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OZET

BANACH CEBIRLERINDE -JORDAN CARPANLARIN
KARAKTERIZASYONU

Akcay B. Aydin Adnan Menderes Universitesi, Fen Bilimleri Enstitiisii, Matematik
Anabilim Dali, Yiiksek Lisans Tezi, Danisman: Dr. Ogr. ﬁyesi Berna Arslan, Aydin,
2024.

Amac: Bu tezde, Banach cebirleri iizerinde taniml1 n-Jordan ¢arpanlar iizerine giiniimiize
kadar yapilan caligmalarda elde edilen bazi 6zellikler derlenerek, bu alanda calisma

yapilmas1 durumunda konu ile ilgili temel bilgilerin bir araya getirilmesi amag¢lanmugtir.
Materyal ve Yontem: Tamamen teorik olan bu tez hazirlanirken n-Jordan carpanlar

hakkinda daha 6nce yapilmis ¢calismalar incelenmistir. Bu konuya temel olusturmak i¢in

kitaplardan ve internet kaynaklarindan faydalanilmastir.

Bulgular: Banach cebirlerinde n-Jordan carpanlar incelenmis, bu kavrama iliskin
ornekler sunulmus ve bu kavram sifir carpim iizerindeki etkileri ile karakterize edilerek
C*-cebirlerde ve degismeli yerel kompakt G grubunun L' (G) grup cebirinde sagladiklar

ozellikler incelenmistir.

Sonug: Yerel kompakt bir G grubunun L'(G) grup cebiri, idempotentler ile iiretilmis
birimli Banach cebirleri veya C*-cebirleri gibi farkli uzaylardaki karakterizasyonlar
izerine ¢aligmak, Banach cebirlerinde tanimli carpanlar ve Jordan carpanlarin yapisinin
daha iyi anlagilmasma yardimci olacaktir. Benzer karakterizasyonlar yapabilmek ic¢in
yeni cebirsel yap1 ornekleri elde edilebilir. Ayrica Banach cebirlerde tiirev cesitleri
izerine bilinen bilginin n-carpanlar ve n-Jordan carpanlar hakkinda c¢ikaracagi sonuglar

arastirilabilir.

Anahtar kelimeler: Banach cebiri, n-Jordan carpan, B 6zelligi, amenabilite, grup

cebiri, C*-cebiri.
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ABSTRACT

CHARACTERIZATION OF n-JORDAN MULTIPLIERS OF BANACH
ALGEBRAS

Akcay B. Aydin Adnan Menderes University, Graduate School of Natural and
Applied Sciences, Department of Mathematics, Master Thesis, Supervisor: Asst.

Prof. Berna Arslan, Aydin, 2024.

Objective: In this thesis, it is aimed to compile some of the properties obtained in the
studies on n-Jordan multipliers defined on Banach algebras so far and to bring together

the basic information about the subject in case of a study in this field.

Material and Methods: While preparing this thesis, which is purely theoretical, previous

studies on n-Jordan multipliers were examined and internet resources were utilized.

Results: We study n-Jordan multipliers in Banach algebras, present examples of this
notion, characterize it by its action on the zero product, and study the properties it provides
in C*-algebras and in the group algebra L!(G) of a commutative locally compact group

G.

Conclusion: Studying characterizations on various spaces, such as the group algebra
L'(G) of a locally compact group G, unital Banach algebras generated by idempotents,
or C*-algebras, will help to better understand the structure of multipliers and Jordan
multipliers defined in Banach algebras. New examples of algebraic structures can be
obtained to make similar characterizations. Furthermore, the implications of the known
knowledge on types of derivations in Banach algebras for n-multipliers and n-Jordan

multipliers can be investigated.

Keywords: Banach algebra, n-Jordan multiplier, property B, amenability, group

algebra, C*-algebra.
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1. GIRIS

Carpan kavrami, ilk olarak harmonik analizde Fourier serilerinin toplanabilirligi
konusu ile baglantili olarak ortaya ¢cikmugtir. A bir Banach cebiri ve T : A — A bir lineer
doniigiim olsun. Eger her a,b € A i¢in, T (ab) = aT (b) ise T doniisiimiine (sag) ¢arpan
ad1 verilir. Daha sonra bu kavram, grup cebirlerinin homomorfizmalarinin arastirilmast,

Banach cebirlerinin genel teorisi gibi diger harmonik analiz alanlarinda kullanilmistir.

Banach cebirleri iizerinde tanimli lineer doniisiimleri, sifir carpim {izerindeki etkileri
ile karakterize etme konusu, son yillarda bircok matematik¢inin dikkatini ¢ekmistir. A
ile B birer Banach cebiri ve 7 : A — B bir lineer doniisiim olmak iizere eer T lineer
doniigiimii, a,b € A ve ab = 0 iken T (a)T (b) = 0 kosulunu saghyor ise 7' doniisiimiine
stfir carpumi koruyan lineer doniisiim ad1 verilir. Sifir carpimi koruyan siirekli 7 : A — B
lineer doniisiimleri aragtirirken siirekli bir ¢ : A XA — B, ¢(a,b) =T (a)T(b) (a,b€A)
2-lineer fonksiyonu tanimlanir. Bu durumda a,b € A ve ab = 0 iken ¢(a,b) = 0 kosulu
saglanir. Benzer bir problem olarak, n-Jordan ¢arpanlarin karakterizasyonu i¢in literatiirde

“a,b € A, ab=0= aT (b) = 0" kosulu kullanilmigtir.

Tez calismasinda, esas olarak A. Zivari-Kazempour’un 2022 yilinda yaymlamis
oldugu “Characterization of n-Jordan multipliers” adli calismasi ile A. Zivari-Kazempour
ve M. Valaei’in 2022 yilinda yayinlamis olduklari “Characterization of n-Jordan
multipliers through zero products” adli ¢alismalar1 ele alinarak Banach cebirlerinde
n-Jordan carpanlar ve sagladiklar 6zellikler {izerinde durulmustur. A Banach cebirinin
ve X sol Banach A-modiiliin hangi kosullar1 saglamasi durumunda (n + 1)-Jordan ¢arpan
olan bir 7 : A — X sinirlt lineer doniisiimiin bir n-Jordan carpan oldugu arastirilmagtir.
Ayrica A dan X e tanimli n-Jordan ¢arpan olan bir sinirli lineer doniisiimiin hangi kosullar
altinda bir n-carpan oldugu incelenmistir. Uygun kosullar altinda (n + 1)-Jordan ¢arpan,
n-Jordan carpan ve Jordan carpan kavramlarinin birbirine denk oldugu kanitlanmistir.
Ayrica C*-cebirleri iizerinde taniml1 n-Jordan ¢arpanlar, sifir carpim iizerindeki etkileri ile
karakterize edilmigtir. Bunun i¢in A bir C*-cebiri ve X bir Banach A-bimodiil oldugunda
D : A — X bir Jordan tiirev ve ¥ : A — X bir Jordan ¢arpan olmak iizere A dan X e taniml
n-Jordan ¢arpan olan bir sinirli lineer doniisiimiin hangi kosullar altinda D + y formunda
yazilabilecegi arastirilmistir. Bu ¢alismada, sinirli bir yaklasik birimi olan zayif amenable

Banach cebirleri, idempotentler ile iiretilmis birimli Banach cebirleri ve W*-cebirleri gibi



uzaylardaki karakterizasyonlar da ele alinarak bu yap1 hakkinda genel bilgi edinilmesi

saglanmistir.



2. KAYNAK OZETLERI

Banach cebir teorisinde carpan kavrami ilk kez S. Helgason tarafindan 1956
yilinda tamtilmis (Helgason, 1956), J.K. Wang tarafindan 1961 yilinda detayli olarak
calisilmistir (Wang, 1959). Baz1 matematikg¢iler ise carpan yerine merkezleyen terimini
kullanmaktadir. Bu terminoloji J.G. Wendel tarafindan tamtilmistir (Wendel, 1952).
Banach cebirleri iizerinde tanimlanan ¢arpanlarin (merkezleyenlerin) genel teorisi B.E.
Johnson tarafindan gelistirilmistir (B. E. Johnson, 1964). Johnson bu calismasinda A
mertebesiz Banach cebiri iizerindeki her T : A — A carpaninin lineer ve siirekli oldugunu

kanitlamugtir.

Her sag (sol) carpanin bir sag (sol) Jordan ¢arpan oldugu agiktir, ancak bunun karsiti
genel olarak dogru degildir. B. Zalar, 1991 yilinda yayinladig1 ¢calismasinda 2-burulmasiz
yar1 asal halka tizerindeki her sag (sol) Jordan carpanin bir sag (sol) ¢arpan oldugunu
ispatlamistir (Zalar, 1991). Aynm1 sonuca bagka bir yaklasim ise J. Vukman tarafindan

yapilan ¢alismada yer almaktadir (Vukman, 1999).

Sh. Hejazian, M. Mirzavaziri ve M.S. Moslehian, 2005 yilinda kompleks cebirlerde
n > 2 tamsayilart i¢in n-homomorfizma kavramini tamitmislar, homomorfizmalar
ile baglantisin1  arastirmiglardir  (Hejazian, Mirzavaziri vd., 2005). Ayrica
n-homomorfizmalar yardimi ile cebirlerde bazi degismelilik kosullarini calisarak
Banach cebirlerde bazi karakterizasyonlarini elde etmiglerdir. 2009 yilinda M.E. Gordji,
Banach cebirlerde n-Jordan homomorfizma kavramim tanitmig, degismeli olmayan
bir Banach cebirinden degismeli yari-basit Banach cebirlerine tanimli her 3-Jordan
homomorfizmanin bir 3-homomorfizma oldugunu kamtlamistir (Gordji, 2009). J.
Laali ve M. Fozouni, 2017 yilinda n-homomorfizmalardan yola cikarak bir A Banach
cebirinden bir Banach A-bimodiile n-carpan kavramini tanitmiglar ve bir A Banach cebiri
tizerinde tanimli tiim n-garpanlarin uzayi ile A dan C ye taniml sifirdan farkli tim
n-homomorfizmalarin uzayr arasindaki baglantiyr arastirmislardir (Laali ve Fozouni,

2017).

Daha sonra M. Fozouni 2018 yilinda bir A Banach cebirinden bir sol Banach
A-modiile sag n-Jordan ¢arpan kavramini tanitmis ve yaklasik yerel n-Jordan garpanlar
ile karakterizasyonunu elde etmistir (Fozouni, 2018). 2022 yilinda yayinlamis oldugu

caligsmasinda, A. Zivari-Kazempour, A Banach cebirinin ve X sol Banach A-modiiliin baz1



kosullart saglamasi durumunda (n + 1)-Jordan carpan olan bir 7' : A — X sinurl lineer
doniistimiin bir n-Jordan ¢arpan oldugunu ve n-Jordan carpan olan bir 7 sinirli lineer

doniisiimiin bir n-¢arpan oldugunu ispatlamistir (Zivari-Kazempour, 2022).

Banach cebirleri tizerindeki homomorfizmalari, tiirevleri ve ¢arpanlari sifir carpim
tizerindeki etkileri ile karakterize etme konusu bir¢cok matematik¢i tarafindan calisilmigtir
(Alaminos, M. BreSar vd., 2009; Alaminos, J. Bresar vd., 2010; H. Ghahramani,
2013; Zivari-Kazempour, 2020). A. Zivari-Kazempour ve M. Valaei, 2022 yilinda
yayinladiklar1 calismalarinda Banach cebirleri iizerinde tanmimli n-Jordan carpanlari,
sifir carpim tizerindeki etkileri ile karakterize etmislerdir. Ayrica birimli C*-cebirlerde,
idempotentler tarafindan iiretilen birimli Banach cebirlerde ve degismeli yerel kompakt
G grubunun L' (G) grup cebirinde tanimli 7 simirli lineer doniisiimiiniin bazi kosullar:

saglamast durumunda n-Jordan ¢arpan oldugunu kanitlamislardir.



3. MATERYAL VE YONTEM

Calisma tamamen teorik olup, ilgili konuda yapilan Onceki c¢alismalar kitaplardan
ve internet imkanlarindan yararlanilarak incelenmistir. Banach cebirleri iizerinde
tanimlanan n-Jordan ¢arpanlar icin literatiirde var olan sonuglar arastirilmistir. Bu amacla,
kaynaklarda belirtilen ¢alismalar detayli bir sekilde incelenmis ve konuyla ilgili bilgi
edinilmig, elde edilen sonuclar karsilastirilarak problemin daha fazla arastirilmasi i¢in

temel olusturulmustur.

3.1. Temel Kavramlar

Bu boliimde, Banach Cebirleri teorisinde dnemli olan bazi temel kavramlar ve diger

boliimlerde gerekecek bazi 6zellikler, ilgili kaynaklarla birlikte verilecektir.

Tamm 3.1.1. (Hungerford, 2012) R bos olmayan bir kiime, + ve . R iizerinde taniml1 iki

ikili iglem olsun. Eger

(i) (R,+) bir degismeli grup;
(ii) Her a,b,c € Ri¢in (a.b).c = a.(b.c);
(iii) Her a,b,c,€ Ric¢ina.(b+c) =a.b+a.cve (a+b).c=a.c+b.c

kosullari saglaniyorsa R ye bu ikili islemlere gore bir halka denir ve (R, +,.) ile gosterilir.
Bunlara ek olarak R halkasi, her a,b € R i¢in a.b = b.a kosulunu sagliyorsa R ye degismeli
halka; her a € R icin a.1r = 1g.a = a olacak sekilde bir 1g € R eleman1 bulunabiliyorsa R
halkasina birimli halka denir. R halkasinin + iglemine gore birimine halkanin sifiri denir

ve bu eleman O, ile gosterilir.

Tanmm 3.1.2. (Hungerford, 2012) Birimli ve degismeli bir (R, +,.) halkasinin sifirdan

farkli her elemaninin . iglemine gore tersi varsa o zaman bu halkaya cisim denir.

Tamim 3.1.3. (Hungerford, 2012) M bir toplamsal degismeli grup ve R bir halka olsun.

-:RXM — M, (r,x) — r-x ile tammlanan dis iglem, her r,s € R ve her x,y € M i¢in

@) r-(x+y)=r-x+r-y
() (r+s)-x=r-x+s-x

(i) (rs)-x=r-(s-x)



sartlarini sagliyorsa M ye bir sol R-modiil denir. Bu kosullara ek olarak R halkas1 birimli

ve 1g, R halkasinin birimi olmak tizere
iv) lp-x=x
sart1 da saglaniyorsa M ye birimsel sol R-modiil denir.

Ayni sekilde sag R-modiil ve birimsel sag R-modiil de, - : M xR — M, (x,r) — x-r
dis islemi tanimlanarak olusturulur. Eger R halkas1 degismeli olarak alinirsa, o zaman sol

R-modiil yapist sag R-modiil yapilabilir.

Eger R(=Rveya C) bir cisim ve M bir birimsel sol veya sag R-modiil ise M ye R
lizerinde bir vektor uzayr ya da kisaca R-vektor uzayr denir. Burada M nin elemanlarina

vektor, R cisminin elemanlarina da skaler ad1 verilir.

Tanim 3.1.4. (Hungerford, 2012) R bir halka ve M hem sag R-modiil hem de sol R-modiil

olsun. Eger her r,s € R ve her x € M i¢in,
r-(x-s)=(r-x)-s

sart1 saglaniyor ise o zaman M ye bir R-bimodiil denir.

Sol R-modiil icin verilen tiim oOzellikler benzer bicimde sag R-modiil i¢cin de
kanitlanabileceginden, aksi belirtilmedik¢e bundan sonra R-modiil denince sol R-modiil

anlagilacaktir.

Ornek 3.1.5. Her toplamsal degismeli G grubu, - : Z x G — G, (n,a) +— na dis islemi ile

bir birimsel Z-modiildiir.
Ornek 3.1.6. Her R halkas1 bir R-modiildiir.

Tamm 3.1.7. (Hungerford, 2012) M bir R-modiil ve N, M nin bir alt grubu olsun. Eger
hern € N ver € Ricinr-n € N oluyorsa, N ye M nin alt modiilii denir.
Eger R bir cisim ve M bir R-vektor uzay1 ise bu durumda N ye M nin bir alt vektor

uzay! (ya da kisaca alt uzayr) adi verilir.

Tanim 3.1.8. (Hungerford, 2012) F bir cisim, V bir F-vektor uzayi, n > 1 i¢in A =

{v1,v2,...,vy} CV sonlu bir kiime ve @ # B C V herhangi bir kiime olsun.

6



(i) Bir {ay, ®,...,a,} skalerler kiimesi i¢in A daki vektorlerin bir lineer bilesimi (lineer

n
kombinasyonu) x = o(vi + 0ova + ...+ o v, = Y, oyv; € V formunda bir vektordiir. Eger

i=1

avitov+...+ov, =0y =0 =xp=...= 0, =0

ise A ya lineer bagimsiz kiime denir. A kiimesi lineer bagimsiz degilse A ya lineer bagimli
kiime denir.

(i) B kiimesinden alinan her sonlu sayidaki vektoriin tiim lineer bilesimlerinin kiimesi

SpanB = {zk:ociu,- lkeN, ay,,...,0 € F,uj,up, ... u EB}
i=1

V vektor uzayinin B kiimesini kapsayan bir alt uzayidir. SpanB alt uzayina, B kiimesinin

lineer gereni (iirettigi alt uzay) denir. B kiimesinin elemanlarina SpanB alt uzayinin

iiretecleri ad1 verilir. Eger B lineer bagimsiz bir kiilme ve SpanB =V ise o zaman B ye V

vektor uzayinin bir tabani, taban eleman sayisina da V nin boyutu denir ve dimg (V) ile

gosterilir. dimp (V) sonlu ise bu durumda V ye sonlu boyutludur denir. Aksi halde V' ye

sonsuz boyutludur denir.

Tanmim 3.1.9. (Hungerford, 2012) R bir halka, M ve N iki R-modiil olsun. Bir f : M — N

fonksiyonu, her x,y € M ve her r € R icin

fe+y) =f@)+f) ve fr-x)=r-f(x)

sartlarini saghyorsa f fonksiyonuna bir R-modiil homomorfizmast denir. Eger F bir cisim
ve M ile N birer F-vektor uzay1 ise f fonksiyonuna bir lineer doniisiim denir. M den N ye
tiim lineer doniistimlerin kiimesi £ (M,N) ile gosterilir. f,g € £(M,N) olsun. £(M,N)
kiimesi, her x € M i¢in (f+g) (x) = f (x) + g (x) islemiyle bir degismeli gruptur ve her
o € F igin

o: FXL(MN) — £(M,N)
(a, f) — aef: M—N
x> (aef)(x) =a-f(x)

islemi ile £(M,N) kiimesi, bir F-vektor uzayidir. £ (M, M) uzay1, kisaca £ (M) seklinde
yazilir. f: M — F lineer doniisiimiine M iizerinde lineer fonksiyonel denir. Burada F

cismi aynm1 zamanda bir F-vektor uzayidir.



Tamim 3.1.10. (Hungerford, 2012) X,Y ve Z birer F-vektor uzayirve T : X X Y — Z bir

fonksiyon olsun. Her x,x1,x; € X, y,y1,y2 €Y ve & € F igin,

(i) T(a-x1+x,y) =Tl (x1,y)+T (x2,y)

(i) T (x,a-y1+y2) =al (x,y1)+T(x,y2)

sartlar1 saglaniyorsa T fonksiyonuna 2-lineer doniisiim denir. Eger Z = F ise, T ye

2-lineer fonksiyonel ad1 verilir.

Tanim 3.1.11. (Hungerford, 2012) K birimli, degismeli bir halka ve A herhangi bir halka
olsun. (A,+) bir birimsel K-modiil ve her a € K, x,y € A i¢in,

a-(xy) = (a-x)y=x(a-y)

esitlikleri saglaniyorsa, o zaman A, K iizerinde bir cebirdir ya da A bir K-cebirdir denir.

Eger her x € A i¢in 14x = x14 = x olacak sekilde sifirdan farkl bir 14 € A elemam
varsa 14 ya A cebirinin birim elemani; A ya da bir birimli cebir denir. Her x,y € A i¢in

xy = yx ise A ya degismeli cebir denir.

Ornek 3.1.12. C kompleks vektor uzayi, R reel sayilar cismi iizerinde bir cebirdir. Ayrica

F cisminin bir K alt cismi icin F cismi, K lizerinde bir cebirdir.

Ornek 3.1.13. GL(n,K), girdileri K cisminden alinan n x n tipindeki biitiin terslenebilir
matrislerin kiimesi olsun. Bu kiime, K cismi iizerinde bir cebirdir. Ayrica n x n tipindeki
I, birim matrisi de GL(n,K) cebirine ait oldugundan GL(n,K), ayn1 zamanda bir birimli

cebirdir.

Tamm 3.1.14. (Hungerford, 2012) A birimli bir cebir ve 14, A nmin birimi olsun. a €
A olmak iizere eger ab = ba = 14 sartim1 saglayan bir b € A eleman1 varsa a ya A nin
tersinir elemam denir. b € A elemanina da a elemaninin fersi denir ve ! ile gosterilir. A

cebirindeki tiim tersinir elemanlarin kiimesi /nv (A) ile gosterilir.

Tanim 3.1.15. (Hungerford, 2012) A bir cebir ve a € A olsun. Eger a® = a ise a elemanina

A nmin idempotenti denir.

Tanim 3.1.16. (Hungerford, 2012) A bir cebir ve ¢ # B C A bir alt uzay1 olsun. Her

a,b € Bigin ab € B ise B ye A nin bir alt cebiri denir.
Ornek 3.1.17. R reel sayilar cebiri, C kompleks sayilar cebirinin bir alt cebiridir.
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Tanim 3.1.18. (Hungerford, 2012) A bir cebir ve I, A nin bir alt uzay1 olsun. Eger her
a € Aveherx €ligin, ax € I saglamyorsa I ya A cebirinin sol ideali; xa € I saglaniyorsa [
ya A cebirinin sag ideali denir. I alt uzay1 hem sag ideal, hem de sol ideal olma kosullarini

sagliyorsa I ya A cebirinin ideali denir.

Bu tanimlamalara gore agiktir ki her ideal bir alt cebir olur. Fakat bunun karsitt dogru

olmayabilir.

Tanim 3.1.19. A bir cebir olsun. A daki ¢arpimin sirasini tersine c¢evirerek olusturulan

cebire A nin zit cebiri denir ve AP ile gosterilir.

Tanimm 3.1.20. X bir F-vektor uzayi ve ||.|| : X — R bir fonksiyon olsun. Eger her x,y € X
ve her A € F i¢in,

@) [lx[| >0

() [[x|=0<x=0
(i) [[Ax][ = [A]lx]
@) [beyll < [l -+ [l

sartlari saglaniyorsa ||.|| fonksiyonuna X iizerinde bir norm denir. Uzerinde bir ||.|| normu

tanimlanmug olan X vektor uzayina normlu uzay adi verilir ve (X, ||.||) ile gosterilir.

Eger (ii) kosulu “x = 0 = ||x|| = 0” seklinde degistirilirse diger (i), (iii) ve (iv)

kosullart ile birlikte ||.|| ya X iizerinde bir yari-norm ad verilir.

Tamim 3.1.21. (X, ||.||) bir normlu uzay olsun. Herhangi x € X ve herhangi r € R™ igin,
Br(x) ={yeX|[[lx—yl <r}

kiimesine x merkezli r yaricapli actk yuvar denir.

Tanim 3.1.22. (X, ||.||) bir normlu uzay ve A C X olsun.

(i) Her x € A i¢in B¢ (x) C A olacak bicimde bir € > 0 sayis1 varsa A kiimesine a¢ik kiime
denir.

(ii) X \ A kiimesi acik ise A kiimesine kapali kiime denir.

(iii) x € X olsun. Her € > 0 igin ||x — y|| < € olacak sekilde bir y € A var ise, ya da buna
denk olarak y, — x € X olacak sekilde bir {y,} C A dizisi var ise 0 zaman x noktasina

A nin bir kapanis noktast denir. A min tiim kapanig noktalarinin kiimesine A kiimesinin
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kapanigt adi verilir ve A ile gosterilir. A bir kapali kiimedir ve A kiimesini kapsayan X in

tiim kapal1 altkiimelerinin arakesitine esittir. Yani
A=n{K|A CK, K kapali kiime}

dir. Bu nedenle, A, A kiimesini kapsayan en kiiciik kapali kiimedir.
(iv) A kiimesinin kapal1 olmasi icin gerek ve yeter kosul A = A olmasidir. Buna gore, A
kapalidir & {y,} C A dizisi i¢in y, — x € X oldugunda x € A dur.

(v) A =X ise A kiimesi X uzayinda yogun bir kiimedir denir.

Tamim 3.1.23. (X, ||.||) normlu uzayinda bir dizi {x,} olsun.

(i) x € X olmak iizere her € > 0 sayisina karsilik her n > ny i¢in ||x, —x|| < € olacak
bicimde bir ng € N varsa {x, } dizisi x € X noktasina yakinsar ya da {x,} dizisi yakinsaktir
denir. Bu durumda r}glgo X, = x ya da x, — x yazilir.

(ii) Her € > 0 sayisina kargilik her m,n > ng i¢in ||x,, — x, || < € olacak bigimde bir ny € N

varsa {x, } dizisine bir Cauchy dizisi denir.

Teorem 3.1.24. (X,||.||) normlu uzayinda yakinsak her bir {x,} dizisi bir Cauchy

dizisidir.

Ispat: {x,}, (X,]|.]|) de yakinsak bir dizi ve x,, — x € X olsun. O halde verilen her € > 0
say1sina karsilik her ,m > N igin ||x, — x|| < § ve [|x,, — x|| < § olacak bicimde bir N € N
sayis1 vardir. Dolayisiyla ayn1 N dogal sayis1 i¢in

E £
0 = 5l < 1 = 3l + I 5l < 5+ 5 =&

olur. Bu ise {x,} dizisinin bir Cauchy dizisi oldugunu gosterir. a

Not. Teorem 3.1.24 iin karsit1 dogru degildir. Yani her Cauchy dizisi yakinsak degildir.
Ornegin, X = (0,1) kiimesi iizerindeki normun |.| : X — R, x| = |x|] (x € X)
fonksiyonu oldugunu kabul edersek (%) dizisi, X normlu uzayinda bir Cauchy dizisidir:

Ve > 0 igin n,m > N olmak iizere

I 1 1
1% = Xm|| = [xn —tm| = | = = —| < =+
n n



olur. Burada N > % olacak sekilde N € N secilirse [|x, — x| < % < € olup {x,} bir
Cauchy dizisidir; ancak n — oo iken 1 — 0 ¢ (0, 1) oldugundan bu dizi X normlu uzayinda

yakinsak degildir.

Tamim 3.1.25. (Kreyszig, 1991) Bir (X, ||.||) normlu uzay: tam ise, yani X teki her Cauchy

dizisi X in bir elemanina yakinsiyor ise, X e bir Banach uzay: denir.

Tanmim 3.1.26. (Kreyszig, 1991) (X, ||.|[x) ve (¥,]|.|ly) birer normlu uzay, f : X — Y bir
fonksiyon ve belli bir xg € X noktasi verilsin. Eger verilen her € > 0 sayisina kargsilik her
x € X i¢in,

[lx—xolly <& =[lf (x) = f (x0)lly <e€

olacak sekilde bir 6 > 0 sayis1 varsa, f fonksiyonuna xo € X noktasinda siireklidir denir.

Eger f fonksiyonu X kiimesinin her noktasinda siirekli ise f (X tizerinde) siireklidir denir.

Onerme 3.1.27. Norm fonksiyonu siireklidir.

Ispat: (X, ||.||) bir normlu uzay olsun. Her n € N i¢in x,, € X olmak iizere x € X elemanina
yakinsayan bir {x,} dizisi alalim. Yani x,, — x olsun. O halde n — o iken ||x, —x|| — 0

olur. Ayrica

el = {1l < {ln — ]|
dir. n —» o iken |x,—x|| — O oldugundan ||[x,||—]|x||| — O dir. Boylece
li_r)n [l |l = |lx]|| = O olup lim ||x,|| = ||x|| olur. Yani ||.|| fonksiyonu siireklidir.
n—roo n—oo
Dolayisiyla limx, = x iken lim ||x,|| = H lim x,, || olup limit alma ile norm alma birbiriyle
n—oo n—oo n—soo

yer degisebilen islemlerdir. O

Tanim 3.1.28. (Kreyszig, 1991) (X, ||.||x) ve (¥,].||y) normlu uzaylar ve 7 : X — Y bir
lineer doniisiim olsun. Eger her x € X i¢in ||T(x)||, < k|x||y olacak sekilde bir k € R

varsa T ye stnirlidir denir.

Teorem 3.1.29. (Kreyszig, 1991) X ve Y iki normlu uzay ve T : X — Y bir lineer doniigiim
olsun. O halde asagidaki ifadeler birbirine denktir:

(i) T svurlidr.
(ii) T diizgiin siireklidir.
(iii) T siireklidir.

(iv) T, bir xy € X noktasinda siireklidir.
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Tanim 3.1.30. X ve Y, aymi (F,+,-) cismi iizerinde iki normlu uzay olsun. X den Y ye
tiim sinurli lineer doniigiimlerin kiimesi B(X,Y) ile gosterilecektir. Teorem 3.1.29 dan
dolay1 ®B(X,Y) deki elemanlar siirekli lineer doniigiim adini da alir. S, 7 € B(X,Y) olsun.

Her x € X ve her ¢ € F i¢in,
(T+S)(x)=T(x)+S(x) ve (aeT)(x)=a-T(x)

islemleriyle B (X,Y) kiimesi, bir F-vektor uzayidir:

B(X,Y) nin elemanlari iizerine bir sinirlilik kisitlamasi getirildiginden, asikar olarak,
B(X,Y) C £(X,Y) dir. Dolayistyla, *B(X,Y) nin bir alt uzay oldugunu gostermek
yeterlidir. Bunun igin, her 7, S € B(X,Y) ve her o € F icin c e T + S € B(X,Y) oldugunu

gorelim: Oncelikle o e T + S operatorii lineerdir, ciinkii her x,y € X ve her A skaleri icin,

(aoT+S)(Ax+y) =(axoT)(Ax+y)+S(Ax+y)
=o-T(Ax+y)+S(Ax+y)
(A-T(x)+T(y)+(A-S(x)+S(y))
A-T(x)+a-T(y)+(A-Sx)+S(y))
=A-(a-T(x)+Sx)+a-T(y)+SO)
(
(

=q-

= -

=A-((0ceT)(x)+Sx))+ (aeT)(y)+S(y)
—A-(aeT+5S)(x)+ (e T+S)(y)

esitligi saglamir. Simdi o7 + S operatoriiniin simirli oldugunu gosterelim. 77 ve S
operatorleri sinirli oldugundan her x € X igin || T (x)|| < ¢y ||x|| ve ||S(x)|| < ¢z ||x|| olacak

sekilde c,cp > 0 reel sayilar1 vardir. O halde her x € X icin,

(e T+S)(x)[| =I[l(aeT)(x)+SX)| = lla-T(x)+S)]|
<o TN+ IS < (lecler +c2) 1]

olup, ¢ = |a|c; + ¢ > 0 secerek [[(ae T +S5) (x)|| < c||x|| elde edilir. Yani, ce T + S
operatorii sinirhidir. Sonug olarak, oce 7 4+ S € B(X,Y) olur ve boylece B(X,Y) bir
F-vektor uzayidir. B(X,X) uzay, kisaca ®8(X) seklinde yazilir.
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Tanim 3.1.31. (Kreyszig, 1991) X ve Y ayn1 F cismi iizerinde iki normlu uzay olsun. Bir

T : X — Y smurh lineer doniisiimii i¢in
1T ()| < c x| 3.1

kosulunu gercekleyen bir ¢ € RT sayisna T operatoriiniin bir smmri ve bunlarin
en biiyik alt smrmna da T nin normu denir ve ||T| ile gosterilir. ||T] :=

inf{c e R"|||T(x)|| < c||x||,x € X} dir.

Onerme 3.1.32. (Kreyszig, 1991) X ve Y ayni F cismi iizerinde iki normlu uzay, Ox # x €

X veT : X — Y suurh bir lineer doniisgiim olsun. O zaman,

[T

]

I =Sup{ IX#Ox} =sup{[[T()[| | [lxl] < 1} = sup{|T ()|l | [lxl| = 1}

yazilabilir.

Sonug 3.1.33. X ve Y iki normlu uzay olsun. Bir T : X — Y lineer doniigiimiiniin stirekli
(ya da buna denk olarak sinirlt) olmasi icin gerek ve yeter kosul her x € X icin ||T (x)|| <

\T|| |lx|| olmasidur.

Onerme 3.1.34. (Kreyszig, 1991) ||.|| : B(X,Y) — R, ||T| = sup{||T(x)| | ||x]| = 1}

fonksiyonu, B (X,Y) uzayu iizerinde bir norm tamimlar. Bu norma operator normu denir.

Ispat: Asikar olarak, ||T|| > 0 dir. Ayrica

IT|=0< sup |[T(x)||=0=VxeX,|TKx)||=0VxeX, T(x)=0&T=0

[lxl=1
dir. Her o skaleri i¢in [[(aT) (x)|| = ||a-T(x)|| = |a|||T(x)|| olup her iki tarafin

supremumu alinirsa,

sup [[(aT)(x)|| = sup [af [T(x)]| =[af sup [[T(x)]

[lxfl=1 [lxll=1 x| =1

= [[aT | =[al|IT]
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elde edilir. ||x|| = 1 olacak sekilde her x € X ve her S,T € B(X,Y) icin, ||[(S+T)(x)|| =
1SG) +T ()] < ISC) I+ 17 (x) [ olup

IS+ Tl = sup [[(S+T)(x)]

=1
< sup IS+ 11T Gl

= sup [[S@)l|+ sup [IT()]

[Ixfl=1 [Ixfl=1
= [ISI+I71
dir. O halde ||.|| fonksiyonu, 8(X,Y) uzayi iizerinde bir normdur. O

Ornek 3.1.35. Normlu bir X # {Ox} uzay iizerindeki 7 : X — X birim operatorii simrl
olup ||I|| = 1 dir. Ciinkii, her x € X i¢in I(x) = x oldugundan

=[xl < 2]l < ...
olup her m > 1 sayis1, ||| igin bir iist sinirdir. Yani I simirhidar. Ustelik,

sl

@I
1] = sup L
A

o ol

dir.

