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UZET

Bu ¢aligmada, {istyapi ile zeminden olugan ortak siste-
min deprem hesabi i¢in matematik modeller gelistirilmig,bu
modeller cergevesinde listyapi ile zemin arasindaki dinamik
karsilikly etki olayr incelenmigtir. Ustyapi-zemin ortak
sistewinin deprem etkisi altindaki dinamik hesab1i en genel
gekli ile ele alinmig; geligtirilen modellerin sagladig:
olanaklardan yararlanilarak, bir ve birden fazla {listyapiy:i
kapsayan ortak sistemlerin titregim Szellikleri arastiril—
WmigLLr.

Galigma, oniki bolimden olusmaktadir. Birinci bdliimde
konumun tanimi yapilmakta, dinamik kargilikl: etki olay:
ile ilgili olarak daha Once yapilan caligmalar iki grup
halinde incelenerek Szetlenmektedir.

Caligmanin ikinci b31imi, {styapi-zemin ortak sistemin-
de matematik model se¢imi problemine ayrilmigtir.Bu bdliimde,
ortak sistemin ideallesgtirilmesi igin daha Once kullanilan

modeller b1e§tirilmis, bu ¢caligmada geligtirilen modellerin
Szelliikleri ve problemin gozumunde sagladigir olanaklar ay-

rintili olarak agiklanmistir. fkinci b3limiin son kisminda
ise, geligtirilen her iki modelde de yer alan tek tabakali
sonsuz ortamin ayriklagtirma prensibi agiklanmigtir,

Uglincli bdlimde, dinamik rijitlik matrisi kavrami iize-
rinde durulmus ve tek tabakali sonsuz ortam igin yaklagik
bir dinamik rijitlik matrisi Snerilmigtir. Yari sonsuz or-—
tam 8zel durumu igin elde edilen kesin ¢Ozlmlin sonuglarin-
‘dan yararlanilarak, tek tabakali ortamda frekansa bajzli bir
iilitle matrisinin tanimlansbilecefi gdsterilmis ve
éinamlx rigitllk matrisinin yak1a§1k1301 irdelen—

i k ideagllegtirilen tek tabaka~
apimladif: sinir sartlarina
~o“u;und¢, ortamin birim dep-~

sabitieri elde adilmigtir.




Drdiincii béliimde, listyapi ve zemin ile ilgili idealles-
tirmelerden bagimsiz olarak, deprem etkisi altinda lstyapi-
zemin ortak sisteminin hareket denmklemleri cikarilmigtir.Ze-
minin lineer elastik olup olmamas:ina bagli olarak, dstyapi
ve deprem kogullari ile ilgili gesitli durumlar igin hare-
ket denklemlerinin &zel gekilleri elde edilmisgtir.

Calismanin beginci b&limiinde, tek tabakali sonsuz or-
tam sinirinda yer alan sonsuz rijit temel plaklari icin,or-
tamin rijitlik ve kiitle matrisleri elde edilmigtir.Bu amag-
la, karisik sinir deger probleminin ayrik ¢bzimi igin bir
yontem geligtirilmigtir. Bu yOntem, ortam sinirinda birden
fazla temel bulunmasi durumunda da uygulanabilmektedir. Bu
caligmada, tek temel plagi ile birlikte, yanyana ayni fazda
titresen iki eg temel plegi igin ortamin r131t11k ve kiitle
matrisleri elde edilmigtir.

Altinci ve yedinci bdliimler, ilistyapi-zemin ortak sis-
temlerinin serbest titresim hesaplarina ayrilmistir.Bu he-
saplar igin kullanilan ortak sistem modellerinde zemin orta-
minin rijitlik ve eylemsizligi, beginci bdliimde elde edilen
kiiglik boyutlu rijitlik ve kiitle matrisleri aracilifi ile ba-
sit bir gekilde gdzéniine alinabilmektedir. Altinci bdliimde,
tek ilistyapi ile zeminden olugan ortak sistemin serbest tit-
resim denklemi ayrintili olarak yazilmig, birinci titregim
frekansinin hesabi ve transfer fonksiyonlarinin elde edilme-
si i¢in izlenen ydntemler agiklanmigtir. Bu konudaki litera-
tiirde pek az rastlanan birden fazla listyapi durumuna bir
Srnek olmak tizere, yedinci b&liimde iki eg iistyapi ile zemin-
den olugan ortak sistemin serbest titregimi incelenmigtir.

Calismanin sekizinci bdliimiinde, {istyapi-zemin ortak
sisteminin deprem hesabi ig¢in uygulanan ydntem, 4dyrintili
olarak agiklanmigtir. Deprem hesabi igin bu galigmada ge-
listirilen ortak sistem modeli gergevesinde hareket denkle-
minin kurulusu incelenmig, ¢&ziim i¢in kullanilabilecek sa-
yisal ySntemlerin &zellikleri agiklanmistar.

Dokuzuncu bdliimde, sayisal sonug¢larin elde edilmesi
i¢gin hazirlanan Elektronik Hesap Makinasi programlarinin ay-
rintilari agiklanmigtar.
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Onuncu bdliim, sayisal Srmeklere ayrilmigtir. Ilk iki
6rnekte, tek ve yanyana iki eg lstyapiyi kapsayan ortak
sistemlerin serbest titregimi ile ilgili sayisal sonuglar
elde edilmigtir. Uclincli Srnekte ise, sekizinci bdliimde
agiklanan ydnteme gdre {istyapi-zemin ortak sistemi gergek
bir deprem kaydi ic¢in hesaplanmig, sayisal sonuglarin dep-
rem siiresince degigimi elde edilmistir. Sayisal sonucglar;
iistyapi,temel ve zemin parametrelerine bagli olarak, zemi-
nin varliginin istyapinin davranigina Snemli derecede et-
ki edebilecegini gdstermigtir. .

Onbirinci boliimde, bu caligmada elde edilen genel so-
nuglar agiklanmigtir.

Caligmanin ekleri, onikinci b&limde toplanmistir.Tek
tabakali ortam sinirinda birim durumlarin tanimladifi si-
nir sartlarina gdre yapilan elastisite ¢dziimi ve ¢8ziim so-
nucunda elde edilen gerilme ve deplasman alanlari,bu bolii-
miin baginda yer almaktadir. Daha sonra, statik birim dep-
lasman sabitleri ve birim ivme sabitlerinin kapali sonug-—
lar: integral ifadeler halinde verilmekte ve sayisal integ-
rasyonda izlenen ydntemler agiklanmaktadir.



SUMMARY

This work deals with the analysis of earthquake response
of structures including soil-structure interaction.

In recent years, many important structures such as tall
buildings, dams, nuclear power plants etc., have been
constructed in seismic zones, even on weak or moderate soil
conditions. It is evident that, in the earthquake response
analysis of such structures, besides the dynamic
characteristics of the superstructure, those of the soil
medium have to be considered.

It is known that the soil conditions affect the seismic
waves transmitted through the soil medium to the structure.
Soil effect, which is independent of existing structure,
causes in response an opposite effect, due to transmission
of the stress waves from the vibrating structure into the
soil. This dynamic interactive behaviour of soil and
structure constitutes the subject of "soil-structure
interaction”.

In the first chapter of this study the problem is
defined and a detailed review of the previous work is given.
The previous investigations can be seperated mainly into two
groups regarding different idealization procedures used for
the soil medium. In the first group of investigations, the
structure is assumed to be founded on a half space or a
stratum through an infinetely rigid foundation plate. This
approach utilizes the solution of steady state vibration of
rigid circular, rectangular or strip plates bonded on a half
space or on.a stratum. The resulting force-displacement
relationships of the rigid plate constitute the complex
compliance matrix of the soil medium. The imaginary part of
the compliance matrix corresponds to the energy loss due to
the infinite character of the medium.In the analysis of soil-



structure systems, the soil medium can thus be considered as a
simple subsystem, by the use of compliance matrices. But this
model has some serious restrictions concerning the real dynamic
behaviour of the soil and the solution procedure of the soil-
structure system @

2) BHomogeneous and 11n°ar1y elastic soil assumptlon seems
to be an unrealistic approximation under actual soil conditions.

. { .
b S§nce the elements of compiex complianece matrices are

fregq wﬁey dependent, earthquake analysis of the soil-structure
s;s ems can only be done in frequency domain using Fourier
Tra fOxm Technique.

in the second modal used in the previous work, the soil
-

medium 15 assumed to be finite and composed of some discrete
elements. The Finite Element Method is generally used for the
discretizaii on. In the solution of soil-structure systems,
Finite Element Method has many advantages, such as:

a2) Geometrical, mechanical and constitutive complexities
and irregularities of the sgoil medium can be taken into

acecount properly.

b) It is not necessary that the foundation plate be
rigid as in the half space model and embedment of foundation
can easily be considered.

¢) Earthquake analysis of soil-structure systems can be
made directly in time domain, thus nonlinear soil and/or
structural response can be taken into account using step by
step integration algorithms.

Although the discrete model is efficient and provides
some flexibilities, it has also some drawbacks for the
sclution of the problem :

a) Large computational effort and computar storage are
for sufficient idealization. Since transmission of
waves through the soil medium is & wave propagation problem,
the discrete model has to contain enocugh numbar of nodal
points for proper definition of waves.
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b) Since the model is finite,radiative energy loss can
not be taken into consideration due to reflection of waves
from the boundaries of the model.

The second.chapter of this investigation is devoted to
the choice of appropriate models for the analysis of soil-
structure systems. Two different models are developed : The
first intended to be used in the earthquake response analysis
and the second to obtain rather qualitative results about
the dynamic behaviour of soil-structure systems. The second
model is also convinient for the interaction analysis of
multi-structural systems.

In the first model, which is called as Model I, the
soil medium is idealized as two subsystems (Fig.II.2).
the vicinity of the structure, the soil is discretized by
means of two dimensional finite elements whereas the rest
of the medium is assumed to be a linear elastic and
homogenous stratum overlying the bedrock. Since the major
soil deformations caused by the vibrating structure occur
in the vicinity of the foundation, the finite element
approximation can be used efficiently in this finite zomne
of the soil medium. On the other hand, the soil deformations
decrease in the far region of the structure and therefore
can be expected to be in the elastic range. This part of the
soil medium which is idealized as a stratum, can thus be
assumed to be an elastic sub-region.

The second model developed in this study is rather
simple. In this model the whole soil medium is idealized as
a linear elastic and homogeneous stratum which has been
already used in the first model as one of the subsystems.
In both models the soil stratum is discretized by means of
nodal points which are defined on the surface of the medium
(Fig.II.1). The discretization procedure used herein is
essentially the same as used by Chopra and Perumalswaml[IB]
for the discretization of half plane. The linear variation
of surface displacements provides the geometrical continuity
between the two subsystems of Model I and also an efficient
variation for the discrete solution of the mixed-boundary
value problem which will be discussed in Chapter V.
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One of the most important problems which arises in the
steady state vibration.of half space or stratum is the
energy loss due to radiation. Energy loss coefficients are
frequency dependent and appear in the solutions as pseudo-
viscous damping which is called in the literature as
"radiation damping" or ‘'geometric damping” . From the point
of modal behaviour of soil-structure systems, it is a known
fact that the partlclpatlon of the first natural mode in the
total response of systems is of prime importance [40 601
Since radiational damping of the soil is proportional to the
excitation frequency, for the lowest frequency of vibration
this type of damping takes its minimum value. On the other
hand, there are many uncertainities concerning the real
nature of material damping in the soil and the structure.
Under these circumstances, radiational energy loss mechanism
of the soil has not been taken into consideration in this
study and a quasi-static approach is utilized to obtain the
dynamic characteristics of the soil medium.

In the third chapter of this study, an approximate
dynamic stiffness matrix for the discretized stratum is
obtained. Using the discrete model shown in Fig.II.l, the
s0il medium can be treated as a single "finite element",
with theoretically infinite but practically finite number
of nodal points. The dynamic influence coefficients of the
medium could be determined as nodal forces related to
harmonic displacements with unit amplitude. However in this
study, these coefficients are evaluated in an approximate
manner by introducing the "consistent mass matrix" concept.

As known from the theory of Finite Element Method, this concept
is based on the approximation that inertia forces in the
medium are proportional to the quasi-static acceleration
field. Thus,approximate dynamic stiffness matrix of the
medium is defined as,

(k] 4= [K] - w? [m] (11I.3)

where [k} [k] and [m} represent the dynamic and static
stlffness matrices and consistent mass matrix respectively;
w denotes the frequency of steady state vibration. The
elements of static stiffness matrix are obtained as nodal
forces related to unit displacements, from the distributed



stresses on the surface which are determined by the plane
strain solution. The elements of the mass matrix, i.e.
inertia influence coefficients, are evaluated as nodal
forces related to unit accelerations, through the static
displacement field in the medium. It has been shown that
Eq.(III.3) corresponds to the first two terms of the
series solution of the steady state dynamic problem with
the exception that zero lower limits of real Fourier
inversion integrals are replaced by the nondimensional
frequency a, . The first static term [k(O)]S does not
differ from (ao)]s for low frequenc1es, whereas inertia
influence coefficients are determined as functions of a,
In the frequency range of interest, in connection to the
earthquakes, taking the first two terms of the series
solution is shown to be sufficient.

In the fourth chapter, the equations of motion of
soil-structure systems are obtained. The problem is
considered in a general manner, independent of idealization
procedures used for the soil and the structure.

In soil-structure systems, total displacements .can be
seperated into two parts as follows;

[a] = [a]® + [d]

where [d]a represents earthquake free field displacement
vector which_may have been recorded anywhere in the soil
medium and [d] corresponds to interaction displacements

due to vibrating structure. In this study, equations of
motions are formulated in terms of interaction displacements.
In the first section of Chapter IV, a general formulation

of the problem, including the = "traveling earthquake waves"
is given. In the following sections, the equations of motion
are obtained for some special cases including rigid
foundations. In the last section nonlinear soil-structure
systems are formulated and nonlinearity of soils is
discussed.

The fifth chapter is devoted to the evaluation of .
stiffness and mass matrices for rigid strip plates bonded
on an elastic soil stratum. In the analysis of rigid
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foundations, an important problem arises in the applicatiom
of mixed boundary conditions, especially in the case of
multiple foundation systems. In this study, utilizing the
discrete soil model, a procedure is developed for the
solution of mixed boundary value problem. In the first step
of the discrete solution procedure, the number of degrees
of freedom of the contact surface is reduced to the rigid
body degrees of freedom of the foundation. In the second
step, the homogeneous equilibrium conditions are applied
as a matrix condensation operation for the degrees of
freedom of the free surface, i.e. the outer nodes of the
foundation. This operation can be done by a standart
condensation procedure, such as the Gauss-Jordan algorithm.

The discrete procedure which is developed for the
mixed boundary value problem can also be applied to multi-
foundation systems. In this study, the stiffness and the
mass matrices of the soil medium are obtained for two
identical in-phase rigid foundations with a given spacing.
According to the numerical results plotted in Fig. V.6, the
rocking stiffness of each foundation increases and the
swaying stiffness decreases with decreasing spacing of the
two foundations.

It is interesting to note that, in almost all previous
studies, soil-structure system has been assumed to have a
single superstructure. It is evident that interaction occurs
not only between the soil and the single structure, but also
between the neighbouring structures through the soil. The
"cross interaction", as called by Kobori and Minai [29],
has a great importance in connection with the dense
construction situations in big cities. In the sixth and the
seventh chapters of this study, the vibrational characteristics
of soil-structure systems are analyzed. In addition to the
soil-single building system, a system which consists of
" two identical buildings is considered as an example for the
cross interaction. Details of the analysis of the first
natural frequencies and the displacement transfer functions
of the soil-gtructure systems are given.



In the eighth chapter, a solution procedure for the
earthquake response analysis of the soil-structure system
is presented. The elements of dynamic property matrices are
described in detail and the numerical methods of the time-—
domain solutions are discussed.

\The nineth chapter of the study is devoted tc computer
programs which are developed for the numerical analysis.
The flow charts of the programs and the description of
input data are given in detail.

In the tenth chapter, some numerical examples are
presented. In the first two examples, the first mode
behaviour of scil-structure systems is analyzed. In both
examples, a ten-story framed building with a rigid
foundation is considered (Fig.X.l). The first example deals
with the soil-single building system. It has been shown that
soil and structural parameters and the height/width ratio of
the building affect the first natural frequency of vibration.
Numerical results are outlined in Table X.1. In addition,the
amplitude transfer functions of the tenth story and the
base displacements are obtained and plotted versus
frequency (Fig.X.2 to Fig.X.12). In the second example, a
soil-structure system consisting of two identical buildings
is analyzed (Fig.X.13). In order to compare the results,the
building used in the first example is considered as one of
the two buildings. In addition to other parameters, the
effect of the spacing of the two buildings is also studied.
As it is shown in Table X.2, the first natural frequency of
vibration increases with the decreasing spacing of the two
buildings. The amplitude transfer functions of the tenth
story and the base displacements are shown in Fig.X.13 to
Fig.X.19. It is observed in both examples that the amplitudes
of relative displacements of the buildings decrease with
decreasing frequencies whereas those of the total
displacements increase. These results can be interpreted as
follows : The decrease of the first natural frequency,mainly
depends on the rotation of rigid foundation which produces
the large quasi-static displacements in the building. As a
consequence of the decreasing frequency, induced inertia
forces and the relative displacement amplitudes decrease.
Although it is not shown here, for very rigid and low
buildings with small height/width ratios, the first natural
frequency of two-building system may decrease with decrasing
spacing of the buildings due to the decreasing variation of
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swaying stiffness of the soil (See Fig.V.6). In the third
example, a soil-structure system is subjected to a real
earthquake motion and time-histories of the roof displacement
and the base shear of the building are obtained. In the
soil-building system shown in Fig.X.20, the soil medium is
assumed to be composed of three layers where the one overlying
the bedrock is idealized as an elastic stratum. In order to
compare the results with the case of rigid soil, the

building system is analyzed seperately. The earthquake record
of "Latino Americana Tower” of May 19, 1962 is taken as input
data and the equations of motion are integrated step by step
using the modified Linear Acceleration Method [71] . The
time~histories of the tenth story displacements and the base
shear of the building are given in Fig.X.21 to Fig.X.25.

The results show that, in the case of flexible soil, an
appearent increase occur in the period of vibration and the
amplitudes of responses.

The conclusions of this study are presented in the
eleventh chapter and the Appendices are given in the last
chapter.



BOLOM I

GIRL1S

I.1. KORU
I.1.1. Tanmm

Yiiksek binalar, barajlar, niikleer gii¢ santrallari gibi,
depreme karsi davraniglarinin Snemli oldugu bilinen yapi
sistemleri, glinlimizde zorunlu olarak aktif deprem bdlgele-
-rinde de yapilmaktadir. Bu tiir yapilarin gerekli bazi durum-
larda, ¢ok degisik 8zellikler tasiyan zeminler lizerinde ku—
rulmasi zorunlulugu, iistyapi ile zemin arasindaki "diramik
karsilikli etki"” probleminin konusunu olugturmaktadir.

Yapi DMithendisligi ag¢isindan deprem, birtakim jeofizik
nedenlerle olugan yer hareketinin etkisi ile {istyapinin tit-
regimi olayidir. Ancak listyapinin dogal olarak belirli bir
zemin ortami {izerine oturmug bulunmasi, bu titresim olayin-
da zeminin de lstyapi ile birlikte gdzdniine alinmasini zo-
runlu kilmaktadir. Ustyapi ve zeminden olusan "ortak sistem"
cergevesinde dinamik kargilikli etki silireci kisaca gu sekil-
de tanimlanabilir :

Deprem nedeni ile zemin ortamindan iistyapiya aktarilan
titregimler burada, listyapinin dinamik 8zelliklerine bagli
birtakim etkiler meydana getirmektedir. Bdylece bir titre-
sim kaynagi durumuna gelen {istyapi bu kez zeminde, deprem
titregimlerine ek olarak, zeminin dinamik &zelliklerine bag-
11 birtakim kargi etkiler olugturmaktadir.

Glinlimizde deprem hesabi i¢in uygulanmakta olan aligila-
gelmig yontemler ve iistyapiya gelen dinamik etkileri belir-
leyen deprem ydnetmelikleri, zemini genellikle {istyapinin
titregimlerinden etkilenmeyen bir ortam olarak kabul etmek-
tedir. Zeminin sonsuz rijit olarak alinmasi bu kabuliin dezal



sonucudur. Ancak zemin ayni kabul cergev
tirebilen bir ortam ofarﬂ? da diig ebi
ce, gekil degigtirebilen D13
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sndan etkilenmemesi esas:
driinidiir. Birgok depremde
etkisinin gdzlenmesi, ayr:
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rem kayitlarinin saglam
tzellikler gbstermesi, t
olarak sayilabilir. Bivle:
sadece zeminle ilgili ve
nin idstyapiya etkisi” da'
yvaklagim yakin zamana ka
11k1tf11de sadece zeminin

Birgok depremde vapirlan gdzlemler, iistyapi temeli G

rinde ve zemin yuzeylrde temelden fazla uzakta olmayan b

noktada ayni anda alinan kayitlar arasinda Snemli degigik
likler bulundugunu gdstermistir. Bu degigiklikler,depremin
{istyapiya etkisinin karg:iligi olarak, ustydplnlﬁ da zemini
ve dolayisiyla deprem kaydini etkiledifini kanitlamaktadir
Son on yil iginde yapilan teorik wve deneysel galz§malar,ze—
minde ve deprem kaydinda #istyapinin olugturdugu karsi etki-
lerin, zemin ve depremin Szellikleri yaninda {istyapinin di-
namik Szelliklerine de bagli oldugunu ortaya koymugtur.

Sonu¢ olarak, zemin agisindan yumusaklik veva saglam-—
lik, iistyapinin dinamik zellikleri ile birlikte diigiinildii-
gl takdirde belirli bir anlam kazanabilmektedir. Buna kar-
g$in, Ustyapinin ortak sistem igindeki dinamik davranigi,ze-—
minden bagimsiz olarak, tek basina ele alindifi duruma oran-—
la 6nemli degigiklikler gdsterebilmektedir. Bu konuda yapi-
lan caligmalarin sonuglari, son yillarda glkarllan deprem
yvonetmeliklerine de yansimaya baglamistir 13

1.1.2. Problemin Dinamik Uzellikleri

Genel olarak herhangi bir dinamik olayda, gekil degig-—
‘tiren bir cismin, kendi titresimini etkileyen {i¢ ana
6zelligi vardir. Bunlar, cismin rijitligi, eylemsizligi ve
sdnlim dzelligidir. Rijitlik Szelliginin cismin statik dav-
ranigi icin de gegerli bir 8zellik olmasina kargin, eylem—



izlik ve sBniim 8zellikleri cismin sadece dinamik davranig:
i¢in tanimlanabilirler. Ustyapi~zemin ortak sisteminin ince-

zc1ligin saptanarak sistemin matematik modeli igindeki
yerlerini almalaridir. Ustyapi igin bu 8zelliklerin daha
dogru ve gercekc¢i olarak saptanmasi dogrultusunda calisma-—
1 g4 ve hig degilse matematik mo~
d T

b

O
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I1.2.1. Zemini yari sonsuz veya tek tabakali sonsuz cortam
olarak ideallestiren calismalar

Bu ¢aligmalarda, biyilk c¢ofunlufu ile, asil amaglari ma-
kina temelilerinin hesabina ydnelik olan birtakim dinamik
elastisite ¢bziimlerinden yararlanilmigtir. Bu ¢dziimlerde ze-—
min homogen, izotrop, lineer elastik vyari sonsuz veva tek
tabakali sonsuz ortam olarak ideallegtirilmekte, bu ortamin
yiizeyinde kiitlesiz, dairesel, dikddrtgen veya sonsuz uzun
gerit geklindeki rijit plek gdzdniline alinmaktadir.Problemin
serbestlik derecesi genel olarak gl dogrusal, li¢li ac¢isal
olmak lizere 6 dir. Plafa etkiyen yiikler, bu serbestlik de-
recelerine karg: gelen harmonik diisey veya vatay tekil kuv-
vetler, veya harmonik momentlerdir.

Sonsuz uzun gerit
del ve etkiyen kuvvetier
durumu ile problem, ela

Dinamik dig etkiler
nindaki gerilme yayilzg:
yilig ic¢in birgok arag
ca gitmiglerdir. Bu alz

w.‘vy{}@fun
L furt
sonsuz rijik 2T Mgt
ptak o
5 H
%Q ﬁnu‘c j
yars sonsur ortem J
/
R N e N
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yari sonsuz ortam sinirinda, harmonik diigey tekil kuvvet et-
kisindeki rijit dairesel plain tabaninda gerilme yayiligi-
n1 sabit olarak kabul etmig, daha sonralari Sung [59], _
Toriumi [64] , Bycroft [9] , Lysmer [34] , Luco-Westmann [32],
Veletsos-Wel 67} ve diger birgok aragtirici dairesel rijit
plak ic¢in; Kobori [28] , Thomson-Kobori [63] dikddrtgen ri-
jit plak icin; Karasudhi-Keer-Lee [26] ve Oien [43] sonsuz
uzun rijit gerit plak igin ¢egitli serbestlik derecelerini
kapsayan ve plak tabaninda daha gergek¢i gerilme yayiligla-
r1 kabul eden gesitli ¢bziimler elde etmiglerdir. Ayni sinir
gartlary ile, zemini yari sonsuz ortam yerine, sonlu derin-
likte bir kaya ile sinirlandirilmis sonsuz uzunluklu tek
bir tabaka olarak ideallegtiren birgok rijit plak ¢&ziimi
geligtirilmistir [5, 9, 68].

Blitiin bu ¢8ziimlerde, rijit plafin diigey, yatay veya
agisal deplasmani

u = A(f +if,) P ™" (1.1)
seklinde ifade edilmektedir. Burada A, ortamin elastik sa-
bitlerine ve plagin boyutlarina bagli bir katsayiyi, P,
rijit plaga etkiyen harmonik kuvvet veya momentin genligini,
w  harmonik zorun agisal frekansini gdstermektedir. f, ve
fy fonksiyonlari, plagin boyutlarina, ortamin elastik™ sa-
bitlerine ve ayni zamanda harmonik zorun w frekansina bag—
11 biiytikliiklerdir.

(I.1) kompleks deplasman ifadesinin zamana gdre tiirevi
alinarak gerekli diizenlemeler yapilirsa,

{0 £q f .
R s u + 2 5 u (I.2)
A(f1+f2) Am(fl+f2?

P=P e
o}

gercel bagintisi elde edilir. Bu bagintida deplasman ve hi-
zin garpanlari olan biyiikliikler, tek serbestlik dereceli
sistemin rijitlik ve sOniim katsayilarini ifade etmektedirler.



Malzeme agisindan herhangi bir soniim $zelligi Ongdriilmemig
olmasina ragmen ortaya c¢ikan sdniim kuvveti, ortamin sonsuz-
lugundan Stiirii meydana gelen enerji kaybinin ifadesidir.

Bu nedenle, bu tiir soniim literatiirde "geometrik séniim"
veya "radyasyon sénimii" olarak adlandirilmaktadir.

Buraya kadar stzii edilen dinamik elastisite ¢dziimlerin-
den iistyapi-zemin ortak sisteminin incelenmesinde yararlan-
may1 deneyen ilk galigmalarin en Snemlisi Parmelee [44] ta-
rafindan gergeklegtirilmigtir. Bycroft® un [9] rijit daire-
sel plak ig¢in elde ettigi c¢bziimden yararlanan aragtiricinin
kullandigi tek katli sistem ve bu sistemin zeminin katkisi-
n1 ifade eden yay ve sondiiriiciilerle gematik olarak idealleg-
tirilmesi, Sekil I.2 de gdsterilmigtir. Daha sonralari bir-
¢ok arastiric: [10, 45, 46, 48, 51, 55, 66] tarafindan mo-
del olarak aynen kullanilacak olan bu sistemi Parmelee, ya-
tay harmonik yer hareketi ig¢in incelemigtir.

Ancak, Parmelee ve onu izleyen bir grup arastirici,
Hsieh [23] tarafindan formiile edilen (I.2) denklemine ben-
zer ifadeleri kullanirken rijit plagin yatay ve agisal dep-
lasman durumlari arasindaki kargilikli etkiyi gdzoniine alma-
miglardir. Oysa plaga uygulanan yatay deplasman durumu igin

dairesel temel

sonsuz ortam

NOULARANSANNN \\§_

ATICCCRREY \\\\‘§

P77 7777 77777777777

——py .dx
yer horeket:

Sekil I.2




'eorem_ g:xcglnce alrblrlerlne e51nt1r“
ek Jnemde oldufu g&s*er‘lmﬂcfir r261.
e hi3kim olan yatay zemin hareketinin
adece bu nedenle mevdana gelecek dénme-
1z yiiksek yapilarda Snemli sonuglar

intisinda, rijitlik ve enerii kaybr Szellik-
Cen katsayilarin harmonik zorun frekansina
prem titresimierinin geligigilizel karakteri
m teknigl bakimindan bu tir yaklagimin en
1ligidir. Kargilikl: etki olayinin genel
de etmek amaciyla Parmelee, Perelman, Lee ve
}, arxonlk terimlerden olugan bir seriyi deprem
larak kabul etmiglerdir.

2 m.m ﬁ:m

i
katkida buLundugu, birgek ala§t1f1c1 taraxl ndan kan”tianv
r

mistir (40, 60]. Bu 6zelligi gdzdniinde tutan Pereiman,
Farmelee ve Lee 5483, bir diger caligmalarinda, frekansa
bagli katsayilari, sistemin birinci titregim frekansi icin
hesaplayip bunlari titregim siiresince sabit kabul ederek
parametrik bir aragtirma yapmiglardir.

Ote yandan frekansa bagli ¢6ziimlerin yukarida belirti-
len kisitlayici 8zelligi, birgok aragtiriciyi, rijitlik ve
enerii kaybz kat:ayllarlnl, depremlerdeki hakim frekanslari
kapsayan belirli bir frekans bdlgesi icinde sabit olarak
kabul eden bir yaklagima yéneltmigtir f46 69] .
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gbre siireksiz bir fonksiyonun
edilmesi saplanabilmektedir.

dan geligtirilen ve Bergland

edilen "Fast Fourier Transform'
tik dlizen yardimiyla, Ayr:ik
hesap makinalarinda oldukga
lamaktadir. Liu ve Fagel |
gi hesap olanaklarindan yara
elastik yapilarda karsilakl:
tirmiglardir. Chopra ve Gutie
yi, modal analiz g¢ergevesinde k
la zemin arasindaki kargilikla

Rijit plak ¢dzilimlerinden yararlanan ysklagimin Snemli
bir eksigi, iistyapinin temelini ylizeysel olarak kabul etmek
zorunda 01U§udur. Uygulama agisindan Onemli o!an gdmiili te-
mel durumu igin Novak-Beredugo [41], Novak L ] . Parmelee-—
Kudder [47], Petrovski [50] deneysel verilerden de yararla-
narak, rijit plak ¢8zlimlerini esas alan yaklasik cOzlimler
gelistirmiglerdir. Elde edilen sonug¢lar, temelin zemine gd-
milmesinin tstyapinin davran1§111 dnemli dlglide etkiledigi-
ni gdstermigtir. Tajimi f6lj ise, tek tabakali ve alt sini-
r1 kaya olan bir ortamda kayaya oturan bir rijit kiitlenin
dinamik davranigini ince

Zemini homogen, izotrop ve lineer elastik yari sonsuz
ortam olarak ideallegtirmekle birlikte, ortam sinirinda ali-
nan belirli diigiim noktalar:i araciligi ile ayriklagtiran il-
ging bir model, zeminle toprak baraj arasindaki kargilikla
etkiyi inceleyen Chopra-Perumalswami [13}'taraf1ndan gelig-
tirilmigtir. Ilerideki bdliimlerde gdriilecegi lizere bu ¢alig-
mada da, zeminin ayrik bir sistem olarak 1dealle§t1r11me31n-
de bu modelden yararlanilmistir.

1.2.2. Zemini sinirly bir bolgede ayrik bir sistem olarak
ideallestiren calismalar

Ustyapi-zemin ortak sistemini inceleyen galismalarin
nemli bir bdliimiinde, zemin ortami sinirli bir b&lgede ayrik
bir sistem olarak ideallegtirilmektedir.



Agabein, Parmelee ve Lee [4] zemini sonlu bir b&lgede,
kendilerinin tanimladigi rijitlik ve sdniim elemanlar:i ile
ideallegtiren bir model geligtirmiglerdir. Fleming,Screwala,
Kondner [22] ise zemini tek tabakali ayrik bir sistem olarak
ideallegtirmeye galigmiglardir.

Son yirmi yil iginde ¢ubuk sistemler ve slirekli ortam-
larin statik ve dinamik hesabinda yogun bir bigimde kullani-
lan "Sonlu elemanlar yéntemi" [15] iistyapi~zemin ortak sis-
temini inceleyen pek gok g¢aligsmada da zeminin ideallegtirme
araci olarak kullanilmigtir. Wilson [70], Khanna 27?’,
Finn-Reimer [21], Seed-Tdriss [57], Matsusthima[37] ve daha
pek gok aragtirici iki boyutluj Brandow (8] , Dumanoglu[18]
ve digerleri li¢ boyutlu sonlu elemanlarla zemini sinirli bir
b&lgede ideallegtirerek karsilikli etki problemini incelemig-—
lerdir. Minami fBQ] yine sinirli bir bdlgede zemin igin elas-
toplastik bir biinyesel model segerek problemi iki boyutlu
sonlu elemanlarla incelemigtir.

Lysmer ve Kuhlemeyer [35], sonsuz ortamda radyasyondan
dogan enerji kaybi mekanizmasini, sonlu elemanlarla idealleg-
tirilen sinirli bir bdlgede gdzdniine almayi amag edinen il-
ging bir model caligsmasi yapmiglardir. Geligtirilen modelde,
radyasyon kaybini hesaba katmak {izere, sonlu elemanlarla
ideallegtirilen bdlgeyi cevreleyen sinirlarda enerji yutan
"viskoz sinirlar"” ve bunlara ait sinir gartlari tanimlanmig-—
tir. Brandow [8], alt siniri kaya olan bir ortamda, tanimla-
nan viskoz sinirlari, yatay dogrultudaki radyasyondan olusan
enerji kaybini gbzoniine almak amaciyla kullanmigtir.

Zemini sonlu elemanlarla ideallegtiren biitiin ¢aligmalar-—
da listyapi ve zemin bir ortak sistem gergevesinde birlikte
ele alinmaktadirlar. Kisim I.2.1 deki yari sonsuz ortam
gbzlimlerinden yararlanan ¢aligsmalarda ise; yari sonsuz ortam
ve sinirinda yer alan rijit plak, iistyapi-zemin ortak siste-
mi igindé bir alt sistem olarak gdzdniline alinmaktadir. Alt
sistem prensibinin ayni anlamda, sonlu elemanlarla idealleg—
tirilen zemin ortam: ig¢in kullanilmasi, harmonik birim dep-
lasman durumlari ile elde edilen kompleks katsayili ve fre-
kansa bagli dinamik rijitlik matrisinin tayinini gerektir-
mektedir. Vaish ve Chopra [65] ¢éziim teknigi olarak "Fast
Fourier Transform" algoritmasini uyguladiklar:i ¢aligmala-



rinda, sonlu derinlikte taban kayasi ile sinirlanan lineer
elastik zemin ortamini, yukarida belirtilen anlamda alt sis-
tem olarak ele almiglardir. Ayni c¢alismada, Ayrik Fourier
Doniiglimiinde, harmonik bilegen sayisina egit sayida c¢8ziimil
gereken kompleks katsayili hareket denkleminin mertebesini
diiglirmeyi ama¢ edinen yaklasik bir ybntem geligtirilmigtir.
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BOLOM II

BU CALISMADA GELISTIRILEN MATEMATIK MODELLER

I1.1. DAHA ONCE KULLANILAN MODELLERIN ELESTIRISI

Konu ile 1lgili olarak daha 8nce yapilan ve Kisim I.2
de Szetlenen galigmalardan da anlagilabilecei gibi,zeminin
ideallegtirilmesi lstyapi—zemin ortak sisteminde en Gnemli
problemlerden birini olugturmaktadair.

Kisim I.2.1 de ag¢iklanan yari sonsuz veya tek tabakal:
sonsuz ortam modeli, birgok bakimdan elegtirilebilir :

~ a) Zeminlerdeki dogal tabakalagma siireci,

b) Dinamik Szelliklerin zemin ic¢inde noktadan noktaya
gegitli parametrelere bagli olarak defismesi,

c) Zeminin dinamik kogullar altindaki davraniginin ge-
nellikle elastoplastik nitelikte olmasi,

d) Uygulamada {istyap:i temelinin, modelde Ongdriilenin
aksine, genellikle ylizeysel ve sonsuz rijit olmayisi,

bu modele ydneltilen baglica elegtiriler olarak siralanabi-
1ir. Bunlarin yaninda, modeldeki rijitlik ve radyasyon sdnii-
mii katsayilarinin frekansa bagliy olugu, kesin ¢Ozlimin "fre-
kans alani™ nda vapilmasini zorunliu kilmaktadir. Gergl ¢Szi-
miin bu anlamda, Kisim I.2.1 de belirtiidigi gibi Ayrik

Fourier Donusumn 1 'ap11m351 olanagi vardir. Ancak bu yin
t rin varllgl nedeniyle, hareket denk—
derflemzu, nar%onjk blLugeP
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men, yéntemin hesap yilkinin agirligini gistermektedir.Uste-
lik bu kadar hesabin sadece lineer elastik zemin orcami icin
gecerli oldugu da gbzden uzak tutulmamalidir.

Biitiin bunlara karsin, yari sonsuz ortam modelinin,
"kalitatif" anlamda bile olsa, kargilikli etki olayinin ay-
dinlatilmasi ve ortaya ¢ikan sonuglarin dogrultularinin sap-
tanmasi bakimindan, bu konudaki literatiirde 8memli bir yer
tuttugu aciktir.

Ote yandan, zemin ortaminin sonlu elemanlarla idealleg-
tirilmesi, modellendirme ve ¢8ziim teknigi agilarindan Snem-
1i olanaklar saglamaktadir :

a) Zeminle ilgili her tiirlii geometrik, mekanik ve biin-
yesel siireksizliklerin gdzdniine alinabilmesi,

b) Ustyapi temelinin zemine baglantisi ve rijitligi
ile ilgili herhangi bir kisitlamanin olmayisi,

¢) Kurulan hareket denkleminin frekanstan bagimsiz
olusu, modlarin siliperpozisyonu ydntemi ile veya
"zaman alani” nda adim adim integre edilebiimesi,

d) Adim adim integrasyon iglemi ic¢inde her tiirli non-
lineer veya elastoplastik zemin ve iistyapi davrani-
sinin gbzOniine alinabilmesi, '

bu yontemin olumlu ydnleri olarak sayilabilir.

Sonlu elemanlarla ideallegtirme ydntemine ydneltilen
en 6nemli elegtiri, zemin ortaminin belirli bir bdlge ile
sinirlandirilmasidir. Eger sistemde gergekten sonlu bir
bélgeyi sinirlayan kaya gibi dogal bir sinir sarti yoksa,
belirli bir bdlge ile yetinmek zorunlulugu ortaya c¢ikmakta-
dir. Bu durumda ise, deprém dalgalari ile iistyapidan orta-
ma yayilan dalgalarin, alinan sonlu bdlgenin sinirlarindan
yansimasi tehlikesi dogmaktadir. Bu noktada, Lysmer ve
Kuhlemeyer [35] tarafindan gelistirilen ve Kisim 1.2.2 de
agiklanan modelin bu sakincayi gidermek amaciyla kullanila-
bilecegi diiglinlilebilir. Ancak bu model sadece, titregen
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{istyapinin etkisi ile sonlu bdlgenin ic¢inden disina doZru
vayilan dalgalari gdzoniine almaktadir. Bu bakimdan, sonlu
bslgeye disaridan gelen deprem dalgalarinin da s6z konusu
oldugu karsilikli etki problemi i¢in uygun dezildir[39].

Sonlu elemanlar ydnteminin probleme getirdifi olanak-
lara karsin, bu yéntemin kendine 3dzgii baz1i sakincalarini,
bzellikle bu problem agisindan gdzdniinde tutmak gereklidir.
Bu sakincalardan birincisi, zemin ortaminin yeterince tem-
sil edilebilmesi ig¢in ¢ok sayida sonlu eleman kullanilmasi
geregidir. Bu durumun, 8zellikie {i¢ boyutlu sistemlerde,
sayisal ¢8zlim bakimindan birtakim problemler doguracagi
agiktir. Birincisine bagli olan ikinci sakinca, problemin
dogrudan dogruya dinamik karakteri ile ilgilidir. Problem
zemin agisindan bir "dalga yayilmasi problemi"” oldugundan,
sonlu elemanlar ydntemi ile yapilan ¢dziimde ortam ig¢inde
dalgalarin ayrik anlamda belirlenmesi gerekmektedir. Bu da,
dalga boyunun belirli kesimlerindeki deplasmanlarin hesap-—
lanmasy ile saglanabilir. Bilindigi gibi bir dalganin boyu,
dalganin hizi ile dogru, frekansi ile ters orantilidir.

0 halde, drnegin dalga hizinin diigiik oldugu yumugak zemin-
lerde bir dalganin dogru bigimde belirlenebilmesi igin,ay-
n1 frekansla titregen saglam zeminlere oranla, birbirine
daha yakin noktalardaki deplasmanlarin hesaplanmasi gerek-
mektedir. Bu durum, sistemde daha kii¢ik boyutlarda, daha
¢ok sayida sonlu elemanin kullanilmasi zorunluluunu ortaya
gikarmaktadir. GOrildiigi gibi bu sakincanin etkisi, yukari-
da sbzii edilen birinci sakincanin agirlifini arttirici yon-
dedir.

[y

I1.2. MODEL GELISTIRME ACISINDAN BU CALISMANIN AMACI

Modellendirme agisindan bu ¢aligmanin ana amaci,yuka-
rida elegtirilen iki farkli modelin probleme yaklagmada
sagladiklari olumlu yénleri degerlendiren, fakat kendileri-
ne Ozgl sakincalari-miimkiin oldugu oranda- tagimayan uygun
bir modelin geligtirilmesidir. Bu kogullari sagladigi diigii-
nilen model, bu b&8limiin 4. kisminda (Model I) ad1i altinda
tanimlanacaktir. Bununla birlikte, bu modelden ayri olarak,
(Model II) adi altinda daha basit, fakat kargilikli etki



galigmalar: alaninda daha Once ¢ok az aragtirilmis olan bazi
sistemlerin kolayca incelenebilmesine olanak saglayan ikinci
bir model de gelistirilmigtir.

Bu b81llimiin 4. ve 5. kisimlarinda tanimlanacak olan Mo-
del I ve Model II de, zeminin bir kismi veya tiiml tek taba-
kali sonsuz ortam olarak ideallegtirilmektedir.

Tek tabakali sonsuz ortamda, tabaka kalinlifinin sonsu-
za gdtiiriilmesi ile yari sonsuz ortam 8zel durumu da elde
edilebilmektedir.

Agagidaki Kisim II.3 de, tek tabakali sonsuz ortam igin
ongdriilen ayriklagtirma ydntemi agiklanacaktir.

I1.3. TEK TABAKALI SONSUZ ORTAMIN AYRIK BiR SIiSTEM OLARAK
tDEALLESTIRILMEST

Bu galismada tek tabakali sonsuz ortamin ayriklastiril-
masinda, Chopra-Perumalswami [13] nin yari sonsuz ortam.
i¢in uyguladiklari ySntemden csinlenilmigtir. Tek tabakali
sonsuz diizlem olarak diigiiniilen zemin ortami, sinirinda ali-
nan belirli diigim noktalar: araciligi ile ayriklastirilmak-—
tadir. Hesabin deplasman metodu ile yapilabilmesini sagla-
mak amaci ile diiglim noktalarinin birine, ardigik iig nokta
arasindaki degigimi Sekil II.1 de gdsterilen diigsey veya ya-
tay birim deplasman uygulanmakta, bu durumda diger diigiim
noktalarinin deplasmanlari sifir olarak alinmaktadir.Homogen.
izotrop ve lineer elastik kabul edilen tek tabakali sonsuz
ortam, birim deplasman durumlarinin tanimladifi sinir gart-
lari altinda bir diizlem gekil defistirme problemi olarak
elastisite teorisi ile ¢¥zlilmekte ve ortam sinirindaki ge-
rilme yayiligi elde edilmektedir. Bu gerilmelerin egdeger
tekil kuvvetler olarak diigiim noktalarina indirgenmeleri ile
tek tabakali sonsuz ortamin blitdn 4iiglim noktalarindaki "bi-
rim deplasman sabitleri” elde edilmektedir,
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homogen, izotrop, lineer elastik
tek tabokali sonsuz atam

I sonsuz rijit sinir {taban ku;osl) u
7

Sekil II.1

Belirli bir diigiim ncktasina uygulanan birim deplasman-
lardan otiiri, kilitli olan diger diiglim noktalarinda meydana
gelen kuvvetlerin, deplasmanin uygulandifi noktadan yeteri
kadar uzaklikta terkedilebilecek derecede kiiciilecegi agiktir.
Bu bakimdan, yukaridaki gekilde ayriklagtirilan tek tabakal:
sonsuz ortam, diilim noktasi sayisi teorik olarak sonsuz, fa-—
kat pratikte sonlu olan bir “sonlu eleman” olarak diiglinile~
bilir..

Yari sonsuz ortam durumu, tek tabakali sonsuz ortamda
tabaka kalinliginin sonsuza gotiiriilmesi ile elde edilen &zel
bir durumdur. Bu bakimdan, yukaridaki ideallegtirme yari son-
suz ortamr da kapsamaktadir.

Sinirda alinan belirli bir diiglim noktasina uygulanan bi-
rim deplasmanlar statik anlamda olabilecegi gibi,
10
d, = 1.e""
N

klinde birim genlikli harmonik deplasmanlar da colabilir.
dwruuudy ortamda dalga denkleminin kararla (;tnady~st'“
Szilmi ile elde edilen diifim noktasi kuvvetleri, harmonik

,vﬂ {‘ﬂ v{i}
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deplasmanin frekansina bagli "dinamik birim deplasman sabit-
leri™ ni olugturmaktadirlar. Ref [13] de bu ¢dziim yari son-
suz ortam dzel durumu igin gercgeklestirilmigtir.

Tanimlanan statik ve dinamik birim deplasman Jduruslari
i¢in yapilan ¢8zilimler III. BSlimde agiklanacaktir.

I1.4. Model I - ZEMININ SINIRLI BIR BULGESINI SONLU ELEMAN-
LARLA, GERI KALAN KISMINI TEK TABAKALI SON-
SUZ ORTANM OLARAK IDEALLESTIREN MODEL

Zeminin sadece sinirli bir bdlgesini sonlu elemanlarla
ideallegtiren modelin, bu bdlgede her tiirli geometrik, meka-
nik ve biinyesel slireksizlikleri gdzdniline alabilme olanagini
sagladigi; ancak bu modelin, sinir sartlari ve sonic eleman-
lar ydnteminin kendine 8zgli sakincalar:i nedeniyle cok sayi-
da sonlu eleman kullanilmasi zorunlulugunu ortaya cikardigz
Kisim II.1 de acgiklanmigti. Bu diigiincelerle bu c¢aligmada,
miimkiin oldugu Oig¢lide az sayida sonlu elemanin kullanilidigi,
buna kargin serbestlik derecesini fazla arttirmaksizin daha
genig bir zemin b3lgesinde rijitlik ve eylemsizlik Szellik-
lerinin gdzdnine alinabildigi bir model gelistirilmistir.
Bu modelde, zemin belirli bir derinlige kadar sonlu eleman-
larla ideallegtirilmekte, bu derinlikten itibaren agagiya
,dogru tek tabakali sonsuz ortam olarak kabul edilmektedir
(Sekil II.2).

Sonlu elemanlarla ideallegtirilen b3lgede, ayritlari
boyunca deplasman degigimi lineer olan {iggen veya dikddrt-—
gen sonlu elemanlarin kullanilmasi, tek tabakali sonsuz or-
tamin da Kisim II.3 de agiklandigi sekilde ayriklastirilma-—
s1 halinde, geometrik uygunluk sartlarinin, iki b&lgeyi bir-—
legtiren biitiin diiglim noktalari boyunca saglanmasi mimkiin
olmaktadir.
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Sekil TII.2

Zemin i¢in onerilen bu modelin, ideallegtirme agisin-
dan sagladigi olanaklar agsagida agiklanmigtir :

a) Ustyapi-zemin ortak sisteminde zemin titregimlerinin
6nemli b&liimi, zeminin bir biitiin olarak deprem etkisinde ken-
diliginden titresimi ile olugmaktadir. Bu titregime ek ola-
rak zemin ortamina disaridan gelen ana etki, iistyapinin tit-
regimidir. Bu etkinin 8zellikle {istyapiya yakin zemin kesi-
minde Snemli oldugu, biliyiik gerilme ve gekil degistirmelerin
bu bdlgede meydana geldigi agiktir. Zeminin gergek¢i bir sge-
kilde ideallegtirilmesinde bu bdlgenin Snemi, diger bSlgele-
re oranla daha biiyliktiir. Bu nedenle, geligtirilen modelde
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iistyapiya yakin zemin kesiminin, mekanik,geometrik ve biinye-
sel stireksizliklerin g&z®niine alinabilmesi olanaklarini saZ-
lamak lizere sonlu elemanlarla ideallegtirilmesi yoluna gi-
dilmigtir. Bu b&lgenin disindaki zemin kesiminin, tek ta?aj
kali ortam olarak alinmasi ile, taban kayasina kadar zeminin
kiitle ve rijitliginin hesaba katilmasi miimkiin olmaktadar.
Boylece esdeger anlamda; sonlu elemanlarla ideallegtirilen
bslge, serbestlik derecesi arttirilmaksizin biiyiik dlg¢iide ge-
nigletilmektedir.

b) Geligtirilen model ag¢isindan akla gelebilecek dnemli
bir soru, zemin ortaminin sonlu elemanlarla ideallegtirilen
bSlgenin altinda, Ongdriildiigi sekilde homogen, izotrop ve
lineer elastik olarak davranip davranmayacagidir. Yukarida
a¢iklandifi gibi depremde sistemin tiimi ile titresimine ek
olarak ilistyapinin varlifi nedeni ile olugan titresimlerin
meydana getirdigi gekil degigtirmelerin, tistyapidan itiba-
ren belirli derinlikte lineer elastik sinir i¢inde kalaca-
g1 diigliniilmektedir. Ayrica belirli bir derinlikten itibaren
homogen ve izotrop zemin kabulu yukaridaki diigiincelerle bir-
likte degerlendirildiginde, jeclojik bakimdan fazla agir
bir kabul niteligi tasimamaktadir. Uygulamada karsilagilan
alivyon tipi tabakalanma durumu i¢in yapilan kabul gercege
daha uygundur. Gergek jeolojik yap:i bu gekilde olmasa bile,
geligtirilen model, {istyapiya uzakta kalan ikinci plandaki
zemin bdlgesinde rijitlik ve eylemsizlik 8zelliklerinin be-
lirli bir yaklagim icinde gbzdniine alinabilmesi olanagini
saglamaktadir.

¢) Geligtirilen modelde zemin b&lgesinin yatay dogrul-
tuda {istyapiya belirli bir uzaklikta kesilerek sinirlandi-
rilmasi miimkiindlir. Bu sinir, {listyapinin etkisi ile olugan
ek titregimlerin terkedilebilecek derecede kiicildiigi nokta-
larin birlegtirilmesi ile elde edilebilir. Bu simirin iist-
yapidan uzakligi konusunda bir kriter keyma olavafinin bu-
lunmadiZi, gercek sinirin ele alinan bdlgenin adim adim bii-
ylitiilmesi ile saptanabilecesi agiktir.

d)
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enerjisinde meydana geldigi teorik olarak diigiiniilen kayipla
ilgilidir. Ortamin sonsuzlugu nedeniyle olugan bu enerji
kaybinin, deplasmanin zamana gdre birinci tiirevi ile oranti-
11 oldugu ve bu nedenle "geometrik sénlim” veya "radyasyon
sénimii” olarak adlandirildigi, Kisim I.2.1 de belirtilmigti.
Sonlu modelde bu kaybin gdzdnline alinmadigi konusunda yapilan
elestiriler genellikle, zemin ortamini "a priori" somsuz or- .
tam olarak ideallegtiren ve zeminde, ilistyapidan uzak nokta-
lardaki deplasmanlarin degerleri ile ilgilenmemek egilimin-
de olan birtakim aragtirmacilar tarafindan ySneltilmektedir.
Yukarida belirtildigi gibi, {istyapinin titregimi ile zemin-
de deprem hareketine ek olarak olugan deplasmanlar, birinci
planda iistyapiya yakin bdlgelerde nemli degerler almakta,
iistyapidan uzaklagildikca kiigiilmektedirler. Ustyapidan belir-
1i bir uzaklikta radyasyon kaybi nedeni ile olugacagy diigli-
niilen, fiktif s&niim kuvvetleginin, eylemsizlik, rijitlik ve
zemindeki gercgek s8nlimle ilgili kuvvetler yaninda terkedile-
bilmesi gerekir. Ayrica sbzii edilen enerji kaybi, Onemli
oranda titregim frekansinin yiiksekligi nedeni ile meydana
gelmekte ve yiliksek frekansli makina temellerinde Onemli so-
nuglar dogurabilmektedir. Oysa depremlerde hakim frekansla-
rin genellikle kiicik oldugu, bu kiigilmenin kargilikli etki
olayinin onemli oldugu yumugak zeminlerde daha belirgin du-
ruma geldigi, spektrum egrilerinin jincelenmesinden anlagila-
bilir. Daha da 8nemli olarak, yumugak zeminlerde plastik
caligma nedeni ile kaybolan deformasyon enerjisinin, radyas-—
yon kaybi yaninda ne mertebede oldugu ayri bir tartigma ko-
nusudur. '

Yukarida belirtilen nedenlerle, geligtirilen bu model-
de radyasyon soniimi g&zdniine alinmamigtir.

e) Modelde yer alan tek tabakali sonsuz ortam veya Ozel
hali olan yari sonsuz ortam ig¢in, harmonik birim deplasman
durumlari gbzdniine alinarak frekansa bagli “dinamik rijitlik
matrisi® nin elde edilebilmesi miimkiindiir. Ancak bu takdirde,
tek tabakali sonsuz ortamda, harmonik birim deplasman durum-—
lari ig¢in dalga denkleminin integrasyonu gerekmektedir. Bu
caligmada ise, tek tabakali sonsuz ortam ig¢in, ayrintilari
IT1I. Bdlimde acgiklanan yaklagik bir dinamik rijitlik matrisi
tanimlanmigtiv. Tanimlanan bu matris de frekansa baglidair,
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ancak statik deplasman alani esas alinarak elde edilmigtir.

Kisim II.1 de belirtildigi gibi, frekansa bagli dinamik
rijitlik matrisinin varligi, listyapi-zemin ortak sisteminin
deprem hesabinin "frekans alani'" nda yapilmasini zorunlu
kilmaktadir. Bu tiir hesabin, biitiin zorluklari bir vana, 1i-
neer elastik zemin kabulune bagli olmasi modelin gergefine
aykiri diismektedir. Bu nedenle, VIII. B&llimde agiklandig:
gibi, tek tabakali sonsuz ortamin dinamik rijitlik matrisi,
iistyapi-zemin ortak sisteminin birinci titresim frekansi
icin hesaplanarak deprem siiresince defigmedigi kabul edil-
mektedir. BSylece ortak sistemin sonlu elemanlarla idealleg-
tirilen zemin bdlgesinde ve istyapida meydana gelebilecek
lineer elastik olmayan gekil defigtirmeler, "zaman alani"
nda yapilan adim adim ¢Szilimde gdzdnline alinabilmektedir.

II.5. Model II : ZEMININ TOMUNO TEK TABAKALI SONSUZ ORTAM
) OLARAK 1DEALLESTIREN MODEL

Deprem olayinin kendine 8zgli karmagik yapisi yaninda,
depremde yapi sistemlerinin davraniginin biitiin ayrintilar:
ile teorik ve deneysel olarak heniiz kesinlikle agiklanama-
mig bulunmasi ve buna kargin olaya mihendisge yaklagmanin
geregi, birgok alanda basitlegtirilmis modellerin kullanil-
masinl zorunlu kilmaktadir. Basit modeller ile elde edilen
sonuglar daha sonra deneysel verilerle degerlendirilerek
gergege yakin ¢8ziimlere ulagilabilmektedir. Ornegin, gerge-
ve tipi sistemlerin serbest titregim hesabinda dolgu duvar-
larinin etkisini gdzdniine alan gergek¢i bir matematik mo-—
del heniiz kurulabilmig degildir. Bu nedenle sistemin modal
davraniginin aydinlatilmasi igin, serbest titregim hesabin-
da gergevedeki dolgu duvarlarinin etkisi terkedilmekte,mod-
larin siiperpozisyonu ydntemi ile yapilan deprem hesabinda
_bu etki, amprik faktdrler araciligi ile g&zdniline alinabil-
mektedir [3].
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Basitlegtirilmis model kullanmanin bir bagka nedeni de,
standart kogullar altinda sistemin davranig:i hakkinda fikir
sahibi olunmak istenmesidir.

Bu ¢aligmada, yukarida agiklanan diiglinceler gercevesin-
de, Ustyapi-zemin ortak sistemi iginde bir veya birden fazla
tistyap1 durumlari icin sistemin serbest titregiminin kolayca
incelenebilmesine olanak taniyan basit bir model geligtiril-
migtir. Bu modelde zeminin tiimi, Kisim II.3 de agiklanan bi-
¢imde ayriklastirilmis tek tabakali sonsuz ortam olarak ide-
allegtirilmektedir. Bu gekilde ideallegtirilen zemin ve yii-
zeysel bir temel aracilifi ile {izerine oturtulan i{istyapidan
olugan ortak sistem $ekil II.3 de gdsterilmigtir.

L]

Ustyap

ylizeysel
Ustyapr temeli

homogen , izotrop ,lineer elastik
tek tabakali sonsuz ortam

sonsuz rilit taban ka;as|
/7,

Sekil II.3

Kargilikli etki literatiiriinde, zemin iizerinde birden
fazla iistyapr bulunmasi durumunu inceleyen g¢aligmalarin yok
denecek kadar az olmasi ilgi gekicidir [29] . Oysa bu durum
6zellikle biiylik merkezlerdeki yerlegme diizeni bakimindan c¢ok
dnemlidir.



Sekil II.3 de gdriilen sistemdeki listyapinin yanina bag-
ka listyapilarin eklenmesi, modelin yapisi bakimindan higbir
degigiklik meydana getirmemektedir. Bdylece, geligtirilen
bu model zemin ilizerinde birden fazla {istyapi bulunmasi du-
rumunu da kapsamaktadir. Ustyapi temellerinin sonsuz rijit
olarak kabul edilmesi durumunda, temellerin digindaki zemin
noktalarina iligkin dinamik rijitlik matrisi elemanlarinin
elenmesi ile zemin ortamini karakterize eden kiiglik mertebeli
alt matrisler elde edilebilmektedir. III. ve IV. bdliimlerin
sonuglarindan yararlanilarak V. boliimde, sdzii edilen alt
matrisler elde edilmig; VI. ve VII. bdliimlerde ise, bir ve
birden fazla listyapi durumlari igin ortak sistemin serbest
titregimi incelemmigtir.
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BOLOM III

TEK TABAKALI SONSUZ ORTAMIN YAKLASIK DINAMIK
R1JITLIK MATRISt

IIT.1. DINAMIK RIJITLIK MATRIS1 KAVRAMI

Bir sonlu elemanda, eleman rijitlik matrisini olugturan
birim deplasman sabitleri, herhangi bir diijlim noktasina be~
lirli bir dogrultuda uygulanan birim deplasmandan &tiirii,diger
noktalarin deplasmanlari sifir iken, elemanin diigiim noktala-
rinda olugan kuvvetler olarak tanimlanmirlar. Bu gekilde ta-
nimlanan birim deplasman sabitlerinin hesabi ig¢in, eleman
igindeki deplasman alaninin ug deplasmanlarina bagli olarak
ifade edilmesi gerekmektedir. Statik durumda elemandaki dep-
lasmanlari, ug¢ deplasmanlarina

[ux,m] =[alx,m][d] C(I11.1)

seklinde baglayan [a] "deplasman fonksiyonu” elemanin sadece
koordinatlarina baglidir. Cubuk sonlu elemanlar igin kesin
olarak bilinen, diger sonlu eleman tiirleri igin yaklagik ola-
rak segilen deplasman fonksiyonu yardimi ile hesaplanan birim
deplasman sabitleri, elemanin "statik rijitlik matrisi" ni
olugturmaktadirlar.

Sonlu elemana dinamik dis yiiklerin etki etmesi halinde,
birim deplasman durumlarinda elemandaki eylemsizlik kuvvetle-
rinin de gbzodniine alinmasi gerekmektedir. Bunun saglanabilme-
si ig¢in, ug¢ deplasmanlari

[41= [a ]
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seklinde ifade edilmekte; birim deplasman durumlari olarak
diigiim noktalarina
d. = 1.e¥wt

; J
gseklinde,birim genlikli harmonik deplasmanlar uygulanmakta-
dir. Bu durumda, eleman ig¢indeki deplasman alanini belirle-
yen deplasman fonksiyonu, zorunlu olarak w frekansina da
bagli olmakta ve (III.1l) bafintisi

[uo(x,y,w)]eiwt== [a(x,y,w)][do]eiwt (111.2)

gseklini almaktadir. Bdylece, eleman igindeki eylemsizlik
kuvvetlerinin etkisi de g8z®niine alinarak hesaplanan dinamik
birim deplasman sabitlerinin olusturdugu matrlse "dinamik
rijitlik matrisi" adi verilmektedir.

Cubuk sonlu elemanlar disinda, eylemsizlik kuvvetleri-
nin birim deplasman sabitlerine etkisi, yukarida belirtilen
anlamda gdzdniine alinamamaktadir. Bunun nedeni, deplasman
fonksiyonunun (III.2) de tanimlanan gekli ile saptanmasinin
miimkiin olmayigidir. Bu bakimdan, sonlu elemanda olugan ey-
lemsizlik kuvvetlerinin dolayli olarak hesaba katilmasi zo-
runlulugu ortaya c¢ikmaktadir. Sonlu elemanlar ydnteminde
"yayili kiitle matrisi” kavrami bu zorunluluktan dogmugtur.
Bu durumda eylemsizlik kuvvetleri, sonlu eleman ig¢inde sta-
tik anlamda dagildigi kabul edilen deplasmanlarin zamana
gbre ikinci tiirevleri ile orantili olarak alinmaktadir. Bu
kabule dayanilarak elde edilen yayili kiitle matrisi,harmo—
nik zor durumu igin, statik rijitlik matrisi ile birlegtiri-
lerek, dinamik rijitlik matrisinin yaklagik ifadesi elde
edilmektedir :

(k] ; =[k] - ©*[m] (111.3)

Burada Bﬂ sonlu elemanin yayili kiitle matrisini, [k] ve
ﬁﬂ elemana ait statik ve dinamik rijitlik matrislerini
gbstermektedir. GOriildiigii gibi, dinamik rijitlik matrisi bu
durumda da frekansa baglidir. Ancak, Lk]s ve [m] in hesa-
binda, eleman ig¢indeki statik deplasman dagilimi esas
alindigindan (III.3) bagintisi yaklagiktir. Fakat kiiglik



25

frekans degerleri i¢in, statik ve dinamik durumlardaki dep-
lasman fonksiyonlarinin birbirlerine yaklagmasi nedeni ile
(III.3) bagintisinin iyi sonug verdifi bilinmektedir.

Depremde hakim frekanslarin genellikle kiigiik olusu,
(I1I.3) bagintisi ile belirlenen yaklasik dinamik rijitlik
matrisinin yapilarin deprem hesabinda kullanilabilecegini
gbstermektedir. Bu yaklagimin en Snemli &zelligi (IIIL.3) de
yer alan [K}s ve [m] matrislerinin frekanstan bagimsiz
olmalaridir. Bu &zellik, deprem zoru altinda hareket denk-
leminin "zaman alani” nda ¢6ziilebilmesi olanagini saglamak-
tadir. Oysa (III1.2) bagintisindan hareketle elde edilen ke-
sin dinamik rijitlik matrisinin kullanilmasi halinde,hareket
denkleminin ancak harmonik zor ig¢in kararli ¢dzimi miimkiin
olabilmektedir. Bu durumda deprem titregimlerinin belirli
harmonik bilegenlerle ifade edilmesi, diger deyimle Fourier
doniiglimiinlin kullanilmasi zorunlulufu ortaya ¢ikmaktadir.Bu
tlir bir hesap ydntemi lineer sistemlerle kisitli oldugundan
yapilarin deprem sirasindaki lineer olmayan gergek davrani-—
gini ortaya ¢ikaramamaktadir. Hareket denkleminin frekans-
tan bagimsiz rijitlik ve kiitle matrislerinden olusturulmasi
ve "zaman alani” nda adim adim integre edilebilmesi olana-
gin1 saglayan yayili kiitle matrisi kavrami bu bakimdan OSnem
kazanmaktadir.

ITI.2. TEK TABAKALI SONSUZ ORTAM ICIN UNERILEN YAKLASIK
DINAMIK RIJITLIK MATRISH

Kisim II.3 de agiklanan ydntemle ayriklagtirilan tek
tabakali sonsuz ortam, pratikte sayisi sonlu olan diigiim nok-
talarinin sinirladig:i bir sonlu eleman olarak ele alinabilir.
Bu bakimdan, sonlu elemanlar ydntemi gergevesinde gelistiri-
len yayili kiitle matrisi kavraminin, tek tabakali sonsuz or-
tama da uygulanabilecegi diisliniilebilir.

Tek tabakali sonsuz ortamda, (III.3) bagintisi anlamin-
da bir dinamik rijitlik matrisinin, gergek dinamik rijitlik
matrisi ile ne oranda bir uyum saglayabilecegini arastirmek
amacl ile, tabaka kalinliginin sonsuza gitmesi halinde elde
edilen yar1 sonsuz ortam Ozel durumu ele alinmistar.
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Ayn: yontemle ayriklagtirilan yar:i sonsuz ortamda,dina-
mik birim deplasman sabitlerinin frekansa bagli kesin ifade-
leri, iki boyutlu dalga denkleminin kararli ¢8ziimi ile elde
edilebilirler. '

ITI.2.1. Yari sonsuz ortamda dalga denkleminin c¢oziimi ile
elde edilen dinamik birim deplasman sabitleri

Yari sonsuz ortam i¢in segilen eksen takimi ve ¢8ziimde
sinir garti olarak kullanilan dinamik birim deplasman durum-
larindan biri $ekil III.1 de gdsterilmigtir.

, 49 40 L@ ,a
n__u=g, v= 1 -8 i “‘xy)j_o
Ir 1] '/I‘;jw-:
v=gix) et (kﬂ)jo‘
Xjo A
v
Y
Sekil III.1

ki ayri harmonik birim deplasman durumu g&zdniine alin-
maktadir.

(A) Birim deplasman durumu :
u(x,0,w) =0 s v{x,0,0) = g(x)elwt
(B) Birim deplasman durumu : ' (II1.4)

u(x,0,w) = g(x)elwt, v(x,0,w) =0
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Sinir sart:i olarak kullanilan harmonik deplasman duru-
muna -ait g(x) genlik fonksiyonu agagidaki gekilde tanimlanir:

g(x) =0 ~® < x< -a
% .
g(x) =1 +— -a <x< 0
a
(1I11.5)
% ,
g(x) = 1= — . 0 <x< +a
a
g(x) =0 ' +a < x <+

Burada a, sinir dogrusu boyunca esit olarak alinan dii-
gUm noktalari ara uzakliklarini gdstermektedir.

Yukaridaki sinir gartlari altinda iki boyutlu dalga
denkleminin ¢oziimi ile, O ve T gerilme bilesenlerinin
y = 0 sinir dogrusu boyunca yayilislari elde edilebilmekte-
dir. Kararli harmonik hareket nedeni ile gerilme bilegenleri

iwt
e

gseklinde ifade edilirler. Burada Go'y ve GT‘ > gerilme

bilegenlerine ait genlik fonksiyon]_;lrlnl gostermektedirler.
Bu fonksiyonlarin ifadeleri, Fourier Ters Ddniigiim integral-
leri halinde asagida verilmigtir.
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(A) Birim Deplasman Durumu :

(o0}
26a2 | (n2-a2) Y2 (1-cosn)

Nz dn
G~ (z,0,w) = cos
g (Z,Y,
y Ta nz[n2~(n2—ag>1/2(n2-gza§)1/21
:
(I11.6)
2G
Gryy (2,0,0) = = - * g 0<z<1
G o (2,0,w) =1 1<z < (I11.7)
y Txy
2 (o]
= 2%% ' o Caull v sinnz dn
Txy 2 2 2 2.1/2
XY Ta n[n r )1/2( -8 ao) /J
o

(B) Birim Deplasman Durumu :

Bu durumda ch, A  durumundaki GTxy nin aynidar.

o]

2.1
2Ga2 (n2-g%a2) /2(1-cosn) P
G (x,0.w) = , 73 cosnz dn
Tx AN
Y ma | n2[n2-(n-a2)l/2(n2-g2al) 7]
o
(1I11.8)
Bu ifadelerde
i wa
a = (Boyutsuz frekans katsayisi) (I11.9)

(8_y1/2
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R — (1II.10)

7 = . ( (IIT.11)

kisaltmalari yapilarak integrallerin ig¢indeki kisimlar boyut-
suz duruma getirilmigtir. Yukaridaki ifadelerde G kayma
modiiliini, p birim hacme gelen kiitleyi, V Poisson oranini, u
harmonik deplasmanin agisal frekansini, i birim sanal sayi-
yi gbstermektedir.

Yukarida yazilan (III.6) ve (III.7) ifadeleri,c¢dziime ait
ayrintilar gdsterilmeksizin Ref.[lB] de verilmigtir.Problemin
¢Sziimii, bagimsiz olarak Fourier Integral Dniiglimi yontemi ile
yeniden yapilmig, (III.6) ve (III.7) ye ek olarak (III.8)ifa-
desi de elde edilmisgtir.

Yari sonsuz ortamin dinamik birim deplasman sabitlert,
yukarida ifadeleri verilen gerilmelerin, egdeger diiglim nok-
tas1 kuvvetleri olarak indirgenmeleri ile elde edilir.§$ekil
ITI.1 de gbrildiigii gibi, orijindeki diiglim noktasina uygula-
nan yatay veya diigey birim genlikli harmonik deplasmandan
otiird, bu noktadan x. = kadar uzakliktaki j diglim noktasin-
da olugan birim depla%man sabitleri, integral ifadeler halin-
de agagida verilmigtir.

on

a

o ve j noktalari arasindaki boyutsuz uzakligi gdstermek
lizere
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[oo]
2 2 2
4G ao(nz—Bzao)l/z(lvcosn)
y, = T > cosnzjo an
XX" jo o n [nZ_(nZ_ag)l/2(n2_82ag)1/ ]
o
- (I11.12)
4G ag(nz—ag)llz(l-cosn)2
(k) - cosnz.0 dn
yy jo I n4[n2_(n2_ag)1/2(n2_sza§)1/2]
o
(I11.13)
(kxy)jo = (kyx)jo =0 (Zjo = 0) (II1.14a)
(kxy)jo ==(kyx)j°:= —G+Ij0 (zj0== 1) (III1.14b)
(kxy)jo ==(kyx)jo =:Ijo (zjo > 1) (I11.14c)
- 2 2
I =:4G { 3 N(1-cosn) sinnz.o dn
I g n*[n2-(n2-a2)1/2 (n2-g2a2)1/2]
o
(II1.144)
dir.

Yukaridaki sonuglarda integrallerin igindeki ifadeler,
integrasyon degigkeni n nin degigimine bapli olarak belir-
li integrasyon bdlgelerinde sanal, kompleks veya gergel de~
gerler almaktadirlar. Bu durum agafdaki tabloda Gzetlenmig-
tir,
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0<ri<Bag | Bay<n<a, ag<n<e || 0<n<eo

(kxx)jo Sanal Komﬁleks Gergel Kompleks

(k.). Sanal Komﬁleks Gercel Kompleks

I. Gergel | Kompleks Geréek Kombleks

Tablo III.1

Tabloda goriildiigii gibi her {i¢ integralin sonucu da
komplekstir. Ayrica (III.12),(III.13) ve (I1I.14) den anla-
gs1labilecegi lizere her li¢ integral, B* teriminin iginde
yer alan v Poisson oranina ve "a, boyutsuz katsayisina,
dolayisiyla frekansa baglidirlar. Bdylece, dinamik birim
deplasman sabitleri genel olarak

W

k ==k1(v,ao)+ik2(v,ao) (I1I.15)

seklinde ifade edilebilirler. Bu bafintidaki ikineci terim,
Kisim I.2.1 de s0zii edilen ve ortamin sonsuzlugundan olugan
enerji kaybini ifade etmektedir.

Dinamik birim deplasman sabitlerine ait (I1I.12),(III.13)-
ve (III.14) ifadelerindeki integraller ancak sayisal olarak
elde edilebilmektedir. Problemin ¢oziiminiin bir kisminin ve-
rildigi Ref. [13] de ag¢iklanmamakla birlikte, integrallerin
say1sal hesabinin Longman [31] tarafindan geligtirilen yo6n~
temle yapildigi Sgrenilmigtir [49]. Bu galigmada ise,

Kisim II.4 de agiklanan nedenlerle, radyasyondan dofan ener—
ji kaybi gdzdniine alinmadigindan; integrallerin gergel kisim—
larinin hesabi ile yetinilmigtir. Hesapta izlenen yolun en
Onemli 6zelligi, dinamik birim deplasman sabitlerinin frekan-
sa bagli yapisinin agik olarak ortaya ¢ikarilmasi ve bdylece
(II1.3) yaklagik ifadesinin irdelenmesi olanaginin elde edi-
lebilmesidir. Sayisal hesapla ilgili ayrlntllar Ekler boli-
minde Kisim XII.5 de verilmigtir.
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II1.2.2. Tek Tabakali Sonsuz Ortamda Frekansa Bagli Birim
fvme Sabitleri Tanim

Kisim II1.2.1 de yari sonsuz ortamin dinamik birim dep-
lasman sabitleri, integral ifadeler halinde (III.12),(III.13)
ve (III.14) ile verilmigtir. Bu integrallerin sayisal hesa-
b1 ile ilgili ayrintilar ise Kisim XII.5 de agiklanmistir.
Sayisal hesapta, integrandlarin trigonometrik terimler di-
sinda kalan kisimlari asimptotik serilere agilmistir.
(XII.64),(XII.65) ve (XI1.66) ile verilen asimptotik agilim—
larin yapisi, yari sonsuz ortamda (III.3) bagintisi znlamin-
da bir dinamik rijitlik matrisinin kurulabilecegini gdster-
mektedir. Asimptotik a¢ilimlarda birinci terimlerin frekans-
tan bagimsiz olduklari, ikinci terimlerde ise boyutsuz fre-
kans a_  1n karesinin yer aldigi gdriilmektedir. Bu durum,
birinci terimlerin statik birim deplasman sabitlerine,ikin~
ci terimlerde a2 nin carpanlari olan kisimlarin ise yayi-
11 kiitle matrisi elemanlarina,diger deyimle birim ivme.sa-
bitlerine karsi geldigini diislindiirmektedir. Gergekten yari
sonsuz ortam Gzel durumu ig¢in, bu bolimde, Kisim III.3.1.1
de statik birim deplasman sabitlerinin, Kisim III.3.2.1 de
ise birim ivme sabitlerinin, ayni terimlerin integrasyonu
ile elde edilebilece3i gdsterilecektir. Ancak Kisim III.3.2.1
de agiklandigi gibi, frekansin sifira gitmesi durumunda,di-
ger deyimle statik durumda birim ivme sabitlerini veren
integral ifadeler logaritmik anlamda tekillik gdstermekte-
dirler. Bu durum, yari sonsuz ortamda frekanstan bajimsiz
bir kiitle matrisi taniminin miimkiin olamayacafini ortaya koy-
maktadir.

Ote yandan, agagida Kisim III.3 de tanimlanan statik
birim deplasman durumlarinin sinir sarti olarak kullanildi-
g1 elastisite ¢Oziimiinde (Bkz.Kisim XII.1l) birim deplasman
ve birim ivme sabitleri, tek tabakali sonsuz ortamin taba-
ka kalinligina bagli olarak integral toplamlari geklinde
elde edilmigtir. Tabaka kalinlifinin sonsuza gdtiiriilmesi
durumunda, birinci siradaki integraller diginda biitiin in-
tegraller sifira gitmekte ve yari sonsuz ortam 6zel duru-
mu elde edilmektedir. Bu noktadan hareket edilerek,yukari-
daki paragrafta yari sonsuz ortamin birim ivme sabitleri
i¢in belirtilen diigiincelerin tek tabakali sonsuz ortam
igin de gegerli oldugu sonucuna varilabilir. Bu nedenle
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Kisim III.3.2 de tek tabakali sonsuz ortamin birim ivme sa-
bitleri,. frekansa bagli biiylikliikler olarak tanimlanmigtir.

(XII.64), (XII.65) ve (XII.66) asimptotik seri agilim-—
larinda, 1lk iki terimden sonra gelen terimlerde a, boyut-
suz frekansinin gittik¢e artan lisleri yer almaktadir. Dep-
remlerde g&riilen frekans degerleri ve normal zemin kogulla-
rinda a_ 1in,ifadesi (III1.9) ile verilen degeri, daima 1
den olduk¢a kiiciik degerler almaktadir. Bu bakimdan bu terim-
lerin, ilk iki terimin yaninda terkedilerek dinamik rijit-
lik matrisinin (III.3) bagintisi geklinde ifade edilmesi
miimkiindlir. Kisim XII.5 de elde edilen ¢dziime gbre yapilan
sayisal hesaplar bu durumu kanitlamaktadir.

ITI.3. YAKLASIK DINAMiK RIJITLIK MATRISININ ELEMANLARI

Kisim IITI.2 de yapilan agiklamalar, tek tabakali son-
suz ortamda dinamik rijitlik matrisinin yaklagik olarak

2
(k] &= (k] g0 [m] (III.3)
seklinde tanimlanabilecegini gdstermektedir.

Tek tabakali sonsuz ortamda da, yari sonsuz ortamin di-
namik ¢8ziliminde elde edilen (III.15) bagintisinda oldugu gi-
bi bir enerji kaybi olayinin varlifi kesindir. Ancak
Kisim II.4 de ac¢iklanan nedenlerle radyasyondan doZan bu
enerji kaybinin sisteme etkisi terkedilmigtir.

Tek tabakali sonsuz ortamda, dinamik rijitlik matrisi-
'nin (III.3) bagintisi ile hesaplanabilmesi ig¢in, ortamda
statik birim deplasman durumlarindan olugan gerilme ve dep-
lasman alanlarinin elde edilmesi gerekmektedir.

Birim deplasman durumlari ile sonsuz rijit taban kaya-
sinin olugturdugu sinir sartlari altinda problem, elastisi-
te teorisi ile ¢dzililebilir.

Ortam ig¢in segilen eksen takimi ve iki birim deplasman
durumundan birini olusgturan diigey birim deplasman durumunun
ardigik li¢ digim noktasi arasindaki degigimi Sekil III.2
de gbsterilmigtir.
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Sekil III.2

Tek tabakali sonsuz ortamin homogen, izotrop,lineer
elastik olarak davrandigi ve hesapta kii¢ciik deplasman teori-
sinin kullanilabilecegi kabul edilmektedir.

1ki ayri birim deplasman durumu gbzoniine alinmaktadir.
(A) Durumu : u(x,0) =0 , v(x,0) = g(x)
(I11.16)
(B) Durumu : u(x,0) = g(x), v(x,0) =20

g(x) sinir garti fonksiyonunun x ekseni boyunca degigimi
su gekilde ifade edilebilir.

g(x) =0 —o < x <-a
g(x) = 1+—§- -a<x <0
(I11.17)
g(X) =:1‘”§" 0 < x <+a
a

g(x) =0 +a < x <+
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Yukaridaki bagintilarda a biyiikliigii, ayriklagtirilan
ortamin diigiim noktalari arasindaki birbirine egit uzaklikla-
r1 gdstermektedir.

Sonsuz rijit taban kayasini ifade eden sinir gartlari
da :

u(x,h) ;=0 . v{x,h) =0 (—© < x < %x) (I11.18)

dir. Burada h, tabaka kalinlifini gdstermektedir (Sekil
I11.2).

Problemin yukaridaki sinir gartlari altinda, diizlem
gekil degigtirme durumu ig¢in ¢8ziimi Fourier Integral Donii-
glimii yontemi ile yapilarak Ekler bdliimiinde XII.l kisminda
agiklanmigtzir.

ITI.3.1. Tek tabakali sonsuz ortamda statik birim deplasman
sabitleri

Tek tabakali sonsuz ortamin statik birim deplasman sa-
bitleri, Ekler boliiminde XII.1l kisminda yapilan ¢dziimde
y = 0 sinir dogrusu boyunca yayiliglari elde edilen geril-
melerin, egdeger tekil kuvvetler olarak diigiim noktalarina
indirgenmeleri ile elde edilir.

Agaida yazilan ifadelerin boyutsuz olmalarini sagla-
mak amaci ile

X y -h
2 =— , 0 =—o , O =— (I1I1.19)
a a a

déniiglimleri ya§11m1§t1r.

Tek tabakali sonsuz ortam sinirindaki deplasmanlari,
diiglim noktalarinin deplasmanlarina baglayan

lu(z,0)] = [g(=)][d] - (II1.20)
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ifadesinde [g(z)] -matrisi, vapilan elastisite ¢dzliminde si-
mir garti olarak kullanilan (IIL.17) fonksiyonlarinin(III.19)
a gdre dfniligtiiriilmig sekillerinden olugmaktadzr.Bu matris
agik clarak ‘

{g(z)]==[[g(z)}o [g(z)]1 ..... [g(z)}j ..... [g(z)]n]

gseklinde yazilabilir. Matrise ait}[g(z)Jjalt matrisi

|

[g(z)]j = (III.21)
0 &g i

dir. g, Ve gg slnir sarti fonksiyonlari, Sekil(III.3)de
gbosterilen z, O eksen takimina gore

g, =89 =0 [-°°<z<(zjo—1)]
g, = 85 = 27(2;,°1) [(Zjo'l) S zjc]
8, = ge=—Z+(zjo+1) [zjO <z < (zj0+1)]
‘8, =85 O [(zjo+1) <z < 4w ]
(111.22)
seklindedir.

(I11.20) bagintisinda yer alan [d} kolon matrisi,diiglim
noktalari deplasmanlarinin alt alta gelmesinden olusmaktadir.
Agik olarak :

[a]™= [[a] [a], N I N L (I11.23)
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Sekil IIT.3

seklinde yazilabilen matrise ait [d]j kolon alt matrisi,

[d]j= (IIT.24)

seklindedir.

Ote yandan, sinir dogrusu ilizerindeki yayili gerilmeler,

[a¢z,0] = [o(z,0] [d]

bagintisi ile ifade edilebilir. [O(Z,O)] matrisi agik ola-
rak

[o(z,0)] =[[o(2)]  [o(=)] L e [o(z>jj e lo(2)] ]



38

gseklinde ya211abilir [d] deplasmanlarina iligkin 53(2)1
alt matrlsl, Kisim XII.1 de (A) ve (B) birim deplasman
durumlari igin y =0 sinir dofrusu boyunca yay111§lar1
elde edilen gerilme bilegenlerinden olugmaktadir :

[ (B )]
S0 o SR W
[o(2)] = (I11.25)
(B) (4)
“y -0 | (OY)IFO_J

0 diigim noktasindaki deplasmanlari, j diiglim nokta-
sindaki kuvvetlere baglayan

[#]; = B, [,
ifadesinde [k]jo ile gdsterilen ve agik olarak

- —

(k). YR

xx’ jo

(I11.26)

 pawg |
&
I

jo

%y 50 T

seklinde yazilabilen rijitlik alt matrisi, virttel ig teo-
remi ile, agagidaki gekilde elde edilir :

Denge durumu :

0 diiglim noktasinin deplasmanlari : [d]o

0 digim noktasina uygulanan deplasmandan [q(z,dﬂ#{o(z)]o[d]o
otiri sinirda olusan yayili kuvvetler 2
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j diigiim noktasinda olugan kuvvetler : {p]j==[k]jo[d]0

Virtiiel deplasman durumu :

j diigim noktasinin deplasmanlari : [d]j = [1]

j digim noktasina uygulanan birim
deplasmanlardan &Stiirii sinirda

olusan deplasmanlar : [u(z,O)]==[g(z)]j[I]
Diigim noktas1 kuvvetlerinin igi : [I]T[p]. ==[k]. Dﬂ
' Zjq*l ] Jo~~-o
Yayili kuvvetlerin igi :a ,[g(zf]§[0(z)]o[dgo dz
z. -1
jo

Integral isaretinin Onlindeki a degeri, degisken donii-
glimii - nedeni ile konulmugtur.

Virtiel is teoremi uyarinca yukarida yazilan iglerin
birbirlerine egit olmasi gerektiginden
z, +1

jo T |
[k]jo ¥y f [g(z)]j[c(z)]o dz (111.27)

z. -1

jo

elde edilir. [g(z)]. matrisinin elemanlari (I11.21) ve
(111.22) ile tan1mianm1§t1r' (II1.25) ile verilen [0(2)]
matrisi, Betti teoremi uyarinca esas kdgegenine gire si- ©
metriktir. Bu matriste yer alan gerilme bilegenleri,Ekler
béliiminde (XII.24),(XII.25) ve (XII.26) da Fourier ters
doniiglim integralleri halinde verilmigtir. Bunlar (III.27)
de yerlerine konulup integrasyon sirasi degigtirilerek &n-
ce z degigkenine gdre integrasyon yapilirsa, statik birim
deplasman sabitleri, belirli zs degerleri ig¢in Fourier
integralleri halinde elde edilir. Bu integral ifadeleri ve
sonuglari Ekler bdliiminde Kisim XI1.2 de verilmigtir.
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I11.3.1.7. Ozel Durum : Yar:i sonsuz ortamin birim deplasman
sabitleri

(XI1.32) ve (XI1.33) ifadelerinde, boyutsuz tzhzka
derinligi o = h/a nin sonsuza gotiiriilmesi ile ilk terim—
ler digindaki biitliin terimler sifira egit olurlar.Bdylece

4G 1 °°(1--cosn)2
. = L o= (14— _ -
(kxX)JO (kyy}Jo e (1 - ) n3 ccsnuJo dn
' o
) - 5
4G 1 (1-cosn)
k ). =(k ). ==—(l-~— —— sipnnz. d
( xy>30 YX)JO - - ) n3 ZJO n
o

elde edilir. Bu ifadeler, Kisim II1.2.1 de yari scnsuz or-
tam ig¢in verilen dinamik ¢dziime ait (III.12) ve (III.13)
ifadelerinin a >0 igin limitine kargi gelmektedir.
Kisim I1T.2.1 dé belirtildigi gibi a, degeri

wa

o /{gj
P

(I11.9)

geklinde tanimlanmakta ve boyutsuz frekans katsayisi olarak
adlandirilmaktadir.

Kisim XII.5 de yapildig: gibi

20 = %50 * k (k = =2, -1, 0, +1, +2)

doniiglimii ile yari sonsuz ortamin birim deplasman sabitleri,
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+2
4G 1 } : cosﬂzjk
(kxx)j0'= (kyy)jo =— (1+—) C, — dn
- K koo |
. (e}
S (I11.28)
+2 c
| 4G 1 81nﬂz;k
k ). =(k )., =—-———(1-—) C —
(o) so = Ggdsg —G } k- 3
n
, k=2 o
(111.29)

geklinde ifade edilebilirler. Bu ifadelerde,

1
C —:C ITID eme—
=%
2 +2 4
C_1 =:C+1 = =1
3
C 3
o 2

degerlerini almaktadirlar. Kisim II1.2.1 de (III.10) ile
tanimlanan BZ degeri ile Kisim XII.1 de (XII.16) ile tanim-
lanan k deferi gdzbniinde tutulursa

1 2
(l+—) =
K 1+8

2

oldugu goriillir. Bu durumda (III1.28) ifadesi, (XII1.64) ve
(XII1.65) seri agilimlarinda sadece ilk terimlerin gdzdniine
alinmasi halinde (IIT1.12) ve (III.13) ifadelerine kargi gel-
mektedir. (III.14.b) de gdzdniinde tutularak benzer gekilde
(I11.29) ifadesinin, (XII.66) seri agiliminda sadece ilk
terimin alinmasi halinde (III.14) ifadesine kargi geldigi
gosterilebilir. Bu durum, dinamik ¢8ziimin seri agilimlarin-—
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daki ilk terimin, statik birim deplasman sabitini ifade etti-
gini gbstermektedir. 1ki ¢8ziim arasindaki tek fark,integras-
yonun dinamik durumunda a_ dan, statik durumda ise sifir-

o , -
dan baglamasidir. Ancak yapilan sayisal kargilagtirmalar, a,
in pek biiylik olmayan degerleri ig¢in, bu farkin sayisal sonug-
lari hemen hig¢ etkilemedifini gdstermigtir.

Ozel olarak, yari sonsuz ortamda dinamik ve statik ¢oziim
ler i¢in yapilan bu kargilastirma, dinamik rijitlik matrisi-
nin (III.3) bagintisi anlaminda kurulmasi halinde ilk terim-—
lerde g¢ok iyi bir uyugma bulunduunu gdstermektedir.

IT1.3.1.2. Sayisal degefler

Tek tabakali sonsuz ortamin birim deplasman sabitlerine
ait sayisal deferler Kisim XII.2 deki (XII.38),(XII.39),
(XI1.40) formiilleri ile kolayca hesaplanabilir. o = h/a nin
cegitli degerleri ve =z;, 1n ilk 20 degeri icin BIDE ad-
11 altprogramla hesaplanan birim deplasman sabitleri Tablo
I1I.2 de verilmigtir.

I11.3.2. Tek tabakali sonsuz ortamda birim ivme sabitleri

Kisim (III.1) de belirtildigi gibi, sonlu elemanlar
yonteminde yayili kiitle matrisi kavrami, eleman igindeki
deplasman alaninin, statik ve dinamik durumlarda 8nemli &lgii-
de degigmedigi kabulune dayanair.

Sonlu eleman igindeki deplasman alanini, diiglim noktala-
rinin deplasmanlarina baglayan

[u]==[a][d] (I11.1)

ifadesinde [a] matrisi, sistemde geometrik uygunluk gart-
larini saglayacak gekilde seg¢ilen ve sadece koordinatlara
bagli olan "eleman deplasman fonksiyonu” nu ifade etmektedir.
Bilinen sonlu eleman tiirleri iginde bu matrisin kesin ifade-
si, sadece gubuk sonlu elemanlar igin elde edilebilmektedir.
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(III.1) bagintisinin dinamik durumda da gegerli olarak
kabul edilmesi halinde, eleman ig¢indeki yayili eylemsizlik
kuvvetleri

~ofs] = -p[a] [4] (11230
geklinde ifade edilebilir.

Diigiim noktalarina, esdeger tekil kuvvetler olarak etki-
yen

[p] =~ [m] [d]

eylemsizlik kuvvetleri, (III.30) daki yayili kuvvetlerin dii-
giim noktalarina indirgenmeleri ile elde edilir. Bu iglem,
virtiiel ig teoremi aracilifi ile asagidaki gekilde gergek-
legtirilebilir.

Dinamik denge durumu :

Diigiim noktalarinin ivmeleri : [d]

Elemandaki yayili eylemsizlik .. b
kuvvetleri 8 —p[u] = -p[a] [d]

Diigiim noktalarindaki eylemsizlik
kuvvetleri :

(] = - (@]
Virtiel deplasman durumu :

Diigiim noktalarinin deplasmanlari: [d] = [I]
Eleman i¢indeki deplasman alani : [u] = [a] [I]
Diigiim noktasi kuvvetlerinin isi : [I)T[p] =-[m] [d]

Yayili kuvvetlerin igi : —J [u]Tpf;]dv = -p J[a]I[a][é]dv

v \'



47

oldugundan, virtiiel ig teoremi uyarinca bu iki igin egitli-
ginden yayili kiitle matrisi elde edilir :

[m] =p J [a]®[a] av | (1II1.31)

v
Bu ifadede integrasyon hacim lizerinde yapilmakta ve p,
birim hacme gelen kiitleyi gdstermektedir.

Kisim XII.1 de yapilan ¢bziim ile tek tabakali sonsuz
ortamin statik deplasman alani kesinlikle belirlenmig oldu-—
gundan, (III.31) bagintisi ile tek tabakali sonsuz ortamin
kiitle matrisi de elde edilebilir.

(III.1) bagintisi, tek tabakali sonsuz ortam igin
agik olarak’

[d]q
[d],
[d],

(I11.32)

[ = [l (el [alye oo (ol oon[d],]

~ geklinde yazilabilir. Burada [d]. kolon alt matrisi, j
diiglim noktasindaki deplasmanin yﬁtayrve diigey bilegenleri-
nin alt alta gelmesinden olugmaktadir. [a]: alt matrisi
ise; |d}- =:[I], diger noktalarin deplasmanlari sifir
iken, teﬂ tabakali sonsuz ortamda olugan deplasman alanini,
segilen (z,8) eksen takimina gdre ifade etmektedir.

(Sekil III.4). Bu matris agik olarak
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(a,); (ag,);
[a]. = (111.33)
a . {a .
L Gy yy)sd

(aXX)' ve ( x)j , J  diigim noktasina uygulanan (B} birim
deplasman durumundan Stiirii, Kisim XII.1 de elde edilen u

v deplasman bilegenlerine kargi gelmektedir. Benzer sekilde,
ikinci kolenu olugturan (axy). ve (ayy)v ise (A) birim
deplasman durumundan olugan’ u” ve v deplasmanlarini ifade
etmektedir.

w2 =1 B 41 42 Zp Zye Zpgtt "
i T i A ik Sy cesmmemnes —j
i . i e z
U
Y
y4 1 o
} h]
H !
& “ 3
4 *
i
i
§
i
L7 777777777 7777777777777, I 777T7 27 ¥ 777777777777 TP ITITEVIT
1
1
v V,
-8 g

Sekil III.4

Tek tabakali sonsuz ortam sinirinda - 0 diglim noktasin—
daki ivme bilegenlerini, j diigiim noktasindaki eylemsizlik
kuvvetinin bilegenlerine baglayan [m]jo kiitle alt matrisi,
(IIL1.31) e gdre
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a

[m]. = pa’ [a];l;[a]j dz a6 (111.34)

e o Z=C

geklinde ifade edilebilir. Integrallerin O&niindeki a? dege-
ri degigken donligimi nedeni ile konulmugtur. Ag¢ik olarak

mxx)jo (me)jo
[m] o = : (111.35)
50 ey jo

gseklinde yazilabilen matrisin, "birim ivme sabitleri" adini
verdigimiz elemanlari da, (III.33) ve (III 34) e gbre elde
edilirler:

(o)
2
(mxx>jo s (aXX)O(aXX)j+(ayx)o(ag;)' dz dé
o 7= (II1.36.a)
_ .2 , |
(kay)jo = pa (am)o(axy)J.-r(ayx)o(ayy)j dz db
b=p o ' } ' (III.36.b)
My 50 = M) 50
a o0
2
. = .+ . dz db
(mY}’)JO ba (axy)o(axy)a (ayy)o(ayy)J i

6o z— (II1.36.¢)
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0 orijinine uygulanan birim deplasmanlarin olugturdu-

gu‘(axx)o'(axy)o’ (ayx) ve (ayy)o deplasmanlari Kisim

XII.1 de-(XII.22) wve (XII.23) ile Fourier ters doniiglimiin
integralleri halinde verilmigtir. '

Orijinden itibaren z;, boyutsuz uzakligindaki diiglim
noktasina uygulanan birim deplasmanlarin olugturdugu

(agy) 55 (axy)j"(ayx)j ve (ayy); deplasmanlarinin da ayni

eksen takimina gdre ifade edilmeleri igin, (XII.22) ve
(XII.23) bagintilarinda 2z yerine

zZ =2z = Z.
Jjo

konulmasi gerekmektedir (Sekil III.4). Bu durumda
e 1% = MMEjo N2 (II1.37)

oldugundan, (XII.22) ve (XII.23) deki biitiin integrallere

e 1M%jo biliylikligli, ¢arpan olarak katilacaktir.(XII.22) ve
(XI1.23) deki deplasman integralleri (III.36) bagintilarin-
da yerlerine konuldugunda, degigkenleri 6,z ve n olan iig
katli integraller elde edilmektedir. Bu integrallerin alin-
masi ig¢in, Kisim XII.4 de (XII.63) ile verilen Fourier
Convolution bagintisindan yararlanilmasi uygun olmaktadir.

- (III.36) bagintilari (XII.22), (XIL.23) ve (IIL.37)ile
~birlikte[§626nﬁne alindiginda, genel olarak
' o +oo

(m)jO = Fl(z’e’zjo)'Fz(z’e’zjo)dz*de

e=° 2=~

§ék1inde ifade edilebilir. Bu baintida yer alan F, ve F2
fonksiyonlari (XII.22), (XI1.23) ve (IIL.37) ye gdre
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[o0]
-inz
Fl(z,e,zjo) = fl(n,S,zjo)e. dn
—-—
oo
-inz
Fz(z,e,zjo) = £,(n,6, Zs o)e dn

- 00
geklinde yazilabilir. Bu durumda (XII.63) Convolution bagin-
tisinin uygulanmasi ile
o
(uﬁo) = 27 f ( n, o, z ) £ (n 0, z )dn dé (111.38)
6= 0 oo

elde edilir.

fl ve f2 fonksiyonlar: (III.38) de yerlerine konu-

lup ¢arpildiktan sonra © degigkenine gdre integrasyon
yapilarak birim ivme sabitleri,sadece 1 degigkenine bagl:i
1ntegral ifadeler halinde elde edilirler. (mxx) o Ve

( ifadelerinde integrandlar, 7 deglgkenlne gbre bi-
rer gl%t fonksiyon; (mxy) 0= (myx)-0 ifadesindeki integ-
rand ise bir tek fonk31yo% oldugundan Euler formiili
iano _ v e
e cosnzjo i sinn zjo

ile integrasyon bdlgeleri.0 — « aralifina indirilebilir.

Birim ivme sabitlerine ait ifadeler ve bu ifadelerde
yer alan integrallerin ¢dziimleri Kisim XII.3 de verilmig-
tir. Ancak bu kisimda verilen ifadelerde integrallerin alt
siniri olan sifir yerine a_, boyutsuz frekansi konulmugtur.

)
Bunun nedeni agafidaki Kisim III.3.2.1 de agiklanmaktadir.
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111.3.2.7. Uzel Durum : Yary sonsuz ovrtamin birim ivime
sabitleri

Kisim XII.3 de (XTII.41), (XI1.42) ve (XIL1.43) ifadele~
rinde, boyutsuz tabaka derinlifi « = h/a nin sonsuza
riilmesi ile ilk terimler digindaki blitiin terimler sifira
egit olurlar. BBylece yari sonsuz ortama 2it birim ivme sa-
itleri

cltu-

o

20a° 11 [ (1-cosm)®
(m__). =-— {(l-—+ ——) | ——/——— <cosn z. dn
xx’ jo o . 2 } 2 jo
%o (I11.39.2)
20a’ 1 1 { (1-cosm)?
(m_ ). = (l+—+—) | ————— sinn z. dn
yvijo o < <2 A4 1@
%
(IIT1.39.b)
(o]
2pa2 i { (1—cosn)2
(m ). =(m ). = . sinn z. 4dn
Xy’ jo yx’ jo 4 KZ n5 jo
40
(I11.39.c)

seklinde elde edilirler. Risim IIT.2.1 de (III.10) ile ta-
nimlanan 82 degeri ve Kisim XII.1 de (XII.16) ile verilen

K deZeri gdzdniinde tutulursa

1 1 1+384
1- + =

K K2 (1+32)2

1 1 3+ £
1+ + =

K k2 (1+82)2
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(1-85?

1
oldugu gdriilir. Ayrica Kisim XII.5 de yapildigi gibi

z. —z. +k (k = =2, -1, 0, +1, +2)

ddniiglimi yap1lip (III.39) ifadeleri G 1ile carpilir ve bo-
liinlirse ’

(o]
4G a2 32 (1+384)‘ cosn z.
(mxx)'o T } Ck 2.2 ) 5 = dn
J T & 2(1+8%) n°
o k—2
0
(III.40.a)
2 +2 s 4
4 2 ¢ (3+87) cosn zjp
(m_ ). =-—* 2 C - 2l dn
yy'ie T o Lk } 2046H%
(III.40.b)
+2 o
4G a2 (1—82)2 sinnzjk
(m ). =(m ). = —_— } Ck dn -
Xy Jo yx©jo T G 2(1+82)2 nS
T k=2
o
elde edilir. Burada (111.40.¢)
1
C2=C 42 4
€ =Cnq=-1
3
Co 2
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‘degerlerini almaktadirlar.

—wz{nﬂ.o garpiminin, j noktasindaki eylemsizlik
kuvvetlerinin olugturdugu alt matrisi ifade ettifi agiktir.
(II1.9) tanmim ile :

w232

£
P

oldugu gbzdniinde tutulursa, (III.40) ifadelerinin fwz ile
¢arpiminin, (XII.64), (XII.65) ve (XII.66) seri agilimlarin-
da ikinci terimlerin alinmasi halinde (III.12), (III.13) ve
(III.14.d) ifadelerine kargi geldigi goriilmektedir. Bu du-
rum, dinamik ¢dzlime ait seri agilimlarindaki ikinci terimle-
rin, birim ivme sabitlerini ifade ettigini kanitlamaktadir.
Ancak bu durumu saglamak amaci ile tek tabakali sonsuz orta-
min birim ivme sabitlerine ait (XII.41), (XII.42) ve
(XI1.43) ifadelerinde integrallerin alt sinirlarinin sifir
yerine a_ olarak alindifi gdzonlinde tutulmalidir. Ciinki
(III.40) integrallerinin sifirdan baglamasi halinde
(I11.40.a) ve (III.40.b) integralleri logaritmik anlamda
tekillik gbstermektedirler. Bu sonug, yari sonsuz ortamda

ve onun genel halini olugturan tek tabakali sonsuz ortamda,
frekanstan bagimsiz kiitle matrisi taniminin miimkiin olamaya-
cagini ortaya koymaktadir. ’

II1.3.2.2. Sayisal degerler

Tek tabakali sonsuz ortamin birim ivme sabitleri,
Kisim XII.3 de agiklanan integrasyon sonug¢larina gdre
BIVME adli altprogram yardim ile sayisal olarak elde
edilmigtir. a_ ve @ nin gegitli degerleri igin
z:, = 20 ye kadar hesaplanan birim ivme sabitleri Tablo III.
de verilmigtir.
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BOLOM IV

USTYAPI-ZEMIN ORTAK SISTEMININ HAREKET DENKLEMLERI

istyapi~zemin ortak sisteminin deprem sirasindaki tit-
regimi, iki tiir titregimin toplamindan olusmaktadir. Bunlar-
dan birincisi, iistyapinin bulunmamasi durumunda, zemin orta-
minin deprem etkisi ile kendi iginde titregimidir. Ikineci
tliir titregim ise, {istyapinin varligi nedeni ile sistemde bi-
rinci tilir titregime ek olarak meydana gelen ve kargilikla
etki olayini yaratan titregimdir. Bu iki tiir titregime ait
deplasmanlar sirasi ile [d]a ve [d] geklinde gdsterildi-
ginde, ortak sistemin toplam deplasmanlari

[a] = [d]® + [d]

olarak ifade edilebilir. Bu bagintinin sadece lineer sistem-
ler i¢in yazilabilecegi agiktir. Ancak, lineer olmayan sis-
temlerde de yeterince kiiglik zaman ve gekil degigtirme artim-
larinda sistemin lineer davranacagi kabul edilebilmektedir.
Bu anlamda yukaridaki bagintinin genel oldugu sdylenebilir.

Ustyapi-zemin ortak sisteminin_deprem hesabinin amaci,
[d] toplam titregimlerinin veya [d] ek titregimlerinin,
ve bunlara bagli olarak diger dinamik biiyiikliiklerin belir-
lenmesidir. Asagida agiklanacaji gibi, zemin ortaminin li-
neer clup olmamasi ve deprem verisinin probleme katilma bi-
¢imine bagli olarak, bazi durumlarda hesabin [d] toplam
deplasmanlari ile yapilmasi zorunlu olmakta, bazi durum-
larda da [E] ek deplasmanlari ile hesap yapilabilmektedir.

Ortak sistemde, zemin ortaminin sinirli bir b8lgede
ideallegtirilmesi durumunda deprem verisi, sonlu derinlikte
zemin ortamini sinirlayan ve iistyapinin varligindan etkilen—
meyen sonsuz rijit taban kayasinin hareketi olarak gdzdéniine.
alinabilmektedir. Bu durumda zeminde, _ d]a deplasmanlari
ile {istyapinin katkisini ifade eden {d deplasmanlarini
ayirmak miimkiin olamadigindan [d] toplam deplasmanlari ile
hesap yapilmasi zorunlu olmaktadir. Bu hesap sekli, zeminin
lineer olmamasi durumunu da kapsamaktadir. Ancak bu durumda
listyapinin zemine etkisinin, dolayisi ile kargilikli etkinin
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mertebesini agik olarak izlemek olanafi bulunmamaktadir.

Ortak sistemde, zeminin ideallegtirme biciminden bagim~
s1z olarak, deprem verisinin zemin yiizeyindeki yer hareketi
gseklinde gdzdniline alinmas1 da miimkiindiir. Yiizeysel yer hare-
keti bu anlamda,

- Zemin yilizeyinde alinmig bir deprem kaydi olarak veya,

- Tabakali zemin ortaminda, taban kayasindaki yef ha-
reketinin bir veya iki boyutlu dalga analizi ile zemin yiize-
yine aktarilmis gekli olarak diigliniilebilir.

Ortak sistemin deprem hesabinda yiizeysel yer hareketi-
nin deprem verisi olarak gdzéniline alinmasi, pratik bakimdan
gercege daha uygun diigsmektedir. Ayrxca bu tiir yaklagim, he-
sabin [d] .toplam deplasmanlari yerine [3] ek deplasman-
lari ile yapilabilmesi olanagini saglamaktadir.

Bu konuda, bundan 8nce yapilan galigmalarin gogunlugun-—
da, zeminin homogen ya da homogen yatay tabakalardan olugmug
‘bir ortam oldugu kabul edilmekte ve depremin genellikle sade-~
ce yatay bilegeni gbzdniine alinmaktadir. Bunun sonucu olarak
ylizeysel yer hareketi, zemin yiizeyinde yatay dogrultuda ilini-
form alinmig olmaktadir.

Bu caligmada da deprem verisi olarak yiizeysel yer hare-
keti esas alinmaktadir. Ancak zemin ortaminin homogenligi
veya tabakali olmasi ile ilgili hig¢bir kisitlamanin bulunma-
mas1 diiglincesi ile ylizeysel yer hareketi, listyapi temelinin
tabanina rastlayan zemin noktalarindaki yer hareketi olarak
hesaba katilmaktadir. Yiizeysel yer hareketi bu anlamda,iist-—
yapinin bulunmadigi durumda,

— Dogrudan dogruya temel tabaninda alinan deprem kaydl.
olarak veya,

— Temel disindaki herhangi bir zemin noktasinda veya
taban kayasinda alinan deprem kaydina gdre, temel tabaninda-
ki zemin noktalarinda hesaplanan deplasmanlar ve tiirevleri
seklinde ifade edilebilir. Temel tabaninda veya digindaki
bir noktada deprem titregimleri OSlg¢iilmemig ise, benzer dep-
rem kogullarinda taban kayasi i¢in bilinen kaydin, yaklagik-
1181 gbzoOniinde tutularak, bu amagla kullanllabllecegl agik-
tir. L
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Caligmanin bu bdlimlinde, yukarida agiklanan esaslar
gercevesinde, {istyapi—zemin ortak sisteminin deprem hesabi~
na iligkin genel bagintilar ¢ikarilmig; zemin, temel ve
deprem kogullari ile ilgili gegitli 6zel durumlar igin ha-
reket denklemleri elde edilmigtir.

IV.1. GENEL BAGINTILAR

Ustyapi ve zeminin ayrik sistemler olarak ideallegti-
rilmesi ve sOnilimin viskoz nitelikte kabul edilmesi durumun-
da, deprem etkisi altinda ilistyapi-zemin ortak sisteminin
hareket denklemi genel olarak

[M]© [a]€ +[c]® [4]€ +[s]€ [a]© = [0] (1v.1)
geklinde vazilabilir. Bu denklemde [M]C ,[C]c s [S]c' or-
gakcgisﬁﬁmin kﬁylg, sonlim ve rijitlik matrislerini,

Ld] s {d} ,[d] ~ise, Ustyapiniu bulunmamasi duruwmunda-
ki yer harveketini de igeren toplam deplasmanlari ve zamana

zOre tlrevlerini gBstermektedir.

(IV.1) hareket denklemi kisimlara ayrilarak agagidaki
gekilde diizenlenebilir :

e, s, [0 g [ee, e, o e
Dy, DS, D |5 + |f, [df, [d]

o 0, M@ o [

ty

[c], |\,

- yt YL © Y yt YL Ty
1, B5 O [ag) |l

+ |01y, [815 (S),|[d| = |(c]
S NS N [ 1 B 1] B (-
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Bu denklemde Ld}y s [dT

ve temel tabani disindaki a 1T
manlarini gdstermektedir (Seki Y, Ustyap
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Sekil IV.1l. Denklemlerdeki indisleme igleminin gematik
gbsterimi.



te yandan, ilistyapinin bulunmamasi durumunda, toplam
deplasmanlar cinsinden, genel olarak homogen ve lineer elas—
tik olmayan zemin ortaminin hareket denklemi

12 rqe qa a

p* [@® « [c)® [a]® + [s]° [d4)° = [0] (17.3)
geklinde yazilabilir. Bu denklemin terimlerindeki (%) indi-
si, "altyapi" = olarak adlandirilan zemin ortamini ifade et-

mektedir (Sekil IV.1).

Zemin ortaminda, daha sonra ilistyapi temelinin tabanina
rastlayacak olan noktalarin toplam deplasmanlar:i ile diger
noktalardaki toplam deplasmanlar birbirlerinden ayrilarak
{Iv.3) denklemi,

b2, r}!f [a12] el [[aﬂ 12, [s15Cds] [Led]
] !J‘.. =

rae rnaa il roal 12 1@ |l 1a -a lirqa r9
é,“l tz ‘..}‘L] tth Ed] t_] L[C.! tz L"‘] B ,:J d] } L[b] tz [SJ tt Ld] t,‘i LOJJ

(IV.4)
geklinde diizenlenebilir. Sekil (IV.1l) den anlagilabilecegi
gibi, alt matrislerdeki (t) indisi temel tabanina rastlaya-
cak olan zemin noktalarini, {z) indisi ise diBer zemin nok-
talarini ifade etmektedir. '

Ustyapl-zemln ortak 31stem1nde toplam deplasmanlari
ifade eden [d]z y {d]t . [d] kolon alt matrisleri asa-
gidaki gekilde kisimlara ayrllablllr.

@] [+ @]
[~ |[d¢] = |[d°+ [@, Caws)
(@2« [

VA
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Burada [d]i ve ,[d]a istyapr mevcut degil iken,te-
mel tabani ve temel tabani’ digindaki zemin noktalarinda
depremin meydana getirdigi toplam deplasmanlarl,-[a]t ,[d]
ise bu noktalarda Ustyapinin etkisi nedeni ile olugan ek -
‘deplasmanlari gdstermektedir, [d}a kolon alt matrisi, te-
mel tabaninda depremin meydana gegirdigi [d]a toplam dep—
lasmanlarindan {istyapiya statik anlamda aktarilan, fakat
iistyapida eylemsizlik kuvvetleri meydana getiren "kuasi-
statik" deplasmanlari, fﬁ] ise bu deplasmanlara gdre rela-
tif olarak ifade edilen ﬁszyapl dinamik deplasmanlarini gds—
termektedir. Ustyapiya statik anlamda aktarilan [dJa deplas-
manlari, eylemsizlik ve sdniim kuvvetlerinin bulunmadigi du-
rum i¢in (IV.2) denkleminin {iglincli satirindan yararlanila-
rak elde edilebilir :

(s, [a12+ [s],,,[412 = [o] 1v.6)

bagintisindan
[42 = -[s) 3181, [l (7.6

elde edilir.
[y, - -[S];;'[S]yt | (1V.7)

olarak tanimlanan ddnligtiirme matrisinin j inci kolonu,te-
mel tabaninda (d;)® = 1 den iistyapiya statik anlamda akta-
- rilan deplasmanlari ifade etmektedir (IV.6a) ve (IV.7) den -

(]2 = 1], [ | 1.

bulunur.

Ote yandan, ilistyapi-zemin ortak sisteminde temel ve te-
mel tabanindaki zemin deplasmanlarina iligkin kiitle, soniim
ve rijitlik alt matrisleri igin
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7, = Bl DO,
€], = [cl5,+ [€],, (17.9)

[s1f, = [s)5 .+ [,

I

bagintilari yazilabilir. Burada Dﬂ [pltt , [8 ]tt tst-
yvapr temelinin katkisini ifade etmektedlrler.

Buraya kadar vazilan bajintilar, ayrik sistem olarak
ideallegtirilen zeminin jeclojik ve igsel yapisindan bagim-
51z olarak elde edilen genel ifadelerdir. Bu bdlimin agagi-
dakil kisimlarinda, zeminin lineer elastik olmasi ve olmamasi

genel bagliklari altinda uygulamada s6z konusu olan 6zel du-
rumiar ele alinacaktir. '

IV.2. LINEER ELASTIK ZEMIN DURUMU

Zeminin davraniginin lineer elastik olarak kabul edil-
mesi durumunda, {istyapinin mevcut olup olmamasi, zemin orta-
mina ait kiitle, sdniim ve rijitlik alt matrlsler1n1 etkilemez.
Bu anlamda

Mg, = M3, b5 - 043, 5, - b3

e L N L e G A 1

(81, =815, » [l = (815, . [slg, =8l

tz tz

(1v.10)
egitlikleri yazilabilir.



oM
o0

Zemin ortami lipeer el-ncvik cidufuna gdre, (IV.35, (IV.3}
ve {(IV.10) bagintilari gbzd da uizral. {IV.5) denklemi
{(1V,2) denkleminin birinc ikinci satirlzrindan cikarzla-

rak diizenlenirse,

S S B T R R G C R

S

S P PO 1 P TP B 15 N O RN

I R v | i B [ R T W S I 1
T T 0 I A T e
65, B O T, @ @ o @
T PO Y SO PO P O R " O 1
] 1 s rd] o M Rl T

_'-r-o*’ [Sj'yt (5] yy JLEy ] L.[”)"‘ My Dy 1l
o] [ © @]l [ o iR
-l W, My |[@2-0 B, 6, ||
712 ' Y {, a

o [, [, |2 | [, B, |2

(1v.11)

lineer elastik zemin durumu igin lstyapi-zemin ortak sistemi-
nin genel hareket denklemi elde edilir.

[d]a nin (IV.8) deki deferi ve tiirevieri (IV.11) de yer-
lerine ° konularak
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RS O I | I A S o A C R -
D02, b5, B, || [, | + | (@3, (€5, [, || @,
O bl b @] [0 [y [, || B

(512, [s1°, [o] || (@, (]
512, [s15, (8], || (@), |= - |{0FD o+ D], (D, ] [42
[ O], B, || [@,] (08,000, 00,0 (a3

yt vy

[0] T T
B o O N1 b B 1 B 5 O N
[06), o+ €1, 2], J I ]

(1v.12)
denklemine varilir.

Ustyapinin bulunmamasi durumu igin bilinen ve temel ta-
banindaki yer hareketi nlarak adlandirilan {d]a ve tlirev-
lerine bagli olarak (IV.12) differansiyel denkléminin ¢dzii-
mi ile {istyapinin varligi nedeniyle temel ve temel digindaki
zemin noktalarinda olusan ek deplasmanlar ve istyapida mey-
dana gelen relatif deplasmanlar hesap edilmig olurlar. Eger
istenirse, (IV.5) yardimi ile toplam deplasmanlar da hesap-
lanabilir. (IV.5) de yer alan [d]z deplasmanlarl,(IV 4)
denkleminin zemin i¢in bagimsiz olarak ¢oziimi ile; Dﬂ ise
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(1V.8) bagintisi ile [d]: deprem dep1asman1ar1na bagli ola-
rak elde edilebilirler.

(1v.12) denkTemlnln sag tarafinda yer alan ve yer hare-
ketini ifade eden Dﬂ ile tiirevlierinin temel boyunca iini-
form olmaei zorunluluﬁu yoktur. Bu anlamda; zemin ortaminin
temele rastliayan kesiminin homogen olmamasi nedeni ile dep~
rem kayxtiarinin noktadan noktaya deZigmesi veya &zellikle
barajlarda olduZu gibi deprem dalgasinin ilerleme doZrultu-
sunda {istyap: temelinin gok uzum olmas: nedeni ile dal
erigme zamaninin temel boyunca Uniform olmamasi (Gezi
vem dalgasi) [11] duremlari icin de (IV.12) denklemi

& 4 s

tuda ;;‘h p: , 3% F
digindaki ala oluga: r {temel ¢
min ortami) deplasmaniarini gdsterdifine gire
Ry i A

42 pdZ; NI | |es, ECJZJ-l \Lals

+ b

M2 m? |4 E.‘J 2 2 12
M. M55 il . © JJJ! Ld il

f

(Iv.13)
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dir. Bu denklem, iki denklem olarak agik bic¢imde yazilir ve
d? elenirse (IV .13) denklemi yerine

Wl (412 rq1d o7 la T
u, [d]° + [c]. [4]T +[s], [l = V.14
Y.Jl I..]a [Jll.Ja s.]_!_[aa i_h] ( )
alde ediliy. Bu denklemde,
1
- c T Taa
R
- O .
- E a il roa A La
817, as + 1 ——-[s]%, ~[c]?. ] a°
TUal J s ay ~Ta3- 1
D
33
R ]
sek ifade adilebilir. (IV.14) Un ¢Bziimi ile elde edilen
4] tiirevlierinden temel tabanina rastlayan noktalara
ait” viar ayrilir, |d 2 ye tiirevieri olarak (IV.12)

- s T e . 2
denk ideki yerlerine  konulursa, deprem kaydi agisindan
ortaya gikabilecek bu Hzel durum da (IV.12) genel denklemi
ile edilmig olur.

gib1i
taminda deprem kaydinin temel tabanindaki noktalar igin dog-
rudan dofruya bilinmesi durumunda hesap i¢in (IV.12) denkie-
mi yeterli olmaktadir. Deprem kaydinin temel digindaki bix

ibi, genel olarak homogen eclmayan zemin or-
7
g
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nokta ig¢in bilinmesi durumvnda ise, ayrica zemin oriamin
ait (IV.14) denkleminin ¢Ozlilmesi gevekmektedir. Ozel ol
rak zemin ortaminin homogen ve bunz bagli olarak yer har
ketinin ortamda {iniform kabul edilmesi durumunda temel t
bani ile diger zemin noktalarindaki deprem kayitlari ay
clacagindan yine tek bir denklemin ¢dzimii yeterli olmakta-
dir.

I1V.2.1. 0zel durumlar

IV.2.1.1. Temel tabaninda deprem titresimierinin iuniform

oimas1 durumu

Zemin ortami genel clarak homogen olmamakla birlikte,
temel tabanindaki zemin kogullarinin temel boyunca deZigimi-
nin yer hareketine etkisi uyguiamada genellikle terkedilmek-
tedir. Gezici deprem dalgasinin da sz konusu olmadizi du-
rumiarda, listyapi mevcut de3il iken bilinen temel taban:
deplasmanlari ve tiirevleri (yer hareketi) temel boyunca {ini-
form olarak alinabilirler. Bu durumda s8z konusu deplasman-—
lar,

[4]7 = [0 4t V] oy 4y (1V.15)

gseklinde tanimlanirlar. Burada d ve d_ , lUstyapinin
bulunmamasi durumunda temel tabaninda iinif6fm kabul edilen
ver hareketinin yatay ve dligey bilegenlerini, Bﬂrh ve
[thv ise temeldeki yatay ve dligey liniform harekete ait
donligtlirme matrislerini gostermektedirler.

[d]i deplasmanlarindan &tiirli Ustyapiya statik anlam—
da aktarilan deplasmanlar da (IV.8) yardimi ile

ré o= ry T
[Ld]y: [T]yt[i_‘-}] th dth+ EU] tv dt\/] (IV.16)
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seklinde ifade edilirler.

(IV.15) ve (IV.16) da verilen [d]: , [d]12  ve tiirevie-
ri (IV.12) de yerlerine konursa, harekét denkeminin sag ta-

rafindaki terimler agagidaki gekilde elde edilir :

p— - —

(0]

RS O B P T N N
| 54,0, 1, |

- I

[o]
C N O O AR T

(], +e] [,

I [o] )

8,41, [0, | (00, agtld,, a1

i (o]

Burada [U]t ve [Q]tv temelde rijit cisim hareketi-
ni ifade ettiklerinden, 1kinci ve iigiincli terimlerin tiimi
ile si1fira esit olacaklari kolaylikla gdriilebilir.

BSylece, iistyapinin bulunmamasi durumunda temel taba-
ninda Gniform kabul edilen depremin sadece ivmesine bagli
olarak, {istyapi-zemin ortak sisteminin hareket denklemi
asagidaki gekilde elde edilir :
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B, e Dy (| @)+ |, K, [ e | 2

I v O | I B R 11

Fa1 3 g 27
g i
g.."’j zz [D.! LO.i {(‘".i z
\ - a “ -
+oisly, [slD. [s]
R A R ty
oo . o
10} 13 fsl
e tye Wy g E
— "
7 _
[o]
i -
- LLU L ( i
{ i diginda

alinzn de i veri <

(IV.14)

deplasmanlarinin, yaﬁ §arL E: - : g

rak alinmalar: gerekmektedir. Uzel olarak zemin ortam: homo—

pOZ, D05, [l || (@,] |[d2, €2, [ | @

gen ise, (IV.1%4) denkleminin ¢Bzimiine gerek olmadig: 3ngt1rg




IV.2.1.2. Temelin biitiin dodrultularda sonsuz rijit ve
temel tabaninda deprem titresimlerinin
tiniform olmas1 durumu.

Uygulamada lstyapi temelleri bazi durumlarda mutlak an-
lamda, bazi durumlarda da temel zeminine gdre relatif anlamr
da sonsuz rijit olarak kabul edilmektedir.

Ustyapi temelinin genel olarak {i¢ boyutlu sonsuz rijit
bir cisim olarak kabul edilmesi durumunda, temelin herhangi
bir noktasinin deplasmanlari, se¢ilen alti bagimsiz deplas—
mana bagli olarak ifade edlleblllrler [16]

la], =[] [a], (1V.18)

Burada Edg ., rijit temelde, belirli bir eksen takimina go-

re koordinatlar: ifade edilmig herhangi bir noktanin ﬁg
lineer ve li¢ agisal deplasmanindan olugan kolon matrisi,

[d ] secilen alti bagimsiz deplasmandan olusan kolon
matr;51, T ] ise bu iki matrisi birbirine baglayan (6x6)
mertebeden déniigtiirme matrisini g&stermektedir.

Ustyap1n1n etkisi ile temelde ve temel tabanlndakl ze—
min noktalarinda olugan [dg]t ek deplasmanlari, temelin
bagimsiz ek deplasmanlari cinsinden

4], =[] tA[&;] . (1V.19)

seklinde ifade edilebilir. Bu bajintinin, koordinatlari be-
lirli diiglim noktalari ig¢in ayrik olarak yazilmasi ile

[, - [, [, av.20)
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elde edilir. Bu bagintida La] s diilim noktalarindaki

ek aepiasmaﬂlarln alt alta ya211mas:ﬁd3n oiugan kolon mat—
risi. [d‘] ise temeldeki bagimsiz ek deplasmanlara ailt
kolon mafrisi, gostermekLealr. [ﬁ] rijit donlgtirme mat-
risi, her diigiim noktasi ig¢in yazilan Toly alt matrisleri-
nin alt alta dizilmesi ile elde edilir. m temeldeki dii—
glim noktasi sayisini gistermek lizére '

T]'i=[[:r1]t [t,], ..,...[Ti]t [Tm]t] (IV.21)

Temel tabaninda, lstyapi mevcut degil iken bilinen wve
iniform olarak kabul edilen deprem deplasmanlari (IV.19)ve
(IV.20) ye benzer sekilde yazilabilir:

)2 - [ )2 (1v.22)

[@? = [1.0e]2 | (1v.23)

Baglm81z deprem deplasmanlarlndan olusgan [d ] "kolon mat-
risi ise,
a _ <

ltdo]t [o] th- th c’:It:v tv (1V.24)
geklinde yazilabilir. Burada d ve d tiniform yer ha-
reketinin yatay ve diigey bilegenlerinij; Ué]th deprem
dogrultusundaki yatay deplasmanlarla ilgili elemanlari 1,
digerleri sifir olan, Ué] ise diigsey deplasmanlarla 11—

gili elemanlar:i 1, dlgerler1 sifir olan (6x1) mertebeden
matrisleri gostermektedlrlera

(IV.22), (IV.23) ve (IV.24) den
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i

[0,

t [Tx]t[[UO] th'dth + [Uo.'l tv dtv] | (1Iv.25)

(2 - U, [0, * By 4] avee

elde edilir.

Temelin sonsuz rijit olmasi nedeni ile, bu &zel durum—
da deprem deplasmanlari ile birlikte temelde olugan ek dep-
lasmanlarin listyapiya aktarilmasi da kuasi-statik nitelikte
olmaktadir. (IV.8), (IV¥.20) ve (IV.23) gdzdniinde tutularak

[dy = 71, Llel¢ + LEJJ% O], [ e )]

veya

(] s [Ty J T (IV.26a)
tanimi ile '

[d]f, = [y, Te1s + [@0 - ‘(IV.‘27)

bagintisi yazilabilir. (IV.26a) ile tanimlanan [To] £
lUstyapiya statik anlamda aktarilan deplasmanlari, ba£1m31z
deprem ve temel deplasmanlarina baglayan doniigtiirme matri-
sini gostermektedir. [d]_ =~ ise bu 8zel durumda, (IV.27)
ile ifade edilen [d]a dgplasmanlarlna gdre relatif iistyapa
dinamik deplasmanlar¥n1 gdstermektedir.

Temelin sonsuz rijit olmasi ve {istyapinin temele rijit
olarak baglanmasi nedeni ile, hareket denkleminde, temel ve
listyapinin birlikte rijit bir cigim olarak hareketini ifade
eden kisim, alti bagimsiz deplasmana bagli olarak Betti teo-



78

remi aracilifi ile elde edilebilir [15, 16]'. Betti teoremi
ile karsilagtirilacak iki durumdan biri, sistemin verilen
dig etkiler altindaki "tabif durum” u, digeri ise agagida
tanimlanacak olan "birim durum” dur.

1) Tabil durum :

Deplasmanlar :

[H;]t s [a;]t== ET;]EEE;JE ’ _E§]£== Eﬁ]t[a;]t s
3= 5], (5] [ [

Dis kuvvetler :

a) Eylemsizlik kuvvetleri :

Toplam deplasmanlara bagli olarak temelde :
. — . a : __J ‘e a :
-, M de + )] =-[, ], [[a] CAN

temel tabanindaki zemin noktalarinda :

b5 81,002, 8, = -Bd2, 1 5] 002, B,

Ustyapiya statik anlamda aktarilan deplasmanlar ve re-
latif lstyapi dinamik deplasmanlari ile ilgili eylemsizlik
kuvvetleri :

-0, [+ (T = -0l [r ] (812 + (81304 [4),

yy- oyt
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b) S8niim kuvvetleri ¢

Temel tabanindaki zemin noktalarinda ¢
(1% (4 - [A12 ], = =[a]? (1] (4,1 ~[c]° (4],

c¢) Temel tabani digindaki zemin noktalarinin ek deplas
manlarindan, temel tabaninda olusan kuvvetler :

~[51% [a],

2) Birim durum :

Deplasmanlar :

-, @~ @r,g 6 . @ ,00

(412 = [1o),,, 1]

Dis kuvvetler_:
(512 [a) ~ [s12 [, [1]

Yukaridaki ifadelerde gdriilen Dﬂ matrisi, p birim
hacme gelen kiitlesi g8stermek iizere



¥ e o (1V.28)

dir.

Betti teoremi uyarinca, tabif durumdaki dis kuvvetlerin
birim durumda yaptiklari isin, birim durumdaki dis kuvvetle-
rin tabii durumunda yaptiklari ige esit oldufu yazilirsa,

- { [z 17, [r,] [, av - J 2 )7, fr,] (5], av

v v

B T R D 8 P Y 0 I Y

(ol g B (81 T80 1y B (4 - B B, B, (5],

yy- o
~ErT [ T8~ [aT (s 2 T, —[0s1°, ] 1], [,
(1v.29)

elde edilir. Bu gekilde elde edilen denklem, (IV.11) genel
hareket denkleminde temel ve {istyapinin dinamik dengelerini
ifade eden ikinci ve {iiglincii satirlarin toplaminin, bagimsiz
olarak segilen serbestlik derecelerine gdre indirgenmesine
kargi gelmektedir. Yukaridaki ifadelerde {istyapi kiitleleri-
nin tekil oldufu kabul edilerek
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[l , = D] §t=[0] ~(1v.30)

alinmisgtir.
(IV.30) ile birlikte (IV.20) ve (IV.27) bagintilaryi
gdzonilinde tutularak (IV.11l) genel hareket denkleminde iist-

yapinin dinamik dengesini ifade eden iigiincii satir agik ola-
rak yazilirsa

0, , (] + L], +[s]fal,

= -, [Tolydla J¢ + 8] R (v.3n)
elde edilir. Burada, temeldeki rijit hareket nedeni ile

(51, [1]  [[a0] 2+ (€] 1 = [o]
(], [1] 8,5 + (&1 1= [0]

oldugu gdzdniline alinmigtir.

Benzer gekilde, (IV.11l) hareket denkleminde, temel
tabani digindaki zemin noktalarinin dinamik dengesini ifa-
de eden birinci satir, (IV.20) gdzdniinde tutularak acik
sekilde yazilirsa
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B2, 8], #0020, ), + 192,00, + (2,00, 60,

SIS [, + (12, (6], — (o] 1v.32)

elde edilir.

(IV.29) denkleminde

[¥%,] ttg‘ J [r,] ': [¥] tt [Tx] ¢ &V

v

15~ [, 092,00,
D%]i£= Bﬁj:t 4 ﬁ%]tt

(Iv.33)
[c )%= [1];lcl2, [r],

[s,]5= [T0s12, [0,

170 W R

kisaltmalari yapilip (IV.24) bagintisi g6z6nﬁnde tutularak
(Iv.29), (IV.31) ve (IV.32) denklemleri tekrar bir araya
getirilirse agagidaki hareket denklemine varilir :



[ 02,

(702,

b0 [,

(Bt gt e ],

yy - oyt

b, 7]

[cls, [,
o2,

(0]

(815 (1],
l-:So:l vit

[0]

[o]
[o]

[c]

(o]
(0]

[s]

vy L

wll [?QY

(o]

%0,

@, |

@],
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[0]

=~ ], + [Mo]yy [V dentlo ], 4., ] (1V.34)

IV.2.1.3. Temelin sadece bir dogrultuda sonsuz rijit ve
temel tabanindaki deprem titresimlerinin ayn?
dogrultuda iiniform olmas»

Uygulamada gofu kez yer hareketinin yatay diizlemde sa-
dece belirli bir dogrultudaki bilegeni gdzOniine alinmakta,
genellikle Onemsiz olduklari ig¢in diger bilegenler terke-
dilmektedir. Ote yandan {istyapi temelinin genellikle yatay
dogrultuda, diger decgrultulara oranla sonsuz rijit olzrak
alindi1g: yine uygulamadan bilinmektedir. Bu nedenle,calis~
manin bu kisminda, ilistyapi temelinin yatay diizlemde belir-
1i bir dogrultuda sonsuz rijit ve temel tabanindaki yer
hareketinin yine ayni dogrultuda ve temel boyunca {iniform
olmasi durumu incelenecektir.

Temel tabaninda, {istyapinin etkisi ile olugan ek dep-
lasmanlar, yatay ve diger dogrultulardaki ek deplasmanlar
olarak iki kisma ayrilip

[CIS
[d], = (IV.35)
[d,,
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geklinde ifade edilebilirler. Bu aylrlmé paralel olarak,te-~
mel ve temel tabanindaki deplasmanlarla ilgili alt matris-

ler de kisimlara ayrilarak agagidaki sekilde yazilabilirler:

M2, =[M2 ., [M2.1. D% - (02"
[ =[5, [€5.,1. M- [E3"

[s12, ='[[s]:,th [512 o1 » [815, = L1507

rac c 7] - Ac ' c
M5 05, [ Do el
c = il
PMee =) (€],
c ' c c c
L[MJ tv, th [M] tv,tv | _[C] tv,th [C] tv.,til_‘

e | c
[S] th,th [S] th,tv

],

c c ,
[S] tv,th [S] tv,tv |

0 [, ,
o, - [d] - 5]y

ty
M, Devry | 5]

r
[S] th »Y

tv,yd
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Py = bl [y, - @5 5 B, = B

ty

‘(IV.36)

[, » [, » Bl dicinde DS, ., [, ,[8°,

ye benzer ifadeler yazilabilir.

Ustyap: temeli yatay dogrultuda sonsuz rijit oldugundan;
temelde koordinatlari belirli noktalarda iistyapinin etkisi
ile olugan yatay ek deplasmanlar, bir tek bagimsiz deplasma-
na bagli olarak ifade edilebilirler :

[d] h= [T] e @ (1V.37)

Burada Eﬂ biitiin elemanlari1 1 olan doniigtiirme matrisini
gostermekteglr. Temel tabaninda, iistyapinin bulunmamasi duru-
mu ig¢in bilinen ve sadece yatay bilegeni temel boyunca {ini-
form olarak gézoniine alinan yer hareketi de

[d]F = [d3, = [, th' . [d3, = [a] (1v.38)

geklinde yazilabilir. Burada d tiniform yer hareketinin
yatay bilegenini gdstermektedir.

Temeldeki toplam yatay &eﬁlasmana bagli olarak lstyapi-
ya statik anlamda aktarilan deplasmanlar, (IV.27) bagintisi-
na benzer gekilde ifade ed11eb111r :

-—

[d]; = [Th]yt (d, + 4y | (1V.39)

Bu bagintidaki [Th] ; listyapiya statik anlamda aktari-
lan deplasmanlara, unlform yatay yer hareketine ve bagimsiz
yatay deplasmana baglayan doniigtiirme kolon matrisini gbster-
mektedir.
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Bu 8zel durumda da, Kisim IV.2.1.2 de yapildigi gibi,
hareket denkleminde temel ve listyapinin yatay dogrultuda,
birlikte rijit bir cisim olarak hareketini ifade eden kisim
Betti teoremi ile agagidaki gekilde elde edilebilir :

1) Tabiil durum :

Deplasmanlar :

jond . a
den (4] th [T] t:h th > [d]y“_‘[Th]yt tht th)

Dis kuvvetler :

a) Eylemsizlik kuvvetleri :

Toplam yatay deplasmanlara bagli olarak temelde,
T Fma s
(%] th,th [ld] tprlal oy 1= - [H] th,th (7] th(dth th)

emelide, difer <dofrultulardaki ek deplasmanlara bagli ola-

4 [ﬁ] th,tv [El] tv

Temel tabanindaki zemin noktalarinda

- [M] :h, th [&] th - [M] ih , tv['azl tv [M] zh, z [3] z

é - [M] :h, th [T] th Eth_ [M] ih, ‘tvf(—i':I tv— [M] :h, z [’&] z

Ustyapiya statik anlamda aktarilan deplasmanlar ve relatif
iist yapi dinamik deplasmanlar:i ile ilgili eylemsizlik kuvvet-—
leri :
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=0 L]} +[4 1= P [r ] g d 0-D )

- wly

b) S6niim kuvvetleri :

S I T DA NS D 1
= "[C] th, th[T} th th -[d: th,tv [aJ tv{ I th,zt ]

c) Temel tabaninda yatay dogrultu disindaki dogrultula-
ra ait ek deplasmanlardan olugan kuvvetler :

-[s] ih,tv i [§] th,tv (4, = ~[s] zh,tv 4] tv

d) Temel tabani disindaki zemin noktalarinin ek deplas-
manlarindan, temel tabaninda olugan kuvvetler :

_[S] :h,z[?] z

2) Birim durum :

Deblasmanlar :

_th;l [d] th [] th-t . [d ;= I:Th] yt* 1

[« 9
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D1g kuvvetler :
a - _ a T '
[s] th,th[d] th [S] th,th [z] th

Yukarida tanimlanan tabii durum ve birim duruma Betti
teoremi uygulanirsa, :

[ |
T 1. o L T :
- 1 th [¥] th,th [r] th dth dx ] (7] th (%] th,th (1] th th dx

X X

Paye

o O 1 N B A1 B . DUt . R P 1
~[T]§h[M]fhz[3]Z-[h]T 0, 50 S ol B, Dl
RENA T —m [c] :h 3P . L S
S N P - O O S - PR . 0 3 e 1
098y, ] ) T ot

elde edilir. Yukaridaki ifadelerde de (IV.30) kabulii ile
birlikte (IV.38) gbzdnilinde tutulmustur.

(Iv.30) ile birlikte (IV.36), (IV. 37), (1V.38) ve
(IV.39) bagintilari gdzbniine alinarak (1V: 11) genel denk—
leminde ilistyapinin dinamik dengesini ifade eden {igiincli sa-
tir agik olarak yazilirsa
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o, (4], +le [ +[cl, [, +(8) [ +[s) G,

—‘[M} [Th]yt th+d ) (IV.41)

elde edilir. Burada, temeldeki yatay rijit hareket nedeni
iile,

oldugu gdzoniine alinmigtair.

Ayni gekilde, (IV.11) de temel tabani digindaki zemin
noktalari ig¢in yazilan {iglinci satir (IV.36) ve (IV.37) gbz-—
Oniinde tutularak agik gekilde yazilirsa

[M] zz [a] [ ] z,th [T] th th+ [M] z,tv [—] tv * [C-] Ezlz [a] z
* [CJ 2, th [T] th éth+ [C] z,tv [3] tv+ [S] Ezlz[a] z+ [S] 2, th [T] th d-—th

+[s)2 M@, = [d] ' (IV.42)

z,tv
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elde edilir.

Bu 6zel durumda, temelin yatay dogrultu digindaki dog-
rultularda dinamik dengesini ifade etmek lizere, (IV.36) ve
(IV.38) bagintilari gbzoilinde tutularak (Iv.11) denkleminin
ikinci satiri agag1dak1 gsekilde yazilabilir :

[M] Etlv, z [3] z+ [M] (t::v, th [T] th "gth+ [M] c1::v,. tv [a] tv+
+Mi[ﬂ+mwmmmtmmaﬂﬁw
+[C] tv,y[é]y * l:S]f:lv, [ ] [S] tv, th[ ]th Eth *

S D | N R T ] (1V.43)

{IV.40) denkleminde,

— T g
CIN o AL R
| |
T
My 5= (1] th [] :h, t:h[T:l th

C a pu—
M) = M) et Mpdee

T -
e [Tl th, th 5 eh



a T
(Sh) te = [T] th [S} th, th[T] th

. T
(Mh>yy: [Th} yt@]‘ yy [Th] vyt
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(IV.24)

kisaltmalarzy yaplllﬁ (IV.36) ifadeleri g@zdniinde tutularak
(IV.40), (IV.41), (IV.42) ve (IV.43) denklemleri tek bir

denklem halinde yazilirsa,

P, 02 nlT]
(] en M,
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denklemine varilar.

IV.3. LINEER ELASTIK OLMAYAN ZEMIN DURUMU

Bu bSliimin baglangicinda da belirtildigi gibi, zemin or-
taminin lineer olmamas: durumunda da, yeterince kiigiik zaman
ve gekil degigtirme artimlarinda sistemin lineer olarak dav-
rand1gi kabul edilebilir. Biinye denklemleri analitik olarak
ifade edilemeyen sistemlerde bu kabul yardimi ile ¢dzlime gi-
dildigi bilinmektedir.
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Her adimda lineerlegtirme kabulii gergevesinde lineer
ortak sistemin toplam deplasmanlarina ait (IV.5) baBintisi-
nin gegerli olmasina kargin, (IV.10) bagintilari ve bunla-
ra bagli olarak yazilan (IV.1l) hareket denklemi. bu durumda
kullanilamaz. Siiperpozisyon kuralinin kiitle, sdniim ve rijit-
1ik matrisleri agisindan gecerli olmamasi nedeni‘ile hesabin
iki agamada gergeklestirilmesi zorunlulugu ortaya g¢ikmakta-
dir. Birinci agamada, {istyapinin bulunmamasi durumu igin ze-
min ortamina ait (IV.4) veya (IV.14) denklemleri, lineer
eldstik olmayan zemin davranigi i¢in bagimsiz olarak ¢dzii-
lir. Qozum sonunda temel tabani ve digindaki zemin noktala-
rina ait [d] ve [d}a deplasmanlari, tiirevleri ile bir-
likte zamana® bagla ®0larak elde edilirler. Ikinci agamada
ise, (IV.5) ve (IV.8) gdzodniinde tutularak (IV.2) denkleminin
lineer olmayan ¢dziimi ile sistemdeki ek deplasmanlar [d]a .
Bﬂa. ve tiirevlerine bagli olarak elde edilirler. Bu ¢dzum
yon emi gercevesinde (IV.2) denklemi asagidaki sekilde dii-
zenlenebilir :

A e — ar -]
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1 R R 5 | 118 S ) I CIN NN I
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i
ot

vimamast d;ruﬁunda, deni-
si~statik deplaz-
"pggﬁamazlgie

e e G

arin allrlﬁnme icin (IV.6)
igin lineer olmayan ¢Oziimlinlin ay-

ineer olmayan zemin orfam: nedeni ile birinci agama-
/ {IV.14 ikin samada da (IV.46) denklemi-

s a u, im1 ydntemlerinden biri
ile ger legtiril ntegrasyonun her adiminda
zeminle 1ilgili biinyesel parametreler, o adimda hesaplanan

toplam deplasmanlarina bagli olarak tayin edilirler.



Zeminlerin 3zellikle dinamik kogullar altindaki hinye
bagintilari bugline kadar elde edilebilmig dexildir. Standev:
bir malzeme olmayan zeminin ¢ok karmagik igsel yapisi nedeund
ile lineer olmayan davranigi, belirli parametrelere b=3li
clarak deneysel yollarla saptanmaya ¢alisilmaktadir. Harwo-
nik yiklemeler altinda yapilan deneyler zeminde kayma gekii
degigtirmesinin genligi arttikga kayma modiiliiniin (sekant
modiilii) azaldigini, buna karsin deney numunesinde ortaya ¢i-
kan enerji kaybinin arttigin: gistermekiedir [19]. Gergek
yapisi kesinlikle agiklanamayan enerji kaybinin, tek serbest-
1lik dereceli bir sistemin viskoz s8niim nedeni ile kaybettifi
enerjiye egit oldufu kabul edilerek, her deformasyon merte-
besinde bir kritik s®niim orani tanimlanmaktadir. Ancak c¢ok
serbestlik dereceli ve lineer clmayan sistemlerde soniim mat~
risinin kurulmasi zorunlu oldufundan, bu matrisin kritik si-
niim oranina bagli olarak ifade edilebilmesi icin oldukga
agir kabuller yapilmasi zorunlu olmaktadlg_[Zﬂj, Sounu¢ ola-
rak, zemin dinamigi alaninda yapilan caligmalarin bugiinki
agamasinda, lineer olmayan zemin parametreleri, kayme gekil
degistirmesine bagli olarak ifade edilen kayma sekant modiilii
ve viskoz sdniim orani geklinde kabul edilmektedir.

Ortak sistemin lineer olmayan hareket denkleminin zaman
artimi ySntemi ile integrasyonu, ivme deferleri iizerinde bir
ardigik yaklagimi gerektirmektedir [15]e Ancak bu ardigik
yaklagim iglemi iginde her adimda, biitlin ayrik elemanlarda,
biinyesel parametrelerin ve dolavisi ile rijitlik ve s&niim
matrislerinin degigtirilmesi zorunludur. Bu degigimler yuka-
rida belirtilen ardigik yaklagim iglemi ile birlikte diiglinii-
liirse, i¢ ige iki ardigik yaklagimin yapilmasi gerekiigi so-—
nuama varilir. Kigiik sistemlerde bile bu iglemin hesap yiikii~
niin ¢ok agir olacagi kolayca tahmin edilebilir. Tabakali ze-
min sistemlerinin dinamik hesabi ile ilgili bazi ¢aligmalar-
da, sozili edilen hesap yiikiinli azaltici yaklagik bir ySntem uy-
gulanmaktadir [56, 62] . Bu hesap ybnteminde sistem, biinye-
'sel parametreler deprem siiresince sabit kabul edilerek lineer
elastik olarak . ¢6ziilmektedir. Deprem siiresince her ayrik
elemandaki belirli bir gekil degigtirme mertebesine (Brnegin
maksimumun 760 1) gdre blinyesel parametreler yeniden saptana-
rak bir sonraki adimda bu parametrelere gBre hesap yeniden
ayni diizen iginde siirdiiriilmekte vé sonuca ardigik olarak yak-
lagilmaktadir. Bu yéntem, yaklagikligina ragmen, hesap yikii-
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niin diger ydntemden daha az olmasi nedeni ile tercih edilmek~
tedir. Yukarida belirtildigi gibi, zeminle ilgili dinamik
biinyesel parametrelerin elde edilmesindeki yaklagiklik, bu
parametrelerle kesin bir sonuca varma olanafinin esasen mev—
cut olamayacagini diiglindlirmektedir.
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BOLOM V

YOZEYSEL SONSUZ RIJIT TEMEL PLAKLARI ICIN
TEK TABAKALI SONSUZ ORTAMIN RIJITLIK VE
KUTLE MATRISLERI

ﬁs*yapl -zemin ortak sisteminde,temelin vﬁzeysel ve son-
suz rijit olarak kabul ediimesi durumunda,temel aem11

tak sisteme katkis: genel olarak (6x6) maltebeden rij
ve kiitle matrisleri ile ifade edilebilmektedir. Zemin

.
0t

n ikl bovutlu olarak ideallegtirilmesi durumunda
in nareketl ic bagimszz deplasman bi i
leceginden bu mat ler de (3x3) wmer

t
U]

g1
5
ris

i 1
leneb
.

irler

Tinin
1unngb116a Snemli gugluxierle Kar§lia§11mamtaaﬁr Kis

I1.3 de tanimlanan ayriklastirma ydnteminin kullanilmrs: hs-
linde ise problem, birden fazla plak durumunu da kapsamak
lizere, ¢ok basitlegmekte ve ¢dzlime iki agamada varilabilmek-
tedir. Ayrik ¢dzlimin birinci agamasinda, tek tabakali son-
suz ortamin rijitlik ve kiitle matrisleri kurulmakia ve vi-
jit plak veya plaklarla ilgili geometrik uygunluk gartlari-
nin uygulanmasi ile matrislerin mertebeleri diigiiriilmektedir.
Ikinci agamada ise, rijit plak veya plaklarin disinda kalan
zemin ylizeyinde gerilme bilegenlerine egdeper dugum noktas:
kuvvetlerinin sifira esit olmasi sarti kullanilarak sz ko-
nusu matrisler indirgenmekte ve iki boyutlu duruma ait(3x3)
mertebeli rijitlik ve kiitle matrisleri elde edilmektedir.
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V.1. KARISIK SINIR DEGER PROBLEMININ AYRIK CUZOMO

Bu biliimiin agagidaki kisimlarinda, zemin yiizeyinde tek
plak durumu ile yanyana iki eg plak durumu ayri ayri gdzonii~
ne alinacaktir. Her iki durumda da, Oncelikle tek tabakali
sonsuz ortama ait "sistem rijitlik matrisi" ile "sistem kiit-
le matrisi" nin kurulmasi gerekmektedir. Bu matrislerin ku-
rulmasi ve indirgenmesi ile ilgili iglemler birbirinin tama-
men ayni oldufundan asagidaki iglemlerde rijitlik matrisi
esas alinmistir.

Tek tabakali sonsuz ortam ig¢in Kisim ITI.3.1 de elde
senuﬂlar" KlSlm XII.Z de verilen (k_ )., ,(k
tleri, 0 orijin  -noktas:
: z3g bovutsuz uzaklifina
rdir. Boylece, drdlarlnd?ki u

y 1 noktalarindaki deplas-
baglayvan "bhirim depla

adilen -

™
o
7

U}

oo
[E PR SN

Jonilar olau
i nokta-
pozitif,ak~

BGTe

[$3]
fuie pt

Tek tabakali sonsuz ortama ait sistem rijitlik matrisi,
(V.1) ile tanimlanao birim deplasman matrislerinin uygun ge-
kilde birlegtirilmesi ile elde edilir. Diiglim noktalari ara
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Sekil V.1

uzakliklarinin egit olugu matrisin kurulmasini ¢ok kolaylag-
tirmaktadir. Digim noktalari soldan itibaren 1,2,3,... gek-
linde numaralandirildiginda sistem rijitlik matrisi, esas

kdsegenine gére simetrik olarak,
[kjll [kllz [k]13

[ly; [y,

P I I A

L PP L PP

Simetrik

L I I A R A S Y

LI
LI PP

L A I IR R A A I B B AP Y

(k]

56 e 6 a3 w8

),

-

(V.2)
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§eklinde elde edilmektedir.

Agagida ele alinacak tek pldk ve yanyana iki plak durum-
larinda, antimetrik gekil degigtirme durumu sdz konusu oimak-
tadir. Sekil (V.1) de goriildiigi gibi, diigey bir eksene gdre
simetrik durumda bulunan ve antimetrik olarak gekil degisti-
ren j ve j° noktalarinin deplasmanlari arasinda

[a] ;=[] [al, S . (¥.3)

bagintisi yazilabilir. Bu durumda j ve j” noktalarin ya-
tay deplasmanlari ayni igaretli, diigsey deplasmanlari ise
ters igaretli oldugundan, [T]a antimetrik donligtliirme matri-
sinin agik ifadesi,

(1], =

0 -1

seklindedir. Bu matris yardimi ile, j ve j” noktalarinda-
ki antimetrik deplasmanlari, 1 noktasindaki kuvvetlere bag-
layan birim deplasman matrisi, :

[k]ij ==[k]ij+ [k]ij{T]a | (V.4)
§éklinde elde edilir.

Antimetrik gekil degigtirme durumunda sistem rijitlik
matrisinin kurulugu,(V.2) de verilen matristen biraz farkl:i
olmaktadir.Bu durumda sistem rijitlik matrisi, (V.4) ile ve-
rilen alt matrislerin agagidaki diizende yerlegtirilmesi ile
elde edilir : :

2o i C.
Yuksekégretim Kuryly

lasyon Merkegs
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r[;]ll [-E]lz -[—-1(—]13 Seeeesecassasencans

[],, [klpy  [Elyy veeenennn

[SJ D A I R e A BRI B SRS N N

PSPPI 3 PP

I

(v.5)

Simetrik ts e st e e ans e aas ¢ s oo

Matrisin mertebesini belirleyen (n) sayisi, simetri ekseni-
nin bir tarafinda kalan diigiim noktalarinin sayisidir.Bdyle-
ce hesabin, sistemin yarisi ile yapilabilmesi olanafi sag-
lanmaktadir.

Kisim IV.2.1.2 de belirtildigi gibi, temelin sonsuz

- rijit olarak kabul edilmesi durumunda temelin herhangi bir
noktasinin hareketini belirleyen deplasmanlar, segilen ba-
gims1z deplasmanlara bagli olarak ifade edilebilirler.Diiz-
lemde sayisi ii¢ olan bagimsiz deplasmanlarin,$ekil V.2 de.
goriildiigi gibi cegitli-gekillerde se¢ilebilmesi miimkiindiir.
Bu ¢aligmada zemin ortaminin hareketi, sinirda alinan ay-
rik noktalarin lineer deplasmanlari ile belirlendiginden,

Sekil V.2 de (b) ile gdsterilen bagimsiz deplasman durumu-
nun se¢imi uygun olmaktadir.

Sonsuz rijit temelin herhangi bir noktasinin deplas-
manlari, segilen {i¢ bagimsiz deplasmana bagli olarak,
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dyo d d
N g° ¢
Py i
(a) (b)
Sekil V.2
[dx] t= {:TX] t [do] t , (V' 6)

seklinde ifade edilebilir. Burada [d ] Sekil V.3 de gdriilen
(x,y) koordinatli noktanin iki lineet ve bir.ag¢isal deplas-
manindan olugan kolon matrisi, [do]t bagimsiz lineer
deplasmanin olugturdugu kolon matrlsl, Tth ise bu iki mat-
risi birbirine baglayan (3x3) mertebeden doniistiirme matrisi-
ni gdstermektedir. Bu matrisler ag¢ik olarak,

4, | a |
[ede=1¢ | > )= |40 | -
by | 439
(V.7)
(1 g/ /2 |
[t ], =10 Q-x/b)/2 (1+x/b)/2
0 -1/2b /26 |
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gseklindedirler (Sekil V.3).

ri—
i1di-

Tek tabakali sonsuz ortam sinirindaki diiglim noktzla
nin hareketi iki lineer deplasman hilegeni ile ifade =di
ginden, temel tabanindaki herhangi hir j diigim noktas:

i¢in (V.6) bagintisina benzer gekilde

[d5]e= [T5]cla ], (V.8

bagintisi yazilabilir. Bu bagintida yer alan {d;jt ve Erj]t
matrisleri, (V.7) agik ifadelerinde iiciincii sati*larin

silinmesi ve y = 0 yazilmasi ile elde edilirler :
d, 1 0 0
Ix ’
[dj]t= d L4 [Tj]tz
iy 0 (I‘Xj/b)/Z (1+Xj/b>/2
(v.9)
7
&
' e
, - .
dy ()
E‘ zzﬁx,)') Tj djx »x
:n Tx30) o
+ > } b +.

Sekil V.3
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Temel tabanindaki zemine ait tiim diigiim noktalarinin
deplasmanlarini, rijit temelin {i¢ bagimsiz deplasmanina
bagli olarak ifade etmek lzere, (V.8) bagintisinin genel-
legtirilmesi ile,

la], =[], [a.], (V.10)

elde edilir. Bu baglntldakl [d] ve ET] matrisleri,
(v.9) daki [d ] ve [T ]t matrlslerxnln, j nin ¢gegitli
degerleri 1§1nJa1t alta §a211ma51ndan olugurlar :

AT T r -
@ -lade Lo Dol [80,]
(V.11)

[T]z==ﬁT1]t [Tzlt T [Tj}t' . [Tn]t]

V.1.1. Tek temel plagr icin tek tabakali sonsuz ortamin
rijitlik ve kiitle matrisieri

Tek temel plagi durumunda, iki tiirlli plak hareketi sdz
konusu olmaktadir. Birimci tiir hareket, plak agirlik merke-
zinin diigsey hareketidir. Ikinci tiir hareket ise, birbirleri
ile karsilikli etki iginde olan yatay-agisal plak hareketi-
dir. Depremde yer hareketinin genellikle yatay bilegeni
gbzoniine alindigindan, burada sadece yatay—aglsal plak ha-
reketi incelenmigtir.

Yatay-agisal plak hareketi zeminde antimetrik gekil
degigtirme dogurmaktadir. Bu durumda, Sekil V.3 de gbdriilen
diisey bagimsiz deplasman bilegenleri arasinda

dyp = ~dyp
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bagintisi yazilabileceginden, plagin hareketi iki bagimsiz
deplasman bilegeni ile ifade edilmig olmaktadir. Bunun so-
nucu olarak (V.7) bagintisinda yer alan [d ]t ve [T ]t
matrisleri, ° X

4 1 y/b
10

[4,], = | [tl. =10 -x/b | (V.12)
420 o -1/b

geklini alirlar. Ayni gekilde (V.9) daki ET.]t doniigtiirme
matrisi de, J

1 0

0 -x./b
xJ/

olarak ifade edilir.

Tek temel pla3i durumunda, karigik sinir probleminin
ayrik ¢dzilimiinlin birinci agamasinda, ilk adimda tek tabakali
sonsuz ortama ait sistem rijitlik matrisinin kurulmasi ge-
rekmektedir. Sekil V.4 de gdriildiigii gibi, temel tabanindaki
- zemin (t) indisi ile, temel tabani digindaki zemin de (2z)

indisi ile ifade edilirse; antimetrik gekil degigtirme duru-
mu i¢in (V.5) ile verilen sistem rijitlik matrisi, kisimla-
ra ayrilarak agagidaki gekilde diizenlenebilir:

] = | (V.14)

L |
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42 ﬁc
I
.. —d ] I
}“““““* dp 1 i k
l v dp=dy _
1 e b 4 b 1 e -1
1 1 * -
~— —~ - \‘( AN ~— e
(2) (t) (z)
1 ,
zvz7vzvz7»w7zmavzunv»wmvzm1zzvzvzvznzazwmvzvzvzzazzu
| -Sekil V.4 ’

Temel tabani ile ilgili (V.10) rijit deplasman gartinin sis-
teme uygulanmasi, ¢Ozimin ilk agamasinin ikinci adimini
olugturmaktadir. Betti teoreminin Kisim IV.2.1.2 deki sgekli
ile uygulanmasi sonucunda (V.14) sistem rijitlik matrisinin
temel tabani ile ilgili alt matrisleri indirgenerek,

r Eg]zz fgg]zt
[s,) = - (V.15)

[Sol, (5] e

matrisi elde edilir. Bu matriste yer alan indirgenmis alt
matrisler,

[E;]zt - [-é;]iz =8, [T]t
(v.16)

[S)ee = [LB], 1],
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geklinde indirgenmisg olm

Karigik sinir de@er pv
ianmasi gereken sinir gas
yizeyinde diiglim noktas: kun
gartidir :

- -
7 =1lo
[}, = [o]
Du gartin saflanabilmesi igin, &nce sistemiu denge denl

{v.13) ve (V.17) den yara via snilarak agagidaki gekilde 1?1
denklem halinde yazilar :

(V.13

Burada [P ] > bagimsiz deplasmanlara karg:i gelen ug kuvvet-—
lerini g8stérmektedir. Daha sonra bu denklenlerdp {dj
deplasmanlari yokedilerek

[kl eeld]e = 2], (V.19

A

bagintisi ‘elde edilir. Burada [ko]tt ile gBsterilen ve

e d e = 5510000, + e (v.20)
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seklinde ifade edilen {(2x2) mertebeden matris, rijit temel
plagi ig¢in tek tabakal: sonsuz ortamin rijitlik matrisini
ifade etmektedir. (V.20) ile elde edilen sonuca, (V.18)
denklemlerinde [do]t digindaki deplasmanlara iligkin ele-
manlarin herhangi bir ydntem ile indirgenmeleri ile de va-
rilabilir. Ayrintilari IX. BSliimde ac¢iklanan RITER1 ve
RITEK]L programlarinda, bu amagla Gauss—Jordan indirgeme
yontemi kullanilmigtar.

Rijit temel plagi ig¢in tek tabakali sonsuz ortamin
Liitle matrisi, benzer gekilde elde edilebilir. Bu durumda,
{V.1) ile verilen birim deplasman matrisi yerine,Kisim II1.3.2
de elde adilen ve sonug¢lari Kisim XII.3 de verilen birim
ivme sabitlerine bagli olarak

. {<mXx)ij (me)ij
[m} a8 = [m]ji == , (v.21)

gseklinde ifade edilen "pirim ivme matrisi" nin kullan:lma-
s1 gerekmektedir. ‘

Rijit temel plagi igin tek tabakali sonsuz ortamin
(2x2) mertebeden rijitlik matrisi, istenirse $ekil V.2 deki
(a) bagimsiz deplasman durumuna gdre de ifade edilebilir.

Bu durumda bagimsiz deplasmanlarla bagimsiz ug kuvvetlerl
arasindaki baginti

1:k'XO:l‘tt[dxo](-_ - [PXO]t | g (v.22)

seklinde yazilir. Burada [dxo]t kolon matrisi

[ . =14 (v.23)
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seklinde ifade edilmekte, bu deplasman bilegenlerine karsi
gelen ug kuvvetleri [PXO]t kolon matrisini olusgturmaktadir
(Sekil V.3). Antimetrik  durumda dyo = 0 olacagindan,
[dont kolon matrisi

dXO
[d,0] = (V.24)

¢

Z0

geklinde yazilir. Bu durumda, (V.12) ve (V.24) ile tanimla-
nan [d,], ve [dyxo]t deplasmanlari arasinda

[dxo]=[Txo] t [do] t

(v.25)
-1
I:do] t [Txo] t [dxo t

bagintilari yazilabilir. [Ty,]¢ matrisi, antimetrik durum
i¢in

(V.26)
l:Txo] t

1
0 b
geklindedir.
(V.22) bagintisinda yer alan [kxo] matrisi, (V.20) -
ile tanimlanan [ko]t matrisine bagll olarak, Betti

teoremi ile agagidakl gekilde elde edilebilir :

Tabil durum -1
Deplasmanlar : [dxo]t s [do]t = [Txo']t[dxo-] ¢

Kuvvetler : [Po]t =‘[ko]tt[d0]t =:[ko]ttfrxoj:t£dxo]t
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Birim durum

-1
Deplasmanlar : [dx0]==[1] s [d6]£= [Txo] [I]

Kuvvetler : [Pxo]f= [kxo]tt[l]

Betti teoremi uyarinca, tabil durumdaki dis kuvvetlerin bi-
rim durumda yaptiklar: igin, birim durumdaki kuvvetlerin
tabil durumda yapt1k1ar1 igse egit olmasi gerektiginden

[kxojtf— ETXO [k ]tt[ X0] (v.27)

bagintisi elde edilir. Antimetrik durumda, [k ]tt ve
[ko]tt matrisleri agik olarak

XX
[kXO] e , [kO] - (V.28.a)
kgx koo ko ko

geklinde yazildigindan, (V.27) bagintisinin sonucu olarak
bu iki matrisin elemanlari arasinda

_ _ _ .2
kxx —-kll s kx@ -k¢x = b.k12 s k¢¢ b .k22 (v.28.b)

bagintilari elde edilir.

Rijit temel plagi icin tek tabakali sonsuz ortamin (2x2)
mertebeden rijitlik ve kiitle matrisleri, RITER1 ve RITEK1
programlar: ile sayisal olarak elde edilmigtir. Bu program-
larin ayrintilari IX,Bollimde aciklanmistir.



¥.1.2. Yanyana iki es
ortamin rijittil

Tek tabakzli sonsuz or
lanilan yOntemle, zemin viize
buiunmasz durumu da gﬁ*onug,
bu kisminda, yanyana iki eg
nsuz ortamin rijitlik ve k
r. Ortamda sOnim go7onuve
plaginin ayna fazda titrest
Kisim V.1 de incelenen tek tem
plak merkezinden gecen digsey =
gekil deglst rdigi gdzdniinde tu
munda ise sistem, plak merkezierini
gen diigey eksene gdre antimetrik ola
tedir (Sekil V.5).

1.

?

- 4z f
& & i
44 - T I
i > ; o
in l $ o=
% .
ddg=dzg | djp=d20

N et — ” AN — ~ .
{z) (1) {s) {t) (z)
mmmmmmmmm

Sekil V.5

Sekil V.5 de gdriildigi gibi, temel tabanindaki zemin
(t) indisi ile, iki temel arasindaki zemin (s) indisi ile,
temellerin disinda kalan zemin kesimleri de (z) indisi ile
ifade edilirse, tek tabakali sonsuz ortamin (V.5) ile veri-
len antimetrik sistem rijitlik matrisi, kisimlara ayrilmisg
olarak agagidaki gekilde diizenlenebilir :
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(v.29)

[-g] sz [E] st E] ss |

Yukaridaki matris antimetrik gekil degigtirme durumuna
gdre yazrldigindan, hesap sistemin yarisi ile yapilabilmekte;
bunun sonucu olarak iki eg plaktan birinin gdzdniine alinmasi
veterli olmaktadir. Temel tabani ile ilgili (V.10) rijit dep- .
lasman gartina gdre Betti teoreminin Kisim IV.2.1.2 deki
gekli ile uygulanmasi sonucunda (V.29) sistem rijitlik matri-
sinin temel tabani ile ilgili alt matrisleri imdirgenerek,

G1,, (1. (6,
{E;] = [8o)¢ez ,[ggu- l--75'—;]1:3 D)

51,  [Jee  [8

ss
- !

-

matrisi elde edilir. Bu matriste yer alan indirgenmig alt
matrisler,

50, = BJle, = (31,00,

51 ce = [11[51,, [1], (v.31)

[g;] ts [i]']s:t - [T]z[_s-] ts
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geklinde elde edilirler. Bu durumda sistemin deplasmanlara
da,
4],
[d] = | [do]¢ (V.32)

4], |

seklinde indirgenmig olmaktadir. (V.31) ifadelerinde yer
alan [T] matrisi, (V.9) ile verilen [T']t alt matrisleri-
nin (V.li) deki diizende birlegtirilmeleri ile elde edilir.

=

Iki temel durumunda karigik sinir deger probleminin
ikinci agamasinda saglanmasi gereken sinir gartlari, temel
tabani digindaki zemin yilizeyinde diigiim noktasi kuvvetleri-
nin sifira esit olmasi sartlaridir :

(¢], = [#], = [0]

Bu sartlarin uygulanmasi ig¢in sistemin denge denklemi iig
denklem halinde yazilir ve bunlarda [d]z ve [d} deplas-
manlari yokedilirse, yanyana iki eg temel plaglngn her biri
igin (3x3) mertebeden rijitlik matrisi elde edilmig olur.
Bu iglem (V.30) matrisinde temel ile ilgili elemanlarin di-
sinda kalan elemanlarin herhangi bir ydntem ile indirgenme-
sine kargi gelmektedir. Ayrintilari IX. B&liimde agiklanan
RITER2 ve RITEK2Z programlarinda, bu amagla Gauss-Jordan
indirgeme ydnteminden yararlanilmigtir.

Iki temel durumunda rijit temel plaklarinin her biri
i¢in tek tabakali sonsuz ortamin (3x3) rijitlik matrisi is-
tenirse Sekil V.2 deki (a) bagimsiz deplasman durumuna gore
de ifade edilebilir. Bunun igin uygulanacak iglemler, tek
plak durumunda oldugu gibidir. [k'] matrisi, Sekil V.2

o- tt .
de (b) bagimsiz deplasman durumuna; kxo] ¢ 1ise (a) ba-
gimsi1z deplasman durumuna karsi gelen riJltElk matrisleri

olduguna gdre, Kisim V.1.1 de verilen
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: —1T | -1
ol e = [Moode Deodee [Tol (v.27)

bagintisi, iki plak durumu i¢in de gegerlidir. Bu durumda,
(a) ve (b) bagimsiz deplasman durumlarini (V.25) bajintisi

ile birbirlerine baglayan [Txo]t matrisi ve inversi asagi-
daki gekildedir:
L 0 o | 1 0 0
-1
[t J—10 1/2 vz |, [t =10 1 -b
0 -1/2b  1/2b 0 ik b
L . L i

(v.33)

ki es temel durumunda, [kxo]tt ve [ko]tt matrisleri agik
olarak,

— ~— r—

K
ke Kyy x¢ kip kg Ky

[kxo]tt - kyx kyy ky¢ ’ [ko]tfz kZl ' k22 k23

thbx Kog Koo kyp kg o Kgg

- .

(V.34)

seklinde yazildiginda, (V.27) bagintisinin sonucu olarak bu
iki matrisin elemanlari arasinda agagidaki bagintilar elde
edilir :




kxx:= k11
Ry =k —kpy F kg
keo ~ Kox = P(kyy T Ky3)
(V.35)
k= Kpy * Zkyy + gy
kg ™ Koy T Play T Kgy)
" h2 -

k®¢ b (kZZ 2k23 + k33)

Yanyana iki plak durumunda, tek tabakali sonsuz orta-
min kiitle matrisi de, yukavidaki iglemlerin (V.21) ilz ve~
rilen "birim ivme matrisi" nden baglanarak tekrar edilmesi

ile elde edilir.

Ayni fazda titregen yanyana iki eg rijit temel plagi-
nin her biri igin, tek tabakali sonsuz ortamin (3x3) merte-
beden rijitlik ve kiitle matrisleri, RITER2 ve RITEK2 prog-
ramlari ile sayisal olarak elde edilmigtir. Programlar ile
ilgili ayrintilar IX. BSlimde agiklanmistair.

V.1. SAYISAL DEGERLER

Antimetrik gekil defigtirme durumunda, tek temel plaga
ve yanyana titregen iki es temel plagi igin tek tabakali
sonsuz ortamin statik rijitlik matrisleri, ayrintilari IX.
BSliimde agiklanan RITER1 wve RITERZ adli programlar yar-—
dim ile sayisal olarak elde edilebilmektedir. '

Tek temel élagl i¢in, Sekil V.2 deki (a) bagimsiz dep—
lasman durumuna gdre elde edilen [kxa]tt matrisinin ele-
manlari, &rnek olargk Vv = 0,40 ve h/b _. 10 igin hesaplan-
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mig ve asagidaki degerler bulunmugtur :

Tek temel : h/b = 10 ; v = 0,40

kxx/G = 0,47936314
kx¢[G ==k¢X/G = -0,19116012 = b

: 2
k = 2,758
¢¢/G » 7586196 x b

Yukaridaki degerlerin hesabinda, temel tabaninin yarisinda
10; temelin diginda bir tarafta kalan bdlgede 40 diigiim nok-
tasi gdzdnline alinmigtir.

Iki eg temel plagi durumunda ise, yine Sekil V.2 deki
(a) bagimsiz deplasman durumu icin, iki temelden birine ait
k] matrisinin elemanlari, Vv — 0,40 ve h/b = 10
_‘XOJ Tt

alinarak ¢/b oraninin gegitli degerleri 191n hesaplanmisg
ve agafidaki sonuclar elde edilmigtir :

Iki es temel : ¢/b=2,0 3 h/b=10 ; Vv =0,40

k /G =1,4124462

kxy/G = kyy/G = -0,016968462
kyy/G = kq)X/G — -0,10086639 x b
kyy/G = 2,4281774

kyg/G = kg /G = 0,11046170 x b

kpp/G = 2,6154237 x b2
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Iki es temel : c/b =1,5 3 h/b=10

3 v=0,40

Kyx/G = 1,3757445
kxy/G = kyX/G = 0,003619852
kxd)/G = k¢X/G = -0,09473375 x b
kyy/G = 2,5738917
kyy/G = kgy /G = 0,1771126 x b
ko/G = 2,7040094 x b2
Iki e temel ¢ ¢/b=1,0 ; h/b=10 ; V= 0,40
Ky /G = 1,3289381
kxy/G =""kyx/G = 0,026783142
kx¢/G = kd)x/G = -0,087975276 x b
kyy/G = 2,8299067
ky(p/G = k¢y/G = 0,2997239 x b

—1 2
k¢)¢/G 2,8646189 x b
Iki es temel : ¢/b = 0,5 3 h/b =10 sy v=0,40

Ky /G = 1,2676655
kyy/G = kyx/G = 0,052511512

kx¢/G = kc,bx/G = -Q,079967608 Xxb



=
b
O

kyy/G

I

3,3777274

kyo/G — Kyy/G = 0,5979594 x b

— 2
k¢¢/G 2,2330660 x b

Yukaridaki degerlerin hesabinda, temel tabaninin yarisinda
10; her iki temelin diginda kalan bdlgelerde 40 ar diigiim
noktasi gbzoniine alinmigtir.

Ustyapi-zemin ortak sisteminin hesabinda zemindeki ya-~
tay ve acgisal gekil degigtirmelerin Oneminin daha fazla ol-
dugu acgiktir. Bu nedenle Sekil V.6 da, yukerida. elde edi-
len birim deplasman sabitlerinden sadece kyy ve k
nin ¢/b orani ile defigimi grafik olarak gdsterilmigtir.
Sekil V.6 tek temel durumunu da kapsamaktadir. Bu durumda,
iki eg temelin ilistliste bindigi diiglinlilmekte ve tek temel

igin hesaplanan kxx ve kgg degerlerinin ikiger katla-
rinin alinmasi gerekmektedir. Sekilde gdrildigi gibi tek
temel durumunda c¢/b = -1 olmakta veya bir bagka ifade

ile ¢'/b = (c+b)/b orani sifira gitmektedir. Sekil V.6
daki egrilerin incelemmesinden, iki eg temel birbirine yak-=
lagtikg¢a yatay rijitligin azaldifi, buna karsin agisal ri-
jitligin arttigi agik olarak gdzlenebilmektedir.
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BULOM VI

TEK OSTYAPI fLE ZEMINDEN OLUSAN ORTAK SISTEMIN
SERBEST TITRESIMI

Ustyapi~zemin ortak sistemi gergevesinde zeminin varli-
ginin Ustyapinin dinamik davranigini etkilemesi, Szellikle
sistemin serbest titregimindeki degigim ile kendini gbster-
mektedir. Gergekten listyapi ile zeminin relatif rijitlikle~
rine ve kiitle dagilimina bagli olarak ortak sistemdeki st~
yapinin serbest titregim Bzellikleri, somsuz rijit zemine
oturdugu kabul edilen lstyapiya oranla Onemli &Slgiide degigi-
me ugrayabilmektedir.

Calismanin bu b&liiminde, zemin ortami ve bu ortama yii-
zeysel ve sonsuz rijit bir temel aracilifi ile oturan list—
yapinin olugturdugu ortak sistemin serbest titresgimi ince-
lenmektedir. Incelemenin ana amaci, zeminin varlifinin list-
yapinin serbest titregimine etkisinin dofrultu ve mertebesi-
ni nicel (kalitatif) anlamda saptamaktir. Bdyle bir sonuca
varabilmek i¢in {istyapinin yanisira zeminin de basit bir
bigimde ideallegtirilmesi uygun olmaktadir. Bu nedenle,bura-
da zeminin ideallegtirilmesinde Kisim II.5 de tanimlanan
Model II'den yararlanilmigtir. Kisim II.5 de belirtildigi
gibi, bu modelde zeminin timi tek tabakali sonsuz ortam ola-
rak ideallegtirilmektedir. Serbest titresim incelemesinin
az sayida bilinmiyenle gergeklegtirilmesini saglamak amaci
ile listyapinin temeli, yilizeysel ve sonsuz rijit olarak kabul
edilmigtir. Bdylece sonsuz rijit temel plagi durumunda, tek
tabakali sonsuz ortam i¢in Kisim V.1.l de elde edilen(2x2)
mertebeden rijitlik ve kiitle matrisleri araciligi ile,zemin
ortaminin basit bir alt sistem olarak hesaba katilmasi ola-
nag: saglanmaktadir. Zeminin ideallegtirilmesinde diizlem
sekil degistirme durumu esas alindigindan iistyap:i sistemi-
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nin, belirli araliklarla yerlestirilen diizlem gergevelarden
olustudu kabul edilmektedir. Yukaridaki esaslara gdre =lde
edilen ortak sistem modeli §Sekil VI.1 de gdsterilmistir,

VIR

7 77 PP/ 77

Sekil VI.1

Bu bdliimiin agagidaki kisimlarinda, Sekil VI.1 deki ortak
sistemin birinci titregim frekansinin hesabi ile ilgili ayrin-
tilar agiklanmaktadir. Serbest titregim incelemesi, bir &zel
deger problemi olarak, sistemin deplasmanlarinin mutlak deger-
leri ile ilgili sonuglarin elde edilmesini saglayamamaktadir.
Bu nedenle, zeminin varligina bagli olarak, deplasmanlarda ve
diger dinamik biiylikliiklerde meydana gelen degigimin saptana-
bilmesi igin, ortak sisteme ait "transfer fonksiyonlari”| nin
elde edilmesi yararli olmaktadir. Ortak sistemin harmonik
deprem zoru altindaki davranigini ifade eden transfer fonksi-
yonlarinin hesabinda, sistemde yapisal (hysteretic) veya
viskoz tiirde kii¢lik bir soniim etkisinin bulundugu kabul edil-
mekte, bSylece dinamik biliylikliiklerin rezonans durumunda son-
suza gitmesi dnlenebilmektedir.

Tek ilistyapi ile zeminden olugan ortak sistemin serbest
titregimi ile ilgili Srnek problem, Kisim X.1 de verilmistir.
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VI, HAAREKET DENKLEMI

Sonsuz rijit temel durumu igin, Ustyapi-zemin ortak
isteminin hareket denklemi Kisim IV.2.1.2 de(IV.34)ifadesi
le verilmigtir., Ancak, rijit tek temel durumunda rijitlik

ve eylemsizlik ydniinden tiim temel zeminin ortak sisteme
katkisin: ifade eden (2x2) rijitlik ve kiitle matrislerinin
kullanilimasi halinde, {(IV.34) denkleminde (z) indisi ile
gbsterilen elemanlara gerek kalmamaktadir. Sonilimiin sadece
iistyapida bulunmasi ve yapisal nitelikte kabul edilmesi du-
rumunda, rijit temelli {istvapi-zemin ortak sisteminin yatay
deprem zoru altindaki hareket denklemi agagidaki gekilde

- yazilabilir :

e

ra- it ' =
[Mo]tt [MOI ty Ldojt !i So] tt [O] LdO t
i
+
- - e . » _
Odye D, |61, | 01 0T, @,
ﬁ:"& i
=- [0,] tndyy, (VI.1)

Yapisal sBniimlin tiim iistyapida sabit olarak kabul edilmesi
durumunda, iistyapiva ait yatay rijitlik alt matrisi kompleks
formda,

(s]. = (1+2ip) [s (VI.2)
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(VI.1) denklemindeki [So]tt alt matrisi, tek temel
plagi durumunda, zemin ortaminin (III.3) bagintisi anlamin-
daki yaklagik dinamik rijitlik matrisini ifade etmektedir.
Bu matris Kisim V.1.1 de elde edilen (2x2) mertebeli sta-
tik rijitlik ve kiitle matrislerinden yararlanarak frekansa
bagli bigimde agagrdaki gekilde elde edilir :

' 2
[So]tf= [ktht - w [mo}tt (VI.3)

(VI.1) hareket denkleminde yer alan temel kiitle matrisi
(Iv.33) ve (IV.34) e gbre,

T A

o T : .

[Mo]tt= [lx}t[M]tt[TX]tdv+ [TO]ytLMyy][%]yt (VI.4)
v

dir. (IV.33) bagintilarindaki [Mb]tt matrisinin iginde
yer alan ve zemin altyapisinin eylemsizlik ydniinden katkisi-
n1 ifade eden [Mo]?t matrisi, bu durumda (VI.3) baginti-
sindaki [mo tr Kkiitle matrisine kargi geldiginden, (VI.4)
ile verilen temel kiitle matrisi ifadesinin ig¢inde bulunma-
maktadir. (VI.4) bagintisinda ve (VI.1) hareket denklemin-
de yer alan [M matrisi, iistyapinin tekil kiitle matrisi-
ni gdstermektedir. (VI.4) deki [M]tt matrisi ise,
Kisim IV.2.1.2 de tanima gdre diizlem durumda

[p 0 G
M., =0 o o0 « (VI.5)
[0 0 0

geklinde ifade edilmekte, p birim hacim kiitlesini g&ster-
mektedir. ‘

Dﬂ t matrisinin (VI.4) ile verilen ifadesinde yer
alan il terim, rijit temelin kendi kiitle matrisine karsa
gelmekte; ikinci terim ise listyapinin temele eylemsizlik
yéniinden etkisini ifade etmektedir. Ilk terimde bulunan
CTX]t déniigtlirme matrisi, tek temel durumu ig¢in Kisim V.1.1
de,
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1 y/b
r], =14 0o -x/b (V.12)
0 -1/b

ifadesi ile verilmigtir. [M ]tt ifadesinde ilk terimi olug-
turan integralin sonucu .

T 11 M2

[t Dl [ ] av = (VI.6)

v o1 M2

m

§ek11nde gosterlllrse, Sekil (V.3) de gdriilen eksen taklmlna
gbre yapilan integrasyon sonucunda,

ﬁ‘111= p.(Zb)ht
2
P hy g
m ., =m,, =— (2b) —=ph
12 iRy 2 t
, ; ;
P hg (2b) 20hy 5 4
By, =—— | (2b).— + h_ = —— (h#d%)
b2 3 12 3b

elde edilir.

(VI.4) bagintisinda, ustyaplnln temele eylemsizlik yo-
niinden etkisini ifade eden ikinci terimde yer alan [T ]yt
matrisi, Kisim IV.2.1.2 de belirtildigi gibi, zeminden
listyapiya "kuasi-statik" anlamda aktarilan deplasmanlari ri-
jit temelin bafimsiz deplasmanliarina baflayan doniigtiirme
matrisini gdstermektedir. n {istyapidaki kat sayisini gds-
termek lizere,(nx2) mertebeden bir dikddrtgen matris olan

¢ matrisi, her kat ig¢in bir tane olmak ilizere n tane
(1x2¥ 1lik alt matristen olugmaktadir. 1 inci kata ait alt
matris '



ot
N
o

[Toi]yt= [1 b, /b) (VI.7)
§eklindedif. Bdylece
[Tolye = [Toudye [Toplye -+- - [Toilye -+ [Tondye]
(VI.8)

elde edilir. (VI.7) bagintisinda h.,i inci katin temel ta-
banindan itibaren yiiksekligini, b "ise temelin yari genig-—

ligini géstermektedir (Sekil VI.1). [Mo}tt nin (VI.4) ile

verilen ifadesinde ikinci terimi olugturan matris garpimi-

nin sonucu

() b, ]

=1}

M1

=]

12

=]

22

(VI.9)

gseklinde gésterilir ve listyapinin tekil kiitle matrisinin

-

¥y

seklinde yaz1ldigi g&zdniinde tutulursa,

(VI.10)



st
3]

n
m1£= Wy =— } Mihi (VI.11)
L]

eide edilir.

(v1.1) hareket denkleminde yer alan [M }t,¢= [M ]Tt
matrisleri, tistvapr ile temelin eylemsizlik S oy
voniinden kargilikly etkisini ifade etmektedirler.Bu matris—
lerin ifadesi, Kisim IV.2.1.2 deki (IV.34) denkleminde,

1. = ETGE;,?M . (VI.12)

[T TS I AP N, o) 59 5 S A
geklinde verilmigiir. (Vi.7;

tutularak
M M N M. eeces M

. - T
[1,] ty [MG]yt=

Mlhl/b Mznz/b ceee Mihi/b.....Mnhn/b

(IV.13)
elde edilir.
{(VI.1) denkleminde,
&1u *
1ligkin

yer hareketinin yatay bilegenine

e
o~
o

Hend

Lot



seklinde tanimlammakta, d_, 1ise iiniform yatay yer hare-
K .. . . . a ., B .
ketinin (deprem) ivmesini gbstermektedir.

VI.2. OUZEL DEGERLER ve TRANSFER FONKSIYONLARI

Tek iistyap: ile zeminden olugan ortak sistemin serbest
titregim denklemi, (VI.1l) denkleminin sag tarafinin sifira
egitlenmesi ile elde edilir. Ayrica serbest titregim hesa-
binda soniim etkisi gdzénine alinmadigindan (VI.2) baginti-
sinda B = 0 konularak, iistyapinin rijitlik matrisi ger-
cel gekli ile kullanilir.

Normal yapi tiirleri ig¢in, modlarin siiperpozisyonu ydn-
temi ile yapilan dinamik hesapta, sistemin toplam davranigi
iginde birinci normal modun katkisinin en biiylik oranda cl-
dugu bilinmektedir. Bu durum, iistyapi—zemin ortak sistemin-
de 3zellikle kendini gdstermektedir [40,60]. Bu nedenle,bu
galigmada serbest titregim agisindan, lstyapi-zemin ortak
sisteminin birinci moddaki davranigi incelenmigtir.

Zeminin tek tabakal: sonsuz ortam olarak ideallestiril-
mesi durumunda, zeminin frekansa bagli dinamik rijitligi
ve radyasyon soniimii nedeni ile normal titregim modlari teo-
rik olarak tanimlanamaz. Ancak, radyasyocn sodniimi gdzdnline
alinmaksizin yapilan yaklagik modal analiz sonuglar: ile
kesin sonug¢lar arasindaki farkin, ortak sistemin davranisi
acisindan dnemli olmadigi gosterilmigtir [12,65]. Ozellikle
¢ok katli bina tipi iistyapilarin yer aldifr ortak sistemle-
rin davranigi, klasik anlamdaki modal davraniga g¢ok yakin
olmaktadir [12].

Birinci normal mod igin yapilan serbest titregim ince-
lemesinin, bilinen dzel defer hesabindan farkl: olan tek
yonii, zeminin katkisini ifade eden ve (VI.3) bagintisi ile
verilen dinamik rijitlik matrisinin frekansa bagli olugudur.
Ancak bu durum, Vianello-Stodola ardigik yaklagim ydntemi
[15] ile yapilan 6zel defer hesabinda kolaylikla g&zdnline
alinabilmektedir. Ardigik yaklagimin her adiminda elde edi-
len 6zel frekans degeri ig¢in, (VI.3) bagintisi ile verilen
dinamik rijitlik matrisi hesaplanmakta, bu matrise gire ye-
niden bulunan 6zel frekans degeri bir &nceki defere egit
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oluncaya kadar ardigik yaklagima devam edilmektedir.

Ozel defer probleminin yapisi geregi, hesap sonucunda
6zel frekans deferi ile birlikte titregim modunun normalize
edilmig relatif gekli elde edilebilmektedir. Kargilikli et~
kinin sonucu olarak {istyapinin davraniginda meydana gelen
degigimi mutlak anlamda saptamak amaci ile, ortak sistemin
harmonik yer hareketi etkisindeki davraniginin incelenmesi
yararli olmaktadir. Ustyapiya ait herhangi bir deplasman
bilegeni ile yer hareketinin genlikleri arasindaki Di/D¢p
oraninin frekansa bagli olarak degisimini ifade eden .
"Deplasman transfer fonksiyonlari" vyardimi ile iistyapinin
deplasmanlarinda meydana gelen artiglarin izlenebilmesi
miimkiin olmaktadir. Benzer gekilde, "ivme transfer fonksi-
yonlari" aracilifi ile eylemsizlik kuvvetlerinde meydana
gelen degigim hakkinda bilgi edinilebilmektedir. '

Transfer fonksiyonlarinin elde edilmesi ig¢in (VI.1)ha-

reket denklemi
dth— Dthe = l.e

seklinde, birim genlikli harmonik yer hareketi ig¢in ¢dziil-
miigtiir. Bu bOliimiin baginda da belirtildigi gibi, rezonans
durumunda deplasmanlarin sonsuza gitmesini &nlemek amaci
ile iistyapida kiiglik bir sOniimiin bulundugu kabul edilmigtir.
Birim genlikli yer hareketine gdre yapilan ¢Ozilinde elde edi-
len kompleks deplasmanlara ait genlikler, dofrudan dogruya
yukarida tanimlanan "deplasman transfer fonksiyonu"nu ver-
mektedirler. '

Transfer fonksiyonlarinin hesabinda kompleks cebir kul-
lanilmasi yararli olmaktadir. Gemel olarak, yapisal sOnimli
bir sistemin harmonik zor etkisi altinda hareket denklemi

b [+ 1 + 238 ) [5] [4] —[pJe™" (VI.15)

gseklinde yazilirsa, deplasmanlara ait kararli (steady-state)
¢ozilim vektdri

[d] = [p]e™"
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geklinde elde edilir. Burada (ﬁ] , kompleks genlik vektdrii-
nii géstermektedir. (dzim vektdriinin (VI.5) hareket denkle-
minde yerine konulmasi ile problem asagidaki kompleks katsa-
y1li denklem sisteminin ¢bzlimine indirgenmig olur :

{[s] - o’[M] + 2i8[s]3[p] = [r_] (VI.16)

Bu denklem takiminin ¢8zlimi ile [D] kompleks genlik vek-
térii elde edilir. [D] vektdri

[p] = [p,] + i[D,]

gseklinde ifade edilirse, herhangi bir dj deplasman bilege-
ninin mutlak genligi,
2 2 \1/2

D. = (D,. + D...
] ( 1] ZJ)

bagintisi ile bulunur. d. deplasmani ile harmonik zor ara-
sindaki faz farki da,

¢j = arctg (D2j/D1j)

geklinde elde edilir. (VI.16) kompleks denklem sistemi,bilin-
meyen sayisi iki katina ¢ikarilmak lizere gergel katsayili

bir sistem olarak ¢dziilebilir. Ancak bu durumda elde edilen
katsayilar matrisi simetrik olmamaktadir. (VI.16) denklem °
sisteminin kompleks olarak ¢dziilmesi halinde ise simetri 6zel-
1igi bozulmamakta, simetrik matrisler igin geligtirilmig ¢o-
ziim algoritmalar: aynen kullanilabilmektedir.
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VI.2.1. Uzel degerlerin hesabinda izlenen yol

Genel olarak, yapi sistemlerinin Szel agisal frekans-
lari ile titregim modlarz,

1
[¥] [¥] [D}=—[D] (VI.17)
w

geklinde ifade edilen 8zel defer probleminin ¢dziimi ile el-
de edilir [15]. (VI.17} denkleminde [F] ve [M], sistemin
sirasi ile fleksibilite ve kiitle matrislerini ifade etmekte;
[b] titresgim modunu, w ise Szel agisal frekansi gdstermekte-
dir. [F] fleksibilite matrisi dogrudan dogruya kurulabile-
cegi gibr [15], sistemin [S] rijitlik matrisinin tersinin
alinmas: ile de elde edilebilir.
(VI 1) hareket denkleminde yer alan sistem rijitlik
matrisinde divagonal digi alt matrislerin sifira esit olma-
lari nedeni iie, {F} matrisi,
fd !
T
ilscg ee O] 1

= | (VI1.18)

[} [s] ;;J

T

=
| Fi
LoJ

seklinde elde edilir. (Ozel deger hesabinda soniim gdzdniine
alinmadifindan [S] matrisi gergel gekli ile kullanilmaktadir.)

=

vy

[ W—
|

-1
tt [So]tt

M,y = [51,,

doniigimleri ile fleksibilite matrisi



ﬁ_
oy ’xjﬁi

o] [F]
vy
geklinde yazilabilir. Diyagonal digi alt matrieslerin s
egit clugunun nedeni, idstyapi temelinin sonsuz vijit olaval

kabul edilmesidir.

(VI.17) denkleminde 5zel defevibulunzcak olan ve
*dinamik matris® clarak adlandirilan
(E]= [F] [M] (V1.20)
matrisi, agik olarak

[£] - ' (VI.21)

B, By

geklinde yazilirsa, bu matrisi olugturan alt matrisler,(VI.1)
deki kiitle matrisi ve (VI.19) ifadesi gozOniinde tutularak
agsagidaki gekilde elde edilir :

[E] tt . [Fo] tt [Mo} tt
[E] ty [Fo:i tt I:Mo] ty
£, = [£), D),

[£],, = [F],, 00

(VI.22)



Bu ifadelerde yer alan kiitle alt matrisleri, Kisim VI.2
de elde edilmigtir. [F ] alt matrisi, (VI.3) ifadesi ile
frekansa bagli olarak elée edilen [Soltt matrisinin tersine
ezittir, [F1 ise, temele rijit olarak baglanan istyapinin
£ bi llte watrlclnl gbéstermektedir.

ti
leksi
Pratik uygulamalarda, lstyapi sisteminin genellikle
kayma gergevelerinden olustufu kabul edilmektedir. Bu yakla-
simda, sistemin bilinmeyenleri clarak, sadece katlarin yatay
deplasmanlari gdzdniine alinmaktadir. Gelistirilen bazi yak-
lagik ybntemlerde (Srnegin D yOntemi), diigiim noktalarinda-—
ki donmelerin etkisi yaklagik olarak gdzdniine alinmakta ve
sistem yine bir kayma cergevesine ddniigtiirtilmektedir.

Kayma cergevesinden olugan {istyapi sistemlerinde ﬁﬂ
iistyapi fleksibilite matrisinin dogrudan dogruya kolayliklia
kurulabilmesi mimkiindiir. m inci kattaki kayma rijitlikleri-
nin toplam: k,; ile gOsterildigine gdre, katlari asagidan

yukariya dogru numaralanan bir kayma gergevesinde, F]yy
matrisinin herhangi bir Fij elemam agapidaki gekilde elde
edilebilir :

k|
F.. = } k-l j<i
ij m
m=1
(Vi.23)
i
F..=>k'1 j>i
ij n
m=1

Sonsuz rijit temel ig¢in zemin ortaminin (VI.3) ifadesi
ile verilen rijitlik matrisi titregimin frekansina bagli
oldugundan, 8zel deger hesabinin bir ardigik yaklagim ante—
mi ile yapilmasi uygun olmaktadir. Bu galigmada, ¢8zlim ig¢in
Vianello~Stodola ydnteminden [15] yararlanilmistair.Ardigik
yaklagimin her adiminda elde edilen frekans degeri icin
[So]tt matrisi veniden hesaplanmaktadir. Ancak, [E] dinamik
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matrisinin (VI.22) ile verilen alt matrislerinin som ikisi
frekanstan bagimsiz olduklarindan, ardigsik yaklagim sira—
sinda dezigen frekans sadece kiiglik mertebeli {Ej . Ve [E}ty
alt matrislerini etkilemektedir. Bdylece, sistemin yapisin-—
da bulunan frekansa bagimlilik, Bzel deger hesabinda basit
olarak gbzdniine alinabilmekte ve dnemli bir hesap yiki

dogurmamaktadir.



137

[qu . alt matrisi, vanyana iki temel plagi duru-
munda Zemin ortaminin yaklag:k dinamik rijitlik matrisi-
ni ifade etmektedir. (3x3) mertebeden bu matris, iki esg
temel durumunde, temellerden biri igin Kisim V.1.2 de
elde edilen statik rijitlik wve kiitle matrislerinden ya-
rarlanilarak (VI.3) baZintisi ile bulunur Ustyapinin
yatay rijitlik matrisini ifade eden [S ]* matrisi,
Kisim VI.Z de tanimlandigi gibidir.

{3x3) mertebeden [MO]+ temel kiitle matrisi, yine
tek temel durumu igin verilen (VI.4) bagintisi ile elde
edilebilir :

LMO} tt J r @"t%-M“‘ t*Tx] tdv * £To yt [M]yy[chyt

(VI.4)

Kisim VI.2 de belirtildigi gibi, bu bapintidaki ilk te-

rim rijit temelin kendi kiitle matrisine karsi gelmekte,
ikinci terim ise listyapinin temele eylemsizlik ydniinden
etkisini ifade etmektedir. Ilk terimde yer alan er
matrisi (VI.5) bagintisindaki gibidir. ETx]t donu§turme
matrisi ise, Kisim V.1 de,

1 y/2b | ~y/7b
[*X}t= 0 (1-x/b)/2 (1+x/b) /2 (v.7)

0 ~-1/2b 1/2b

ifadesi ile verilmigtir. DQJtt ifadesinde ilk terimi
clugturan integralin sonucu

, P P T

e 1T - _

| [t 1 M, [T)av= |5, T, T (VII.1)
T3 By Egg
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seklinde gdsterilirse, Sekil (V.3) de gdriilen eksen takimina
gbre yapilan integrasyon sonucunda,

m = p.(Zb)ht
2 2
P hy he
m @n,, =-m,, = -m,, =-— (2b)— = p—
12 21 13 31 7b 2 2
3 3
0 { ht (2b) ]
M,, = W,, = =-M,, = ~M,, = — (2b)— + h, —-
22 33 23 32 (2b)2 3 t 3
Ph
5
- —t [h; + (Zb)z} (VII..
6b
elde edilir. Eﬁ ] ifadesinin ikinci teriminde yer alan
T déniistiitme matrisinin kurulugu (VI.8) bafintisinda

018u§5 gibidir. Ancak, bu durumda plak eksenine gdre antimet-
rik deformasyon sdz konusu olmadigindan [T " matrisini
olusturan alt matrisler (1x3) mertebesindedi¥. i inci kata
ait alt matris

[r ] w4 h./2b  -h/2b] (VIL.3)

seklindedir. [Mo] et ifadesinin ikinci terimini olugturan
matris ¢arpiminln sonucu

=L

gl

11 2 13
T _ = _ _
[To] yt [ yy[To] yt ™1 o9 o, 4 (VII.4)
| By ﬁ32 ﬁ33

seklinde gdsterilir ve iistyapinin tekil kiitle matrisini tanim-
layan (VI.10) bajintisi gdzdnlinde tutulursa,



n
™M1 } Ml n
i=1 ~ 1 >
M= My = 7Oy = Wy, = Moby (VII.5)
2b i
1 e 5
Byg= By = Ty, = Hy, =—— } M.h,
22 33 3 (2b 2‘ . 1 1
(L

elde edilir.

(VI.1) hareket denkleminde yer alan ve iistyapi ile te-
melin eylemsizlik ydniinden karsilikli etkisini ifade eden

— T -
[kOJty [Mo]yt matrisleri (VI.12) ifadesi ile elde edile

bilir, Temel eksenine gdre antimetri durumunun s&z konusu
olmadig: iki temel durumunda,

r M1 M2 Xy . Mi . . Mn

Mh,/2b M2h2/2b....M;hi/Zb....Mnhn/2b’

i ; IRV " B, |
Mlh- /2b M2n2/2b. .. .Mihi/Zb. . Mnhn/ZbJ

(VII1.6)

Iki temel durumunda, (VI.1) hareket denkleminin sag
yer alan ve ya dy yer hareketini temelin rijit dep-

[=~%
ve
1na baglayan [U oi th matrisi,

Wit =1 o 0 (VII.7)
Wolen =L

geklinde tanimlanmakta, d_, ise tiniform yatay yer hareketi-
nin ivmesini g&stermektedir.

Tek lstyapi durumunda crtak sistemin Szel frekanslari
ve transfer fonksiyonlari igin Kisim VI.2 de belirtilenler,
yanyana iki eg Ustyapi durumu ic¢in de gecerlidir. Bu neden-
le, bu b&limde ayrica sdz konusu edilmemigtir.
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BOLOM VIII

OSTYAPI-ZEMIN ORTAK SISTEMININ DEPREM HESABI
ICIN UYGULANAN YUNTEM

Ustyapi-zemin ortak sisteminin deprem hesabi,birbirini
izleyen li¢ adimda gergeklegtirilebilir. Bu adimlar, ortak
sistem modelinin seg¢imi, hareket denkleminin kurulugu ve
denklemin ¢Sziimiidiir.

VIII.1. OUSTYAPI-ZEMIN ORTAK SISTEMININ
MATEMATIK MODELT

Ustyapi-zemin ortak sisteminin deprem hesabinin en Snem—
1i 8zelligi, hesabin ilk adiminda matematik model sec¢imi
probleminin ortaya ¢ikmasidir. Zemin ortaminin gerek makro
ve gerekse mikro planda ideallegtirilmesinde kargilagilan
gi¢liikler,sistem hesabinin Sziini olusturan bu problemin Gne—
mini arttirmaktadir. Bu nedenle bu galigmada zemin ortaminin
ideallegtirilmesine biiyiik agirlik verilmig ve daha &nce kul-
lanilan zemin modellerinde gdriilen sakincali noktalari tagi-
mayan, aynl zamanda problemin fizik gercegine uyan bir zemin
modelinin geligtirilmesine galigilmistir. Ortak sistemin dep-
rem hesabi ic¢in geligtirilen modelde zemin, elastik olmayan
gsekil degigtirmelerin beklenebilecegi belirli bir derinlige
kadar sonlu elemanlarla ideallegtirilmekte, bu derinlikten
itibaren taban kayasina kadar, homogen, izotrop ve lineer
elastik tek tabakali sonsuz ortam olarak kabul edilmektedir
(Sekil VIII.1l). Model I adi verilen bu modelin, ortak siste-—
min deprem hesabi agisindan tagidig:i Szellikler Kisim II.4
de ayrintili olarak agiklandifindan, burada ayrica sdz konu-
su edilmemigtir.



141

-
a  iistyap (y)
-1 E
r dstyapt temeli {t)

: | 3
H {
sonly
t elemanlar 4

{z)

: sinir ‘dogrusu (S)

tek tabalali ortam

TTP777PP TP 7 7777777777777 7 777777777777 7777777 7777 77777 7777 7777777777777 77777 7777777 777 777

Sekil VIII.1

Modelde yer alan i{istyapinin ve sonlu elemanlarla ideal-
legtirilen zemin kesiminin lineer olmayan davraniglarinin
deprem hesabinda gdzoniine alinmasi istenirse, ortak sistemin
hareket denkleminin dogrudan dogruya "“"zaman alani"nda integ-
re edilmesi zorunlu olmaktadir. Sistemin timiiniin lineer elas-
tik olarak davrandiginin kabul edilmesi durumunda ise, hesa-
bin deprem spektrumu egrilerinden yararlanilarak "modlarin
siiperpozisyonu' yontemi ile yapilmasi miimkiindiir. Ancak her
iki ydntemin de kullanilabilmesi igin, hareket denkleminin
sabit katsayili bir differansiyel denklem olarak kurulabil-
mesi gerekmektedir. Oysa kullanilan modelde, ortak sistemin
fnemli bir bSlimini olugturan tek tabakali sonsuz ortamin
yayili kiitle matrisi, III. B&liimde belirtildigi gibi,frekan-
sa bagli bir matris olarak elde edilebilmektedir.Ancak,ist-
yapi sistemlerinde oldugu gibi, 8zellikle iistyapi—zemin or-
tak sisteminde birinci titregim modunun, sistem dinamik dav-
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ranigina en bliylik oranda katkida bulundufu bilinen bir ger-
¢cek olduBundan [12, 65] ; tek tabakali ortama ait yayili
kiitle matrisinin, sistemin birinci titregim frekansi igin
hesaplanip, titresgim siiresince sabit olarak kabul edilmesi
uygun bir yaklagimdir. Birinci titregim frekansinin hesabi,
Rayleigh oraninin ardigik birkag uygulamasi ile kolayca
yapilabildiginden, bu yaklagim Snemli bir hesap yiikii de do-
gurmamaktadir.

VIIT.2. HAREKET DENKLEMININ KURULUSU

Ustyapi—zemin ortak sisteminin deprem zoru altindaki ha-
reket denklemleri, ortak sistem modelinden bagimsiz olarak
IV. BOliimde elde edilmigtir. Lineer elastik zemin durumu
i¢cin hareket denklemi (IV.12) bagintisi ile, lineer elastik
olmayan zemin durumu igin ise (IV.46) bagintisi ile verilmig-
tir. Ortak sistem modeli olarak Model I'in kullanilmasi ha-
linde, sistemin rijitlik, sdniim ve kiitle matrislerinin kuru-
lusu asagida agiklanmigtir.

Sistem rijitlik matrisi

Sistemin rijitlik matrisi, modeldeki gegitli kesimleri
ifade eden alt matrislerin birlegtirilmesi ile,

— -~

[s],s  [sly, [o] [o]
[sl,s I8, 8], [o]

[s]= ‘ : (VITI.1)

[0] [s]e,  [slee [sly

Ol Sy (8,

b

seklinde yazilabilir. Alt matrislerdeki (s) indisi, sonlu ele-
manlarla ideallegtirilen b&lge ile tek tabakali sonsuz ortami
ayiran sinir dogrusu lizerindeki serbestlik derecelerini ifade



etmekte; (z) indisi, temel tabanindakiler hari¢ olmak {ize-
re sonlu scleman bdlgesini gdstermektedir. (t) ve (y) indis-
leri ise, sirasi ile temel ve listyapiyi ifade ctmektedir-
ler (Sekil VIII.1).

[Sj alt matrisi (s) sinir doZrusu boyunca yer alan

. . (
diigiim noftalarinin kuvvetlerini ayn® noktalarin deplasman-
larinz baglayan rijitlik matrisini ifade etmektedir.

(51, = (812, + [812, (VIII.2)

seklinde yazilabilen matrisin ilk terimi, sinir dogrusuna
komsu olan sonlu elemanlarin; ikinci terimi ise, tek taba-
kali ortamin katkisini ifade etmektedirler. Tek tabakali
sonsuz crtamin dinamik rijitlik metrisi IIT.B5llimde(III.3)
bagaintzsi ile tanimlanan bigimde, yaklagik olarak,

re—

g1

W m

S 2 S ‘ 2
=[], - vy [Mlg (VIII.3)

3

seklinde ifade edilebilir. Bu bafintida [SI]:s tek tabaka-
11 sonsuz ortamin V. BSlimde (V.2) ifadesi ~1le verilen
statik rijitlik matrisini gdstermekte, ., istyapi~zemin
ortak sisteminin birinci titregim frekansini ifade etmekte-
dir. [Ml]is ise, tek tabakali sonsuz ortamda ] frekansi
i¢in hesaplanan ve Kisim VIII.1 de belirtildigi gibi,tit~
regim sliresince sabit kaldigi kabul edilen yayili kiitle mat-
risini gGstermektedir. Bu matrisin kurulug bi¢imi, (V.2)

ile verilen statik rijitlik matrisinin kuruluguna tamamen
benzerdir.

(VIII.2) bagintisindaki [S]ss matrisine, sinir dogru~-
suna komgu sonlu elemanlarin katkisini ifade eden [S]gs
matrisi ile, (VIII.1l) sistem rijitlik matrisindeki diger alt
matrislerin kurulugu, Ref. [15] in II. Cildinde verilen
algoritma yardimi ile gergeklestirilebilir.

Ustyapi temelinin sonsuz rijit olmasi veya yapi kolon-
lar: ve zemine oranla sonsuz rijit olarak kabul edilmesi du-
rumunda, sistem rijitlik matrisi, Kisim IV.2.i.2 de (IV.34)
bagintisindakl sistem rijitlik matrisine benzer gekilde ya-
z1labilir
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A1, @81, o [0]
s1,.  [sl,, [s),e [0
[s] = (VITT.4)

] Bl [l [0
O R C R

L.

Rijit temelin bagimsiz deplasmanlarina gdre indirgenén alt
matrisler,

[So]zt= [So]riz= I:S:lzt[T]t (VIIL.5)
(5], [t1,[s1,,[1], (VIII.6)

gseklinde ifade edilirler. Bu ifadelerde yer alan [T]t doniig-
tlirme matrisinin yapisi ve kurulusu Kisim IV.2.1.2 ~de agik-
land1g1 gibidir. Asagida 8rnek olarak, [So] ve [So]

.- . e o Z tt zt
matrislerine, rijit temele baglanan bir
dikdértgen diizlem sonlu elemanin katkilarini ifade eden in-
dirgenmig matrisler elde edilecektir.

AY
s b b T
b AB
d1 .
o i k x

(m}

Sekil VIII.2
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Sonlu elemanlarla ideallegtirilen zemin bdlgesinde bulu~
nan ve diglim noktalari (1),(j),(k),(£) ile gdsterilen (m)
numarali dikddrtgen sonlu elemanin (j) ve (k) diigim noktala-
r1 sonsuz rijit temele bagli olsun ($Sekil VIII.2).Temelin
bagimsiz deplasmanlarindan olugan kolon matris .

[do] e [d]_ dz d3] |

olduguna gdre, (j) ve (k) diigiim noktalarindaki yatay ve di-
gey deplasman bilegenlerini bagimsiz deplasmanlara baglayan
ddniigtiirme matrisleri, V.Boliimde (V.9) ifadesi ile verildi-
gi gibi,

1 0 0 ]
5l 0 (-x,/b)/2 (1+x,/b) /2
N p (VIII.7)
1 0 0 ]
Erk]t E— : ,
0 (1-x/b)/2 (L4, /b) /2 |

geklinde yazilirlar. (m) numarali sonlu eleman ig¢in bu iki
matrisin alt alta yazilmasi ile,

Ir,1, |
[t = (VIII.8)
[t

elde edilir. Sonlu elemanda .(j) ve (k) noktalarindaki kuvvet-
leri, ayni noktalarin deplasmanlarina baglayan eleman rijit-
1lik alt matrisi,

[k]JJ [k] jk
K ee = (VIIL.9)

[, [y
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olarak yazilabilir. Bu durumda, (m) numarali sonlu elemanin
[Sojtt matrisine katkisini ifade eden alt matris, (VIII.6)
bagintisindan,

Kool et =:[TUJ§[KﬁJtt[THJt (VIII.10)

seklinde elde edilir. Ote yandan, sonlu elemanda (j) ve(k)
noktalarindaki deplasmanlari (j) ve (2) noktalarindaki
kuvvetlere baglayan eleman rijitlik alt matrisi,

My [y

[Kngt“' (VIII.11)
My [y

seklinde yazilabilecegine gdre, (m) numarali sonlu elemanin
[So]zt matrisine katkisini ifade eden alt matris, (VIII.5)
bagintisindan,

T
[KmO] Zt= [Kmo] tz= [Km] zt [Tm] t (VIII . 12)
seklinde elde edilir.

Sistem Soniim Matrisi

Soniim problemi, bugiine kadar Yapi Dinamigi alaninda yo-
gun olarak aragtirildigi halde kesinlikle ¢8ziilemeyen Snemli
problemlerden biridir. Yapi Dinamiginde s¥niim, g¢esitli yapa
elemanlarinda, plastik deformasyondan dogan enerji kaybi
diginda, gesitli nedenlerle yutulan kinetik enerjiyi ifade
eden dinamik bir biiyiikliiktiir. Ancak, bazi yapi malzemelerin-
de, yapi elemanlarinda ve Szellikle zeminde enerji yutulma
mekanizmas1 kesinlikle agiklanamadigindan, deneysel sonucla-
rin degerlendirilmesi ve yutulan enerjinin matematik anlam-
da basit olarak ifade edilebilmesi i¢in belirli soniim model-
lerinin se¢imi zorunlu olmaktadir. Genellikle gdzdniine ali~
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nan iki tiir séniim vardir; bunlar lineer viskoz sdniim ve sa-
bit vapisal (hysteretic) s@nlimdiir, Harmonik olarak titreg—
tirilen viskoz s@nlimli bir sistemin herhangi bir elemanin-
da, bir tam periyot sliresi iginde yutulan enerji, titresgi-
min frekansina doZru orantil: olarak baglidir. Yapisal s&~
niimli sistemlerde ise ayni slire icinde yutulan enerji,tit-
regim frekansindan bagimsizdir. Yapilan deneysel caligma-
lar, Szellikle zeminlerdeki s8niim mekanizmasinin yapisal
nitelikte oldugunu gdstermigtir. Hareket denkleminin ¢dzi-
mi agisindan, viskoz ve yapisal sBnim tlrleri arasindaki
en Bnemii fark; viskoz sOnilimll sistemlerde ¢Bziimlin zaman
alaninda yapilmasinin mimkiin olmasina kargilik, yapisal s&-
niimli sistemlerde ¢Bzlmiin ancak frekans alaninda yapilabil-
mesidir. Bu nedenle yapisal sdnlimli sistemlerin kesin gzt~
mi ancak Fourler Ddniiglimli ile gergeklegtirilebilir.
Uygulamada, ¢ok serbestlik dereceli lineer sistemlerin
dinamik hesabinda yogfun olarak kullanilan "modlarin siiper—
pezisyenn' yonbumlude sOnlim etkisi, gdzdnline alinan modlar-
daki modal viskoz s8nilm oranlari araciligi ile hesaba katil-~
maktadir. Saz konusu modal sdnim oranlarina, sbniim etkisi
bakimindan egdeger olan ortogonal sdnlim matrislerinin elde
ediimesi ig¢in gesgitli yontemler geligtirilmistir [72]. Uygu-
lamada, ortogonallik gartin: saglayan viskoz sdniim matrisle-
ri genellikle, bu garti ayri ayri saglayan rijitlik ve kiitle
matrislerinin lineer kombinezonu ile elde edilmektedir.Vis-
koz sdniim matrisinin bu anlamda

[c]= alM] + B[s] (VIII.13)

gseklinde kabul edilmesi durumunda, (i) inci moda ait s&nilim
orani :

- . (VITI.14)

seklinde eld
A ve B ise
termekiadix.
1ik matrisleri 1

(i) inci 8zel frekansi;
olan katsayilari gbs—
kiitle veva sadece rijit-—

abul edilmesi halinde
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ise modal viskoz soniim oranlari,

: A
[c] = A[M] s hi S ) (VIII.153)
Zwi
Bwi
[c] = B[s] . h; = > (VIII.16)

gseklinde elde edilir.Birinci titregim modunun sistemin dav-
raniginil en biiylik oranda katkida bulundugu kabul edilirse,
(VIII.15) ve (VIII.16) dan

A ==2h1w1 (VIII.17)
2h1
B =—r0o (VIII1.18)
Wy
bulunur.

Harmonik titregimler ig¢in gegerli olan yapisal s&nilim
halinde, egdefer anlamda bir viskoz s¥niim matrisi tanimlana-
bilir :

28
[c] s T[S] (VIII.19)

Burada  , harmonik titregimin frekansini, - B ise ya-
pisal soniim oranini gdstermektedir. Birinci titregim modu-
nun katkisi esas olarak alindiginda, (VIII.16) bagintisinin
yapisal soniim kabulune yakin oldugu sonucuna varilir. Bu
caligmada da ayni kabul gergevesinde, viskoz soniim matrisi-
nin, egdeger anlamda,

28
[c] s ™ [s] (VIII.20)

1
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geklinde alinabilecegi kabul edilmigtir. (VIII.20)bagintisi
tiim sistem ig¢in yazilabilecegi gibi, sistemi olugturan her
ayrik eleman ic¢in de yazilabilir. Bdylece sdniim mekanizmasi
her ayrik eleman igin bagimsiz olarak gdzdniine alinabilmek-
tedir,

Sistem Kiitle Matrisi

Sistem kiitle matrisinin kurulugunda, baglica iki yakla-
simdan s8z edilebilir. Birinci yaklagim "tekil kiitle" .yakla-
gsimidir. Bu yaklagimda; her ayrik elemanin kiitlesinin,digiim
noktalarinda toplanabilecegi kabul edilir.Bu durumda sistem
kiitle matrisi, diigim noktalarindaki tekil kiitleleri esas
diyagonali {izerine alan diyagonal bir matris olmaktadir.
Ikinci yaklasimda ise; eylemsizlik kuvvetlerinin, ayrik ele-
manda siirekli olarak yayildigi kabul edilir. Bu esasa gire
elde edilen "yayil: kiitle matrisi" veya III.BSliimde kulla-
nilan deyimi ile "Birim Ivme Matrisi”, diyagonal bir matris
degildir. Cilinkii, bu durumda elemanin diifiim noktalarindaki
eylemsizlik kuvvetleri serbestlik derecelerine kargl gelen
ivmelerin tiimine birden bagli olmaktadlr.\Blrlm ivme matri-
sinin, virtiel 1§ teoremi ile elde ediligi III,B&liimde
Kisim III.3.2 nin baglangicinda agiklanmlgtlr.

Hareket denkleminin kurulugu ve ¢bziimi 'agisindan "Tekil
kiitle matrisi" kabulu daha avantajli olmaktadir. Bu durum,
bellek ekonomisi ile birlikte, ¢6zlim algoritmalarinda belir-
1i kolayliklar saglamaktadir. Yapilan gegitli aragtirmalar;
bu yaklagimin, hesabin dogrulugu ydniinden dnemli bir sakinca
yaratmadifini gdstermigtir. Bu nedenle, bu galigmada kulla-
nilan Model I cgergevesinde, sonlu elemanlarla ideallestiri-
len zemin kesimi ile {istyapi ve temelinde, tekil kiitle yak-
lagimi esas alinmigtir. Tek tabakali sonsuz ortamdaki eylem-
sizlik kuvvetleri, ortamin dinamik rijitlik matrisi aracili-
g1 ile gdzdniine alinabildiginden; bu ortamin sinirindaki
diiglim noktalarina iligkin %Nﬂzs matrisi, komgu sonlu ele-
manlarin diigiim noktalarinda toplanan tekil kiitlelerden olug-—
maktadir. Bdylece, ortak sistemin kiitle matrisi,
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Mz, [} [l [0]

[o] [, [o]  [0]

M = (VIII.21)
[0] [0 D, [0

seklinde elde edilmektedir. Bu matriste yer alan biitlin alt
matrisler, diigim noktalarindaki tekil klitleleri diyagonal-
leri {izerine alan birer diyagonal matristirler.

Ustyapi temelinin sonsuz rijit olmasi veya o gekilde
kabul edilmesi durumunda, sistem kiitle matrisi,

- B

[

SSs

[0 D, [0 [0

[M] = (VIII.22)

[0] [0] M e D] ty

NS R I

seklinde yazilir. Rijit temel nedeni ile diyagonallik &zel-
1igi bozulan sistem kiitle matrisinde, temelin bagimsiz ser-
bestlik derecelerine gdre indirgenen alt matrisler, IV.B&-

limdeki (IV.33) ve (IV.34) bagintilarinda gdsterildigi gibi,

[%L;lﬁgﬂmmﬁﬂtM+[ﬂﬁm;hL
+V [TO];[M]W [Tolye (VII1.23)

' T
) ye = My = D [T0] 5 (VITI.24)
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ifade edilirler. (VIIL.23) bagLntls1ndak1 ilk te-
t temelin kendi kiitle matrisine karsi gelmektedir;
in ayrintilari VI. ve VII. BSlimlerde verilmigtir.
deki ikinci terim, temel tabanina rastlayan sonlu
in tekil kiitlelerinden olugan [M]tt matrisinin,
:emelzn baglmS?z serbestlik derecelerine gdre indirgenmesine
karsa g;lﬂektea_b, Indirgenme iglemi, bu kismin baglangicin-
da rijitlik matriei i¢in uygulanan iglemin benzeridir.
(VIII.23) deki Gclincl terim, {istyapinin temele eylemsizlik
yoninden etkisine kargi gelmekte, (VIII.Z4) deki matrisler
ise, Ustyapi ve temelin eylemsizlik y&ninden kargilikl:
etkisi ade etmektedirler. Bu matrislerin elde edilmesi
ile il ayrintilar VI. ve VIII.BSlimlerde verilmigtir.

PL
T I

m

;,..ea jela

MR
i

g1

YVII1.3. HAREKET DENKLEMININ CUZOMO

Deprem zoru altinda, yapir sistemlerinin dinamik hesabi
i¢in kullaniimskta olan gozdm vdntemleri iki ana grupta top-
lanabilir :

1) Doniiglim Yontemleri,

[a]
"
[

Direkt Integrasyon Ydntemleri.

Birinei grubu olugturan doniigiim yontemlerinin en ®nemli-
leri modal doniglim (modlarin siiperpozisyonu) ydntemi (15]
ile Fourier Donilisimi Yontemidir [20 30] . Ancak uygulama agi~
sindan her iki ydntem de lineer sistemlerin hesabi ile kisit-
lidirlar. Ikinci grupta yer alan direkt integrasyon yontemle~
ri, hareket denkleminin "zaman alaninda”,sonlu zaman artimla-
ri ile in%eorasyonu esasina dayanir.Bu yohtemlerin\dﬁnﬁgﬁm
yontemierine orvanla listlnliigii, lineer olmayan sistemler igin
de uygulanabilme olaneklarinin bulunmasidir. Bu ydntemler
arasinda "Lineer ITvme Yéntemi" E15 bu ydntemin stabilitesi-
ni saglayan “"wWilson 6 Vﬁntﬂmi” 71] ve Newmark'in " B ydn-
temi’ U(}”s sayilabilir. Kesme hatas: n4 olan bu yOntemler
Tineer olmayan sistemlerin ¢iiziiminde bir ardigik yaklagim ig-
lemini zorunlu kilmakta veya her zaman adlmlnda bir lineer
denklem takiminin ¢8ziimli gerekmektedir. AﬂQak:rogiu ve G.0z-
men tavafindan “ELIQP“TlI“P ve kesme hata h® mertebesinde
clan ydnte 17] ise, ardigik yaklagim veya denklem takimt
¢Ozlml iglemine gerek kalmamaktadair.

,':3



tiin zamsn artimi
¢ dezger nroble-—
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Genel olarek, uygulamada kulla
yontemleLl, hareket denkleminin bir
inl ‘olarak sonlu farklarla ¢Oziimi e
vakinsakl:ig1 acisindan biltlin y&a
dir [71]. Ozellikle sistemdeki s 3
artmas:, stabilite problemini &n Dlana ¢ikarmaktadir.Bu agi-
dan bakildiginda, ortak sistemin deprem hesabi igin Sngdri-
len zemin modelinin tistiiniiigli, serbestlik derecesi sayisi—
nin diger ayrik modellere oranla diiglik bir dizeyde kalmasi-
nin saglanmig olmasidir. Ancak, serbestlik derecesi savis

i

[z clarak stebil”

nin belirli bir mertebeden daha agagiya indilil nes
nin bulunmadigi aciktir. Bu nedenle, ortak sistemin deprem
hesabl icin gelistirilen ve ayrintilari Kisim IX.4 de agik-—

lanan elektronik hesap makinas: programlarinda, ¢Szimin
"sartsiz olarak stabil" olmasini saglayan Wilscn 6 yontemin-
den yararlanilmigtir. Bu yOntemde, bilinen lineer ivme y3n-
temi ig¢inde bir ekstrapolasyon teknigi uygulanmakta ve

8 > 1.37 i¢in lineer ivme ydnteminin stabilitesi sartsiz
olarak saglannaktadlr [71]
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BULOM IX
ELEKTRONIK HESAP MAKINASI PROGRAMLARI

Bu galigmada geligtirilen matematik modellerden yarar-
lanilarak, iistyapi~zemin ortak sisteminin serbest titregim
ve deprem hesabinin yapilabilmesini saglamak amaci ile g¢e-
sitli elektronik hesap makinasi programlari hazirlanarak
" Fortran IV dilinde kodlanmigtir.¥% Hazirlanan programlar
ddért ana grupta toplanabilir :

1) Birinci gruba giren programlar, tek tabakali sonsuz
ortam ve onun Szel halini olugturan yari sonsuz ortamda sta-
tik birim deplasman sabitleri ile birim ivme sabitlerinin
hesaplanmasini saglamaktadirlar. Bu sabitlerin hesabi, 2.
ve 4. gruplarda yer alan programlar bakimindan da sz konu-—
su oldugundan, birinci gruptaki programlar birer altprog-
ram olarak diizenlenmiglerdir. Altprogramlara sirasi ile,
BIDE ve BIVME adlari verilmigtir.

2) Ikinci grupta yer alan programlar, yiizeysel ve son-
suz rijit temel plaklari ig¢in tek tabakali sonsuz ortamin
rijitlik ve kiitle matrislerini, V. BSliimde aciklanan diizen—
de hesaplamaktadirlar. Tek temel plaginin rijitlik ve kiitle
matrislerinin hesabi igin RITER1 ve RITEK1l ; yanyana titre~
gen iki eg temel plagi icin de RITER2 ve RITEK2 adlai
programlar geligtirilmigtir. Bu programlar, birinci grupta-
ki BIDE ve BIVME altprogramlarini kullanmaktadirlar.

3) Uglincli grubu olugturan TETIF ve TRANS adli program—
lar, tek ve yanyana 1ki eg listyapiyl kapsayan iistyapi—-zemin

Programlarin geligtirilmesi ve uygulanmasi igin I.T.U.
Elektronik Hesap Bilimleri Enstitiisiinde bulunan
Burroughs B3700 sisteminden yararlanilmistir.



ortak sistemleri ig¢in, ayrintilari VI. ve VII. Bliimlerde
agiklanan serbest titregim hesaplarini yapmakta ve transfer
fonksiyonlarini elde etmektedirler. Bu programlar, ikinci
gruptaki programlarin sonuglarini giris bilgisi olarak kul-
lanmaktadirlar.

4) Son grupta yer alan programlar ise, lineer ivme ydn-—
temi ile deprem hesabinin yapilmasini saglamaktadirlar.
ORSIDE adli program, VIII. BSliimde agiklanan diizende,list-
yapi-zemin ortak sistemini, verilen bir deprem kaydi ic¢in
hesaplamaktadir. Ortak sistemin rijitlik ve kiitle matrisle-
rinin kurulugunda, birinci grupta yer alan BIDE ve BIVME
altprogramlarindan yararlanilmaktadir. UYSIDE adli prog-
ram ise, 8zel olarak zeminin sonsuz rijit olmasi durumunda,
listyapinin deprem hesabinin yapilmasini saglamaktadar.

IX.1. BIRINCI GRUP PROGRAMLAR

Bu gruba giren BIDE ve BIVME adli altprogramlar,tek
tabakali sonsuz ortam ve onun &zel halini olugturan yari
sonsuz ortamda, statik birim deplasman sabitleri ile birim
ivme sabitlerinin hesabini saglamaktadirlar.

IX.1.1. BIDE Altprogram

Tek tabakali sonsuz ortamin birim deplasman sabitlerinin
elde ediligi III.BSliimde, Kisim III.3.1 de agiklanmistir.El-
de edilen integral ifadelerin kapali sonuglari ise XII.B3liim-
de, Kisim XII.2 de, (XII.38), (XII.39) ve (XII.40)bagintila-
ri ile verilmigtir. BIDE altprogrami, dogrudan dogruya bu
bagintilari, verilen girig bilgileri ig¢in hesaplayarak birim
deplasman sabitlerinin sayisal sonuglarini elde etmektedir.
Bir anahtar girig degigkeni yardimi ile yari sonsuz ortam
6zel durumu da g&zOniline alinabilmektedir. Bu durumda(XII.38),
(XII.39) ve (XII.40) da sadece J1 teriminin hesabi yeterli
olmaktadir. BIDE altprograminin bagimsiz olarak kullanil-
masi halinde, girig bilgilerinin Tablo IX.1 de g&riildiigii ge-
kilde diizenlenmesi gerekmektedir.
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BIDE Altbrogrami Girig Bilgileri
Kart 81;_ Program ‘ Kolon
No. |No. Sembolu | Girig Degigkeninin Tanimi |No. FORMAT
1 1 G Ortamin kayma modili: 1-10| E10.0
2 FAL Ortamin Poisson orani 11-20] E10.0
3 NZ Orijindeki digim noktasin— {21-25| 15

dan itibaren birim deplas~
man sabitlerinin hesabinin
istendigi diglim noktasi
sayisi

2 1 K Yari sonsuz ortam igim si— |1-5 i5
fir, soniu derinlik halin-
de sifairdan farkli olarak
tanimlanan anahtar degig-—
ken

(W]
=

Tabaka yiiksekliZinin digim |6~15 | E10.0
noktalar: ara uza
orani (o =h/a)

™

Tablo IX.1

Yari sonsuz ortam $zel durumunda, Tablo IX.1l de goriilen
2 No.lu kartin bog olarak verilmesi yeterlidir.

Bagimsiz olarak kullaniimasi durumunda BIDE altprogra-
minin ¢ikig bilgileri olarak, ilk iki satirda girig bilgile-
ri dig ortama aktarilwmakta, daha sonra ilk kolonda digiim
noktasi numaralari olmak lizere k., kxy ve ky birim
deplasman sabitleri yanyana {i¢ kolon halinde ba51¥maktad1r.
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IX.1.2. BIVME Al tprogram

Tek tabakali sonsuz ortamin birim ivme sabitlerinin el-
de ediligi III. BSlimde, Kisim III.3.2 de ag¢iklanmigtir.
Elde edilen integral ifadeler ve bunlara ait yari sayisal
integrasyon iglemleri ise XII. B&liimde, Kisim XII.3 de ve-
rilmigtir. BIVME adli altprogram, birim ivme sabitlerine
ait (XII.41), (XII.42) ve (XII.43) ifadelerindeki integras-
yon iglemlerini Kisim XII.3 de aciklanan diizende yapmakta-
dir. Kapali olarak elde edilebilen integrallerin sayisal
hesabinda, programlama ydniinden belirli bir 8zellik bulun-
madifindan, bu konudaki ayrintilara burada yer verilmemig-
tir. (XII.44) ve (XII.45) ifadelerinde yer alan Ci kosiniis
integral fonksiyonu ve &i siniis integral fonksiyonu,Ref[1]
de verilen yakinsak seri agilimlarindan yararlanilarak,

SICI adli altprogramla elde edilmiglerdir. (XII.56)ifade-
sinde yer alan ve (XII.58) ile tanimlanan E] eksponansiyel
integral fonksiyonunun hesabi igin de Ref.[1] de verilen
seri ¢bziimlerine gdre hazirlanan EXP@PNA adli altprogramdan
yararlanilmisgtir.

Yari sonsuz ortam 6zel durumunda birim ivme sabitleri-
nin hesabi basitlesmekte, sonuclar (XTT.44) ve (XII.45)ifa-
deleri ile elde edilebilmektedir. BIDE altprograminda oldu-
gu gibi, BIVME altprograminda da, bu 8zel durumu gdzdniine
almak lizere bir anahtar girig degigkeninden yararlanilmakta-
dir. BIVME altprograminin bagimsiz olarak kullanilmasi halin-
de, girig bilgilerinin Tablo IX.2 de gdriildigl gekilde dii-
zenlenmesi gerekmektedir.

BIDE altprogramlnda oldugu gibi, yari sonsuz ortam dzel
durumunda, Tablo IX.2 de gdriilen 2 No.lu kartin bog olarak
verilmesi yeterli olmaktadair.

Bagimsiz olarak kullanilmasi durumunda, BIVME altprog—
raminin ¢ikig bilgileri olarak, ilk iki satirda girig bilgi-
leri verilmekte, daha sonra ilk kolonda diigiim noktas1 numa-
ralari olmak lizere myx, my, . ve birim ivme sabitleri
yanyana {i¢ kolon halinde basilmaktadir.
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BIVME Altprogrami Girig Bilgileri

Kart| Sira| Program Kolon
No. |No. Sembolu| Girig Degigkeninin Tanimi | No. |FORMAT

1 1 AS Boyutsuz frekans katsayisi 1-10| E10.0
[a, = wa(p/6)1/2] , |

2 PRI Ortamin Poisson orani 11-20| E10.0
3 NZ Orijindeki diigiim noktasin- | 21-25| 1I5

dan itibaren birim ivme
sabitlerinin hesabinin is-
tendigi diiglim noktasi sayi—

s1
2 1 K@ Tablo IX.1 de tanimlanan 1-5 15
| anahtar degigken
2 AL Tabaka yiiksekliginin diigiim | 6-15| E10.0

noktalari ara uzakTrfina
orani (a=h/a)

Tablo IX.2

IX.2. TKINCt GRUP PROGRAMLAR

Bu grupta yer alan programlar, tek tabakal:i ortam sini-
rindaki yiizeysel ve sonsuz rijit temel plaklari ig¢in ortamin
rijitlik ve kiitle matrislerini elde etmektedirler. Tek bagi-
na titregen temel plagi igin RITER1 ve RITEK1l, yanyana
titregen iki eg temel plagi ig¢in RITER2 ve RITEK2 adl:i
programlar geligtirilmigtir.

IX.2.1. RITERT ve RITEK1 Programlari

Bu programlar, tek tabakali ortam sinirinda tek bir
temel plagi bulunmas: halinde, yatay—agisal rijit hareket
durumuna gdre, ortamin (2x2) mertebeden rijitlik ve- kiitle
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matrislerini elde etmek amaci ile hazirlanmistir. Problemin
bir "karigsik sinir deder problemi” olarak ayrik anlamda
¢dzlimi ile 11gili genel bilgiler V.Bdlimde Kisim V.1 de
verilmig, s8z konusu matrislerin elde edilmelerine iligkin
matris iglemleri ise Kisim V.1.1 de agiklanmistir.

RITERL rijitlik matrisi pr cgraml ile RITEK1l kiitle
matrisi programi, kullandiklari farkl:i birer altprogram di-
sinda, yapilari. bakimindan birbirinin taemamen aynidar.

Sekil IX.1 de verilen genel ak:ig diyagraminda gdriildiigi gi-
bi, RITERL ve RITEKl programlari, girig ve ¢ikig kisim-
lari diginda, birbiri ardindan sira LIP gagirirlan alti alt -
programdan olugmaktadirlar.

RITER] program: ilk olarak BIDE altprogramini,RITEK1
ise BIVME altprogramini ¢agirmaktadir., BIDE ve BIVME alt-
programlarinin &zellikleri Kisiw IX.1 de agiklammigtir. Bi-
rim deplasman sabitlerinin degerleri, birim deplasmanin uy-—
gulandig1l noktadan itibaren hizla kiigilmektedir. Bu nedenle,
tek tabakali ortamin Kisim V.1 de (V.2) ile verilen rijit-
lik matrisinde veya (V.5) ile antimetrik rijitlik matrisin-
de belirli bir band geniglifinin g&zdniine alinabilmesi miim—
kiindlir. Ayni durum ortamin kiitle matrisi igin de s8z konusu-
dur. RITER1 ve RITEKl programlarinin girig bilgilerinin
6zet1endigi Tablo TX.3 de KBND sembolli ile tanimlanan
girig degigkeni, sBzli edilen band genigligini belllleyen di-
glim noktasi sayisini ifade etmektedir.

BIDE}veya BIVME altprogramlarlnln icrasi sonunda elde
edilen kxy, ky, ve birim deplasman sabitleri ile
Myxx > Wxy Ve m blrl% ivme sabitleri, band genigligi bo-

yutunda olan {icer dizi halinde i¢ bellekte saklanmaktadirlar.

RITER1 ve RITEK]l programlarinda ikinci sirada ¢agiri-
lan T1 adl: altprogram, Kisim V.1 de (V.11) bagintisi ile
tanimlanan [T), doniigtiirme matrisini tiretmektedir. Bu matri-
si olugturan Tj]t alt matrisleri, tek temel durumu igin
Kisim V.1.1 de” verilen (V.13) bagintisi ile elde edilmek-
tedir.
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RITERL ve RITEKl Programlarrnin Girig Bilgileri

Kart|Sira | Program : Kolon
No., |No. Sembolii| Girig Degiskeninin Tanimi | No. FORMAT

1 1 POL Ortamin Poisson orani 1-10 | E10.0

2 AL, Tabaka yiliksekliginin diigiim | 11-20 | E10.0
noktalari ara uzakliina
orani (a=h/a)

P 3 . - AS . | Boyutsuz frekans katsayi-: 21-30 | E10.0
s1 = a,
(Sadece RITEK1 programinda) .

2 1 MB Temel tabaninin yarisinda- 1-5 I5
ki diglim noktalari aralik-
larinin sayisi

P Z ME Temel tabaninin disinda, 6-10 | 1I5
' bir tarafta kalan ddgdm
noktalari araliklarinin
sayisi

3 KBND Band genigligini belirleyen | 11-15| 15
diigiim noktasi sayisi

Tablo IX.3

Tl altprograminin ardindan sira ile ¢agirilan ii¢ altprog-
ram, (V.15) bagintisi ile tanimlanan simetrik So} sistem ri-
jitlik matrisinin kurulmasi ig¢in hazirlanmiglardir. S111
adli altprogram, (V.15) rijitlik matrisinde yer alan Ls]zz
alt matrisini kurmaktadir. S121 wve S221 adli altprogramlar
ise, dnce (IV.14) bagintisindaki [S],¢ ve [S]¢e alt mat-
rislerini iiretmekte, daha sonra (V.16) bagintilari ve TI1
altprograminin sonug¢larindan yararlanarak [SO]Zt ve [So]tt
alt matrislerini elde etmektedirler. (V.15) ile tanimlanan
[So] sistem rijitlik matrisi esas kisegenine giire simetrik
ve band bir matris oldugundan, esas kigegen izerindekilerle
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birlikte bir tarafta kalan sifirdan farkli elemanlarin iire-
tilmesi yeterli olmaktadir. Bu durum S111, S121 ve S221
altprogramlarinda gdzoniine alinmig ve [So] matrisinin ele-
manlari tek boyutlu bir dizi halinde i¢ bellekte saklanmig-
tir. RITERL programinda rijitlik matrisi i¢in yapilan ig-
lemler, RITEKl programinda sistemin kiitle matrisinin kurul-
masint saglamaktadir. ‘

RITERL wve RITEK] programlarinda son olarak c¢agirilan
INDIR1 adli altprogram, kurulmus bulunan sistem rijitlik
ve kiitle matrislerinde, temelin bagimsiz serbestlik derece-
sine karg:i gelenler disinda kalan elemanlari, Gauss—Jordan
yontemi ile indirgemektedir. Sonug¢ olarak, (2x2) boyutunda
(kolee ve [mo]tt matrisleri elde edilmektedir.

Yapisi yukarida agiklanan RITER1 programinin g¢ikig
bilgileri, dig ortama aynen alinan girig bilgileri ile bir-
likte, simetrik {ko]tt matrisinin yanyana basilan {ic ele-
manindan olugmaktadir. RITEKL programinda ise, girig bil-
gileri ile birlikte, [mg]ry matrisinin elemanlari ayni di-
zen ig¢inde basilmaktadar.

IX.2.2. RITER2 ve RITEK2 Programlari

Bu programlar, tek tabakali ortam sinirinda, birlikte
titresen yanyana iki eg temel plagi bulunmasi halinde plak-
larin herbiri ig¢in, ortamin antimetrik gekil degistirme du=
rumuna kargi gelen (3x3) mertebeden rijitlik ve kiitle mat-
rislerini elde etmek amaci ile hazirlanmmiglardir. Problemin
yapisi ve uygulanmasi ile ilgili agiklama ve ayrintilar
V.Bdliimde, Kisim V.1 ve Kisim V.1l.2 ' de verilmigtir,

RITER2 ve RITEK2 programlari, ¢agirdiklari farkl:
birer altprogram diginda, birbirlerinin tamamen aynidir.
Bu programlar, tek temel igin hazirlanan RITER1 ve RITEK1
de oldugu gibi,birbiri ardindan ¢agirilan bir dizi altprogram-
dan olugmaktadir.Genel akig diyagramlari $ekil IX.1 deki diize-
ne benzer oldupgunda bu kisimda ayrica verilmemisgtir.
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RITER2 ve RITEK2 Programlarinin Girig Bilgileri

Kart|Sira | Program " 1 Kolon
No. |No. Semboli Girig Degisgkeninin Tanimi | No. FORMAT
1 1 P@I Ortamin Poisson orani 1-10 | E10.0
2 AL Tabaka yikseklifinin didgim 11-20 { E10.0

noktalar: ara uzakligina
orani (a=h/a)

3 AS Boyutsuz frekans katsayi- 21-30 | E10.0
s1 = a,.

(Sadece RITEK2 programinda)
2 1 MB Temel tabaninin yarisindaki 1-5 15

diigim noktalari araliklari-
nin sayisi

P MC Tki temel arasindaki uzakli-| 6-10 | I5
gin yarisinda diigiim noktala—
r1 araliklari sayisi

3 | ME Temellerden birinin diginda | 11-15 | I5
kalan diigiim noktalari ara- '
liklarinin sayisz

4 - | KBND Band genigligini belirleyen | 16-20 | I5
& diiglim noktas1 sayisi

Tablo IX.4

RITER2 ve RITEK2 programlarinda sadece g¢agirilan ilk
altprogramlar birbirinden farklidir. RITER2 programinda
BIDE altprogrami ca@irilmakta, RITEK2 de ise BIVME altprog-
ramindan yararlanilmaktadir. Bu altprogramlardan sonra gagi-
rilan biitiin altprogramlar her iki program ig¢in de ortaktir.

Ikinci sirada ¢agirilan T2 adli altprogram,Kisim V.1
de (V.9) bagintisi ile verilen [T alt matrislerinin
(V.11) deki diizende olugturdugu [T donligtiirme matrisini
sayisal olarak ilretmektedir.
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T2 altprogramindan sonra birbiri ardindan sira ile cagi-
rilan alti program, (V.30) ile verilen sistem rijitlik mat~-
risinin kurulmasini saglamaktadirlar. |S,| matrisinde vyer
alan 8], [So]zt » [S}zs ’ [So]tt’ Solts ve [S]ss alt
matrisleri, sirasi ile S112, S122, S13, $S222, S23 ve
S33 adli altprogramlar tarafindan iiretilmektedir. Temel
tabani ile 1ilgili alt matrisler, dnce (V.29) bagintisindaki
gekilleri ile elde edilmektedir. Bu alt matrislerin, temelde-
ki bagimsiz serbestlik derecelerine gtre indirgenmeleri ig¢in
{V.31) bapgintilarindan ve daha 8nce icra edilen T2 altprog-
raminin sonuglarindan yararlanilmaktadir.. (V.30) sistem ri-
jitlik matrisi ile ona kargi gelen sistem kiitle matrisi
esas kigegenlerine gdre simetrik ve band birer matris olduk-
larindan tek boyutlu diziler olarak elde edilmiglerdir.

RITERZ wve RITEK2 programlarinda son clarak ¢agirilan
INDIR2 adli altprogram, rijitlik ve kiitle matrislerini
Gauss—Jordan yontemi ile indirgemekte ve temelin bagimsiz
serbestlik derecelerine kargi gelen (3x3) mertebeden [ka]tt
ve Emo}tt matrislerini elde etmektedir. Programlarin ¢ikisg
bilgilerinden &nceki son kisimlarinda, elde edilen matrisle-
rin elemanlari (V.35) bagintilari yardimi ile Sekil V.2 deki
(a) bajimsiz deplasman durumuna gdre dénligtlirlilmektedir. Ci-
kig bilgileri olarak, aynep alinan girig bilgilerinden sonra,
(3x3) rijitlik ve kiitle matrislerinin elemanlari, Sekil V.2
deki (a) wve (b) bagimsiz deplasman durumlarina gdre ayri
ayri basilmektadir.

RITER2 ve RITEK2 programlarinin girig bilgileri
Tablo IX.4 de Szetlenmigtir.

IX.3. OCUNCO GRUP PROGRAMLAR

Bu grupta yer alan TETIF ve TRANS adli programlar,
tek veya yanyana iki eg listyapi durumlarinda, listyapi-zemin
ortak sisteminin birinci titresim frekansini hesaplamakta
ve transfer fonksiyonlarini elde etmektedirler. Serbest tit-
regim hesaplary ile ilgili ayrintilar VI. ve VII.BSllimlerde
verilmistir.



164

TETIF ve TRANS Programlarinin Ortak Girig Bilgileri{I.Grup)

Kart]| Sira|{Program . Kolon
No. |No. |Sembolii| Girig Degiskeninin Tanimi No. FORMAT
1 1 B Temel yari genigligi 1-10 | E10.0
2 HT Temel yiiksekligi 11-20 | E10.0
3 ROT Temelin birim hacim kiitlesi |21-30| E10.0
2 1 NK Ustyapinin kat sayisi 1-5 I5
3* EK Her katta,kolon kayma rijit—- | 1-80 | 8E10.0
liklerinin toplami
¥ | EM | Her katta, kiitlelerin topla- | 1-80 | 8E10.0
; mi
5* EMI Her katta, kiitle eylemsizlik 1-80 | 8810.0
momentlerinin toplami
6k | H Kat yiikseklikleri 1-8C | 8E10.0
7 1 CA Gerceve araligdi 1-10 | E10.0
8 1 IK Tek veya iki {istyapi bulun- - 15
dugunu gdsterir anahtar
degigken
9 1 LG Zeminin kiitle matrislerinin 1-5 15
hesaplandifi a, boyutsuz
frekanslarinin sayis:
2 NLG Lagrange interpolasyonunda 6-10 1 I5
kullanilmak istenen a, bo-
yutsuz katsayilarinin sayi-
s1
10* ASL a, boyutsuz katsayilarinin I-80 | 8E10.0
degerleri

ES

Yeteri kadar kartla okunur.

" