 2013) X ̸= /0 bir küme ve A , X in alt kümelerinin bir ailesi olsun.

Eğer

(i) X ∈ A ;

(ii) Her E ∈ A için Ec = X \E ∈ A ;

(iii) Her n ∈ N için En ∈ A ⇒
∞⋃

n=1
En ∈ A

şartları sağlanıyor ise A ailesine X kümesi üzerinde bir σ -cebir denir.

Tanım 3.4.2. (Cohn, 2013) Bir K ailesini kapsayan σ -cebirlerinin en küçüğüne K ailesi

ile üretilen σ -cebiri denir.

Tanım 3.4.3. (Cohn, 2013) (X ,τ) bir topolojik uzay olsun. τ ⊂ P (X) ailesi ile üretilen

σ -cebirine X üzerinde Borel cebiri adı verilir ve B (X) ile gösterilir. B (X) kümesinin

her bir elemanına bir Borel kümesi denir.

Tanım 3.4.4. (Cohn, 2013) X bir küme ve A da X üzerinde bir σ -cebiri olsun. (X ,A )

ikilisine bir ölçülebilir uzay; A daki her bir kümeye de A -ölçülebilir küme (veya kısaca

ölçülebilir küme) denir.

Tanım 3.4.5. (X ,A ) bir ölçülebilir uzay ve µ : A → [0,+∞] bir fonksiyon olsun. Eğer

her ayrık {Ei}∞

i=1 ⊆ A dizisi için,

(i) µ (φ) = 0 ;

(ii) µ

(
∞⋃

i=1
Ei

)
=

∞

∑
i=1

µ (Ei)

şartları sağlanıyorsa µ fonksiyonuna, (X ,A ) üzerinde bir ölçüm denir. (X ,A ,µ)

üçlüsüne de (pozitif) ölçüm uzayı adı verilir.

Tanım 3.4.6. (X ,τ) bir topolojik uzay olsun. (X ,B (X)) ölçülebilir uzayı üzerindeki µ :

B (X)→ [0,+∞] ölçümüne bir Borel ölçüm denir.

Tanım 3.4.7. X bir Hausdorff topolojik uzay ve A , X üzerinde B (X) ⊆ A koşulunu

sağlayan bir σ -cebir olsun. µ , (X ,A ) üzerinde bir ölçüm olmak üzere eğer
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(i) Her K ⊆ X kompakt alt kümesi için µ (K)< ∞;

(ii) Her E ∈ A için µ (E) = inf{µ (U) |U açık ve E ⊆U} ;

(iii) Her U ⊆ X açık alt kümesi için µ (U) = sup{µ (K) | K kompakt ve K ⊆U}

şartları sağlanıyorsa µ ye bir regüler ölçüm denir.

(X ,B (X)) üzerinde bir µ : B (X) → [0,+∞] regüler ölçümü, regüler Borel ölçüm

olarak adlandırılır.

Önerme 3.4.8. (X ,A ) bir ölçülebilir uzay ve f : X → [−∞,+∞] bir fonksiyon olsun. O

halde aşağıdakiler birbirine denktir:

(i) ∀ t ∈ R için {x ∈ X | f (x)> t} ∈ A ;

(ii) ∀ t ∈ R için {x ∈ X | f (x)≥ t} ∈ A ;

(iii) ∀ t ∈ R için {x ∈ X | f (x)< t} ∈ A ;

(iv) ∀ t ∈ R için {x ∈ X | f (x)≤ t} ∈ A .

Tanım 3.4.9. Önerme 3.4.8 deki denk koşullardan biri sağlanırsa, f fonksiyonuna

A -ölçülebilir (ya da kısaca ölçülebilir) denir.

Tanım 3.4.10. (X ,A ,µ) bir ölçüm uzayı ve ϕ : X → [0,+∞) bir basit ölçülebilir

fonksiyon olsun. ϕ fonksiyonunun X kümesi üzerinde µ ölçüsüne göre integrali

∫
x

ϕdµ =
n

∑
k=1

akµ (Ak) ∈ [0,∞]

genişletilmiş reel sayısı olarak tanımlanır. Burada ak lar ϕ nin X üzerinde aldığı farklı

değerler ve Ak = {x ∈ X | ϕ (x) = ak} olup ϕ fonksiyonu ϕ =
n
∑

k=1
akXAk gösterimine

sahiptir.

Tanım 3.4.11. (X ,A ,µ) bir ölçüm uzayı ve f : X → [0,+∞] ölçülebilir fonksiyon olsun.

S f ile 0 ≤ ϕ ≤ f koşulunu sağlayan basit ölçülebilir fonksiyonların kümesini gösterelim.

f fonksiyonunun µ ölçüsüne göre integrali

∫
x

f dµ = sup


∫
x

ϕ dµ : ϕ ∈ S f


genişletilmiş reel sayısıdır. E ∈ A olsun. f nin µ ye göre E üzerindeki integrali

∫
E

f dµ =
∫
x

f XE dµ
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sayısıdır.

Tanım 3.4.12. (X ,A ,µ) bir ölçüm uzayı ve f : X → [−∞,+∞] bir ölçülebilir

fonksiyon olsun. Eğer
∫
x
| f |dµ integrali sonlu ise f fonksiyonu X üzerinde µ ye göre

integrallenebilirdir denir. Burada f+ (x) = max{ f (x) ,0}, f nin pozitif parçası ve

f− (x) = max{− f (x) ,0}, f nin negatif parçası olmak üzere

∫
x

| f |dµ =
∫
x

f+dµ +
∫
x

f−dµ

olur.

Tanım 3.4.13. (X ,A ,µ) bir ölçüm uzayı A ⊆ X ve f ,g : X → [0,+∞] A -ölçülebilir

fonksiyonlar olsun. Eğer µ (A) = 0 koşulunu sağlayan A ∈ A kümesi dışında f = g ise

f ile g fonksiyonları hemen hemen her yerde eşittir denir ve kısaca f = g (h.h.h.y) ile

gösterilir.

Teorem 3.4.14. (X ,A ,µ) bir ölçüm uzayı ve f : X → R A -ölçülebilir bir fonksiyon

olsun. O halde
∫
x
| f |dµ = 0 olması için gerek ve yeter koşul f = 0 (h.h.h.y) olmasıdır.

Tanım 3.4.15. (X ,A ,µ) bir ölçüm uzayı f : X → R A -ölçülebilir bir fonksiyon

ve p ∈ [1,+∞) olsun. Eğer
∫
x
| f |p dµ integrali sonlu ise f fonksiyonuna p-ninci

kuvvetten integrallenebilir denir. p-ninci kuvvetten integrallenebilir fonksiyonlar sınıfı

L p (X ,A ,µ) ile gösterilir.

L p (X ,A ,µ) bir R-vektör uzayıdır. L p (X ,A ,µ) üzerinde

∥.∥p : L p (X ,A ,µ)→ R ∥ f∥p =

∫
x

| f |p dµ

1/p

fonksiyonu tanımlansın. Her α ∈ R ve her f ,g ∈ L p (X ,A ,µ) için,

(i) ∥ f∥p = 0 ⇐⇒ hemen hemen her yerde f = 0 ;

(ii) ∥α f∥p =

(∫
x
|α f |p dµ

)1/p

= |α|∥ f∥p ;

(iii) ∥ f +g∥p ≤ ∥ f∥p +∥g∥p

koşulları sağlandığından ∥.∥p fonksiyonu L p (X ,A ,µ) üzerinde bir yarı-norm tanımlar.
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L p (X ,A ,µ) üzerinde,

“ f ∼ g ⇐⇒ hemen hemen her yerde f = g”

ile tanımlı ∼ bağıntısı bir denklik bağıntısıdır. Dolayısıyla bu bağıntı L p (X ,A ,µ)

uzayını denklik sınıflarına ayırır. Bu denklik sınıflarının kümesi Lp (X ,A ,µ) ile gösterilir.

Lp (X ,A ,µ) kümesinin elemanları [ f ] biçimindeki denklik sınıflarıdır. Lp (X ,A ,µ)

uzayı,

[ f ]+ [g] = [ f +g] , α [ f ] = [α f ]

şeklinde tanımlanan toplama ve skaler ile çarpma işlemlerine göre bir vektör uzayıdır.

Üstelik,

∥.∥p : Lp (X ,A ,µ)→ R, ∥[ f ]∥p = ∥ f∥p =

∫
x

| f |p dµ

1/p

ile tanımlanan ∥.∥p fonksiyonu, Lp (X ,A ,µ) üzerinde bir norm olur.

Her ne kadar Lp (X ,A ,µ) uzayının elemanları [ f ] denklik sınıfları ise de onları

denklik sınıflarının f temsilci elemanları ile göstermek mümkündür.

Teorem 3.4.16. (X ,A ,µ) bir ölçüm uzayı ve p ∈ [1,+∞) olsun. O halde Lp (X ,A ,µ),

∥.∥p normu ile birlikte bir Banach uzayıdır.

Tanım 3.4.17. G bir grup ve τ , G üzerinde bir topoloji olsun. Eğer m : G × G →

G, m(a,b) = ab işlemi ile n : G → G, n(a) = a−1 fonksiyonu sürekli ise (G,m,τ)

üçlüsüne bir topolojik grup adı verilir. Burada G × G kartezyen çarpımı üzerindeki

topoloji çarpım topolojisidir.

Tanım 3.4.18. G bir topolojik grup olsun. Eğer G bir yerel kompakt Hausdorff uzayı ise

G ye bir yerel kompakt grup denir.

Tanım 3.4.19. G bir yerel kompakt grup olsun. µ, G üzerinde sıfırdan farklı bir regüler

Borel ölçüm olmak üzere eğer her x ∈ G ve her B ∈ B (G) için µ (xB) = µ (B) ise µ ye

G üzerinde bir sol Haar ölçüm; µ (Bx) = µ (B) ise µ ye bir sağ Haar ölçüm denir.

Teorem 3.4.20. [Cohn 2013, Teorem 9.2.2 ve 9.2.6] G bir yerel kompakt grup olsun. O

zaman G üzerinde bir µ sol Haar ölçüm vardır. Üstelik υ , G üzerinde bir başka sol Haar

ölçüm ise o zaman υ = cµ olacak şekilde bir c ∈ (0,+∞) sabiti vardır.
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Not. G bir yerel kompakt grup ve µ, G üzerinde bir sol Haar ölçüm olsun. p ∈ [1,+∞)

olmak üzere Lp (G,B (G) ,µ) uzayı, Lp (G) notasyonu ile gösterilir.

Tanım 3.4.21. G bir yerel kompakt grup ve µ, G üzerinde bir sol Haar ölçüm olsun.

f ,g ∈ L1 (G) ve x ∈ G olmak üzere

( f ∗g)(x) =
∫
G

f (t)g
(
t−1x

)
dµ (t)

ile tanımlı f ∗g : G → R fonksiyonuna f ile g nin konvolüsyonu denir. L1 (G) üzerindeki

çarpma işlemi konvolüsyon olarak alınırsa L1 (G) bir Banach cebiri olur. Bu durumda

L1 (G) ye G nin grup cebiri adı verilir.

Önerme 3.4.22. Yerel kompakt bir G grubu için L1 (G) grup cebiri sınırlı bir yaklaşık

birime sahiptir.

3.5. Amenable Banach Cebirleri

Tanım 3.5.1. A bir Banach cebiri ve X bir Banach A-bimodül olsun. Bir D : A → X lineer

dönüşümü, her a,b ∈ A için

D(ab) = a ·D(b)+D(a) ·b
(
D
(
a2)= a ·D(a)+D(a) ·a

)
şartını sağlıyorsa D ye bir türev (Jordan türev) denir.

Her türev bir Jordan türevdir fakat bunun karşıtı her zaman doğru olmayabilir.

Teorem 3.5.2. [B. Johnson 1996, Teorem 6.3] A bir C∗-cebir ve X bir Banach A-bimodül

olsun. O halde A dan X e tanımlı her Jordan türev bir türevdir.

x ∈ X sabit bir eleman olmak üzere Dx : A → X fonksiyonu her a ∈ A için

Dx (a) := a · x− x ·a
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olarak tanımlansın. Her a,b ∈ A ve α ∈ C için,

Dx (a+b) = (a+b) · x− x · (a+b)

= (a · x− x ·a)+(b · x− x ·b)

= Dx (a)+Dx (b)

ve

Dx (α ·a) = (α ·a)x− x(α ·a)

= α · (a · x)−α (x ·a)

= α (a · x− x ·a)

= α ·Dx (a)

olduğundan Dx bir lineer dönüşümdür. Üstelik her a ∈ A için,

∥Dx (a)∥= ∥a · x− x ·a∥ ≤ ∥a · x∥+∥x ·a∥

≤ ∥a∥∥x∥+∥x∥∥a∥

= 2∥x∥∥a∥

= M ∥a∥ (M = 2∥x∥> 0)

olduğundan Dx lineer dönüşümü sınırlıdır. Ayrıca X bir A-bimodül olduğundan, her a,b ∈

A için,

Dx (ab) = (ab) · x− x · (ab)

= a · (b · x)− (x ·a) ·b−a · (x ·b)+a · (x ·b)

= a · (b · x)−a · (x ·b)+(a · x) ·b− (x ·a) ·b

= a · (b · x− x ·b)+(a · x− x ·a) ·b

= a ·Dx (b)+Dx (a) ·b

olup Dx , A dan X e bir türevdir. Bu şekilde tanımlanan Dx lineer dönüşümüne x elemanı

tarafından belirlenmiş iç türev adı verilir.
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Tanım 3.5.3. (B. E. Johnson, 1972) A bir Banach cebiri olsun. Eğer her X Banach

A-bimodülü için A dan X∗ dual modülüne tanımlı her sınırlı türev bir iç türev ise, o zaman

A ya amenable Banach cebiri denir.

Örnek 3.5.4. C kompleks uzay bir amenable Banach cebiridir.

W.G. Bade, P.C. Curtis, Jr. ve H.G. Dales (Bade, Curtis Jr vd., 1987), 1987 yılında

değişmeli Banach cebirleri için zayıf amenabilite kavramını tanıtmışlardır. B.E. Johnson

ise zayıf amenabilite için daha genel bir tanım vermiştir:

Tanım 3.5.5. (B. Johnson, 1991) A bir Banach cebiri olsun. Eğer A dan A∗ dual modülüne

tanımlı her sınırlı türev bir iç türev ise, o zaman A ya zayıf amenable Banach cebiri denir.

Her amenable Banach cebiri zayıf amenabledir, ancak zayıf amenable Banach

cebirlerinin sınıfı, amenable Banach cebirlerine kıyasla oldukça geniştir.

Örnek 3.5.6. (B. Johnson, 1991) Her C∗-cebir zayıf amenabledır.

Örnek 3.5.7. (H. Dales, F. Ghahramani vd., 1998) Her yerel kompakt G grubu için L1 (G)

grup cebiri zayıf amenabledır.

Önerme 3.5.8. [H. G. Dales 2000, Önerme 2.6.6(i)] A bir değişmeli Banach cebir, E bir

Banach A-modül ve λ ∈ E∗ olsun. O halde her a ∈ A, x ∈ E için Rλ x(a) = λ (a · x) olacak

şekilde bir Rλ ∈B(E,A∗) fonksiyonu vardır.

İspat: Amacımız, Rλ nın E den A∗ dual uzayına tanımlı sınırlı bir lineer dönüşüm

olduğunu göstermektir. İlk olarak her x,y ∈ E, k ∈ C için, Rλ (kx+ y) = kRλ x + Rλ y

olduğunu gösterelim. Yani her a ∈ A için

Rλ (kx+ y)(a) = (kRλ x+Rλ y)(a)

olduğunu gösterelim. O halde her a ∈ A için,

Rλ (kx+ y)(a) = λ (a · (kx+ y))

= λ (k (a · x)+a · y)

= kλ (a · x)+λ (a · y)

= kRλ x(a)+Rλ y(a)

= (kRλ x+Rλ y)(a)
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dır. Yani her x,y ∈ E için Rλ (kx+ y) = kRλ x + Rλ y olup, Rλ bir lineer dönüşümdür.

Ayrıca λ sınırlı olduğundan, her x ∈ E için,

∥Rλ x∥= sup
∥Rλ x(a)∥

∥a∥
= sup

∥λ (a · x)∥
∥a∥

≤ sup
∥λ∥∥a∥∥x∥

∥a∥
≤ c · ∥x∥

olup Rλ sınırlıdır. O halde Rλ ∈B(E,A∗) olur. 2

Teorem 3.5.9. [H. G. Dales 2000, Teorem 2.8.63] A bir zayıf amenable Banach cebiri

olsun. O halde

(i) A esas Banach cebirdir.

(ii) Eğer A değişmeli ise, her E Banach A-modülü için A dan E ye tanımlı her sınırlı türev

sıfırdır.

İspat: (i) Kabul edelim ki A2 ̸=A olsun. O halde bir a0 ∈A\A2 elemanı alalım. Buna göre

λ0|A2 = 0 ve λ0 (a0) = 1 olacak şekilde λ0 ∈ A∗ seçilebilir. Bir D : A → A∗ fonksiyonu,

D(a) = λ0 (a) ·λ0

şeklinde tanımlansın. D sürekli bir lineer dönüşümdür. a,b ∈ A için a ·b ∈ A2 olduğundan

D(ab) = λ0 (ab)λ0 = 0

dır ve her c ∈ A için λ0|A2 = 0 olduğundan

(a ·Db)(c)+(Da ·b)(c) = Db(ca)+Da(bc)

= λ0 (b)λ0 (ca)+λ0 (a)λ0 (bc)

= 0 (3.6)

olur. Böylece

a ·D(b)+D(a) ·b = 0 (3.7)

dır. (3.6) ve (3.7) den D(ab) = a ·D(b)+D(a) ·b olup D, A dan A∗ dual modülüne tanımlı

bir sınırlı türevdir. Aynı zamanda

(D(a0))(a0) = (λ0 (a0)λ0)(a0) = (λ0)(a0) = 1
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dir. Ancak her λ ∈ A∗ için

(a0λ −λa0)(a0) = (a0λ )(a0)− (λa0)(a0)

= λ
(
a2

0
)
−λ

(
a2

0
)

= 0

dır. Buradan D bir iç türevdir. Bu ise her türevin iç türev olmasıyla çelişir. O halde A2 = A

olmalıdır.

(ii) D ̸= 0 olacak şekilde D, A dan E ye tanımlı sınırlı bir türev olsun. (i) den, A2 = A

dır ve dolayısıyla D
(
a2

0
)
̸= 0 olacak şekilde a0 ∈ A vardır. O halde a0 ·D(a0) ̸= 0 dır.

Böylece λ (a0 ·D(a0)) = 1 olacak şekilde bir λ ∈ E∗ vardır. Rλ ∈ B(E,A∗) alınsın. O

zaman Rλ ◦D : A → A∗ sınırlı bir türevdir. Çünkü her x,y ∈ A için

(Rλ ◦D)(x+ y) = Rλ (D(x+ y))

= Rλ (D(x)+D(y))

= Rλ (D(x))+Rλ (D(y))

= (Rλ ◦D)(x)+(Rλ ◦D)(y)

ve

(Rλ ◦D)(xy) = Rλ (D(xy))

= Rλ (D(x)y+ xD(y))

= Rλ (D(x)y)+Rλ (xD(y))

= Rλ (D(x))y+ xRλ (D(y))

= (Rλ ◦D)(x)y+ x(Rλ ◦D)(y)

olduğundan Rλ ◦D bir lineer dönüşümdür. Ayrıca

∥(Rλ ◦D)(x)∥= ∥Rλ (D(x))∥ ≤ ∥Rλ∥∥D(x)∥ ≤ ∥Rλ∥∥D∥∥x∥

32



olduğundan Rλ ◦D dönüşümü sınırlıdır. Yani Rλ ◦D, A dan A∗ dual modülüne tanımlı

sınırlı bir türevdir. Rλ dönüşümünün tanımı gereği,

((Rλ ◦D)(a0))(a0) = (Rλ (D(a0)))(a0)

= λ (a0 ·D(a0))

= 1

dir. Bu durumda Rλ ◦D ̸= 0 dır. Ancak bu durum A nın zayıf amenable oluşu ile çelişir.

O halde D = 0 olmalıdır. 2

3.6. Banach Cebirlerde Sıfır Çarpımı Koruyan Dönüşümler

Tanım 3.6.1. A bir Banach cebiri, X herhangi bir Banach uzayı ve φ : A×A → X sürekli

bir 2-lineer dönüşüm olsun. Eğer φ 2-lineer dönüşümü,

a,b ∈ A, ab = 0 ⇒ φ (a,b) = 0 (3.8)

koşulunu sağlıyor ise φ ye sıfır çarpımı koruyan 2-lineer dönüşüm adı verilir.

Tanım 3.6.2. A bir Banach cebiri ve X bir Banach uzayı olmak üzere sıfır çarpımı koruyan

her sürekli φ : A×A → X 2-lineer dönüşümü,

φ (ab,c) = φ (a,bc) (a,b,c ∈ A)

şartını sağlıyorsa A ya (B) özelliğini sağlar denir.

Örnek 3.6.3. A bir Banach cebiri ve A3 = {0} olsun. Her x,y,z ∈ A için (xy)z = x(yz) = 0

dır ve böylece (3.8) şartını sağlayan her bir φ : A×A → C 2-lineer fonksiyoneli için

φ (xy,z) = 0 = φ (x,yz)

şartı sağlanır. O halde A Banach cebiri, (B) özelliğini sağlar.

Teorem 3.6.4. (Alaminos, M. Brešar vd., 2009) A bir Banach cebiri ve X bir Banach

uzayı olmak üzere A, (B) özelliğini sağlasın. Eğer A nın bir sol yaklaşık birimi var ise, o
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zaman sıfır çarpımı koruyan her sürekli φ : A×A → X 2-lineer dönüşümü için,

φ(a,b) = Φ(ab) (a,b ∈ A)

olacak şekilde bir Φ : A → X lineer operatörü vardır. Üstelik, A nın sınırlı bir sol yaklaşık

birimi varsa Φ süreklidir.

İspat: (gi)i∈I , A nın bir sol yaklaşık birimi olsun. O halde her a ∈ A için, lim
i∈I

gia = a dır.

Sıfır çarpımı koruyan keyfi bir φ : A×A → X sürekli 2-lineer dönüşümü alalım. φ sürekli

olduğundan, her a,b ∈ A için,

φ(a,b) = lim
i∈I

φ(gia,b) = lim
i∈I

φ(gi,ab) (3.9)

dir. Böylece her a ∈ A2 için (φ(gi,a))i∈I ağı yakınsaktır. Buna göre, bir Φ : A2 →

X , Φ(a) = lim
i∈I

φ(gi,a) (a∈A2) lineer operatörü tanımlanabilir. Her a,b∈A2 ve her α ∈C

için,

Φ(αa+b) =lim
i∈I

φ(gi,αa+b)

=lim
i∈I

[αφ(gi,a)+φ(gi,b)]

=αlim
i∈I

φ(gi,a)+ lim
i∈I

φ(gi,b)

=αΦ(a)+Φ(b)

eşitliği sağlanır. O halde Φ operatörü lineerdir. Φ nin tanımından ve (3.9) eşitliğinden,

her a,b ∈ A için φ(a,b) = Φ(ab) olduğu görülür. Eğer (gi)i∈I ağı sınırlı ise, her a ∈ A için

∥φ(gi,a)∥ ≤ ∥φ∥sup
i∈I

∥gi∥∥a∥ (i ∈ I)

olur ve burada limite geçilirse, lim
i∈I

∥φ(gi,a)∥ ≤ ∥φ∥sup
i∈I

∥gi∥∥a∥ bulunur. Normun

sürekliliğinden,
∥∥∥∥lim

i∈I
φ(gi,a)

∥∥∥∥ ≤ ∥φ∥sup
i∈I

∥gi∥∥a∥ elde edilir. Buradan ∥Φ(a)∥ ≤

∥φ∥sup
i∈I

∥gi∥∥a∥ olup sup
a̸=0

∥Φ(a)∥
∥a∥

≤ ∥φ∥sup
i∈I

∥gi∥ olur. Böylece

∥Φ∥ ≤ ∥φ∥sup
i∈I

∥gi∥

olup Φ lineer operatörü sınırlıdır (süreklidir). 2

34



Örnek 3.6.5. (Alaminos, M. Brešar vd., 2009) Her A C∗-cebiri, (B) özelliğini sağlar.

Örnek 3.6.6. (Alaminos, M. Brešar vd., 2009) G bir yerel kompakt grup olmak üzere

L1 (G) Banach cebiri, (B) özelliğini sağlar.

A bir Banach cebiri ve J(A), A daki tüm idempotentler tarafından üretilen A nın alt

cebiri olsun. Eğer A = J(A) ise, A Banach cebiri idempotentler tarafından üretilir denir.

A = J(A) özelliğine sahip Banach cebirlerine örnek olarak aşağıdakiler verilebilir:

Örnek 3.6.7. [Alaminos, M. Brešar vd. 2009, Örnek 1.3]

(i) Bir X kompakt Hausdorff uzayı için C (X) Banach cebiri.

(ii) Aşikar olmayan bir idempotent içeren topolojik basit Banach cebirleri.

(iii) W ∗-cebirleri (Sakai, 2012).

Örnek 3.6.8. (Alaminos, M. Brešar vd., 2009) A bir birimli Banach cebiri ve A = J(A)

ise, o zaman A, (B) özelliğini sağlar.

Örnek 3.6.5 gereği her C∗-cebir, (B) özelliğini sağlar. Üstelik Teorem 3.3.8 gereği her

C∗-cebirin sınırlı bir yaklaşık birimi vardır. Buna göre, Teorem 3.6.4 ün C∗-cebirlerine

kısıtlanmış hali aşağıdaki gibi verilebilir:

Teorem 3.6.9. (Alaminos, J. Brešar vd., 2010) A bir C∗-cebir, X bir Banach uzayı ve

φ : A×A → X sıfır çarpımı koruyan sürekli bir 2-lineer dönüşüm olsun. O halde

φ(a,b) = Φ(ab) (a,b ∈ A)

olacak şekilde bir Φ : A → X lineer operatörü vardır.

Teorem 3.6.10. (Alaminos, J. Brešar vd., 2010) A bir C∗-cebir ve X bir Banach uzayı

olsun. φ : A×A → X fonksiyonu, her a,b ∈ A için

ab = ba = 0 ⇒ φ (a,b) = 0

şartını sağlayan sürekli bir 2-lineer dönüşüm olsun. O zaman her a,b,c,d ∈ A için,

φ (ab,cd)+φ (da,bc) = φ (a,bcd)+φ (dab,c)

olur.

35



İspat: a1b1 = 0 olacak şekilde a1,b1 ∈ A alalım. Her a,b ∈ A için

φ1 : A×A → X , φ1 (a,b) = φ (b1a,ba1)

fonksiyonu tanımlansın. İlk olarak φ1 fonksiyonunun 2-lineer dönüşüm olduğunu

gösterelim: Her a,b,c,d ∈ A ve her α ∈ C için,

φ1 (αa+b,c) = φ (b1 (αa+b) ,ca1)

= φ (b1 (αa)+b1b,ca1)

= αφ (b1a,ca1)+φ (b1b,ca1)

= αφ1 (a,c)+φ1 (b,c)

ve

φ1 (a,αc+d) = φ (b1a,(αc+d)a1)

= φ (b1a,(αc)a1 +da1)

= αφ (b1a,ca1)+φ (b1a,da1)

= αφ1 (a,c)+φ1 (a,d)

koşulları sağlandığından φ1 fonksiyonu 2-lineerdir. Her a,b ∈ A için,

∥φ1 (a,b)∥
t
= ∥φ (b1a,ba1)∥
φ sınırlı
≤ ∥φ∥∥b1a∥∥ba1∥

≤ ∥φ∥∥b1∥∥a∥∥b∥∥a1∥

= (∥φ∥∥b1∥∥a1∥)∥a∥∥b∥

olacak şekilde M := ∥φ∥∥b1∥∥a1∥> 0 var olduğundan φ1 sınırlıdır, yani süreklidir.

Şimdi de φ1 fonksiyonunun (3.8) şartını sağladığını gösterelim. a,b ∈ A için ab =

0 olsun. Bu durumda, (b1a)(ba1) = b1 (ab)a1 = 0 ve (ba1)(b1a) = b(a1b1)a = 0 dır.

Hipotez gereği,

0 = φ (b1a,ba1) = φ1 (a,b)

bulunur. Yani φ1, (3.8) şartını sağlar.
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Örnek 3.6.5 gereği, φ1 (ab,c) = φ1 (a,bc) olur ve buradan her a,b,c ∈ A için

φ (b1ab,ca1)−φ (b1a,bca1) = 0 (3.10)

elde edilir.

Şimdi de a2,b2,c2 ∈ A elemanlarını sabitleyelim ve a1,b1 ∈ A olmak üzere

φ2 (a1,b1) = φ (b1a2b2,c2a1)−φ (b1a2,b2c2a1)

ile tanımlanan φ2 : A × A → X fonksiyonunun sürekli bir 2-lineer dönüşüm olduğunu

görelim:

Her a1,b1,c1,d1 ∈ A ve her α ∈ C için,

φ2 (αa1 +b1,c1) = φ (c1a2b2,c2 (αa1 +b1))−φ (c1a2,b2c2 (αa1 +b1))

= φ (c1a2b2,c2 (αa1)+ c2b1)−φ (c1a2,b2c2 (αa1)+b2c2b1)

= αφ (c1a2b2,c2a1)+φ (c1a2b2,c2b1)−αφ (c1a2,b2c2a1)

−φ (c1a2,b2c2b1)

= αφ2 (a1,c1)+φ2 (b1,c1)

ve

φ2 (a1,αc1 +d1) = φ ((αc1 +d1)a2b2,c2a1)−φ ((αc1 +d1)a2,b2c2a1)

= φ ((αc1)a2b2 +d1a2b2,c2a1)−φ ((αc1)a2 +d1a2,b2c2a1)

= αφ (c1a2b2,c2a1)+φ (d1a2b2,c2a1)−αφ (c1a2,b2c2a1)

−φ (d1a2,b2c2a1)

= αφ2 (a1,c1)+φ2 (a1,d1)
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koşulları sağlandığından φ2 fonksiyonu 2-lineerdir. Her a1,b1 ∈ A için,

∥φ2 (a1,b1)∥= ∥φ (b1a2b2,c2a1)−φ (b1a2,b2c2a1)∥

≤ ∥φ (b1a2b2,c2a1)∥+∥φ (b1a2,b2c2a1)∥

≤ ∥φ∥∥b1a2b2∥∥c2a1∥+∥φ∥∥b1a2∥∥b2c2a1∥ (φ : sınırlı)

≤ ∥φ∥∥b1∥∥a2b2∥∥c2∥∥a1∥+∥φ∥∥b1∥∥a2∥∥b2c2∥∥a1∥ (A : normlu cebir)

= (∥φ∥∥a2b2∥∥c2∥+∥φ∥∥a2∥∥b2c2∥)∥a1∥∥b1∥

olacak şekilde M := ∥φ∥∥a2b2∥∥c2∥+∥φ∥∥a2∥∥b2c2∥> 0 var olduğundan φ2 sınırlıdır,

yani süreklidir.

Şimdi de φ2 fonksiyonunun (3.8) şartını sağladığını gösterelim. a1,b1 ∈ A için a1b1 =

0 olduğunu biliyoruz. Bu durumda (3.10) eşitliğinden

φ2 (a1,b1) = φ (b1a2b2,c2a1)−φ (b1a2,b2c2a1) = 0

olur. Böylece Örnek 3.6.5 gereği, her a1,b1,c1 ∈ A için, φ2 (a1b1,c1)−φ2 (a1,b1c1) = 0

dır. Yani φ2 nin tanımından her a1,b1,c1,a2,b2,c2 ∈ A için,

[φ (c1a2b2,c2a1b1)−φ (c1a2,b2c2a1b1)]− [φ (b1c1a2b2,c2a1)−φ (b1c1a2,b2c2a1)] = 0

olup,

φ (c1a2b2,c2a1b1)−φ (c1a2,b2c2a1b1)−φ (b1c1a2b2,c2a1)+φ (b1c1a2,b2c2a1) = 0

(3.11)

bulunur. (3.11) eşitliğinde, c1a2 ve c2a1 elemanlarını içeren terimlerde Sonuç 3.2.18

gereği A2 = A olduğu kullanılırsa, teoremin ifadesinde de iddia edildiği gibi, her

a,b,c,d ∈ A için,

φ (ab,cd)−φ (a,bcd)+φ (da,bc)−φ (dab,c) = 0

sonucuna ulaşılır. 2
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Teorem 3.6.11. [H. Ghahramani 2013, Sonuç 3.6] A bir Banach cebir, X bir Banach

uzayı ve φ : A×A → X dönüşümü,

a,b ∈ A, ab = ba = 0 ⇒ φ (a,b) = 0

şartını sağlayan sürekli bir 2-lineer dönüşüm olsun. O halde her a ∈ A ve x ∈ J(A) için,

φ (a,x)+φ (x,a) = φ (ax,eA)+φ (eA,xa)

dır. Özel olarak, eğer A idempotentler tarafından üretiliyorsa, o zaman her a,b ∈ A için,

φ (a,b)+φ (b,a) = φ (ab,eA)+φ (eA,ba)

şartı sağlanır.

İspat: Her a, p ∈ A için p2 = p ve q = 1− p olsun. pq = qp = 0 olduğundan

φ (p,q) = φ (p,1− p) = φ (p,1)−φ (p, p) = 0

ve

φ (q, p) = φ (1− p, p) = φ (1, p)−φ (p, p) = 0

olur. Buradan φ (p,1) = φ (1, p) elde edilir. Her x ∈ J(A) için, lineerlikten

φ (x,1) = φ (1,x)

bulunur. (q− paq)(p+ paq) = qp + qpaq − paqp − paqpaq = 0 dır. Benzer şekilde

(p+ paq)(q− paq) = 0 olur. Ayrıca (p+qap)(q−qap) = (q−qap)(p+qap) = 0

dır. Buradan hipotez gereği, φ (q− paq, p+ paq) = 0 ve φ (p+qap,q−qap) = 0 dır.

Böylece bu eşitliklerde gerekli sadeleştirmeler yapılırsa,

0 = φ (q− paq, p+ paq)

= φ (q, p)+φ (q, paq)−φ (paq, p)−φ (paq, paq)

= φ (q, paq)−φ (paq, p)
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ve

0 = φ (p+qap,q−qap)

= φ (p,q)−φ (p,qap)+φ (qap,q)−φ (qap,qap)

=−φ (p,qap)+φ (qap,q)

bulunur. Buradan φ (paq, p) = φ (q, paq) ve φ (p,qap) = φ (qap,q) elde edilir.

Ayrıca (pap)q = q(pap) = 0 ve (qaq) p = p(qaq) = 0 olup

φ (qaq, p) = φ (p,qaq) = 0

dır. Yukarıdaki eşitlikler de kullanılarak,

φ (eA ·a, p)+φ (p,eA ·a)

= φ ((p+q)a, p)+φ (p,(p+q)a)

= φ (pa+qa, p)+φ (p, pa+qa)

= φ (pa(p+q)+qa(p+q) , p)+φ (p, pa(p+q)+qa(p+q))

= φ (pap+ paq+qap+qaq, p)+φ (p, pap+ paq+qap+qaq)

= φ (pap, p)+φ (paq, p)+φ (qap, p)+φ (qaq, p)+φ (p, pap)+φ (p, paq)

+φ (p,qap)+φ (p,qaq)

= φ (pap, p)+φ (paq, p)+φ (qap, p)+φ (p, pap)+φ (p, paq)+φ (p,qap)

= φ (pap, p)+φ (q, paq)+φ (qap, p)+φ (p, pap)+φ (p, paq)+φ (qap,q)

= φ (pap, p)+φ (1− p, pa(1− p))+φ ((1− p)ap, p)+φ (p, pap)

+φ (p, pa(1− p))+φ ((1− p)ap,1− p)

= φ (pap, p)+φ (1, pa)−φ (1, pap)−φ (p, pa)+φ (p, pap)+φ (ap, p)

−φ (pap, p)+φ (p, pap)+φ (p, pa)−φ (p, pap)+φ (ap,1)−φ (ap, p)

−φ (pap,1)+φ (pap, p)

= φ (p−1, pap)+φ (pap, p−1)+φ (1, pa)+φ (ap,1)

= φ (q, pap)+φ (pap,q)+φ (1, pa)+φ (ap,1)

= φ (ap,1)+φ (1, pa) (q(pap) = 0 olduğundan)
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bulunur. Her x ∈ J(A) elemanı, A daki idempotentlerin bir lineer kombinasyonu

olduğundan, her a ∈ A ve her x ∈ J(A) için

φ (a,x)+φ (x,a) = φ (ax,1)+φ (1,xa)

olur. 2

41





4. BULGULAR ve TARTIŞMA

Bu bölümde, esas olarak A. Zivari-Kazempour (Zivari-Kazempour, 2022) un

kendisinin 2022 yılında yayınladığı çalışması ile daha sonra M. Valaei (Zivari-Kazempour

ve Valaei, 2022) ile birlikte 2022 yılında yayınladıkları Banach cebirleri üzerinde tanımlı

n-Jordan çarpanların karakterizasyonu hakkındaki çalışmaları incelenecektir.

4.1. Çarpanlar ve Jordan Çarpanlar

Tanım 4.1.1. A bir Banach cebiri, X bir Banach A-bimodül ve T : A → X sınırlı bir lineer

dönüşüm olsun. Eğer her a,b ∈ A için

T (ab) = T (a) ·b

ise T ye sol çarpan; T (ab) = a ·T (b) ise T ye sağ çarpan denir. Eğer T hem sol hem de

sağ çarpan ise T ye çarpan adı verilir.

Tanım 4.1.2. A bir Banach cebiri, X bir Banach A-bimodül ve T : A → X sınırlı bir lineer

dönüşüm olsun. Eğer her a ∈ A için

T (a2) = T (a) ·a

ise T ye sol Jordan çarpan; T (a2) = a ·T (a) ise T ye sağ Jordan çarpan denir. Eğer T

hem sol hem de sağ Jordan çarpan ise T ye Jordan çarpan adı verilir.

Not. Her (sağ, sol) çarpanın bir (sağ, sol) Jordan çarpan olduğu açıktır, ancak aşağıdaki

örnekte de gösterildiği gibi bunun karşıtı genel olarak doğru değildir.

Örnek 4.1.3. A =


 a b

0 a

 | a,b ∈ C ve ab = 0

, alışılmış matris işlemleriyle bir

cebir olsun. A cebiri, ∥∥∥∥∥∥
 a b

0 a

∥∥∥∥∥∥= |a|+ |b| (a,b ∈ C)

normu ile birlikte bir Banach cebiridir.
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φ : A → A , φ

 a b

0 a

 =

 a 0

0 a

 sürekli lineer dönüşümü tanımlansın.

Her X =

 a b

0 a

 ∈ A için,

φ
(
X2)= φ

 a2 0

0 a2

=

 a2 0

0 a2

=

 a b

0 a

 a 0

0 a

= Xφ(X)

dir. Bu durumda φ bir sağ Jordan çarpandır. Şimdi φ nin bir sağ çarpan olmadığını

gösterelim:

A =

 0 1

0 0

 ve B =

 1 0

0 1

 matrislerini alalım. Bu durumda

φ (AB) = φ

 0 1

0 0

 1 0

0 1

= φ

 0 1

0 0

= 02×2

dır. Ayrıca

Aφ (B) =

 0 1

0 0

φ

 1 0

0 1

=

 0 1

0 0

 1 0

0 1

=

 0 1

0 0

 ̸= 02×2

bulunur. Dolayısıyla φ (AB) ̸= Aφ (B) olduğundan φ bir sağ çarpan değildir. Böylece her

sağ Jordan çarpan bir sağ çarpan değildir.

Tanım 4.1.4. A bir Banach cebiri, X bir Banach A-bimodül ve T : A → X sınırlı bir lineer

dönüşüm olsun. Eğer her a,b ∈ A için

a ·T (b) = T (a) ·b

şartı sağlanıyorsa T ye iki yanlı çarpan denir.

Not. Eğer T hem sol hem de sağ çarpan ise T iki yanlı çarpandır. Ancak karşıtı genelde

doğru değildir.
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Örnek 4.1.5. A =




0 a b

0 0 c

0 0 0

 : a,b,c ∈ R

 Banach cebiri üzerinde bir T : A → A

dönüşümü

T




0 a b

0 0 c

0 0 0


=


0 a 0

0 0 c

0 0 0



ile tanımlansın. T bir sınırlı lineer dönüşümdür. Üstelik her x =


0 a b

0 0 c

0 0 0

, y =


0 d e

0 0 f

0 0 0

 ∈ A için,

T (x)y =


0 a 0

0 0 c

0 0 0




0 d e

0 0 f

0 0 0

=


0 0 a f

0 0 0

0 0 0

 ve

xT (y) =


0 a b

0 0 c

0 0 0




0 d 0

0 0 f

0 0 0

=


0 0 a f

0 0 0

0 0 0

 olduğundan T (x)y = xT (y)

dir. O halde T iki yanlı çarpandır. Ancak xy =


0 0 a f

0 0 0

0 0 0

 için T (xy) =


0 0 0

0 0 0

0 0 0

 olup T (x)y ̸= T (xy) = 0 (xT (y) ̸= T (xy) = 0) olduğundan T bir sol (sağ)

çarpan değildir.

Teorem 4.1.6. A bir Banach cebiri ve X bir Banach A-bimodül olsun. Eğer w∈A elemanı,

X A-bimodülünün bir sol (sağ) ayrılma noktası ve T : A → X iki yanlı çarpan ise o zaman

T bir sol (sağ) çarpandır.
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İspat: T iki yanlı çarpan olduğundan her a,b ∈ A için a ·T (b) = T (a) · b dir. Her x ∈ A

için,

x ·T (ab) = T (x) · (ab) = (T (x) ·a) ·b = (x ·T (a)) ·b = x · (T (a) ·b)

olur. Özel olarak, w ·T (ab) = w · (T (a) ·b) olup her a,b ∈ A için

w · (T (ab)−T (a) ·b) = 0

olur. w, X in bir sol ayrılma noktası olduğundan her a,b ∈ A için T (ab)− T (a) · b = 0

bulunur. Böylece her a,b ∈ A için T (ab) = T (a) ·b olup T bir sol çarpandır. T nin bir sağ

çarpan olduğu da benzer şekilde ispatlanır. 2

4.2. n-Çarpanlar ve n-Jordan Çarpanlar

Tanım 4.2.1. A bir Banach cebiri, X bir sol Banach A-modül, n ≥ 2 bir tamsayı ve T :

A → X sınırlı bir lineer dönüşüm olsun. Eğer

(i) her a1,a2, . . . ,an ∈ A için T (a1a2 . . .an) = a1 ·T (a2 . . .an) ise T ye sağ n-çarpan;

(ii) her a ∈ A için T (an) = a ·T (an−1) ise T ye sağ n-Jordan çarpan denir.

Sol n-çarpan, sol n-Jordan çarpan, n-çarpan ve n-Jordan çarpan da benzer şekilde

tanımlanır.

Sağ çarpanlar için geçerli olan tüm sonuçlar, sol çarpanlar için de benzer ifadelerle

yazılacağından, bundan sonraki kısımlarda sadece sağ versiyonlar kullanılacaktır. Sadelik

için ise sağ öneki kullanılmayacaktır.

A bir Banach cebiri ve X bir sol Banach A-modül olmak üzere,

Muln(A,X) = {T | T : A → X n-çarpan}

ve

JMuln(A,X) = {T | T : A → X n-Jordan çarpan}

kümeleri tanımlansın. Muln(A,X) kümesi, B(A,X) vektör uzayının bir alt uzayıdır.
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Teorem 4.2.2. (Laali ve Fozouni, 2017) A bir Banach cebiri ve X bir sol Banach A-modül

olsun. O halde her n ≥ 2 tamsayısı için Muln(A,X) uzayı, B(A,X) uzayının kapalı bir alt

uzayıdır.

İspat: Muln(A,X) uzayının B(A,X) uzayında kapalı olduğu göstermek için {Tm} ⊂

Muln(A,X) bir dizi olmak üzere Tm → T ∈ B(A,X) olduğunu kabul edelim. T ∈

Muln(A,X) olduğunu gösterelim. a1,a2, . . . ,an, A nın keyfi elemanları olsun. Bu durumda

∥T (a1 . . .an)−a1 ·T (a2 . . .an)∥

≤∥T (a1 . . .an)−Tm (a1 . . .an)∥+∥Tm (a1 . . .an)−a1 ·T (a2 . . .an)∥

≤∥T −Tm∥∥a1 . . .an∥+∥a1 ·Tm (a2 . . .an)−a1 ·T (a2 . . .an)∥

≤∥T −Tm∥∥a1 . . .an∥+∥T −Tm∥∥a1∥∥a2 . . .an∥

elde edilir. Böylece m → ∞ iken T (a1 . . .an) = a1 · T (a2 . . .an) bulunur. O halde T ∈

Muln(A,X) dir. Yani Muln(A,X) kümesi kapalıdır. 2

Her n ≥ 2 tamsayısı için JMuln(A,X) kümesinin de B(A,X) uzayının kapalı bir alt

uzayı olduğu Teorem 4.2.2 nin ispatına benzer şekilde gösterilir.

Önerme 4.2.3. A bir Banach cebiri, X bir sol Banach A-modül, n ≥ 2 bir tamsayı ve T :

A → X sınırlı bir lineer dönüşüm olsun. Eğer T bir n-çarpan ise T bir (n+1)-çarpandır.

İspat: T bir n-çarpan olsun. O halde her a1,a2, ...,an ∈ A için

T (a1a2 . . .an) = a1 ·T (a2 . . .an) (4.1)

sağlanır. an+1 ∈ A alalım. Bu durumda (4.1) eşitliği kullanılarak

T (a1a2 . . .anan+1) = T

 ∈A

(
︷︸︸︷
a1a2)a3 . . .anan+1︸ ︷︷ ︸

(n−1) tane


= (a1a2) ·

T
(n−1) tane

(
︷ ︸︸ ︷
a3 . . .an+1)


= a1 ·

a2 ·T
(n−1) tane

(
︷ ︸︸ ︷
a3 . . .an+1)

= a1 ·T (a2a3 . . .an+1)

elde edilir. O halde T bir (n+1)-çarpandır. 2
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Genel durumda, Muln(A,X) ⊊ Muln+1(A,X) dir [Laali ve Fozouni 2017, Teorem 2].

Üstelik A bir esas Banach cebiri ise, her n ≥ 2 tamsayısı için Muln(A,X) = Muln+1(A,X)

dir [Laali ve Fozouni 2017, Teorem 3].

Muln(A,X)⊂ JMuln(A,X) olduğu açıktır. JMuln(A,X)⊂Muln(A,X) sağlanmadığına

dair bir örneği n = 3 için verelim:

Örnek 4.2.4. A =




0 a x c

0 0 b y

0 0 0 a

0 0 0 0

 : a,b,c,x,y ∈ R


Banach cebiri üzerinde bir T :

A → A dönüşümü

T




0 a x c

0 0 b y

0 0 0 a

0 0 0 0



=


0 a y c

0 0 b x

0 0 0 a

0 0 0 0



ile tanımlansın. T bir sınırlı lineer dönüşümdür. Üstelik her u =


0 a x c

0 0 b y

0 0 0 a

0 0 0 0

 için,

u2 =


0 0 ab ay+ xa

0 0 0 ab

0 0 0 0

0 0 0 0

 ve u3 =


0 0 0 a2b

0 0 0 0

0 0 0 0

0 0 0 0

 olup

T (u2) = T




0 0 ab ay+ xa

0 0 0 ab

0 0 0 0

0 0 0 0



=


0 0 ab ay+ xa

0 0 0 ab

0 0 0 0

0 0 0 0

= u2
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ve T (u3) = T




0 0 0 a2b

0 0 0 0

0 0 0 0

0 0 0 0



 =


0 0 0 a2b

0 0 0 0

0 0 0 0

0 0 0 0

 = u3 olur. Yani her u ∈ A

için

T (u3) = u3 = uu2 = uT (u2)

dir. Bu nedenle T bir 3-Jordan çarpandır, ancak T bir 3-çarpan değildir.

Genel olarak, JMuln+1(A,X) ⊆ JMuln(A,X) içermesi doğru değildir. Buna dair bir

örnek aşağıda verilmiştir:

Örnek 4.2.5. A =




0 x a b

0 0 y c

0 0 0 z

0 0 0 0

 : x,y,z,a,b,c ∈ R


Banach cebiri üzerinde bir

T : A → A dönüşümü

T




0 x a b

0 0 y c

0 0 0 z

0 0 0 0



=


0 z c 0

0 0 y a

0 0 0 x

0 0 0 0


ile tanımlansın. T bir sınırlı lineer dönüşümdür. O halde her u ∈ A ve n ≥ 4 için T (un) =

u ·T (un−1) dir. Bu durumda n ≥ 4 için T bir n-Jordan çarpandır. Ancak x,y,z ̸= 0 olduğu

durumda her u ∈ A için T (u3) ̸= u ·T (u2) dir. Böylece T bir 3-Jordan çarpan değildir.

4.3. n-Jordan Çarpanların Karakterizasyonu

Lemma 4.3.1. A bir Banach cebiri, X bir sol Banach A-modül ve T : A → X bir Jordan

çarpan olsun. O halde n ≥ 2 tamsayısı için T bir n-Jordan çarpandır.

İspat: n üzerinden tümevarım ile yapılacaktır. n = 3 için T nin bir 3-Jordan çarpan

olduğunu gösterelim: T bir Jordan çarpan olduğundan her a ∈ A için

T (a2) = a ·T (a) (4.2)

49



dır. Burada a yerine a+b yazılırsa, her a,b ∈ A için

T ((a+b)2) = (a+b) ·T (a+b)

⇒T (a2 +ab+ba+b2) = a ·T (a+b)+b ·T (a+b)

⇒T (a2)+T (ab+ba)+T (b2) = a ·T (a)+a ·T (b)+b ·T (a)+b ·T (b)

⇒T (ab+ba) = a ·T (b)+b ·T (a) (4.3)

olur. (2) eşitliğinde b yerine a2 yazılırsa, her a ∈ A için

2T (a3) = a ·T (a2)+a2 ·T (a) (4.4)

bulunur. (1) ve (3) eşitliklerinden,

2T (a3) = a ·T (a2)+a · (a ·T (a))

⇒2T (a3) = a ·T (a2)+a ·T (a2)

⇒T (a3) = a ·T (a2)

elde edilir. Böylece T bir 3-Jordan çarpandır. Her 3 ≤ k ≤ n için

T (ak) = a ·T (ak−1) (4.5)

sağlansın. (3) de b yerine ak yazılırsa,

T (aak +aka) = a ·T (ak)+ak ·T (a)

⇒T (2ak+1) = a ·T (ak)+ak ·T (a)

⇒2T (ak+1) = a ·T (ak)+ak ·T (a) (4.6)

bulunur. (5) eşitliği kullanılarak

ak ·T (a) = (ak−1a) ·T (a) = ak−1 ·T (a2) = (ak−2a) ·T (a2)

= ak−2 ·T (a3) = . . .= a ·T (ak) (4.7)
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olur. (4.7) eşitliğinden,

a ·T (ak)+ak ·T (a)︸ ︷︷ ︸
aT (ak)

= 2a ·T (ak)

olur. Bu eşitlik, (4.6) da yerine yazılırsa

2T (ak+1) = 2a ·T (ak)

elde edilir. Buradan T (ak+1) = a · T (ak) olur. O halde T bir (k + 1)-Jordan çarpandır.

Böylece istenen elde edilir. 2

Lemma 4.3.1 den n ≥ 2 olmak üzere her Jordan çarpan bir n-Jordan çarpandır. Ancak,

genel olarak m > n ≥ 3 için her n-Jordan çarpan m-Jordan çarpan değildir. Ayrıca Örnek

4.2.5 e göre, bazı (n+1)-Jordan çarpanlar n-Jordan çarpan olamamaktadır.

Lemma 4.3.1 in karşıtı doğru değildir. Yani n ≥ 2 olmak üzere her n-Jordan çarpan,

Jordan çarpan olmayabilir. n = 3 için aşağıdaki örneği verelim:

Örnek 4.3.2. A Banach cebirini ve T lineer dönüşümünü Örnek 4.1.5 de verildiği gibi

alalım. Her u ∈ A için T (u3) = uT (u2) dir. Yani T bir 3-Jordan çarpandır. Ancak T (u2) ̸=

uT (u) olduğundan T bir Jordan çarpan değildir.

Teorem 4.3.3. A bir birimli Banach cebiri, X bir birimsel sol Banach A-modül, T : A→ X

sınırlı bir lineer dönüşüm ve n ∈ N olsun. Eğer

ab = eA olacak şekildeki her a,b ∈ A için T (ab) = a ·T (b) (4.8)

ise T bir n-Jordan çarpandır.

İspat: Keyfi bir a ∈ A alalım. |λ |< 1
∥a∥

olacak şekildeki λ ∈ C için,

∥eA − (eA −λa)∥= ∥eA − eA +λa∥= ∥λa∥= |λ |∥a∥< 1
∥a∥

· ∥a∥< 1

olduğundan eA −λa tersinirdir ve tersi

(eA −λa)−1 = eA +
∞

∑
n=1

(eA − (eA −λa))n = eA +
∞

∑
n=1

(λa)n

= eA +
∞

∑
n=1

λ
nan =

∞

∑
n=0

λ
nan
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dir. O halde

T (eA) = T
(
(eA −λa)(eA −λa)−1eA

)
= (eA −λa) ·T

(
(eA −λa)−1eA

)
= (eA −λa) ·T

(
∞

∑
n=0

λ
naneA

)

= eA ·T

(
λ

0a0eA +
∞

∑
n=1

λ
naneA

)
−λa ·T

(
∞

∑
n=0

λ
naneA

)

= eA ·T (eA)+ eA ·T

(
∞

∑
n=1

λ
naneA

)
−λa ·T

(
∞

∑
n=0

λ
naneA

)

= T (eAeA)+T

(
∞

∑
n=1

λ
naneA

)
−λa ·T

(
∞

∑
n=0

λ
naneA

)

= T (eA)+
∞

∑
n=1

λ
nT (aneA)−λa ·

∞

∑
n=0

λ
nT (aneA)

dır. Buradan |λ |< 1
∥a∥

olacak şekildeki her λ ∈ C için,

∞

∑
n=1

λ
nT (an)−

∞

∑
n=0

λ
n+1a ·T (an) = 0

⇒
∞

∑
n=1

λ
nT (an)−

∞

∑
n=1

λ
na ·T (an−1) = 0

⇒
∞

∑
n=1

λ
n [T (an)−a ·T (an−1)

]
= 0

olup her n ∈ N için T (an) = a ·T (an−1) dir. Böylece T bir n-Jordan çarpandır. 2

Sonuç 4.3.4. A bir birimli Banach cebiri, X bir birimsel sol Banach A-modül, T : A → X

sınırlı bir lineer dönüşüm ve n ∈N olsun. Eğer a ∈ Inv(A) ve T (aa−1) = a ·T (a−1) ise T

bir n-Jordan çarpandır.

İspat: a ∈ Inv(A) ve T (aa−1) = a ·T (a−1) olsun. a ∈ Inv(A) olduğundan aa−1 = eA =

a−1a dır ve

T (eA) = T (aa−1) = a ·T (a−1)

dir. Teorem 4.3.3 gereği, T nin n-Jordan çarpan olduğu görülür. 2

Aşağıdaki örnek, Teorem 4.3.3 den “ab= eA olacak şekildeki her a,b∈A için T (ab)=

a ·T (b)” hipotezinin kaldırılamaz koşul olduğunu kanıtlar.
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Örnek 4.3.5. A =


 a 0

0 b

 : a,b ∈ R

 olsun. O halde A bir birimli Banach cebiridir

ve birimsel Banach A-bimodüldür. T : A → A, T

 a 0

0 b

=

 −b 0

0 −a

 sürekli

lineer dönüşümü tanımlansın. x=

 2 0

0 1

 , y=

 1
2

0

0 1

∈A olarak alınsın. O halde

xy = eA dır, ancak T (xy) ̸= xT (y) dir. Bu yüzden n ≥ 2 için T bir n-Jordan çarpan değildir.

Çünkü xy = eA şartını sağlayan her x,y ∈ A için T (xy) = xT (y) şartı sağlanmamış olur.

Teorem 4.3.6. A bir birimli Banach cebiri, X bir birimsel sol Banach A-modül, T : A→ X

sınırlı bir lineer dönüşüm ve n∈N olsun. p∈ A bir idempotent olmak üzere ab= p şartını

sağlayan her a,b ∈ A için T (ab) = a ·T (b) ise o zaman T , pAp Banach cebiri üzerinde

bir n-Jordan çarpandır.

İspat: p ∈ A bir idempotent olsun. pAp = {pxp | x ∈ A} kümesinin, A nın birimli kapalı

bir alt cebiri olduğunu ve biriminin p olduğunu gösterelim:

Her pxp, pyp ∈ pAp ve her α ∈ C için,

α · (pxp)+ pyp = (α · p)xp+ pyp = p(α · (xp))+ pyp

= p(α · x)p+ pyp = p(α · x+ y)p ∈ pAp

ve

(pxp)(pyp) = pxp2yp ∈ pAp

olduğundan pAp, A nın bir alt cebiridir. pAp = pAp olduğundan pAp kapalıdır. O halde

pAp, A nın bir Banach alt cebiridir.

p = p2 = pp = peA p ∈ pAp dir ve her pxp ∈ pAp için,

p(pxp) = ppxp = p2xp = pxp ve (pxp)p = pxpp = pxp2 = pxp

eşitlikleri sağlandığından pAp birimlidir ve birimi p dir.

a ∈ A keyfi bir eleman olsun. λ ∈ C ∋|λ |< 1
∥pap∥

alalım.
∥∥epAp − p

∥∥= ∥p− p∥=

0 < 1 olduğundan p ∈ pAp tersinirdir. Ayrıca

p−λ pap = p− pλap = peA p− pλap = p(eA p−λap) = p(eA −λa)p ∈ pAp

53



dir. Bu durumda

∥∥epAp − (p−λ pap)
∥∥= ∥p− (p−λ pap)∥

= ∥p− p+λ pap∥

= ∥λ pap∥

= |λ | .∥pap∥< 1
∥pap∥

.∥pap∥= 1

olduğundan (p−λ pap) elemanı tersinirdir.

T (p) = T
(
(p−λ pap)(p−λ pap)−1 p

)
= (p−λ pap) ·T

(
(p−λ pap)−1 p

)
= (p−λ pap) ·T

(
∞

∑
n=0

λ
n(pap)n p

)

= p ·T

(
∞

∑
n=0

λ
n(pap)n p

)
− (λ pap) ·T

(
∞

∑
n=0

λ
n(pap)n p

)

= p ·T

(
p+

∞

∑
n=1

λ
n(pap)n p

)
− (λ pap) ·T

(
∞

∑
n=0

λ
n(pap)n p

)

= p ·T (p)+ p ·T

(
∞

∑
n=1

λ
n(pap)n p

)
− (λ pap) ·T

(
∞

∑
n=0

λ
n(pap)n p

)

= T (p)+ p ·
∞

∑
n=1

λ
nT ((pap)n)− (λ pap) ·

∞

∑
n=0

λ
nT ((pap)n)

bulunur. Buradan, |λ |< 1
∥pap∥

şartını sağlayan her λ ∈ C için

0 = p
∞

∑
n=1

λ
nT ((pap)n)−λ pap

∞

∑
n=0

λ
nT ((pap)n)

⇒ 0 = p
∞

∑
n=1

λ
nT ((pap)n)−

∞

∑
n−1=0

λ
n+1 (pap) ·T ((pap)n)

⇒ 0 = p
∞

∑
n=1

λ
nT ((pap)n)−

∞

∑
n=1

λ
n (pap) ·T

(
(pap)n−1)

⇒ 0 =
∞

∑
n=1

λ
n [p ·T ((pap)n)− (pap) ·T

(
(pap)n−1)]
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elde edilir. Böylece

p ·T ((pap)n) = (pap) ·T
(
(pap)n−1

)
⇒p ·T ((pap)n) =

(
p2ap

)
·T
(
(pap)n−1

)
⇒
(

p−1 p
)
·T ((pap)n) =

(
p−1 (p2ap

))
·T
(
(pap)n−1

)
⇒T ((pap)n) = (pap) ·T

(
(pap)n−1

)
bulunur. Sonuç olarak, T , pAp üzerinde bir n-Jordan çarpandır. 2

Teorem 4.3.7. n ∈ {2,3} bir sabit olsun. A bir birimli Banach cebiri, X bir birimsel sol

Banach A-modül ve T : A→ X sınırlı bir lineer dönüşüm olsun. Eğer T bir (n+1)-Jordan

çarpan ise o zaman T bir n-Jordan çarpandır.

İspat: n = 2 alalım ve T bir 3-Jordan çarpan olsun. O halde her a ∈ A için, T
(
a3) =

a ·T
(
a2) dir. Bu eşitlikte a yerine a+ eA yazılırsa, X birimsel sol A-modül olduğundan,

T
(
(a+ eA)

3
)
= (a+ eA) ·T

(
(a+ eA)

2
)

⇒T
(
a3 +3a2 +3a+ eA

)
= (a+ eA) ·

[
T
(
a2 +2a+ eA

)]
⇒3T

(
a2)+3T (a) = 2a ·T (a)+a ·T (eA)+T

(
a2)+2T (a)

⇒3T
(
a2)+3T (a) = 2a ·T (a)+a ·T (eA)+T

(
a2)+2T (a)

⇒3T
(
a2 +a

)
= a ·T (eA)+2a ·T (a)+T

(
a2)+2T (a) (4.9)

elde edilir. (4.9) eşitliğinde a yerine −a yazılırsa,

3T
(
a2 −a

)
=−a ·T (eA)+2a ·T (a)+T

(
a2)−2T (a) (4.10)

bulunur. (4.9) ve (4.10) eşitliklerinden

6T
(
a2)= 4a ·T (a)+2T

(
a2)

⇒2T
(
a2)= 2a ·T (a)

olup T
(
a2)= a ·T (a) dır. Böylece T bir Jordan çarpandır. Yani T bir 2-Jordan çarpandır.
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Şimdi n = 3 alalım ve her a ∈ A için T
(
a4) = a ·T

(
a3) olsun. Bu eşitlikte a yerine

a+ eA yazılıp X in birimsel sol A-modül olduğu kullanılırsa,

T
(
(a+ eA)

4
)
= (a+ eA) ·T

(
(a+ eA)

3
)

⇒T
(
a4 +4a3 +6a2 +4a+ eA

)
= (a+ eA) ·

[
T
(
a3 +3a2 +3a+ eA

)]

⇒T
(
a4)+4T

(
a3)+6T

(
a2)+4T (a) = a ·T

(
a3)+3a ·T

(
a2)

+3a ·T (a)+a ·T (eA)+T
(
a3)+3T

(
a2)+3T (a)

⇒3T
(
a3)+3T

(
a2)+T (a) = 3a ·T

(
a2)+3a ·T (a)+a ·T (eA) (4.11)

bulunur. (4.11) de a yerine −a yazılırsa,

−3T
(
a3)+3T

(
a2)−T (a) =−3a ·T

(
a2)+3a ·T (a)−a ·T (eA) (4.12)

elde edilir. (4.11) ve (4.12) eşitlikleri taraf tarafa toplanırsa,

T
(
a2)= a ·T (a) (4.13)

olur. (4.12) ve (4.13) den, her a ∈ A için,

3T
(
a3)+T (a) = 3a ·T

(
a2)+a ·T (eA) (4.14)

bulunur. (4.14) de a yerine a+ eA yazılırsa,

⇒3T
(
a3 +3a2 +3a+ eA

)
+T (a+ eA) = 3(a+ eA) ·T

(
a2 +2a+ eA

)
+(a+ eA) ·T (eA)

⇒3T
(
a3)+9T

(
a2)+9T (a)+3T (eA)+T (a) = 3a ·T

(
a2)+6a ·T (a)

+3a ·T (eA)+3T
(
a2)+6T (a)+3T (eA)+a ·T (eA)

olup

9T
(
a2)+9T (a) = 6a ·T (a)+3T

(
a2)+6T (a)+3a ·T (eA) (4.15)
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elde edilir. (4.15) eşitliğinde T
(
a2)= a ·T (a) olduğu kullanılırsa, her a∈A için, 9T (a) =

6T (a)+3a ·T (eA) olup

T (a) = a ·T (eA) (4.16)

bulunur. (4.14) ve (4.16) dan,

3T
(
a3)+a ·T (eA) = 3a ·T

(
a2)+a ·T (eA)

⇒T
(
a3)= a ·T

(
a2)

olup T bir 3-Jordan çarpandır. 2

Sıradaki teoremin ispatında Vandermonde matrisinden yararlanarak, bir önceki

teoremin her n ≥ 2 tamsayısı için gerçeklendiği gösterilecektir:

Teorem 4.3.8. A bir birimli Banach cebiri, X bir birimsel sol Banach A-modül, T : A→ X

sınırlı bir lineer dönüşüm ve n ≥ 2 bir tamsayı olsun. Eğer T bir (n+1)-Jordan çarpan

ise o zaman T bir n-Jordan çarpandır.

İspat: 1 ≤ k ≤ n olacak şekilde bir k tamsayısı alalım. Öncelikle her a ∈ A için

T
(
(a+ keA)

n+1
)
= (a+ keA) ·T ((a+ keA)

n) (4.17)

olur. (4.17) eşitliği ve hipotez kullanılarak şu sonuç elde edilir: n

i

=
n!

i!(n− i)!
olmak üzere her a ∈ A ve 1 ≤ k ≤ n için,

T
(
(a+ keA)

n+1
)

= T

n+1

∑
i=0

 n+1

i

ai (keA)
n+1−i

=
n+1

∑
i=0

 n+1

i

kn+1−iT
(
ai) (4.18)
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ve

(a+ keA) ·T ((a+ keA)
n) = (a+ keA) ·T

 n

∑
i=0

 n

i

ai (keA)
n−i


= (a+ keA) ·

 n

∑
i=0

 n

i

kn−iT
(
ai)

=
n

∑
i=0

 n

i

kn−ia ·T
(
ai)+ n

∑
i=0

 n

i

kn+1−iT
(
ai) (4.19)

olup (4.18) ve (4.19) birbirine eşit olduğundan,

kn+1T (eA)+
n

∑
i=1

 n+1

i

kn+1−iT
(
ai)+T (an+1)

=
n

∑
i=0

 n

i

kn−ia ·T
(
ai)+ kn+1T (eA)+

n

∑
i=1

 n

i

kn+1−iT
(
ai)

bulunur. Bu eşitlikte gerekli düzenlemeler yapılırsa,

n

∑
i=1

 n+1

i

kn+1−iT
(
ai)+T

(
an+1)

=
n

∑
i=0

 n

i

kn−ia ·T
(
ai)+ n

∑
i=1

 n

i

kn+1−iT
(
ai)

⇒
n

∑
i=1

 n+1

i

kn+1−iT
(
ai)+T (an)

=
n

∑
i=1

kn+1−i

 n+1

i

a ·T
(
ai−1)+a ·T (an)+

n

∑
i=1

 n

i

kn+1−iT
(
ai)

⇒
n

∑
i=1

kn+1−i

 n+1

i

T
(
ai)= n

∑
i=1

kn+1−i

 n

n+1− i

a ·T
(
ai−1)

+
n

∑
i=1

kn+1−i

 n

i

T
(
ai) (4.20)
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bulunur. (4.20) deki eşitlik yeniden yazılırsa,

kn

 n+1

1

T
(
a1)+ kn−1

 n+1

2

T
(
a2)+ . . .+ k

 n+1

n

T (an)

= kn

 n

n

a ·T (eA)+ kn−1

 n

n−1

a ·T (a)

+ . . .+ k

 n

1

a ·T
(
an−1)+ kn

 n

1

T (a)

+ kn−1

 n

2

T
(
a2)+ . . .+ k

 n

n

T (an)

olur ve buradan her 1 ≤ k ≤ n için,

kn

 n+1

1

T (a) = kn

 n

n

a ·T (eA)+ kn

 n

1

T (a)

kn−1

 n+1

2

T
(
a2)= kn−1

 n

n−1

a ·T (a)+ kn−1

 n

2

T
(
a2)

...

k

 n+1

n

T (an) = k

 n

1

a ·T
(
an−1)+ k

 n

n

T (an)

eşitlikleri elde edilir.

M =



1 1 · · · 1

2n 2n−1 · · · 2

3n 3n−1 · · · 3

· · · · · · · · · · · ·

nn nn−1 · · · n


matrisini alalım ve 1 ≤ i ≤ n için,

Xi (a) =

 n+1

i

T
(
ai) , Yi (a) =

 n

n+1− i

a ·T
(
ai−1) ,

Zi (a) =

 n

i

T
(
ai)
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olsun. O halde MXi (a) = MYi (a)+MZi (a) dır. [Bodaghi ve Inceboz 2018, Lemma 2.1]

de n×n tipindeki M kare matrisinin tersinir olduğu gösterilmiştir. Böylece her 1 ≤ i ≤ n

ve her a ∈ A için Xi (a) = Yi (a)+Zi (a) olur. Özel olarak, i = n alınırsa, Xn (a) = Yn (a)+

Zn (a) olur. Böylece her a ∈ A için, n+1

n

T (an) =

 n

1

a ·T
(
an−1)+

 n

n

T (an)

⇒(n+1)T (an) = n
(
a ·T

(
an−1))+T (an)

⇒nT (an)+T (an) = n
(
a ·T

(
an−1))+T (an)

⇒T (an) = a ·T
(
an−1)

olup T bir n-Jordan çarpan olur. 2

Sonuç 4.3.9. A bir birimli Banach cebiri, X bir birimsel sol Banach A-modül, T : A → X

bir sınırlı lineer dönüşüm ve n ∈ Z+ olsun. O halde aşağıdaki ifadeler birbirine denktir:

(i) Her a ∈ A için T (a) = a ·T (eA) dır.

(ii) T bir Jordan çarpandır.

(iii) T bir n-Jordan çarpandır.

(iv) T bir (n+1)-Jordan çarpandır.

İspat: (i)⇒ (ii): Her a ∈ A için T (a) = a ·T (eA) olsun. Burada a yerine a2 yazılırsa,

T
(
a2)= a2 ·T (eA) = a · (a ·T (eA)) = a ·T (a)

olup T bir Jordan çarpandır.

(ii)⇒ (iii): Lemma 4.3.1 de T bir Jordan çarpan iken n ≥ 2 için bir n-Jordan çarpan

olduğu ispatlanmıştı.

(iii)⇒ (iv): T bir n-Jordan çarpan iken (n+1)-Jordan çarpan olduğu açıktır.

(iv)⇒ (i): T bir (n+1)-Jordan çarpan olsun. Bu durumda Teorem 4.3.8 gereği, T bir

n-Jordan çarpan olacağından, her a ∈ A için T (an) = a ·T
(
an−1) dir. Özel olarak, n = 1

alınırsa, T (a) = a ·T (eA) elde edilir. 2

Sonuç 4.3.9 ve Teorem 4.3.3 den aşağıdaki sonuç elde edilir:
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Sonuç 4.3.10. A bir birimli Banach cebiri, X bir birimsel sol Banach A- modül, T : A→X

sınırlı bir lineer dönüşüm ve n ∈ N olsun. ab = eA şartını sağlayan her a,b ∈ A için

T (ab) = a ·T (b) ise T bir n-çarpandır.

İspat: ab = eA şartını sağlayan her a,b ∈ A için T (ab) = a · T (b) olsun. Teorem 4.3.3

gereği T bir n-Jordan çarpandır. Bu durumda Sonuç 4.3.9 dan her a ∈ A için T (a) =

a ·T (eA) olur. Buna göre her a1,a2, . . . ,an ∈ A için,

T (a1a2 . . .an) = (a1a2 . . .an) ·T (eA)

= a1 · ((a2 . . .an) ·T (eA))

= a1 ·T (a2 . . .an)

olup T bir n-çarpandır. 2

4.4. Sıfır Çarpım ile n-Jordan Çarpanların Karakterizasyonu

Bu bölümde, Banach cebirleri üzerinde tanımlı n-Jordan çarpanlar, sıfır çarpım

üzerindeki etkileri ile karakterize edilerek C∗-cebirlerde ve değişmeli yerel kompakt G

grubunun L1(G) grup cebirinde sağladıkları özellikler incelenecektir (Zivari-Kazempour

ve Valaei, 2022).

A bir Banach cebiri ve X bir Banach A-bimodül olsun. A dan X e tanımlı bir T

lineer dönüşümü üzerinde, Teorem 4.3.3 de verilen koşul (4.8) ile yakından ilişkili olan

aşağıdaki koşulu göz önünde bulunduralım.

a,b ∈ A, ab = 0 ⇒ a ·T (b) = 0 (M)

olsun. (M) koşulunun zayıflatılmış hali aşağıdaki gibi verilebilir:

a,b ∈ A, ab = ba = 0 ⇒ a ·T (b)+b ·T (a) = 0. (JM)

Bu kısımda, yukarıdaki koşulların n-Jordan çarpanları karakterize edip etmediği

araştırılmaktadır. Burada amaç, A bir birimli C∗-cebiri ve X bir simetrik birimsel Banach

A-bimodülü olduğunda, D : A → X bir (Jordan) türev ve ψ : A → X bir (Jordan) çarpan
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olmak üzere (JM) koşulunun T nin D + ψ formunda yazılabilmesini gerektirdiğini

göstermektir.

Teorem 4.4.1. A bir birimli C∗-cebiri, X bir birimsel sol Banach A-modül, T : A → X,

(M) özelliğini sağlayan sınırlı bir lineer dönüşüm ve n ∈N olsun. O halde T bir n-Jordan

çarpandır.

İspat: φ : A×A → X , φ (a,b) = a ·T (b) sınırlı 2-lineer dönüşümü tanımlansın. T lineer

dönüşümü, (M) özelliğini sağladığından ab= 0 iken φ (a,b)= 0 olur. Yani φ , sıfır çarpımı

korur. A bir C∗-cebiri olduğundan Sonuç 3.6.5 gereği, A, (B) özelliğini sağlar. O halde her

a,b,c ∈ A için,

φ (ab,c) = φ (a,bc)

olup, φ nin tanımından

(ab) ·T (c) = φ (ab,c) = φ (a,bc) = a ·T (bc)

bulunur. Yukarıdaki eşitlikte b = c ve a = eA alınırsa, her b ∈ A için,

eA · (b ·T (b)) = eA ·T
(
b2)⇒ T

(
b2)= b ·T (b)

elde edilir. Böylece T bir Jordan çarpandır. Lemma 4.3.1 den T bir n-Jordan çarpan olur.

2

Şimdi de Teorem 4.4.1 in hipotezlerindeki (M) koşulu yerine (JM) koşulu alındığında

da T lineer dönüşümünün yine bir n-Jordan çarpan olacağı gösterilecektir.

Teorem 4.4.2. A bir birimli C∗-cebiri ve X bir simetrik birimsel sol Banach A-modül

olsun. T : A → X fonksiyonu, (JM) özelliğini sağlayan sürekli bir lineer dönüşüm olsun.

O halde T = D+ψ olacak şekilde bir D : A → X Jordan türevi ve bir ψ : A → X Jordan

çarpanı vardır.

İspat: φ : A × A → X , φ (a,b) = a · T (b) + b · T (a) (a,b ∈ A) 2-lineer dönüşümü

tanımlansın. T lineer dönüşümü, (JM) özelliğini sağladığından ab = ba = 0 iken

φ (a,b) = 0 olur. Dolayısıyla Teorem 3.6.10 dan her a,b,x,y ∈ A için,

φ (ax,by)+φ (ya,xb) = φ (a,xby)+φ (yax,b) (4.21)
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elde edilir. (4.21) eşitliğinde a,b elemanları yerine eA alalım. Bu durumda her x,y ∈ A

için,

φ (eAx,eAy)+φ (yeA,xeA) = φ (eA,xeAy)+φ (yeAx,eA)

olur. O halde

φ (eAx,eAy)+φ (yeA,xeA) = eA · (x ·T (eAy))+ eA · (y ·T (eAx))+ y · (eA ·T (xeA))

+ x · (eA ·T (yeA))

= x ·T (y)+ y ·T (x)+ y ·T (x)+ x ·T (y) (4.22)

ve

φ (eA,xeAy)+φ (yeAx,eA) = eA ·T (xeAy)+(xeAy) ·T (eA)+(yeAx) ·T (eA)+ eA ·T (yeAx)

= T (xy)+(xy) ·T (eA)+(yx) ·T (eA)+T (yx)

= T (xy+ yx)+(xy) ·T (eA)+(yx) ·T (eA) (4.23)

bulunur. (4.22) ve (4.23) eşitliklerinden

x ·T (y)+y ·T (x)+y ·T (x)+x ·T (y) = T (xy+ yx)+(xy) ·T (eA)+(yx) ·T (eA) (4.24)

elde edilir. X simetrik olduğundan, (4.24) eşitliğinde y yerine x yazılırsa,

x ·T (x)+ x ·T (x)+ x ·T (x)+ x ·T (x) = T (xx+ xx)+(xx) ·T (eA)+(xx) ·T (eA)

= T
(
2x2)+ x2 ·T (eA)+ x2 ·T (eA)

= 2T
(
x2)+ (2x2) ·T (eA)

olur ve buradan

T (x) · x+T (x) · x+ x ·T (x)+ x ·T (x) = 2T
(
x2)+2x2 ·T (eA)

⇒2T (x) · x+2x ·T (x) = 2T
(
x2)+2x2 ·T (eA)

⇒2
(
T (x) · x+ x ·T (x)−T

(
x2)− x2 ·T (eA)

)
= 0

⇒T (x) · x+ x ·T (x)−T
(
x2)− x2 ·T (eA) = 0

⇒T
(
x2)= (x ·T (x)+T (x) · x)− x2 ·T (eA) (4.25)
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elde edilir. ψ : A → X , ψ (a) = a ·T (eA) dönüşümü tanımlansın. Her a ∈ A için,

ψ
(
a2)= a2 ·T (eA) = (aa) ·T (eA) = a ·ψ (a)

olduğundan ψ bir Jordan çarpandır. D = T −ψ olsun. (4.25) eşitliğinden

D
(
a2)= (T −ψ)

(
a2)

= T
(
a2)−ψ

(
a2)

= (a ·T (a)+T (a) ·a)−a2 ·T (eA)−a2 ·T (eA)

= (a ·T (a)+T (a) ·a)− (aa) ·T (eA)−a ·T (eA) ·a

= a · (T (a)−a ·T (eA))+(T (a)−a ·T (eA)) ·a

= a · (T (a)−ψ (a))+(T (a)−ψ (a)) ·a

= a · (T −ψ)(a)+(T −ψ)(a) ·a

= a ·D(a)+D(a) ·a

olup D bir Jordan türevdir. D nin tanımı gereği T =D+ψ dir. Böylece istenen ispatlanmış

olur. 2

Sonuç 4.4.3. A bir birimli değişmeli C∗-cebiri ve X bir simetrik birimsel sol Banach

A-modül olsun. T : A→X fonksiyonu, (JM) özelliğini sağlayan sınırlı bir lineer dönüşüm

ve n ∈ N olsun. O halde T bir n-Jordan çarpandır.

İspat: Teorem 4.4.2 den, D : A → X fonksiyonu bir Jordan türev ve ψ : A → X fonksiyonu

bir Jordan çarpan olmak üzere T = D + ψ olarak yazılır. Teorem 3.5.2 gereği D bir

türevdir. Teorem 3.5.9 gereği D sıfırdır. Bu durumda T = ψ olup T bir Jordan çarpandır.

Lemma 4.3.1 den T bir n-Jordan çarpandır. 2

Teorem 4.4.4. A bir W ∗-cebir, X bir birimsel sol Banach A-modül ve n ∈ N olsun. Eğer

T : A→X fonksiyonu (JM) şartını sağlayan sınırlı bir lineer dönüşüm ise, T bir n-Jordan

çarpandır.

İspat: p,A da bir idempotent olsun. O halde

p(eA − p) = (eA − p) p = 0
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olduğundan ve T , (JM) özelliğini sağladığından

p ·T (eA − p)+(eA − p) ·T (p) = 0

elde edilir. Eşitliğin her iki tarafı eA − p ile çarpılırsa,

((eA − p) p) ·T (eA − p)+(eA − p)2 ·T (p) = 0

olur. Gerekli sadeleştirmeler yapılırsa her p∈A idempotenti için T (p)= p ·T (p) bulunur.

x ∈ Asa olsun. O zaman [Sakai 2012, Lemma 1.7.5, Önerme 1.3.1] kullanılarak,

x =
n

∑
k=1

λk pk

yazılabilir. Burada k = 1, . . . ,n için λk ∈ R dir ve {pk | k = 1, . . . ,n}, A da ortogonal bir

izdüşüm ailesidir, yani kendine-ek idempotentler ailesidir. i, j ∈ {1, ...,n} olmak üzere

i ̸= j için pi p j = p j pi = 0 olduğundan, (JM) koşulu gereği i ̸= j olmak üzere tüm i, j ler

için pi ·T
(

p j
)
+ p j ·T (pi) = 0 olur. Dolayısıyla tüm x ∈ Asa için,

T
(
x2)= T

(
n

∑
k=1

λ
2
k p2

k

)

=
n

∑
k=1

λ
2
k T
(

p2
k
)

=

(
n

∑
k=1

λk pk

)(
n

∑
k=1

λkT (pk)

)
= x ·T (x)

elde edilir. x,y elemanlarını A nın kendine-ek elemanları olarak alalım. Bu durumda

x ·T (x)+ y ·T (y)+T (xy+ yx) = T
(
x2 + y2 + xy+ yx

)
= T

(
(x+ y)2

)
= (x+ y) ·T (x+ y)

= x ·T (x)+ y ·T (y)+ x ·T (y)+ y ·T (x)
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elde edilir. Böylece tüm x,y ∈ Asa için, T (xy+ yx) = x ·T (y)+y ·T (x) olur. Teorem 3.3.9

gereği her keyfi a ∈ A elemanı, x,y ∈ Asa için a = x+ iy olarak yazılabilir. Bu nedenle

T
(
a2)= T

(
x2 − y2 + i(xy+ yx)

)
= T

(
x2)−T

(
y2)+ iT (xy+ yx)

= x ·T (x)− y ·T (y)+ i(x ·T (y)+ y ·T (x))

= (x+ iy) · (T (x)+ iT (y))

= (x+ iy) ·T (x+ iy)

= a ·T (a)

dır. Sonuç olarak tüm a ∈ A için T
(
a2) = a · T (a) dır. Yani T bir Jordan çarpandır. O

halde Lemma 4.3.1 den, T bir n-Jordan çarpan olur. 2

A Banach cebirinin ikinci dual uzayı A∗∗ üzerinde, A∗∗ uzayını bir Banach cebirine

dönüştüren birinci ve ikinci Arens çarpımları olarak adlandırılan iki çarpım vardır (H. G.

Dales, 2000). Eğer bu çarpımlar A∗∗ üzerinde çakışıyorsa, A nın Arens regüler olduğu

söylenir.

Örnek 3.3.11 gereği her A C∗-cebiri Arens regülerdir. Teorem 3.3.12 den, A∗∗ bir

W ∗-cebirdir. Bu nedenle T : A → X sürekli lineer dönüşümü T ∗∗ : A∗∗ → X∗∗ ikinci

dualine genişletilerek ve Teorem 4.4.4 uygulanarak aşağıdaki sonuç elde edilir:

Sonuç 4.4.5. A bir birimli C∗-cebir ve X bir birimsel sol Banach A-modül olsun. Eğer

T : A → X fonksiyonu (JM) özelliğini sağlayan sınırlı bir lineer dönüşüm ise, o zaman

n ∈ N için T bir n-Jordan çarpandır.

Teorem 3.6.11 kullanılarak aşağıdaki sonuç elde edilir:

Teorem 4.4.6. A, idempotentler tarafından üretilen bir birimli Banach cebiri ve X bir

simetrik birimsel sol Banach A-modül olsun. T : A → X fonksiyonu, (JM) özelliğini

sağlayan sınırlı bir lineer dönüşüm olsun. O halde T =D+ψ olacak şekilde bir D Jordan

türevi ve bir ψ Jordan çarpanı vardır.

İspat: φ : A × A → X , φ (a,b) = a · T (b) + b · T (a) (a,b ∈ A) 2-lineer dönüşümü

tanımlansın. T lineer dönüşümü, (JM) özelliğini sağladığından ab = ba = 0 iken
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φ (a,b) = 0 olur. Dolayısıyla Teorem 3.6.11 den her a,b ∈ A için,

φ (a,b)+φ (b,a) = φ (ab,eA)+φ (eA,ba)

elde edilir. İspatın geri kalan kısmı, Teorem 4.4.2 nin ispatında olduğu gibi yapılır. 2

Sonuç 4.4.7. A bir birimli değişmeli Banach cebiri ve A = J(A) olsun. X bir simetrik

birimsel sol Banach A-modül, T : A → X (JM) özelliğini sağlayan sınırlı bir lineer

dönüşüm ve n ∈ N olsun. O halde T bir n-Jordan çarpandır.

İspat: Teorem 4.4.6 gereği T = D+ψ olacak şekilde bir D : A → X Jordan türevi ve

bir ψ : A → X Jordan çarpanı vardır. A değişmeli ve X simetrik olduğundan, D aslında

bir türevdir. Teorem 3.5.9 gereği D = 0 olur. Dolayısıyla T nin Lemma 4.3.1 gereği bir

n-Jordan çarpan olduğu sonucu çıkar. 2

Yerel kompakt bir G değişmeli grubu için A = L1 (G) olsun. O zaman Örnek 3.5.7

gereği A grup cebiri değişmeli ve zayıf amenabledır. Ancak A ne bir C∗-cebiridir ne de

idempotentler tarafından üretilir. Bu nedenle Sonuç 4.4.3 ve Sonuç 4.4.7 bu cebir için

uygulanamaz.

Bir sonraki sonuç, Sonuç 4.4.3 ün benzerinin L1 (G) grup cebiri için de geçerli

olduğunu göstermektedir.

Teorem 4.4.8. Yerel kompakt bir G değişmeli grubu için A = L1 (G) olsun. X bir simetrik

birimsel sol Banach A-modül, T : A → X fonksiyonu, (JM) özelliğini sağlayan sınırlı bir

lineer dönüşüm ve n ∈ N olsun. O halde T bir n-Jordan çarpandır.

İspat: Her a,b ∈ A için φ : A×A → X , φ (a,b) = a ·T (b)+b ·T (a) 2-lineer dönüşümü

tanımlansın. O zaman A değişmeli olduğu için ab = 0 iken φ (a,b) = 0 olur. Dolayısıyla

Sonuç 3.6.6 dan her a,b,c ∈ A için

φ (ab,c) = φ (a,bc) (4.26)

olur. Diğer yandan her a,b ∈ A için

0 = φ (a,b) = φ (b,a)
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olur. Böylece (4.26) eşitliği gereği her a,b,c ∈ A için

φ (c,ab)+φ (ab,c) = φ (a,bc)+φ (cb,a) (4.27)

elde edilir. (eα)α∈I , A için bir sınırlı yaklaşık birim olsun. (4.27) eşitliğinde a yı (eα) ile

değiştirerek ve φ dönüşümünün sürekliliğini kullanarak, her b,c ∈ A için

φ (c,b)+φ (b,c) = φ (eα ,bc)+φ (cb,eα)

bulunur. Teorem 4.4.2 nin ispatındaki yöntem uygulanarak, D bir Jordan türevi ve ψ bir

Jordan çarpanı olmak üzere T = D+ψ bulunur. A grup cebiri zayıf amenable olduğundan

D = 0 dır. Yani T = ψ olup T bir Jordan çarpan olur. Sonuç olarak Lemma 4.3.1 den T

bir n-Jordan çarpandır. 2
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5. SONUÇ

Bu tez çalışmasında, Banach cebirleri üzerinde tanımlı n-Jordan çarpanlar ile ilgili

A. Zivari-Kazempour’un 2022 yılında yayınladığı çalışma ile A. Zivari-Kazempour

ve M. Valaei tarafından 2022 yılında yayınlanan çalışmadaki sonuçlar detaylı olarak

incelenmiştir (Zivari-Kazempour, 2022; Zivari-Kazempour ve Valaei, 2022).

Günümüze kadar halkalarda ve Banach cebirlerde türev konusuyla ilgili birçok

çalışma yapılmıştır. Teorinin gelişimiyle beraber daha sonraki yıllarda Jordan türev, Lie

türev, genelleştirilmiş türev, (σ ,τ)-türev, Jordan (σ ,τ)-türev gibi farklı türev kavramları

da tanımlanmış ve farklı uzaylarda bu türevlerin sağladığı özellikler incelenmiştir. Bu

düşünceyle, Banach cebirlerde türev üzerine bilinen bilginin n-çarpanlar ve n-Jordan

çarpanlar hakkında çıkaracağı sonuçlar araştırılabilir.

n-Jordan çarpanların, yerel kompakt G grubunun L1(G) grup cebiri, sınırlı bir

yaklaşık birimi olan zayıf amenable Banach cebirleri ve C∗-cebirleri gibi farklı uzaylarda

karakterizasyonları bulunmaktadır. Benzer karakterizasyonlar yapmak için yeni cebirsel

yapı örnekleri elde etmek bir diğer araştırma konusu olabilir.
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