Teorem 3.1.36. (Kreyszig, 1991) Eger X bir normlu uzay ve Y bir Banach uzay: ise o
zaman B(X,Y) bir Banach uzayidir.

Tanmm 3.1.37. X, F cismi iizerinde bir normlu uzay olsun. B(X,F) vektor uzayma X
in dual uzayr denir ve X*(= X1)) ile gosterilir. X* uzayinin elemanlaria X iizerinde bir

surl lineer fonksiyonel ad1 verilir.
Sonug 3.1.38. X* bir Banach uzay:dur.

Tanim 3.1.39. Herhangi bir X normlu uzayz icin, X** = X(2) = (X*)* uzayna X in ikinci

duali denir.

Not. Bir X normlu uzayi lizerindeki herhangi bir ¢ lineer fonksiyoneli i¢in

(x, @) =0 (x) (x€X)
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notasyonu kullanilacaktir.
Tanim 3.1.40. X ve Y birer normlu uzay ve 7 € 8 (X,Y) olsun.

(i) x € X, f € Y* olmak iizere (x,T*(f)) = (T (x),f) olacak sekilde bir tek T* €
B (Y*,X*) operatorii vardir. T* operatoriine 7' nin duali denir.
(il) g € Y*, h € X** olmak iizere (g, 7** (h)) = (T*(g),h) olacak sekilde bir tek T** €

B (X**,Y*) operatdrii vardir. T** operatoriine T nin ikinci duali denir.

Tamm 3.1.41. (H. G. Dales, 2000) E, F ve G birer normlu uzay ve B : E X F — G siirekli
bir 2-lineer doniistim olsun. By : G* XE — F*, By : F** x G* — E* ve B:E* x F* — G**

doniisiimleri, herx e E,ye F,z€ G, fEE*", g€ F*,he G*, M € E** ve N € F** igin,

(v, B1(h,x)) = (B(x,y),h);
(x,By(N,h)) = (N,By(h,x));
<E(M,N),h> — (M, By (N, h))

seklinde tanimlansin. By, B, ve B doniistimlerinin her biri siirekli ve 2-lineerdir. Ustelik
her x € E, y € F i¢in B(x,y) = B(x,y) dir. Ayrica HEH — ||B| dir. B: E** x F** — G**

siirekli 2-lineer doniisiimiine B nin genislemesi denir.

Onerme 3.1.42. (H. G. Dales, 2000) Ey,...,E¢ normlu uzaylar ve P : E| X E; — Ey4,
Q:EyxE3s — Es, R: E4 XEz — Egve S: Ey X Es — Eg siirekli 2-lineer doniisiimler

olsun ve her x € E1,y € Ep,z € E3 icin

R(P (x,y) ,Z) = S(va(y7Z>>

olsun. O halde her F € E*,G € E{* \H € EY* icin ié(ﬁ(F, G) H) - §(F,§(G,H)>

olur.

Tanmm 3.1.43. (H. G. Dales, 2000) E, F ve G birer normlu uzay ve B: E X F — G
stirekli bir 2-lineer doniigiim olsun. C : F X E — G, (y,x) — B(x,y) 2-lineer dontigiimii
tanimlansin. C 2-lineer doniisiimii, Tanim 3.1.41 de oldugu gibi C: F** x E** — G**
2-lineer doniigiimiine genisletilebilir. Buna gore, B : E** x F** — G**, (M,N) — C(N,M)

ile tanimlanan doniisiim siirekli ve 2-lineerdir.

Tanim 3.1.44. A bir kiime ve < de A iizerinde bir bagint1 olsun. Eger
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(1) Vp e Aicin p < p dir;
(i) p < g ve g < r ozelligindeki her p,q,r € Ai¢in p < r dir;
(iii) Vp,q € Aicin p < s ve g < s olacak sekilde bir s € A vardir

sartlar1 saglantyorsa A kiimesine < bagintist ile yonlenmis kiime denir. < bagintisina da

A kiimesini yonlendiriyor denir.

Tamim 3.1.45. X herhangi bir kiime ve A da yonlenmis bir kiime olsun. Her A € A igin
x(A) = x; olmak iizere x : A — X seklindeki her bir fonksiyona X iginde bir ag (net) denir

ve (x;),ca Veyakisaca (x; ) seklinde gosterilir.

Ornek 3.1.46. N, Z ve R kiimeleri bilinen “<” bagmtisi ile yonlenmis kiimelerdir.
Boylece her x : N — X dizisi, X kiimesi icinde bir agdir. O halde ag kavrami, dizi

kavramindan daha geneldir.

Tanmim 3.1.47. A bir yonlenmis kiime, (X, 7) bir topolojik uzay ve X i¢inde bir ag (x; ), oo

olsun. x € U ozelligindeki her U € 7 i¢in bir Ay € A elemant,
VA > Ay icinx, € U

olacak sekilde varsa (x3); 5 ag1 x € X noktasina yakinsar denir. Bu durumda (x3);cp

agina yakinsak, x noktasina da (x; ), .o agimn limiti denir ve x; — x ile gosterilir.

Tamm 3.1.48. X =~ 0 bir kiime ve 7, X in alt kiimelerinin bir ailesi olsun. Eger

1 0,X et
n
(i) Ay,...,A,€Tise A €T,
i=1
(iii) 7 bir indis kiimesi olmak iizere her i € [ i¢in A; € Tise |JA; € T
icl
kosullar1 saglaniyorsa 7 ailesine X kiimesi iizerinde bir fopoloji denir. (X, 7) ikilisine bir

topolojik uzay adi verilir.

Tanim 3.1.49. (X, t) bir topolojik uzay olsun.

(1) x € X olsun. x € W C A olacak sekilde bir W € 7 kiimesi ve X in bir kompakt A
alt kiimesi varsa X uzayina x noktasinda yerel kompakt denir. Her x € X i¢in X uzay1 x
noktasinda yerel kompakt ise (X, T) uzayina yerel kompakt uzay denir.

(i1) x #y ozelligindeki herx,y € X icinx €U,y €V ve UNV =0 olacak sekilde U,V € 7

kiimeleri varsa (X, T) uzayma bir Hausdorff uzay: denir.
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3.2. Banach Cebirleri

Tamim 3.2.1. (Kaniuth, 2009) A bir C-cebir ve ||.|| normu ile bir normlu uzay olsun. Her
X,y € Aigin
eyl < [lx[H 1]

ise A ya bir normlu cebir denir. Eger (A, ||.||) normlu cebiri ayn1 zamanda bir Banach

uzay1 ise A ya bir Banach cebiri denir.

Eger her x € A i¢in xe4 = eqx = x olacak sekilde ||e4 || = 1 olan bir 04 # e4 € A eleman

varsa, A ya bir birimli (unital) Banach cebiri denir.

Tanmim 3.2.2. A bir Banach cebiri olsun. Eger B, A nin kapali bir alt cebiri ise o zaman B
tam uzay olup (A daki islemler ve norm ile) bir Banach cebiri belirtir. Bu durumda B ye

A nin bir Banach alt cebiri denir.

Ornek 3.2.3. R ve C uzaylari, bilinen toplama, carpma islemleri ve alisiimis norm ile

birer birimli, degismeli Banach cebiridir.

Ornek 3.24. X bos olmayan bir kompakt Hausdorff uzayr ve C(X) =
{f| f: X — Csiirekli fonksiyon } olsun. f,g € C(X) olmak iizere, her x € X ve

her o skaleri i¢in,

(f+8)x) = f(x) +8(x) ve (af)(x) = a(f(x))

islemleri ile (fg)(x) = f(x)g(x) ¢arpma iglemi tanimlansin. ||| : C(X) — R, ||f]| :=
sup | f(x)| fonksiyonu, C(X) iizerinde bir normdur ve C(X) uzay1 bir birimli, degismeli

xeX L
Banach cebiridir.

Ornek 3.2.5. M,(C), kompleks sayilar kiimesi iizerinde tiim n x n tipindeki matrislerin
kiimesi olsun. Matrislerde bilinen toplama, carpma ve skalerle ¢arpma islemleri ile
M,(C), birimi 7, birim matrisi olan bir birimli cebirdir. Eger A = (a;;) € M,(C) (i,j =
1,2,...,n) ise,

n n
|A]lc =sup ) aij| ve [|All1 =sup)_|aijl
Loj=1 J i=1

fonksiyonlarinin herbiri M, (C) iizerinde birer normdur. M,(C) uzay1 sonlu boyutlu
oldugundan her A € M,(C) igin m. ||A],, < ||A|l; < M.||A]|,, olacak sekilde m,M > 0

sayilar1 var olup bu normlar birbirine denktir. Dolayisiyla bu normlarin herhangi biri icin
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A,B € M,(C) olmak iizere
1B < [lA[l]|B]

sart1 saglanir ve M, (C) degismeli olmayan bir Banach cebiridir.

Ornek 3.2.6. X bir Banach uzay1 olsun. B(X) Banach uzay: iizerinde ¢arpma islemi,
S,T € B (X) olmak iizere

(TS)(x):=T(S(x)) (xeX)
seklinde tanimlansin. Her 7', S € *B (X)) ve her o skaleri i¢in,

(a(T$)) (x) = & ((TS) (x)) = (T (S (x))) = (aT) (S (x)) := ((&T) S) (x)

veE

(T (S)) (x) :=T ((@S) (x)) =T (& (S (x))) = & (T (S (x))) := & ((T'S) (x)) = (a (T'S)) (x)
esitlikleri saglandigindan B (X) bir cebirdir. Ustelik her T, S € B (X) igin,

17| = sup [(TS) ()] := sup [T (S <|Tl sup [IS(x)]

I =1 [Ix]=1 [Ixf=1

< TSI sup [l = A7 1IS]

[lx[|=1
oldugundan 83 (X) bir Banach cebiridir.
Onerme 3.2.7. (Bonsall ve Duncan, 1973) A birimli bir Banach cebiri ve birimi e4 olsun.

lea — x|| < 1 esitsizligini saglayan her x € A elemanu tersinirdirve x ™' = e+ ¥, (e —x)"

n=1
dir.

Tanim 3.2.8. A bir Banach cebir olsun. Eger her x € A i¢in xA = {0} (Ax = {0}) iken

x = 0 oluyorsa A ya mertebesiz Banach cebir denir.

Tamim 3.2.9. A bir Banach cebir olsun. Eger A%, A cebirinde yogun bir kiime ise, yani

A2 =A ise, A ya esas (essential) Banach cebir denir.

Tamm 3.2.10. A bir Banach cebir ve A% # {0} olsun. Eger A nin {0} ve A dan bagka
kapali ideali yoksa A ya fopolojik basit Banach cebir denir.
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Tanim 3.2.11. A bir Banach cebiri ve X bir A-bimodiil olsun. w € A alalim. Eger x € X
icin w-x =0 (x-w = 0) iken x = 0 oluyorsa w elemanina X in sol (sag) ayrilma noktasi

denir.

Tanim 3.2.12. (Bonsall ve Duncan, 1973) A bir Banach cebiri ve X bir Banach uzay1
olsun. Eger X bir A-bimodiil ve hera € A, x € X icin

la-x|| < Kllal|lx[| ve |x-all < K]lx][lal (3.2)

olacak sekilde bir K > 0 sabiti var ise X e bir Banach A-bimodiil denir. (3.2) deki
esitsizliklerden yalnizca soldaki gecerli oldugu durumda X sol A-modiile bir sol Banach
A-modiil; yalmzca sagdaki gecerli oldugunda X sag A-modiile bir sag Banach A-modiil

ad1 verilir.

Tanim 3.2.13. A bir Banach cebiri ve X bir Banach A-bimodiil olsun. a € A, x € X ve
f € X" igin,
(ae f)(x)=f(x-a) ve (fea)(x)=f(a x)
islemleriyle X* bir sol A-modiil ve bir sag A-modiildiir. Ustelik her a,b €A, x € X, f € X*
i¢in,
(ae(feb))(x)=(feb)(x-a)=f(b-(x-a))=[f((b-x)-a)
= (ae f)(b-x)=((aef)eD)(x)

saglandifindan ae (feb) = (ae f)eb elde edilir. O halde X* = B (X, C) bir A-bimodiildiir.

||x|| = 1 sartin1 saglayan her x € X ve hera € A, f € X* i¢in,

[(ae YD) = IIfx-a)l < IF] llx-al

olup X bir Banach A-bimodiil oldugundan

lae fll = sup [[(aef)(x)]| < KIf]|llall

Ixf=1

olacak sekilde bir K > 0 sabiti vardir. O halde X * bir Banach A-bimodiildiir ve bu durumda

X* dual uzayina X in dual modiilii ad1 verilir.
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Eger A Banach cebiri birimli ve X Banach A-bimodiilii birimsel ise, 0 zaman her x € X,
f€X*igin
(eao f)(x) = f(x-ea) = f(x) = flea-x) = (foea)(x)

oldugundan her f € X* icines @ f = feoes = f olur. Boylece X* dual modiilii bir birimsel

Banach A-bimodiil olur.

Tanim 3.2.14. A bir Banach cebiri ve X bir A-bimodiil olsun. Eger her a € A, x € X i¢gin

a-x=x-aise X e simetriktir denir.
Onerme 3.2.15. A bir degismeli Banach cebiri olsun. O halde A* dual modiilii bir
simetrik A-bimodiildiir.

Ispat: Her a € A ve her f € A* icin, a- f = f -a oldugunu gosterelim. A Banach cebiri
degismeli oldugundan, her b € A icin,

(a-f)(b) = f(ba) = f(ab) = (f-a) (D)

olup A*, A-bimodiiliiniin simetrik oldugu goriiliir. a

Tanmm 3.2.16. [Bonsall ve Duncan 1973, Tanim L.11.8] (A, ||-||) bir normlu cebir ve
(Pi)ics A iginde bir ag olsun. Eger her a € A i¢in

= limpe = limap
ise (pi);ca agma A nin bir yaklagik birimi denir. Eger her i € A igin ||p;|| < M olacak

sekilde bir M > 0 sabiti var ise (p;);c, yaklagik birimine sinirlidir denir.

Teorem 3.2.17. [Bonsall ve Duncan 1973, Tamim 1.11.10] (Cohen Carpanlama Teoremi)
A bir Banach cebiri, X bir sol (sag) Banach A-modiil, 7 € X ve & > 0 olsun. Eger A nin
X igin bir simurly sol (sag) yaklasik birimi var ise, o zaman z = ay (z = ya) ve ||z—y|| <

olacak sekilde a € A, y € X vardrr.

Sonuc¢ 3.2.18. [Bonsall ve Duncan 1973, Tamum 1.11.11] A bir Banach cebiri, z € A ve
0 > 0 olsun. Eger A min suimirl bir sol (sag) yaklasik birimi var ise, o zaman z = xy (z = yx)
ve ||z—y|| < 8 olacak sekilde x,y € A vardir, ve y elemani, A min z yi iceren en kiiciik kapali

sol (sag) idealine aittir.

Tanim 3.2.19. (H. G. Dales, 2000) A bir Banach cebir olsun. A** Banach uzay1 iizerinde

iki carpim tanimlanabilir. Tk olarak, my : A x A — A, (a,b) + ab ile tammli carpim
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doniigiimii siirekli bir 2-lineer doniistimdiir. Bu nedenle, Tanim 3.1.41 de oldugu gibi,
my nin siirekli bir 2-lineer doniisiim olan my : A™ x A** — A** ya bir genislemesi vardir.
Boylece her @,% € A** i¢in

OOV :=my (P,V)

tanimlanir. a € A ve @ € A i¢in
aO0P=a-P ve PO0a=P-a

olur. Burada -, A** daki modiil carprmini gosterir. Onerme 3.1.42 geregi (E| = ... = Eg =

Ave P=Q =R=S=my alinarak) her &,¥,T € A** i¢in
(eO¥)Or =20(¥YOY)

oldugu goriiliir. ||m4|| = 1 oldugundan, her @,¥ € A** i¢in ||@ O || < || P|| ||| dir, ve
boylece (A**,0), A y1 kapali bir alt cebir olarak iceren bir Banach cebiridir. Eger A birimli

ise, 0 zaman e4, (A**,0) Banach cebirinin birim elemanidir.

(A** o) cebirini olugturmak i¢in A** iginde bir ¢arpim tanimlamanin ikinci bir yolu
daha vardir:
(A**,O) — ((Aop)** : D)Op )

Boylece ¢, Tanim 3.1.43 de tanimlanan my4 nin m, geniglemesine kargilik gelir. O zaman
(A**,0), A y1 kapali bir alt cebir olarak iceren bir Banach cebiridir. Genel olarak, OJ ve ¢

carpimlart farklidir.

Tanim 3.2.20. (H. G. Dales, 2000) A bir Banach cebiri olsun. O halde O ve ¢ ¢arpimlari
A** tizerinde, sirasiyla, birinci ve ikinci Arens carpimlaridir. Eger bu iki ¢arpim A™*

tizerinde ¢akisiyorsa A cebiri Arens regiilerdir.
3.3. C*-Cebirler

Tamm 3.3.1. (Murphy, 1990) A bir C-cebirve *:A — A bir fonksiyon olsun. Eger her

x —x*
a,b € A veher a, B € Cigin,

(i) (@a+Bb)* = aa* + Bb*
(i) (ab)* = b*a*
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(i) (¢*)*=a" =a

sartlar1 saglaniyorsa * fonksiyonuna A {iizerinde bir involiisyon ve A ya da bir *-cebir

denir.

Tamm 3.3.2. (Murphy, 1990) A bir *x-cebir ve a € A ise a* elemanina a nin eki denir.
Eger a = a* ise a elemanina kendine-ek eleman denir. A daki tiim kendine-ek elemanlarin

kiimesi Ay, ile gosterilir. Eger a € Ay, ve a idempotent ise a elemanina izdiisiim ad1 verilir.

Tanim 3.3.3. (Murphy, 1990) A bir Banach cebiri ve *, A tizerinde bir involiisyon olsun.

Eger her a € A igin ||a*a|| = ||a||* kosulu saglaniyorsa A ya bir C*-cebir denir.
Onerme 3.3.4. A bir C*-cebir olsun. O halde her a € A icin,
la*]| =
dir.
Ispat: A bir C*-cebir oldugundan her a € A igin,
lal® = l|a*al| < [la*l||a]

dir. Boylece
lall < la”]] (3.3)

elde edilir. (3.3) de a yerine a* yazilirsa,
e[| < [la™[] = [lall (3.4)
olur. (3.3) ve (3.4) den, her a € A i¢in ||a|| = ||a*|| oldugu goriiliir. O

Tamim 3.3.5. A bir C*-cebir olsun. Eger her a € A i¢in al4 = 14a = a olacak sekilde bir

04 # 14 € A elemani varsa A ya birimli C*-cebirdir denir.

Not. Eger bir A C*-cebirinde 14 birim elemani varsa daima ||14|| = 1 dir. Bunun igin

aly = lxa = a esitliginde a = 1) alinirsa,

Uily =13 (3.5)

22



olur. (3.5) esitliginde (1314)" = 114 oldugu kullanilirsa 1514 = (13)" = 14 elde edilir.

Boylece 17 = 14 dir. Buradan

* 2
[14]] = [[1alall = 13 Lal] = || La]

olup ||14]] = 1 oldugu goriiliir.

Ornek 3.3.6. C kompleks sayilar cismi iizerinde tanimli % : C — C, z — Z (Z, z nin

kompleks eslenigi) fonksiyonu bir involiisyon olup C bir birimli C*-cebirdir.

Ornek 3.3.7. H # {0}, < -,- > i¢ carpimu ile bir Hilbert uzay1 olmak iizere B (H), H
tizerindeki tiim sinurlt lineer operatorlerin vektor uzayi olsun. Her 7 € 98 (H) i¢in teklikle

belli bir 7* € B (H) vardir 6yle ki her x,y € H i¢in

(T(x),y) = (x,T"()

esitligi saglanir.

< B(H) > B(H),T—T*

fonksiyonu, B (H) iizerinde bir involisyondur. Ayrica ||| : B(H) — R, ||T|| =
sup ||T(x)|| (x € H) fonksiyonu, B (H) uzay1 iizerinde bir norm tanimlar. Boylece

[lxf=1

B (H) bir C*-cebirdir.
Teorem 3.3.8. [Murphy 1990, Teorem 3.1.2] Her C*-cebirin sinirli bir yaklastk birimi

vardir.

Teorem 3.3.9. A bir x-cebir olsun. Her a € A elemani, x,y € Ay, olmak tizere a = x + iy
Sformunda tek tiirlii yazilir.

Ispat: A bir x-cebir ve a € A olsun. Eger x = %(a +a*)vey= zli(a —a*) alinirsa, 0 zaman
X,y € Agq olup a = x+ iy elde edilir. Diger taraftan, a = b+ic ve b,c € Ay, ise a* = b—ic

1 1
olur. Buradan b = 3 (a+a*)vec= % (a — a*) bulunur. O
i

Tanim 3.3.10. M bir C*-cebir olsun. Eger M bir Banach uzayi olarak bir dual uzay ise,
yani (M*)* = M olacak sekilde bir M, Banach uzay1 varsa, M ye bir W*-cebir denir.

Burada (M,)", M, 1n dual uzayinm gostermektedir.
Ornek 3.3.11. [H. G. Dales 2000, Ornek 2.6.22] Her A C*-cebiri Arens regiilerdir.

Teorem 3.3.12. [Civin ve Yood 1961, Teorem 7.1] A bir C*-cebir olsun. A min ikinci duali

olan A** uzayi da bir C*-cebirdir.
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3.4.L'(G) Grup Cebiri

Bu boliimde, ilk olarak yerel kompakt Hausdorff uzaylarda 0lcii ve integrasyon ile
ilgili baz1 temel kavramlar hatirlatilacaktir. Daha sonra, bir G yerel kompakt grubun L' (G)

grup cebiri tanitilacaktir.

Tamim 3.4.1. (Cohn, 2013) X # @ bir kiime ve 2/, X in alt kiimelerinin bir ailesi olsun.
Eger

(1) X e,
(ii) Her E € & icin E“ =X \E € & ;
(iii) Hern e Ni¢inE, ¢ &/ = U E, € &

n=1

sartlar1 saglantyor ise .o/ ailesine X kiimesi iizerinde bir o-cebir denir.

Tanim 3.4.2. (Cohn, 2013) Bir .#” ailesini kapsayan o-cebirlerinin en kiiciigiine . %" ailesi

ile iiretilen ¢-cebiri denir.

Tanim 3.4.3. (Cohn, 2013) (X, 7) bir topolojik uzay olsun. 7 C & (X) ailesi ile iretilen
o-cebirine X iizerinde Borel cebiri ad1 verilir ve # (X) ile gosterilir. % (X) kiimesinin

her bir elemanina bir Borel kiimesi denir.

Tanm 3.4.4. (Cohn, 2013) X bir kiime ve </ da X iizerinde bir o-cebiri olsun. (X,.o/)
ikilisine bir olciilebilir uzay; </ daki her bir kiimeye de o7 -dlciilebilir kiime (veya Kisaca

olciilebilir kiime) denir.

Tanim 3.4.5. (X, .<7) bir 6l¢iilebilir uzay ve u : &7 — [0, +oo| bir fonksiyon olsun. Eger
her ayrik {E;};” | C o dizisi i¢in,

() u(9) =

(i) p (U ) = ’ZI.U(Ei)

sartlar1 saglaniyorsa u fonksiyonuna, (X,.</) iizerinde bir élciim denir. (X,.o/, 1)
ticliisiine de (pozitif) olciim uzayr adi verilir.

Tanim 3.4.6. (X, 7) bir topolojik uzay olsun. (X,% (X)) ol¢iilebilir uzay1 tizerindeki u :

P (X) — [0,4+o0] dl¢iimiine bir Borel dl¢iim denir.

Tanmm 3.4.7. X bir Hausdorff topolojik uzay ve <7, X iizerinde % (X) C o/ kosulunu

saglayan bir o-cebir olsun. i, (X, .<7) iizerinde bir 6l¢iim olmak iizere eger
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(i) Her K C X kompakt alt kiimesi igin p (K) < oo;
(ii) Her E € o i¢in u (E) =inf{u (U)| U agcitk ve E C U} ;
(iii) Her U C X agik alt kiimesi icin u (U) = sup{u (K) | K kompakt ve K C U}

sartlar1 saglaniyorsa U ye bir regiiler olciim denir.

(X,% (X)) tizerinde bir u : B (X) — [0,+oo] regiiler dl¢iimii, regiiler Borel élgiim
olarak adlandirilir.
Onerme 3.4.8. (X,.<7) bir olgiilebilir uzay ve f : X — [—oo, o] bir fonksiyon olsun. O

halde asagidakiler birbirine denktir:

(i) VteRicin{xe X | f(x) >t} € &;

(i) VieRigcin {x e X | f(x) >t} € &,
(iii) YVt e Ricin {x e X | f(x) <t} € &,
(iv) VieRicin{x e X| f(x) <t} € .

Tanmm 3.4.9. Onerme 3.4.8 deki denk kosullardan biri saglanirsa, f fonksiyonuna

o -olciilebilir (ya da kisaca dlciilebilir) denir.

Tanmm 3.4.10. (X,.</,u) bir olgim uzayr ve @ : X — [0,4o0) bir basit Ol¢iilebilir

fonksiyon olsun. ¢ fonksiyonunun X kiimesi iizerinde | olciisiine gore integrali

/q)d” = i ailt (Ag) € [0, 0]

k=1

X

genisletilmis reel sayis1 olarak tanimlanir. Burada a; lar ¢ nin X iizerinde aldig1 farkl
degerler ve Ay = {x€X| @ (x) =a;} olup ¢ fonksiyonu ¢ = Y a;Xs, gosterimine
k=1

sahiptir.

Tanim 3.4.11. (X, .7, 1) bir 6lgiim uzay1 ve f : X — [0, +o0] 6l¢iilebilir fonksiyon olsun.
Srile 0 < @ < f kosulunu saglayan basit 6l¢iilebilir fonksiyonlarin kiimesini gosterelim.

f fonksiyonunun u olciisiine gore integrali

/fd“:sup /(pdu:(pESf

genisletilmis reel sayisidir. E € o7 olsun. f nin u ye gore E iizerindeki integrali

[rdui= [ rxsd,
E X
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sayisidir.

Tanmm 3.4.12. (X,<7,u) bir ol¢iim uzayr ve f : X — [—oo,+oo| bir Olgiilebilir

fonksiyon olsun. Eger [|f|d, integrali sonlu ise f fonksiyonu X iizerinde p ye gore
X

integrallenebilirdir denir. Burada f* (x) = max{f(x),0}, f nin pozitif parcasi ve

f~ (x) =max{—f(x),0}, f nin negatif pargasi olmak iizere

[1ntdu=[rrau+ [1an

X

olur.

Tanmm 3.4.13. (X, </, u) bir olgiim uzay1 A C X ve f,g: X — [0,+o| o7-0l¢iilebilir
fonksiyonlar olsun. Eger u (A) = 0 kosulunu saglayan A € <7 kiimesi diginda f = g ise
f ile g fonksiyonlar1 hemen hemen her yerde esittir denir ve kisaca f = g (h.h.h.y) ile

gosterilir.

Teorem 3.4.14. (X, 1) bir dlgiim uzayt ve [ : X — R o7 -élciilebilir bir fonksiyon
olsun. O halde [ |f|dpu = 0 olmast icin gerek ve yeter kosul f =0 (h.h.h.y) olmasidur.
X

Tanmm 3.4.15. (X,<7,u) bir dlgiim uzay1 f : X — R «7-6lgiilebilir bir fonksiyon
ve p € [l,+o0) olsun. Eger [|f|’du integrali sonlu ise f fonksiyonuna p-ninci
kuvvetten integrallenebilir denir. p-ninci kuvvetten integrallenebilir fonksiyonlar siifi

ZLP (X, 4, ) ile gosterilir.
ZP (X, , 1) bir R-vektor uzayidir. £7 (X, .o/, 1) iizerinde

1/p

2 Xt ) >R, = | [ 117 d

fonksiyonu tanimlansin. Her o € R ve her f,g € Z7 (X, o/, 1) igin,

(i) [If]l, = 0 <= hemen hemen her yerde f =0 ;
1/p

(i) s, = (f|af|pdu) —lal I,
Git) 1 +ll, < A1+ gl

kosullart saglandigindan ||.||, fonksiyonu £ (X, .o/, i) lizerinde bir yari-norm tammlar.
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ZLP (X, 1) iizerinde,
“f ~ g <= hemen hemen her yerde f = g”

ile tamimli ~ bagmtist bir denklik bagmtisidir. Dolayisiyla bu bagmtt £7 (X, .o/, 1)
uzayini denklik siniflarina ayirir. Bu denklik siniflarinin kiimesi L? (X, <7, ) ile gosterilir.
LP(X,o/,u) kiimesinin elemanlar1 [f] bi¢imindeki denklik simflaridir. L? (X7, 1)
uzayl,

1+l =1+, alfl=[af]

seklinde tanimlanan toplama ve skaler ile carpma islemlerine gore bir vektor uzayidir.

Ustelik,
1/p

Il L7 (X, o, 0) = R, A, = 1IA1, = /|f|”du

ile tammlanan ||.|[,, fonksiyonu, L? (X<, j1) lizerinde bir norm olur.

Her ne kadar L” (X, </, ) uzaymin elemanlart [f] denklik smiflar1 ise de onlar

denklik siniflarinin f temsilci elemanlari ile gdstermek miimkiindiir.

Teorem 3.4.16. (X, .o/, 1) bir olgiim uzay ve p € [1,+e0) olsun. O halde LP (X, <7, 1),

|||, normu ile birlikte bir Banach uzayidur.

Tanmmm 3.4.17. G bir grup ve 7, G lizerinde bir topoloji olsun. Eger m : G x G —
G, m(a,b) = ab islemi ile n : G — G, n(a) = a~' fonksiyonu siirekli ise (G,m,T)
ticliistine bir fopolojik grup adi verilir. Burada G x G kartezyen carpimi iizerindeki

topoloji carpim topolojisidir.

Tanim 3.4.18. G bir topolojik grup olsun. Eger G bir yerel kompakt Hausdorff uzay1 ise
G ye bir yerel kompakt grup denir.

Tanim 3.4.19. G bir yerel kompakt grup olsun. i, G tizerinde sifirdan farkl bir regiiler
Borel 6l¢iim olmak iizere eger her x € G ve her B € £ (G) igin u (xB) = 1 (B) ise U ye
G iizerinde bir sol Haar él¢iim; p (Bx) = W (B) ise U ye bir sag Haar 6l¢iim denir.

Teorem 3.4.20. [Cohn 2013, Teorem 9.2.2 ve 9.2.6] G bir yerel kompakt grup olsun. O
zaman G iizerinde bir W sol Haar olgiim vardir. Ustelik v, G iizerinde bir baska sol Haar

dl¢iim ise o zaman v = cl olacak sekilde bir ¢ € (0,+o0) sabiti vardir.
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Not. G bir yerel kompakt grup ve u, G iizerinde bir sol Haar 6l¢iim olsun. p € [1,+o0)
olmak iizere L” (G, 4 (G), 1) uzayi, L” (G) notasyonu ile gosterilir.

Tanim 3.4.21. G bir yerel kompakt grup ve u, G iizerinde bir sol Haar 6l¢iim olsun.

f,g € L' (G) ve x € G olmak iizere

(F+8) @) = [Fg (") du ()

G

ile tanimli f * g : G — R fonksiyonuna f ile g nin konvoliisyonu denir. L' (G) iizerindeki
carpma islemi konvoliisyon olarak alimrsa L' (G) bir Banach cebiri olur. Bu durumda

L' (G) ye G nin grup cebiri adi verilir.

Onerme 3.4.22. Yerel kompakt bir G grubu icin L' (G) grup cebiri sumirl bir yaklastk

birime sahiptir.
3.5. Amenable Banach Cebirleri

Tanim 3.5.1. A bir Banach cebiri ve X bir Banach A-bimodiil olsun. Bir D : A — X lineer

doniisiimii, her a,b € A icin
D(ab)=a-D(b)+D(a)-b (D(a*) =a-D(a)+D(a)-a)

sartin1 sagliyorsa D ye bir tiirev (Jordan tiirev) denir.

Her tiirev bir Jordan tiirevdir fakat bunun karsit1 her zaman dogru olmayabilir.

Teorem 3.5.2. [B. Johnson 1996, Teorem 6.3] A bir C*-cebir ve X bir Banach A-bimodiil
olsun. O halde A dan X e tamumli her Jordan tiirev bir tiirevdir.
x € X sabit bir eleman olmak iizere D, : A — X fonksiyonu her a € A i¢in

Dy(a):=a-x—x-a
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olarak tanimlansin. Her a,b € A ve o € C igin,

Di(a+b) = (a+b)-x—x-(a+Db)
— (-x—x-a)+(b-x—x-b)

=Dy (a) +Dx (b)

Dy(a-a)=(o-a)x—x(a-a)
=a-(a-x)—o(x-a)
=a(a-x—x-a)

=a-Dy(a)
oldugundan D, bir lineer doniisiimdiir. Ustelik her a € A icin,

1Dy (@) || = lla-x—x-al| < la-x]|+]x-al
< lall[lx]l +[lx[l flal
= 2 |[x[| |
=M |d| (M =2{|x] > 0)

oldugundan D, lineer doniigiimii stnirlidir. Ayrica X bir A-bimodiil oldugundan, her a,b €

A i¢in,

D, (ab) = (ab) -x —x- (ab)
—a-(b-x)—(x-a)-b—a-(x-b)+a-(x-b)
=a-(b-x)—a-(x-b)+(a-x)-b—(x-a)-b
=a-(b-x—x-b)+(a-x—x-a)-b
—a-Dy(b)+ Dy (a)-b

olup Dy , A dan X e bir tiirevdir. Bu sekilde tanimlanan D, lineer doniisiimiine x elemamn

tarafindan belirlenmis i¢ tiirev ad1 verilir.
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Tanmmm 3.5.3. (B. E. Johnson, 1972) A bir Banach cebiri olsun. Eger her X Banach
A-bimodiilii i¢in A dan X™* dual modiiliine taniml1 her sinirli tiirev bir ig tiirev ise, o zaman

A ya amenable Banach cebiri denir.
Ornek 3.5.4. C kompleks uzay bir amenable Banach cebiridir.

W.G. Bade, P.C. Curtis, Jr. ve H.G. Dales (Bade, Curtis Jr vd., 1987), 1987 yilinda
degismeli Banach cebirleri icin zayif amenabilite kavramini tanitmiglardir. B.E. Johnson

ise zayif amenabilite i¢in daha genel bir tanim vermistir:

Tanim 3.5.5. (B. Johnson, 1991) A bir Banach cebiri olsun. Eger A dan A* dual modiiliine

taniml1 her sinirl tiirev bir ig tiirev ise, o zaman A ya zayif amenable Banach cebiri denir.

Her amenable Banach cebiri zayif amenabledir, ancak zayif amenable Banach

cebirlerinin sinifi, amenable Banach cebirlerine kiyasla olduk¢a genistir.
Ornek 3.5.6. (B. Johnson, 1991) Her C*-cebir zay1f amenabledir.

Ornek 3.5.7. (H. Dales, F. Ghahramani vd., 1998) Her yerel kompakt G grubu icin L! (G)

grup cebiri zayif amenabledir.

Onerme 3.5.8. [H. G. Dales 2000, Onerme 2.6.6(i)] A bir degismeli Banach cebir, E bir
Banach A-modiil ve A € E* olsun. O halde her a € A, x € E i¢in Ry x (a) = A (a - x) olacak
sekilde bir R € B (E,A*) fonksiyonu vardir.

Ispat: Amacimiz, R; nin E den A* dual uzaymna tanimh siirh bir lineer déniisiim
oldugunu gostermektir. Ik olarak her x,y € E, k € C icin, Ry (kx+y) = kRyx + R;y

oldugunu gosterelim. Yani her a € A i¢in
Ry, (kx+y)(a) = (kRyx+Ryy) (a)
oldugunu gosterelim. O halde her a € A i¢in,

Ry, (kx+y)(a) = A (a- (kx+y))
=Ak(a-x)+a-y)
— kA (a-x)+ A (a-y)
=kRyx(a)+Ryy(a)
= (kRyx+R;y) (a)
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dir. Yani her x,y € E i¢in Ry (kx+y) = kRyx+ R)y olup, R, bir lineer doniisiimdiir.

Ayrica A sinirli oldugundan, her x € E i¢in,

[Ryx(a)] 14 (a- x| A el ]
|R3x]| = sup = < <c-|lx]
lall lall [l
olup R), sinirhidir. O halde R, € B (E,A*) olur. O

Teorem 3.5.9. [H. G. Dales 2000, Teorem 2.8.63] A bir zayif amenable Banach cebiri
olsun. O halde

(i) A esas Banach cebirdir.

(ii) Eger A degismeli ise, her E Banach A-modiilii icin A dan E ye tanimli her sinirli tiirev
stfirdir.

Ispat: (i) Kabul edelim ki A2 = A olsun. O halde bir g € A \IE elemani alalim. Buna gore
Aola2 = 0 ve Ay (ag) = 1 olacak sekilde Ay € A* segilebilir. Bir D : A — A* fonksiyonu,

seklinde tamimlansin. D siirekli bir lineer doniisiimdiir. a,b € A i¢in a- b € A% oldugundan
D (ab) = Ao (ab) Ao = 0
dir ve her ¢ € A igin Ag[42 = 0 oldugundan

(a-Db)(c)+ (Da-b)(c) = Db(ca)+ Da(bc)

= 2o (b) Ao (ca) + Ao (a) Ao (bc)
-0 (3.6)
olur. Boylece
a-D(b)+D(a)-b=0 (3.7)

dir. (3.6) ve (3.7)den D (ab) =a-D (b) +D (a)-b olup D, A dan A* dual modiiliine tanimli

bir sinirl tiirevdir. Aym1 zamanda

(D (ao)) (a0) = (Ao (@o0) Ao) (a0) = (Ao) (ap) =1
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dir. Ancak her A € A* i¢in

(a0 — Aap) (ao) = (a0l ) (ao) — (Aao) (ao)
= 2 (a5) — A (ag)
=0

dir. Buradan D bir i¢ tiirevdir. Bu ise her tiirevin i¢ tiirev olmasiyla celigir. O halde A2=A

olmalidir.

(i1) D # 0 olacak sekilde D, A dan E ye taniml1 sinirl bir tiirev olsun. (i) den, AZ=A
dir ve dolayisiyla D (a(z)) # 0 olacak sekilde ag € A vardir. O halde ag - D (ag) # 0 dir.
Boylece A (ap-D(ap)) = 1 olacak sekilde bir A € E* vardir. R; € B (E,A*) almsm. O

zaman Ry oD : A — A* sinirhi bir tiirevdir. Ciinkii her x,y € A i¢in

(Ry o D) (x+y) = Ry (D (x+))
=Ry (D(x) +D(y))
=R, (D(x)) + Ry (D(y))

= (Ry o D) (x)+ (Ry o D) (y)

ve

(Ra oD) (xy) = Ry (D (xy))
=Ry (D (x)y+xD(y))
=Ry (D(x)y)+ Ry, (xD(y))
=Ry, (D (x))y+xRy (D(y))

(RyoD) (x)y+x(Ry oD)(y)

oldugundan Rj o D bir lineer doniisiimdiir. Ayrica

(R 0 D) ()| = 1Ry (D G| < (IR NP )| < IR (DI I
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oldugundan Rj o D doniisiimii sinirhidir. Yani R) o D, A dan A* dual modiiliine taniml

stnirh bir tiirevdir. R) doniislimiiniin tanim1 geregi,

((Ry 0D)(ao)) (a0) = (Ry (D (a0))) (ao)
= A(ap-D(ap))
=1

dir. Bu durumda R o D # 0 dir. Ancak bu durum A nin zayif amenable olusu ile geligir.
O halde D = 0 olmahdur. a

3.6. Banach Cebirlerde Sifir Carpimi Koruyan Doniisiimler

Tanim 3.6.1. A bir Banach cebiri, X herhangi bir Banach uzay1 ve ¢ : A x A — X siirekli

bir 2-lineer doniisiim olsun. Eger ¢ 2-lineer doniisiimii,
a,beA,ab=0= ¢(a,b)=0 (3.8)

kosulunu saghyor ise ¢ ye sifir carpimi koruyan 2-lineer doniisiim ad1 verilir.

Tanim 3.6.2. A bir Banach cebiri ve X bir Banach uzay1 olmak iizere sifir carpimi koruyan

her siirekli ¢ : A XA — X 2-lineer doniisiimii,
0 (ab,c) = ¢ (a,bc)  (ab,c € A)

sartin1 sagliyorsa A ya (B) ozelligini saglar denir.

Ornek 3.6.3. A bir Banach cebiri ve A*> = {0} olsun. Her x,y,z € A i¢in (xy)z=x(yz) =0

dir ve boylece (3.8) sartin1 saglayan her bir ¢ : A x A — C 2-lineer fonksiyoneli i¢in

¢ (x,2) =0=¢ (x,yz)

sart1 saglanir. O halde A Banach cebiri, (B) 6zelligini saglar.

Teorem 3.6.4. (Alaminos, M. Bresar vd., 2009) A bir Banach cebiri ve X bir Banach

uzayt olmak iizere A, (B) ozelligini saglasin. Eger A min bir sol yaklagik birimi var ise, o

33



zaman stfir carpumt koruyan her siirekli ¢ : A x A — X 2-lineer doniisiimii icin,
¢(a,b) = P(ab)  (a,beA)

olacak sekilde bir ®@ : A — X lineer operatorii vardir. Ustelik, A nin sumirly bir sol yaklagik

birimi varsa @ siireklidir.

Ispat: (g;)ics, A nin bir sol yaklagik birimi olsun. O halde her a € A igin, liIIII gia = a dir.
4SS
Sifir carpimu koruyan keyfi bir ¢ : A X A — X siirekli 2-lineer doniistimii alalim. ¢ siirekli

oldugundan, her a,b € A icin,

(a.b) =limo(gia,b) = limo (g:,ab) (3.9)

dir. Boylece her a € A? icin (¢(gi,a))ic; ag1 yakinsaktir. Buna gore, bir ® : A —
X, ®(a)= lirgu]) (gi,a) (a € A?) lineer operatorii tammlanabilir. Her a,b € A% ve her e € C
1S
igin,
P(oa+b) :1_inll¢(g,-,oca+b)
e
~tim{a9(g:,a) + 9 (g1, )
=alim¢ (g;,a) + lim (g;
olim(gi, a) +lime (g;, b)
=aP(a) +P(b)

esitligi saglanir. O halde @ operatorii lineerdir. ® nin tanimindan ve (3.9) esitliginden,

her a,b € A igin ¢ (a,b) = ®(ab) oldugu goriiliir. Eger (g;);cy ag1 sinirli ise, her a € A igin

lo(gia)ll < lIofsuplleill el (<)

olur ve burada limite gegilirse, 1_in11||¢(g,-,a)|| < ||@||sup|lgi|l ||| bulunur. Normun
e il

lim¢(gi,a)| < [[@[lsupllgi|lall elde edilir. Buradan [[®(a)] <
1€ iel

dD(a .
1601 sup il llall olup supd 2N < 61 sup gl olur. Boylece
icl a#0 all icl

stirekliliginden,

1P| <[] sup llgill
iel
olup ® lineer operatorii sinirhidir (siireklidir). a
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Ornek 3.6.5. (Alaminos, M. Bresar vd., 2009) Her A C*-cebiri, (B) ozelligini saglar.
Ornek 3.6.6. (Alaminos, M. Bresar vd., 2009) G bir yerel kompakt grup olmak iizere

L' (G) Banach cebiri, (B) 6zelligini saglar.

A bir Banach cebiri ve J(A), A daki tiim idempotentler tarafindan iiretilen A nin alt
cebiri olsun. Eger A = J(A) ise, A Banach cebiri idempotentler tarafindan iiretilir denir.

A = J(A) ozelligine sahip Banach cebirlerine 6rnek olarak asagidakiler verilebilir:
Ornek 3.6.7. [Alaminos, M. Bresar vd. 2009, Ornek 1.3]

(i) Bir X kompakt Hausdorff uzay1 igin C (X)) Banach cebiri.
(i1) Asikar olmayan bir idempotent iceren topolojik basit Banach cebirleri.

(iii) W*-cebirleri (Sakai, 2012).
Ornek 3.6.8. (Alaminos, M. Bresar vd., 2009) A bir birimli Banach cebiri ve A = J (A)

ise, 0 zaman A, (B) 6zelligini saglar.

Ornek 3.6.5 geregi her C*-cebir, (B) dzelligini saglar. Ustelik Teorem 3.3.8 geregi her
C*-cebirin sinirlt bir yaklasik birimi vardir. Buna gore, Teorem 3.6.4 iin C*-cebirlerine

kisitlanmis hali asagidaki gibi verilebilir:

Teorem 3.6.9. (Alaminos, J. Bresar vd., 2010) A bir C*-cebir, X bir Banach uzayt ve

0 : A XA — X sifir carpumi koruyan siirekli bir 2-lineer doniisiim olsun. O halde
¢(a,b) = ®(ab)  (a;b€A)

olacak sekilde bir @ : A — X lineer operatorii vardir.

Teorem 3.6.10. (Alaminos, J. Bresar vd., 2010) A bir C*-cebir ve X bir Banach uzayt
olsun. ¢ : A X A — X fonksiyonu, her a,b € A icin

ab=ba=0= ¢ (a,b)=0
sartint saglayan siirekli bir 2-lineer doniisiim olsun. O zaman her a,b,c,d € A i¢in,
¢ (ab,cd)+ ¢ (da,bc) = ¢ (a,bed) + ¢ (dab,c)

olur.
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ispat: a1by = 0 olacak sekilde a;,b; € A alalim. Her a,b € A i¢cin
01:AXA—X, ¢1(a,b)=0¢(bia,ba))

fonksiyonu tanimlansm. Ilk olarak ¢; fonksiyonunun 2-lineer doniisiim oldugunu

gosterelim: Her a,b,c,d € A ve her a € C igin,

o1 (aa+b,c) = ¢ (by (aa+Db),cay)
= ¢ (by (aa)+b1b,cay)
= o (bia,cay)+ ¢ (b1b,cay)
= a¢ (a,c) +¢1(b,c)

\

01 (a,ac+d) = ¢ (bia,(ac+d)ap)
= ¢ (b1a,(oc)a; +day)
= a¢ (bia,ca))+ ¢ (bya,day)
= oy (a,c)+ ¢ (a,d)

kosullar1 saglandigindan ¢; fonksiyonu 2-lineerdir. Her a,b € A icin,

191 (a.D)I| = 19 (b1, bay )|

O sumirl
< [1ol[[[brall||ba]]
< l¢lHioall lial ol

= (el Izal lar][) [lall |5

olacak sekilde M := ||¢|| ||b1]| ||a1]| > O var oldugundan ¢; sinirhdir, yani siireklidir.

Simdi de ¢; fonksiyonunun (3.8) sartin1 sagladigim gosterelim. a,b € A i¢in ab =
0 olsun. Bu durumda, (bya)(ba;) = by (ab)a; = 0 ve (ba;) (bya) = b(ai1by)a = 0 dir.
Hipotez geregi,
0=¢ (b1a,ba) = ¢ (a,b)

bulunur. Yani ¢, (3.8) sartin1 saglar.
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Ornek 3.6.5 geregi, ¢ (ab,c) = ¢ (a,bc) olur ve buradan her a,b, ¢ € A igin

¢ (byab,cay) — ¢ (bra,bca;) =0 (3.10)

elde edilir.

Simdi de ay, by, cr € A elemanlarim sabitleyelim ve ay,b; € A olmak lizere

02 (ar,by) = ¢ (brasba,coa1) — ¢ (braz, bycray)

ile tanimlanan ¢ : A X A — X fonksiyonunun siirekli bir 2-lineer doniisiim oldugunu

gorelim:

Her aj,by,c1,d; € A ve her a € C icin,

O (aay +bi,c1) = ¢ (cranby,co(@ay +by)) — ¢ (craz,brcr (0ay + by))
= ¢ (craoby,ca (aay) + caby) — ¢ (craz,baca (aay) + bacaby)
= a@ (crazby,cra1) + ¢ (craaby,c2by) — o (craz,brcray)
— ¢ (c1az,brc2by)
= a (ar,c1)+¢2 (b, c1)

ve

O (ar,oc1+dy) = ¢ ((ocy +dy) axbr, cray) — ¢ ((ey +dy) ar,brcaay)
= ¢ ((acr) azby +diazby,c2a1) — ¢ ((0c) ax +dyaz, brcray)
=@ (crazby,cra1) + ¢ (diaxba,crar) — g (craz,bacaray)
— ¢ (diaz, bacaa)
= ag(ar,c1) + 92 (ar,dy)
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kosullar1 saglandigindan ¢, fonksiyonu 2-lineerdir. Her a;, b € A i¢in,

162 (a1,b1)|| = [|¢ (brazbz,c2a1) — ¢ (braz, brcrar) ||
< (|9 (brazby, c2a1)|| + |9 (braz, brcarar) |
<[19[l[|brazbz |l [|c2ar || + 9| D1zl Ib2c2ar|| (¢ : smrly)
<19 |1] l|axbz[ llcall llar]| + 1@ b1l [|az[l [[b2c2]l [|a1[| (A : normlu cebir)

= (9l lazballlle2ll + [[@[[ Izl [[b2c21) llar || 11l

olacak sekilde M := ||@|| ||aab2|| ||c2]| + ||@]] laz]| ||b2c2]| > O var oldugundan ¢, sinirhdir,

yani siireklidir.

Simdi de ¢, fonksiyonunun (3.8) sartin1 sagladiini gosterelim. aj,b; € Aicin ajb; =

0 oldugunu biliyoruz. Bu durumda (3.10) esitliginden

02 (a1,by) = ¢ (braaba,cra1) — ¢ (byaz,bycra;) =0

olur. Boylece Ornek 3.6.5 geregi, her ay,by,c| € A icin, ¢ (a1by,c1) — ¢ (a1,bic;) =0

dir. Yani ¢ nin tammmindan her ay,by,c1,a2,b2,c2 € A igin,

[0 (craaba,cra1b) — @ (c1a2,brc2a1b1)] — [@ (bicraaba, crar) — ¢ (biciaz, bycaar)] =0

olup,

¢ (crazby,cra1by) — ¢ (craz,brcrarby) — ¢ (bicrasby, cray) + ¢ (bicraz, bacray) =0
(3.11)
bulunur. (3.11) esitliginde, ciay ve cpa; elemanlarini iceren terimlerde Sonug¢ 3.2.18
geregi A2 = A oldugu kullamlirsa, teoremin ifadesinde de iddia edildigi gibi, her

a,b,c,d € A i¢in,
¢ (ab,cd) — ¢ (a,bcd) + ¢ (da,bc) — ¢ (dab,c) =0

sonucuna ulagilir. a
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Teorem 3.6.11. [H. Ghahramani 2013, Sonu¢ 3.6] A bir Banach cebir, X bir Banach

uzaytve ¢ : A X A — X doniisiimii,
a,beA,ab=ba=0= ¢ (a,b)=0
sartini saglayan siirekli bir 2-lineer doniigiim olsun. O halde her a € A ve x € J(A) icin,

¢ (avx) +¢ (xaa) =¢ (ax> eA) +¢ (eA7xa)

dir. Ozel olarak, eger A idempotentler tarafindan iiretiliyorsa, o zaman her a,b € A icin,

¢(a7b)+¢(b7a) =¢ (ab7€A)+¢(eAvba)

sartt saglanir.

Ispat: Her a, p € A icin p?> = p ve g = 1 — p olsun. pg = gp = 0 oldugundan

¢ (p,q)=¢(p,1—p)=0(p,1)—9(p,p) =0

veE

¢(q,p)=¢(1—p,p)=0(1,p)—¢(p,p) =0

olur. Buradan ¢ (p,1) = ¢ (1, p) elde edilir. Her x € J (A) icin, lineerlikten

¢ (x,1)=¢(1,x)

bulunur. (q— paq) (p+ paq) = qp + qpaq — pagp — pagpaq = 0 dir. Benzer sekilde
(p+ paq) (q— pag) = 0 olur. Aynica (p+qap)(q—qap) = (¢—qap)(p+qap) =0
dir. Buradan hipotez geregi, ¢ (¢ — paq,p+ pagq) =0 ve ¢ (p+qap,q—qap) = 0 dir.

Boylece bu esitliklerde gerekli sadelestirmeler yapilirsa,

0= ¢ (9 — paq,p+ paq)
=0 (q,p)+ ¢ (q,raq) — ¢ (paq, p) — ¢ (paq, paq)

= ¢ (q,paq) — ¢ (paq,p)
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veE

0= ¢ (p-+qap,q—qap)
=0 (p,q)— ¢ (p,qap)+ ¢ (gap,q) — ¢ (qap,qap)
= —¢ (p,qap)+ ¢ (gap,q)

bulunur. Buradan ¢ (paq, p) = ¢ (q, paq) ve ¢ (p,qap) = ¢ (qap,q) elde edilir.

Ayrica (pap)q = q(pap) = 0 ve (gaq) p = p(qaq) = 0 olup

¢ (qaq,p) = ¢ (p,qaq) =0

dir. Yukaridaki esitlikler de kullanilarak,

O (ea-a,p)+¢(p,es-a)
(p+q)a,p)+ ¢ (p,(p+q)a)
pa+qa,p)+ ¢ (p,pa+qa)

pa(p+q)+qa(p+q),p)+9¢(p,pa(p+q)+qa(p+q))

(
(
(
(

¢

¢

¢

¢ (pap + paq + qap +qaq, p) + ¢ (p, pap + paq + qap + qaq)

= ¢ (pap,p)+ ¢ (paq,p) + ¢ (qap,p) + ¢ (gaq,p) + ¢ (p, pap) + ¢ (p, paq)
+¢ (p,qap) + ¢ (p.qaq)

= ¢ (pap,p)+ ¢ (paq,p) + ¢ (gap,p) + ¢ (p, pap) + ¢ (p, pag) + ¢ (p,qap)

= ¢ (pap,p)+ ¢ (¢, paq) + ¢ (qap,p) + ¢ (p, pap) + ¢ (p, paq) + ¢ (qap,q)

=9 (pap,p)+¢ (1—p,pa(1—p))+¢((1-p)ap,p) + ¢ (p,pap)
+9¢(p,pa(1-p))+¢((1-p)ap,1-p)

= ¢ (pap,p)+ ¢ (1,pa) — ¢ (1, pap) — ¢ (p, pa) + ¢ (p, pap) + ¢ (ap, p)
— ¢ (pap,p)+¢ (p,pap) + ¢ (p,pa) — ¢ (p, pap) + ¢ (ap,1) — ¢ (ap,p)
= ¢ (pap,1)+ ¢ (pap, p)

=¢ (p—1,pap)+ ¢ (pap.p—1)+¢ (1,pa)+ ¢ (ap,1)

= ¢ (¢, pap)+ ¢ (pap,q)+ ¢ (1,pa)+ ¢ (ap,1)

=¢ (ap,1)+ ¢ (1, pa) (¢ (pap) = 0 oldugundan)
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bulunur. Her x € J(A) elemani, A daki idempotentlerin bir lineer kombinasyonu

oldugundan, her a € A ve her x € J(A) igin

¢ (a’x) +¢ (xaa> =¢ (axa 1) +¢ (17xa)

olur. O
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4. BULGULAR ve TARTISMA

Bu boliimde, esas olarak A. Zivari-Kazempour (Zivari-Kazempour, 2022) un
kendisinin 2022 yilinda yayinladigi ¢calismasi ile daha sonra M. Valaei (Zivari-Kazempour
ve Valaei, 2022) ile birlikte 2022 yilinda yayinladiklar1 Banach cebirleri tizerinde taniml

n-Jordan ¢arpanlarin karakterizasyonu hakkindaki ¢alismalar1 incelenecektir.
4.1. Carpanlar ve Jordan Carpanlar

Tanim 4.1.1. A bir Banach cebiri, X bir Banach A-bimodiil ve T : A — X sinirli bir lineer

doniistim olsun. Eger her a,b € A igin
T(ab)=T(a)-b

ise T ye sol carpan; T(ab) = a-T(b) ise T ye sag ¢arpan denir. Eger T hem sol hem de

sag carpan ise T ye ¢arpan ad1 verilir.

Tanim 4.1.2. A bir Banach cebiri, X bir Banach A-bimodil ve T : A — X sinirh bir lineer

doniisiim olsun. Eger her a € A i¢in

ise T ye sol Jordan ¢carpan; T(a*) = a-T(a) ise T ye sag Jordan ¢arpan denir. Eger T

hem sol hem de sag Jordan carpan ise T ye Jordan ¢arpan adi verilir.

Not. Her (sag, sol) carpanin bir (sag, sol) Jordan carpan oldugu aciktir, ancak asagidaki

ornekte de gosterildigi gibi bunun kargit1 genel olarak dogru degildir.

.. a b
Ornek 4.1.3. o/ = |a,b € C ve ab =0 ;, alisgitlmig matris iglemleriyle bir
0

cebir olsun. &7 cebiri,
a b
= la| +|b| (a,b€C)
0 a

normu ile birlikte bir Banach cebiridir.
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a a 0
O > o, = stirekli lineer doniistimii tanimlansin.
a 0 a
Her X = € < igin,
0 a
) a 0 a 0 a b a 0
0 (X)) = ¢ SIEI e — X0(x)
0 a 0 a 0 a 0 a

dir. Bu durumda ¢ bir sag Jordan carpandir. Simdi ¢ nin bir sag carpan olmadigini

gosterelim:
0
A= ve B = matrislerini alalim. Bu durumda
00 01
0 1 1 0 0 1
¢ (AB)=¢ =0 =022
00 0 1 00
dir. Ayrica
0 1 10 0 1 1 0 0 1
00 01 00 0 1 00

bulunur. Dolayisiyla ¢ (AB) # A¢ (B) oldugundan ¢ bir sag carpan degildir. Boylece her
sag Jordan ¢arpan bir sag ¢arpan degildir.

Tanim 4.1.4. A bir Banach cebiri, X bir Banach A-bimodil ve T : A — X sinirh bir lineer

doniisiim olsun. Eger her a,b € A i¢in

sart1 saglaniyorsa 7" ye iki yanli ¢carpan denir.

Not. Eger T hem sol hem de sag carpan ise 7 iki yanli carpandir. Ancak karsit1 genelde
dogru degildir.
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0 a b

Ornek 4.1.5. A = 0 0 ¢ |:a,b,ceR ) Banach cebiri lizerinde bir 7 : A — A
0 00
doniigiimii
0 a b 0 a O
T 0 0 ¢ =10 0 ¢
0 00 000
0 a b
ile tanimlansin. 7 bir sinirli lineer doniistimdiir. Ustelik her x = 00 c¢ |,y=
0 00
0 d e
0 0 f |€Aicin,
0 00
0 a 0 0 d e 0 0 af
T(x)y= 0 c 0 f =100 0 ve

()
)
)
)
()
(e)
()
e)

Q
S
[e]
QU
o
o
[e]
Q
~

xT(y)=1 0 0 ¢ 00 f|=|00 0 |[oldugundanT(x)y=xT(y)

0 0 af
dir. O halde T iki yanhi carpandir. Ancak xy = 00 O icin T (xy) =

0 0 O
00O
0 0 0 |olupT(x)y#T(xy)=0 (xT(y)# T(xy) =0) oldugundan T bir sol (sag)

0 0O
carpan degildir.

Teorem 4.1.6. A bir Banach cebiri ve X bir Banach A-bimodiil olsun. Eger w € A elemani,
X A-bimodiiliiniin bir sol (sag) ayrilma noktasive T : A — X iki yanli ¢carpan ise o zaman

T bir sol (sag) carpandir.
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Ispat: T iki yanh carpan oldugundan her a,b € A igin a- T(b) = T(a) - b dir. Her x € A
icin,

x-T(ab) =T (x)-(ab) =(T(x)-a)-b=(x-T(a))-b=x-(T(a)-b)

olur. Ozel olarak, w- T (ab) = w- (T (a) - b) olup her a,b € A igin
w-(T(ab)—T(a)-b) =0

olur. w, X in bir sol ayrilma noktasi oldugundan her a,b € A i¢in T(ab) —T(a) -b =0
bulunur. Béylece her a,b € A igin T'(ab) = T (a) - b olup T bir sol ¢arpandir. T nin bir sag

carpan oldugu da benzer sekilde ispatlanir. a
4.2. n-Carpanlar ve n-Jordan Carpanlar

Tanmim 4.2.1. A bir Banach cebiri, X bir sol Banach A-modiil, » > 2 bir tamsay1 ve T :

A — X sinirh bir lineer doniisiim olsun. Eger

(i) herayj,as,...,a, €Ai¢in T(ajay...a,) =ay-T(ay...a,) ise T ye sag n-carpan;

(ii) hera € Aigin T(a") = a-T(a""") ise T ye sag n-Jordan carpan denir.

Sol n-garpan, sol n-Jordan ¢arpan, n-¢arpan ve n-Jordan carpan da benzer sekilde

tanimlanir.

Sag carpanlar i¢in gecerli olan tiim sonuglar, sol ¢arpanlar icin de benzer ifadelerle
yazilacagindan, bundan sonraki kisimlarda sadece sag versiyonlar kullanilacaktir. Sadelik

icin ise sag oneki kullanilmayacaktir.

A bir Banach cebiri ve X bir sol Banach A-modiil olmak iizere,
Mul,(A,X)={T |T:A— X n-carpan}

\

JMul,(A,X)={T |T:A— X n-Jordancarpan}

kiimeleri tanimlansin. Mul, (A, X) kiimesi, *B(A,X) vektor uzaynin bir alt uzayidir.
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Teorem 4.2.2. (Laali ve Fozouni, 2017) A bir Banach cebiri ve X bir sol Banach A-modiil
olsun. O halde her n > 2 tamsayust i¢cin Mul, (A, X ) uzayt, B(A,X) uzayimun kapalt bir alt

uzayidir.

Ispat: Mul,(A,X) uzaymin B(A,X) uzayinda kapali oldugu gostermek igin {7;,} C
Mul,(A,X) bir dizi olmak iizere 7,, — T € B(A,X) oldugunu kabul edelim. 7 €

Mul,(A,X) oldugunu gosterelim. ay,as, ..., a,, A nin keyfi elemanlari olsun. Bu durumda

T (ay...an)—ay-T(a...a,)|
<||T(ay...an) —Ty(ay...an)||+ || Tm(ay...an) —ay-T (az...a,)||
<|\NT =Tullllar---anl| + ||ar - T (az...an) —ar-T(az...a)||

<IT =Taullllar - anll + T = Tl lar [ [laz - .- anll

elde edilir. Boylece m — o iken T (aj...a,) = ay-T(ay...a,) bulunur. O halde T €

Mul, (A, X) dir. Yani Mul,(A,X) kiimesi kapalidir. O

Her n > 2 tamsayist i¢in JMul, (A, X) kiimesinin de B(A,X) uzayinin kapali bir alt

uzay1 oldugu Teorem 4.2.2 nin ispatina benzer sekilde gosterilir.

Onerme 4.2.3. A bir Banach cebiri, X bir sol Banach A-modiil, n > 2 bir tamsaytve T :

A — X simirlt bir lineer doniisiim olsun. Eger T bir n-carpan ise T bir (n+ 1)-carpandir.

Ispat: T bir n-carpan olsun. O halde her a1,as, ...,a, € A igin
T(ajay...ap) =a;-T(ay...ay) 4.1)

saglanir. a,1 € A alalim. Bu durumda (4.1) esitligi kullanilarak

cA
A~ N
T(aiaz...anans1) =T | (@1a2)as . ..anays1
——_
(n—1) tane
(n—1) tane

=(a1ap)- | T(as...ans1)
(n—1) tane
—N—
=ay-|ay-T(az...ans1) | =a1-T(azas...ay11)
elde edilir. O halde T bir (n+ 1)-carpandir. O
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Genel durumda, Mul,(A,X) C Mul,+1(A,X) dir [Laali ve Fozouni 2017, Teorem 2].
Ustelik A bir esas Banach cebiri ise, her n > 2 tamsayist i¢in Mul,, (A, X) = Mul,1(A,X)

dir [Laali ve Fozouni 2017, Teorem 3].

Mul,(A,X) C JMul,(A,X) oldugu agiktir. JMul, (A, X ) C Mul,(A,X) saglanmadigina

dair bir 6rnegi n = 3 i¢in verelim:

0 a x c
.. 0 0 by . ) )
Ornek 4.24. A = :a,b,c,x,y € R » Banach cebiri lizerinde bir 7 :
0 0 0 a
(\0 0 0 O J
A — A doniisiimil
0 a x c 0 ayc
- 00 by 00 b x
0 0 0 a 0 00 a
00 0O 0 00O

0 a x ¢
. . . N 005by|..
ile tammmlansin. 7 bir sinirh lineer doniisiimdiir. Ustelik her u = i¢in,
0 0 0 a
00 0O
0 0 ab ay+xa 00 0 a’b
: 00 O ab 3 0 0O
u- = ve u’ = olup
00 O 0 0 0O
00 O 0 000 O
0 0 ab ay+xa 0 0 ab ay+xa
00 O ab 00 O ab
Tw?)=T = =u?
00 O 0 00 O 0
00 O 0 00 O 0
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00 0 ab 00 0 a’
000 O 000 O .
ve T(ud) =T = = u® olur. Yani her u € A
000 O 000 O
000 O 000 O
icin

dir. Bu nedenle T bir 3-Jordan carpandir, ancak 7" bir 3-carpan degildir.

Genel olarak, JMul,+(A,X) C JMul,(A,X) igermesi dogru degildir. Buna dair bir

ornek asagida verilmistir:

([0 x a b )
.. 0 0y c o ) )
Ornek 4.2.5. A = : X,y,2,a,b,c € R » Banach cebiri lizerinde bir
0 00 ¢z
(\0 0 0 O )
T : A — A doniistimii
0 x a b 0 z ¢ O
00 c 00 a
T y _ y
000 00 0 x
00 0O 0 00O

ile tantmlansin. 7 bir sinurli lineer doniisiimdiir. O halde her u € A ve n > 4 igin T (u") =
u-T(u"~1) dir. Bu durumda n > 4 i¢in T bir n-Jordan garpandir. Ancak x,y,z # 0 oldugu
durumda her u € A icin T (4®) # u - T (u?) dir. Boylece T bir 3-Jordan ¢arpan degildir.

4.3. n-Jordan Carpanlarin Karakterizasyonu

Lemma 4.3.1. A bir Banach cebiri, X bir sol Banach A-modiil ve T : A — X bir Jordan

carpan olsun. O halde n > 2 tamsayusi icin T bir n-Jordan ¢arpandir.

Ispat: n iizerinden tiimevarim ile yapilacaktir. n = 3 icin 7 nin bir 3-Jordan carpan

oldugunu gosterelim: 7" bir Jordan carpan oldugundan her a € A i¢in

T(a*)=a-T(a) (4.2)
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dir. Burada a yerine a 4 b yazilirsa, her a,b € A igin

T((a+b)*) = (a+b)-T(a+b)

(
=T (a*+ab+ba+b*)=a-T(a+b)+b-T(a+Db)
=T (a®)+T(ab+ba)+T(b*) =a-T(a)+a-T(b)+b-T(a)+b-T(b)
(

=T(ab+ba)=a-T(b)+b-T(a) (4.3)
olur. (2) esitliginde b yerine a? yazilirsa, her a € A igin
2T (a) =a-T(a®) +a* T(a) (4.4)
bulunur. (1) ve (3) esitliklerinden,

2T(a*) =a-T(a*)+a-(a-T(a))
=27 (a®) = a-T(a*) +a-T(a?)

=T(a®) =a-T(da*
elde edilir. Boylece T bir 3-Jordan ¢arpandir. Her 3 < k < n i¢in
T(d)=a-T(d™") (4.5)
saglansin. (3) de b yerine a* yazilirsa,

T(ad"+d‘a) = a-T(d")+d* - T(a)
=T2d) =a-T(d") +d" - T(a)

=2T (a1 =a-T(d") +d" - T(a) (4.6)
bulunur. (5) esitligi kullanilarak

d-T(a) = (a"1a) - T(a) =d - T(a*) = (d"2a) - T(d?)

=d" 2. Td)=...=a-T(d) 4.7)
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olur. (4.7) esitliginden,
a-T(d)+d" T(a) =2a-T(d")
——
aT (dak)

olur. Bu esitlik, (4.6) da yerine yazilirsa
2T (a*') = 2a- T (d")

elde edilir. Buradan T'(¢**!) = a- T(d") olur. O halde T bir (k + 1)-Jordan ¢arpandir.

Boylece istenen elde edilir. O

Lemma 4.3.1 den n > 2 olmak iizere her Jordan ¢arpan bir n-Jordan ¢arpandir. Ancak,
genel olarak m > n > 3 icin her n-Jordan ¢arpan m-Jordan ¢arpan degildir. Ayrica Ornek

4.2.5 e gore, bazi (n+ 1)-Jordan ¢arpanlar n-Jordan ¢arpan olamamaktadir.

Lemma 4.3.1 in karsit1 dogru degildir. Yani n > 2 olmak iizere her n-Jordan ¢arpan,

Jordan carpan olmayabilir. n = 3 i¢in asagidaki 6rnegi verelim:

Ornek 4.3.2. A Banach cebirini ve T lineer doniisiimiinii Ornek 4.1.5 de verildigi gibi
alalim. Her u € A i¢in T («?) = uT (4?) dir. Yani T bir 3-Jordan garpandir. Ancak T (u?) #
uT (u) oldugundan T bir Jordan carpan degildir.

Teorem 4.3.3. A bir birimli Banach cebiri, X bir birimsel sol Banach A-modiil, T : A — X

suirly bir lineer doniisiim ve n € N olsun. Eger
ab = ey olacak gekildeki her a,b € A icin T (ab) = a-T (D) (4.8)

ise T bir n-Jordan carpandir.

Ispat: Keyfi bir a € A alalim. |A| < — olacak sekildeki A € C icin,

lea = (ea = Aa)|| = [lea —ea+Aal| = [|Aal| = [A]|la]| < 7= [lal <1

oldugundan e4 — Aa tersinirdir ve tersi

(ea—Aa)” —eA—i—Z ea—(ea—Aa))"

:eA_i_Z)Ln n:Z;Lnan
n=1

n=0

uMz
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dir. O halde

T(ea) = T((ea—Aa)(ea—Aa)'es)
= (ea—7Aa)-T ((ea—Aa) 'es)

= (ea—Aa)- (Z Atd" eA>
= e T <7LOaOeA + Z l”a"eA> —Aa-T (Z ?L"a"eA)

n=1 n=0
= esx-T(ea)+es T <Z /"t"a”eA> —Aa-T (Z l"a”eA>
n=1 n=0
— T(eAeA) +T (Z A”aneA> —Aa-T (Z l”a"€A>
n=1 n=0

= T(ea)+ Y A"T(d"ep) —Aa- Y A'T(d"ey)
n=1 n=0

dir. Buradan |1 | < — olacak gekildeki her A € C i¢in,

Z AT (d") — Z A" a.T (@) =0
n=1 n=0
= Z AT (d") — Z Ata-T(@" =0
n=1
= Z AT (d")—a-T(a"" )} =0
olup her n € Ni¢in T(a") = a- T (a"~ ") dir. Boylece T bir n-Jordan carpandir. O

Sonuc 4.3.4. A bir birimli Banach cebiri, X bir birimsel sol Banach A-modiil, T : A — X
sinirl bir lineer doniisiim ve n € N olsun. Eger a € Inv(A) ve T(aa™ ') =a-T(a™ ) ise T

bir n-Jordan ¢arpandir.
Ispat: a € Inv(A) ve T(aa™') = a-T(a™") olsun. a € Inv(A) oldugundan aa~!' = ey =
a'adir ve

T(ep) = T(aa_l) =a- T(a_l)

dir. Teorem 4.3.3 geregi, T nin n-Jordan ¢arpan oldugu goriiliir. a

Asagidaki ornek, Teorem 4.3.3 den “ab = ey olacak sekildeki her a,b € A i¢in T (ab) =

a-T(b)” hipotezinin kaldirilamaz kosul oldugunu kanitlar.
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.. a 0
Ornek 4.3.5. A = 2a,b € R } olsun. O halde A bir birimli Banach cebiridir

0 b
a 0 -b 0
ve birimsel Banach A-bimodiildiir. 7 : A — A, T = siirekli
0 b 0 —a
20 :
lineer doniisiimii tanimlansin. x = =1 2 € A olarak alinsin. O halde
0 1 0 1

xy = e4 dir, ancak T'(xy) # xT (y) dir. Bu yiizden n > 2 i¢in T bir n-Jordan ¢arpan degildir.

Ciinkii xy = e4 sartin1 saglayan her x,y € A i¢in T (xy) = xT (y) sart1 saglanmamusg olur.

Teorem 4.3.6. A bir birimli Banach cebiri, X bir birimsel sol Banach A-modiil, T : A — X
strl bir lineer doniisiim ve n € N olsun. p € A bir idempotent olmak iizere ab = p sartini
saglayan her a,b € A icin T'(ab) = a-T(b) ise o zaman T, pAp Banach cebiri iizerinde

bir n-Jordan ¢arpandr.

Ispat: p € A bir idempotent olsun. pAp = {pxp | x € A} kiimesinin, A nin birimli kapali

bir alt cebiri oldugunu ve biriminin p oldugunu gosterelim:

Her pxp, pyp € pAp ve her o € C igin,

a-(pxp)+pyp = (a-p)xp+ pyp = p(e- (xp)) + pyp

= p(o-x)p+pyp = p(o-x+y)p € pAp
ve
(pxp)(pyp) = pxp*yp € pAp

oldugundan pAp, A nin bir alt cebiridir. pAp = pAp oldugundan pAp kapalidir. O halde
PAp, A nin bir Banach alt cebiridir.

p = p? = pp = peap € pAp dir ve her pxp € pAp icin,
p(pxp) = ppxp = p*xp = pxp ve (pxp)p = pxpp = pxp> = pxp

esitlikleri saglandigindan pAp birimlidir ve birimi p dir.

1
a € A keyfi bir eleman olsun. A € C3 || < Toapl alalm. ||epap — p|| = lp—p|| =
pap

0 < 1 oldugundan p € pAp tersinirdir. Ayrica

p—Apap = p—plap = peap — pAap = p(eap — Aap) = p(ea — Aa)p € pAp
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dir. Bu durumda

lepap — (p—Apap)|| = |p— (p — Apap)|
=||p—p+Apap|

= ||Apapl|

1
= |A|.||pap]|| < |lpap| =1
| pap||

oldugundan (p — A pap) eleman tersinirdir.

T(p) =T ((p—Apap)(p—Apap)~'p)

-1

= (p—Apap)-T ((p—Apap)~'p)

= (p—Apap) - (Z A" (pap) p)
=p-T<Z A"(pap)" > (Apap) - (Z A"(pap) p)

n=0

=p-T<p+i7t"(pap) ) (Apap)- (Zl pap) p)

—p T(p)4p-T (i M(pap)"p> ~(Apap)-T (i x”(pap)“p)
n=1 n=0

oo

—T(p) +p- Y, 2" ((pap)") - (Apap)- ¥, A"T ((pap)")

n=1 n=0

bulunur. Buradan, |A| <

sartin1 saglayan her A € C i¢in

1
| pap||

0=p i A"T ((pap)") — Apap i AT ((pap)")

n=1 n=0
= 0=p X AT ((pap)) ¥ 2" (pap) T (pap))
n—1=0
=0=p Z AT ((pap)" Z A" (pap)-T ((Pap)nil)
n=1

= 0= Y A" [p-T((pap)") — (pap)- T ((pap)"™)]

n=1
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elde edilir. Boylece

p-T ((pap)") = (pap)-T ((pap)”*l)
=p-T((pap)") = (p*ap) - T ((pap)"”)
= (p~'p) T ((pap)") = (p~" (pPap))-T ((pap)””)

=T ((pap)") = (pap)-T ((pap)"”)

bulunur. Sonug olarak, 7', pAp iizerinde bir n-Jordan carpandir. O

Teorem 4.3.7. n € {2,3} bir sabit olsun. A bir birimli Banach cebiri, X bir birimsel sol
Banach A-modiil ve T : A — X sumirly bir lineer déniigiim olsun. Eger T bir (n+ 1)-Jordan

carpan ise o zaman T bir n-Jordan ¢carpandir.

Ispat: n = 2 alalim ve T bir 3-Jordan ¢arpan olsun. O halde her a € A icin, T (a*) =

a-T (az) dir. Bu esitlikte a yerine a + e4 yazilirsa, X birimsel sol A-modiil oldugundan,

T ((a+eA)3> =(a+ea)- T <(a+eA)2>
=T (@ +3a>+3a+ea) = (a+ea) [T (a*+2a+es)]
=3T (a*) +3T (a) =2a-T (a)+a-T (ea) + T (a*) +2T (a)
=3T (a*) +3T (a) =2a-T (a)+a-T (ea) + T (a*) +2T (a)

=3T (a2+a) =a-T(ea)+2a-T(a)+T (az) +2T (a) 4.9)
elde edilir. (4.9) esitliginde a yerine —a yazilirsa,
37 (a* —a) = —a-T(ea)+2a-T(a)+T (a*) — 2T (a) (4.10)
bulunur. (4.9) ve (4.10) esitliklerinden

6T (az) =4a-T (a)+2T (az)

=2T (a*) =2a-T (a)

olupT (az) =a-T (a) dir. Boylece T bir Jordan carpandir. Yani 7 bir 2-Jordan ¢arpandir.
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Simdi n = 3 alalim ve her a € A i¢in T (a*) = a- T (a®) olsun. Bu esitlikte a yerine

a+ ey yazilip X in birimsel sol A-modiil oldugu kullanilirsa,

T ((a+eA)4) =(a+es) T <(a+eA)3>

=T (a4+4a3+6a2+4a+eA) =(a+es)- [T (a3+3a2+3a+eA)}

=T (a*) +4T (a’) +6T (a*) +4T (a) =a-T (a’) +3a- T (a?)
+3a-T(a)+a-T(ea)+T (a®) +3T (a*) +3T (a)
=3T (a3) +3T (az) +T(a)=3a-T (az) +3a-T(a)+a-T(es) (4.11)
bulunur. (4.11) de a yerine —a yazilirsa,
=37 (a3) +3T (az) —T(a)=-3a-T (az) +3a-T(a)—a-T (ea) (4.12)
elde edilir. (4.11) ve (4.12) esitlikleri taraf tarafa toplanirsa,
T (a*) =a-T(a) (4.13)
olur. (4.12) ve (4.13) den, her a € A i¢in,
37 (&) + T (a)=3a-T (a*) +a-T(ea) (4.14)
bulunur. (4.14) de a yerine a + e4 yazilirsa,

=3T (a3+3a2—|—3a+eA)+T(a—|—eA) :3(a—|—eA)-T(a2—|—2a+eA)
+(a+eq) T (ea)
=3T (a3) +9T (az) +9T (a)+3T (ea) + T (a) :3a-T(a2) +6a-T (a)

+3a-T(eq)+3T (az) +6T (a)+3T (ea) +a-T (ea)

olup
9T (a*) +9T (a) = 6a-T (a) +3T (a*) + 6T (a) +3a-T (ea) (4.15)
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elde edilir. (4.15) esitliginde T (a*) = a- T (a) oldugu kullanilirsa, her a € A igin, 9T (a) =
6T (a)+3a-T (es) olup

T(a)=a-T (ea) (4.16)
bulunur. (4.14) ve (4.16) dan,

3T (a3) +a-T (ea) :3a-T(a2)+a-T(eA)

=T (a3) =a-T (az)

olup 7 bir 3-Jordan ¢arpandir. O

Siradaki teoremin ispatinda Vandermonde matrisinden yararlanarak, bir onceki

teoremin her n > 2 tamsayist i¢in gerceklendigi gosterilecektir:

Teorem 4.3.8. A bir birimli Banach cebiri, X bir birimsel sol Banach A-modiil, T : A — X
sinirly bir lineer doniigiim ve n > 2 bir tamsayt olsun. Eger T bir (n+ 1)-Jordan ¢arpan

ise o zaman T bir n-Jordan ¢arpandir.

Ispat: 1 < k < n olacak sekilde bir k tamsayis1 alalim. Oncelikle her a € A igin
T((a+keA)"+1) — (a+ken)-T ((a+key)") 4.17)

olur. (4.17) esitligi ve hipotez kullanilarak su sonug elde edilir:

n n! o
= ﬁ olmak iizere hera € A ve 1 <k < n i¢in,
i il(n—1)!

n+1 n+1 ] ) n+1 n+1 ) )
=7( Y a(kea)" " =Y} KT (d) (4.18)
i=0 l i=0 1
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veE

= (a+key)- (i‘(’) ( 1: ) KT (ai))

_i<7)kn%T@§+i(7)kH17@§(4w)

i=0 l

olup (4.18) ve (4.19) birbirine esit oldugundan,

i=1 I

kn+1T(eA)+i ( n+1 )aniT (ai)+T(an+1)

i=1 1

i=0 1

bulunur. Bu esitlikte gerekli diizenlemeler yapilirsa,
n n+1 . .
( ) kn—i—l—lT (al)—i—T(a”H)

=1 i

")T@@ (4.20)
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bulunur. (4.20) deki esitlik yeniden yazilirsa,

n+1 n+1
K T (a')+k"!
1
n n —1
=k a-T (eA) + K
n n—1
n n—1
+...+k a-T(a )~|—k”
1 1
n n
+k! T(a*)+...+k
2 n
olur ve buradan her 1 < k < n i¢in,
L nt 1 (a) = & n
1 n
i g (a®) = k! n
2 n—1
n+1 n
(") =k
n 1
esitlikleri elde edilir.
1 1
on 2n—1
M = 37 3n—1
n" nnfl
matrisini alalim ve 1 <i < n igin,
n+1 .
Xi(a) = _ (a'), Yi(a
i
n
Zi(a) = T (a’)
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olsun. O halde MX; (a) = MY;(a) + MZ;(a) dir. [Bodaghi ve Inceboz 2018, Lemma 2.1]
de n x n tipindeki M kare matrisinin tersinir oldugu gosterilmistir. Boylece her 1 <i <n
ve her a € A igin X; (a) = Y; (a) + Z; (a) olur. Ozel olarak, i = n alirsa, X, (a) =Y, (a) +
Z, (a) olur. Boylece her a € A igin,

n+1 T (a") = n a-T(Cln_l)+ T (d")

n 1 n
=m+1)T(d")=n(a-T (a"_l)) +T(d")
=nT (d")+T (d")=n(a-T (a"il)) +T(a")

=T (" )=a-T (a"_l)
olup T bir n-Jordan ¢arpan olur. a

Sonuc 4.3.9. A bir birimli Banach cebiri, X bir birimsel sol Banach A-modiil, T : A — X

bir stmirli lineer doniisiim ve n € Z olsun. O halde asagidaki ifadeler birbirine denktir:

(i) HeracAigcinT (a) =a-T (es) dir.
(ii) T bir Jordan ¢carpandir.

(iii) T bir n-Jordan ¢arpandir.

(iv) T bir (n+ 1)-Jordan ¢arpandur.

Ispat: (i) = (ii): Hera € Aigin T (a) = a- T (e4) olsun. Burada a yerine a® yazilirsa,
T(az) =a*> T(eg)=a-(a-T(ey))=a-T(a)

olup T bir Jordan ¢arpandir.

(ii) = (iii): Lemma 4.3.1 de T bir Jordan carpan iken n > 2 i¢in bir n-Jordan ¢arpan

oldugu ispatlanmugti.
(iii) = (iv): T bir n-Jordan ¢arpan iken (n+ 1)-Jordan ¢arpan oldugu agiktir.

(iv) = (i): T bir (n+ 1)-Jordan ¢arpan olsun. Bu durumda Teorem 4.3.8 geregi, T bir
n-Jordan ¢arpan olacagindan, hera € A i¢in T (") =a-T (a”il) dir. Ozel olarak, n = 1

alinirsa, T (a) = a- T (e4) elde edilir. 0

Sonug 4.3.9 ve Teorem 4.3.3 den asagidaki sonug elde edilir:
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Sonuc¢ 4.3.10. A bir birimli Banach cebiri, X bir birimsel sol Banach A- modiil, T : A — X
smirly bir lineer doniisiim ve n € N olsun. ab = ey sartimi saglayan her a,b € A i¢in

T (ab) =a-T (b) ise T bir n-carpandur.

Ispat: ab = e, sartim saglayan her a,b € A icin T (ab) = a- T (b) olsun. Teorem 4.3.3
geregi T bir n-Jordan ¢arpandir. Bu durumda Sonug 4.3.9 dan her a € A i¢in T(a) =

a-T(ea) olur. Buna gore her aj,as,...,a, € A igin,

T(aiay...ay) = (a1ay...ay) - T(ea)
=a- ((az .. .an) . T(eA))

=a,-T(ay...a,)
olup T bir n-carpandir. a
4.4. Sifir Carpim ile n-Jordan Carpanlarin Karakterizasyonu

Bu boéliimde, Banach cebirleri iizerinde tanimli n-Jordan carpanlar, sifir carpim
tizerindeki etkileri ile karakterize edilerek C*-cebirlerde ve degismeli yerel kompakt G
grubunun L' (G) grup cebirinde sagladiklar1 6zellikler incelenecektir (Zivari-Kazempour

ve Valaei, 2022).

A bir Banach cebiri ve X bir Banach A-bimodiil olsun. A dan X e tamimh bir T
lineer doniisiimii izerinde, Teorem 4.3.3 de verilen kosul (4.8) ile yakindan iligkili olan

asagidaki kosulu goz 6niinde bulunduralim.
a,beA,ab=0=a-T(b)=0 (M)
olsun. (M) kosulunun zayiflatilmis hali agagidaki gibi verilebilir:

a,bcA,ab=ba=0=a-T(b)+b-T(a)=0. (IM)

Bu kisimda, yukaridaki kosullarin n-Jordan c¢arpanlari karakterize edip etmedigi
arastirllmaktadir. Burada amag, A bir birimli C*-cebiri ve X bir simetrik birimsel Banach

A-bimodiilii oldugunda, D : A — X bir (Jordan) tiirev ve ¥ : A — X bir (Jordan) carpan
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olmak iizere (JM) kosulunun 7 nin D + y formunda yazilabilmesini gerektirdigini

gostermektir.

Teorem 4.4.1. A bir birimli C*-cebiri, X bir birimsel sol Banach A-modiil, T : A — X,
(M) ozelligini saglayan simirli bir lineer doniisiim ve n € N olsun. O halde T bir n-Jordan

carpandir.

Ispat: ¢ :AxA — X, ¢ (a,b) = a-T (b) simrh 2-lineer doniisiimii tammlansin. T lineer
doniistimii, (M) 6zelligini sagladigindan ab = 0 iken ¢ (a,b) = 0 olur. Yani ¢, sifir carpimi
korur. A bir C*-cebiri oldugundan Sonug 3.6.5 geregi, A, (B) ozelligini saglar. O halde her
a,b,c € Aigin,

¢ (ab,c) = ¢ (a,bc)

olup, ¢ nin tantmindan
(ab)-T (¢) = ¢ (ab,c) = ¢ (a,bc) =a-T (bc)
bulunur. Yukaridaki esitlikte b = ¢ ve a = e4 alinirsa, her b € A igin,
ea(b-T(b)=es T (b*)=T(b*)=b-T(b)

elde edilir. Boylece T bir Jordan ¢arpandir. Lemma 4.3.1 den T bir n-Jordan ¢arpan olur.

O

Simdi de Teorem 4.4.1 in hipotezlerindeki (M) kosulu yerine (JM) kosulu alindiginda

da T lineer doniisiimiiniin yine bir n-Jordan ¢arpan olacag: gosterilecektir.

Teorem 4.4.2. A bir birimli C*-cebiri ve X bir simetrik birimsel sol Banach A-modiil
olsun. T : A — X fonksiyonu, (JM) ézelligini saglayan siirekli bir lineer déniisiim olsun.
O halde T = D+ y olacak sekilde bir D : A — X Jordan tiirevi ve bir v : A — X Jordan

carpant vardir.

Ispat: ¢ : AxA — X, ¢(a,b) =a-T(b)+b-T(a) (a,bcA) 2-lineer doniisiimii
tanimlansin. 7 lineer dontisiimii, (JM) 6zelligini sagladigindan ab = ba = 0 iken

¢ (a,b) = 0 olur. Dolayisiyla Teorem 3.6.10 dan her a,b,x,y € A igin,

¢ (ax,by) + ¢ (va,xb) = ¢ (a,xby) + ¢ (yax,b) (4.21)
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elde edilir. (4.21) esitliginde a,b elemanlar1 yerine e4 alalim. Bu durumda her x,y € A
icin,
¢ (eax,eay) + ¢ (vea,xea) = ¢ (ea,xeay) + ¢ (veax,ea)

olur. O halde

¢ (eax,eay) + ¢ (vea,xea) =ea-(x-T (eay)) +ea-(y-T (eax)) +y-(ea-T (xea))
+x-(ea-T (vea))
=x-T(y)+y-Tx)+y-T(x)+x-T(y) (4.22)

\

¢ (ea,xesy) + ¢ (veax,ea) = ea- T (xeay) + (xeay) - T (ea) + (veax) - T (ea) +ea- T (yeax)
=T (xy) + (xy) - T (ea) + (yx) - T (ea) + T (yx)
=T (xy+yx)+ (xy) - T (ea) + (3x) - T (ea) (4.23)

bulunur. (4.22) ve (4.23) esitliklerinden

xT()+yT@)+y-Tx)+x-T(y) =T (xy+yx)+ (xy)- T (ea) + (yx) - T (ea) (4.24)
elde edilir. X simetrik oldugundan, (4.24) esitliginde y yerine x yazilirsa,

x-Tx)4+x-Tx)+x-T(x)+x-T(x) =T (xx+xx)+ (xx) - T (ea) + (xx) - T (ea)
=T (2x%) +x*-T (ea) +x*- T (ea)
= 2T (%) + (2¢%) - T (ea)

olur ve buradan

T(x)-x+T(x) x+x-T(x)+x-T(x) =2T (x*) +2x>- T (ea)
=27 (x)-x+2x-T (x) = 2T (x*) +2x* - T (ea)
=2(T (x) - x+x-T(x) =T (x*) —x>- T (ea)) =0
=T (x)-x+x-T(x T(xz)—x T (eq) =0

=T (x*) = (x-T (x) + T (x)-x) —x>- T (ea) (4.25)
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elde edilir. y : A — X, y(a) = a- T (es) doniisiimii tanimlansin. Her a € A igin,

l//(az) =a?-T(ep) = (aa)-T(ep) =a-y(a)

oldugundan y bir Jordan ¢arpandir. D = T — y olsun. (4.25) esitliginden

D(az) =(T—-vy) (az)
(@) -v (@)
=(a-T(a)+T(a)-a)—a*-T(ex) —a>-T (es)

olup D bir Jordan tiirevdir. D nin tanimu geregi T = D+ y dir. Boylece istenen ispatlanmis

olur. O

Sonuc 4.4.3. A bir birimli degismeli C*-cebiri ve X bir simetrik birimsel sol Banach
A-modiil olsun. T : A — X fonksiyonu, (JM) ozelligini saglayan sunirly bir lineer doniisiim

ve n € N olsun. O halde T bir n-Jordan ¢arpandir.

Ispat: Teorem 4.4.2 den, D : A — X fonksiyonu bir Jordan tiirev ve y : A — X fonksiyonu
bir Jordan ¢arpan olmak iizere 7 = D + y olarak yazilir. Teorem 3.5.2 geregi D bir
tirevdir. Teorem 3.5.9 geregi D sifirdir. Bu durumda 7' = y olup T bir Jordan carpandir.

Lemma 4.3.1 den T bir n-Jordan ¢arpandir. a

Teorem 4.4.4. A bir W*-cebir, X bir birimsel sol Banach A-modiil ve n € N olsun. Eger
T : A — X fonksiyonu (JM) sartint saglayan sinirly bir lineer doniisiim ise, T bir n-Jordan

carpandir.

Ispat: p,A da bir idempotent olsun. O halde

plea—p)=(ea—p)p=0
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oldugundan ve T, (JM) 6zelligini sagladigindan

p-T(ea—p)+(ea—p)-T(p)=0

elde edilir. Esitligin her iki tarafi e4 — p ile carpilirsa,

((ea—p)p)-T(ea—p)+(ea—p)*-T(p) =0

olur. Gerekli sadelestirmeler yapilirsa her p € A idempotenti igin 7 (p) = p-T (p) bulunur.

X € Agq olsun. O zaman [Sakai 2012, Lemma 1.7.5, Onerme 1.3.1] kullanilarak,
n
x=Y AP
k=1

yazilabilir. Burada k = 1,...,n icin 44 € R dir ve {pi | k=1,...,n}, A da ortogonal bir
izdiigim ailesidir, yani kendine-ek idempotentler ailesidir. i, j € {1,...,n} olmak iizere
i # jigin p;p; = pjp; = 0 oldugundan, (JM) kosulu geregi i # j olmak iizere tiim i, j ler
icin p;- T (p;) + p;- T (pi) = 0 olur. Dolayisiyla tiim x € Ay, igin,

7 (z z,zp,%)

elde edilir. x,y elemanlarin1 A nin kendine-ek elemanlar1 olarak alalim. Bu durumda

x-Tx)+y-T(H)+T (xy+yx)= T(x2+y2+xy+yx)
:T((x+y)2>
=@x+y) T (x+y)
=x-T(x)+y-T(y)+xT(y)+y T (x)
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elde edilir. Boylece tiim x,y € Ay, i¢in, T (xy+yx) =x-T (y) +y- T (x) olur. Teorem 3.3.9

geregi her keyfi a € A elemani, x,y € Ay, i¢in a = x + iy olarak yazilabilir. Bu nedenle

T(a*) =T (x*—y* +i(xy+yx))
=T (¥*) =T (y*) +iT (xy+yx)
=x-T(x)=y-T(y)+i(-T(y)+y-T(x))
= (xtiy) - (T () +iT ()
= (r+iy) T (x+iy)
—a-T(a)

dur. Sonug olarak tiim a € A i¢in T (¢*) = a- T (a) dir. Yani T bir Jordan ¢arpandir. O

halde Lemma 4.3.1 den, T bir n-Jordan carpan olur. O

A Banach cebirinin ikinci dual uzay1 A** tizerinde, A** uzayini bir Banach cebirine
doniistiiren birinci ve ikinci Arens carpimlari olarak adlandirilan iki carpim vardir (H. G.
Dales, 2000). Eger bu carpimlar A** {izerinde ¢akisiyorsa, A nin Arens regiiler oldugu

sOylenir.

Ornek 3.3.11 geregi her A C*-cebiri Arens regiilerdir. Teorem 3.3.12 den, A** bir
W*-cebirdir. Bu nedenle 7' : A — X siirekli lineer dontigiimii 7" : A** — X™** ikinci

dualine genisletilerek ve Teorem 4.4.4 uygulanarak asagidaki sonug elde edilir:

Sonug 4.4.5. A bir birimli C*-cebir ve X bir birimsel sol Banach A-modiil olsun. Eger
T : A — X fonksiyonu (JM) ozelligini saglayan sunirly bir lineer doniigiim ise, o zaman

n € Nicin T bir n-Jordan ¢carpandir.

Teorem 3.6.11 kullanilarak asagidaki sonug elde edilir:

Teorem 4.4.6. A, idempotentler tarafindan iiretilen bir birimli Banach cebiri ve X bir
simetrik birimsel sol Banach A-modiil olsun. T : A — X fonksiyonu, (JM) ozelligini
saglayan suirl bir lineer doniisiim olsun. O halde T = D+ y olacak sekilde bir D Jordan

tiirevi ve bir y Jordan ¢arpani vardir.

Ispat: ¢ : AxA — X, ¢(a,b) =a-T(b)+b-T(a) (a,bcA) 2-lineer doniigiimii

tanimlansin. 7 lineer doniisiimii, (JM) ozelligini sagladigindan ab = ba = 0 iken
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¢ (a,b) = 0 olur. Dolayisiyla Teorem 3.6.11 den her a,b € A i¢in,

() (avb) +¢ (baa) =¢ (abaeA>+¢ (ea,ba)

elde edilir. Ispatin geri kalan kismi, Teorem 4.4.2 nin ispatinda oldugu gibi yapilir. a
Sonuc 4.4.7. A bir birimli degismeli Banach cebiri ve A = J(A) olsun. X bir simetrik
birimsel sol Banach A-modiil, T : A — X (IM) ozelligini saglayan suurlt bir lineer

doniigiim ve n € N olsun. O halde T bir n-Jordan ¢arpandir.

Ispat: Teorem 4.4.6 geregi T = D + y olacak sekilde bir D : A — X Jordan tiirevi ve
bir y : A — X Jordan carpani vardir. A degismeli ve X simetrik oldugundan, D aslinda
bir tiirevdir. Teorem 3.5.9 geregi D = 0O olur. Dolayistyla 7 nin Lemma 4.3.1 geregi bir

n-Jordan ¢arpan oldugu sonucu cikar. O

Yerel kompakt bir G degismeli grubu icin A = L' (G) olsun. O zaman Ornek 3.5.7
geregi A grup cebiri degismeli ve zayif amenabledir. Ancak A ne bir C*-cebiridir ne de
idempotentler tarafindan tretilir. Bu nedenle Sonu¢ 4.4.3 ve Sonug 4.4.7 bu cebir i¢in

uygulanamaz.

Bir sonraki sonug, Sonug 4.4.3 iin benzerinin L' (G) grup cebiri icin de gegerli

oldugunu gostermektedir.

Teorem 4.4.8. Yerel kompakt bir G degismeli grubu icin A = L' (G) olsun. X bir simetrik
birimsel sol Banach A-modiil, T : A — X fonksiyonu, (JM) ozelligini saglayan sinirl bir

lineer doniisiim ve n € N olsun. O halde T bir n-Jordan ¢carpandir.

Ispat: Her a,b € Aicin ¢ : AxA =X, ¢ (a,b) =a-T (b)+b-T (a) 2-lineer doniisiimii
tanimlansin. O zaman A degismeli oldugu icin ab = 0 iken ¢ (a,b) = 0 olur. Dolayisiyla

Sonug 3.6.6 dan her a,b,c € A i¢in
¢ (ab,c) = ¢ (a,bc) (4.26)
olur. Diger yandan her a,b € A i¢in

O:¢(a7b) :¢(b,a)
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olur. Boylece (4.26) esitligi geregi her a,b,c € A i¢in
¢ (c,ab) + ¢ (ab,c) = ¢ (a,bc) + ¢ (cb,a) (4.27)

elde edilir. (eq) ;> A igin bir smirli yaklagik birim olsun. (4.27) esitliginde a y1 (eq) ile

degistirerek ve ¢ doniisiimiiniin siirekliligini kullanarak, her b,c € A i¢in

¢(C,b)+¢(b,€) - ¢(ea,bc)—|—¢(cb,ea)

bulunur. Teorem 4.4.2 nin ispatindaki yontem uygulanarak, D bir Jordan tiirevi ve y bir
Jordan carpani olmak tizere T = D + y bulunur. A grup cebiri zayif amenable oldugundan
D =0 dir. Yani T = y olup T bir Jordan ¢arpan olur. Sonu¢ olarak Lemma 4.3.1 den T

bir n-Jordan ¢arpandir. a
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5. SONUC

Bu tez calismasinda, Banach cebirleri iizerinde tanimli n-Jordan carpanlar ile ilgili
A. Zivari-Kazempour’un 2022 yilinda yayinladigi calisma ile A. Zivari-Kazempour
ve M. Valaei tarafindan 2022 yilinda yayinlanan calismadaki sonuglar detayli olarak

incelenmistir (Zivari-Kazempour, 2022; Zivari-Kazempour ve Valaei, 2022).

Giintimiize kadar halkalarda ve Banach cebirlerde tiirev konusuyla ilgili bir¢cok
calisma yapilmistir. Teorinin gelisimiyle beraber daha sonraki yillarda Jordan tiirev, Lie
tiirev, genellestirilmis tiirev, (o, 7)-tiirev, Jordan (o, 7)-tiirev gibi farkli tiirev kavramlari
da tanimlanmis ve farkli uzaylarda bu tiirevlerin sagladig1 6zellikler incelenmistir. Bu
diisiinceyle, Banach cebirlerde tiirev iizerine bilinen bilginin n-carpanlar ve n-Jordan

carpanlar hakkinda c¢ikaracagi sonuglar arastirilabilir.

n-Jordan carpanlarin, yerel kompakt G grubunun L'(G) grup cebiri, smirli bir
yaklagik birimi olan zayif amenable Banach cebirleri ve C*-cebirleri gibi farkli uzaylarda
karakterizasyonlar1 bulunmaktadir. Benzer karakterizasyonlar yapmak icin yeni cebirsel

yap1 ornekleri elde etmek bir dier arastirma konusu olabilir.
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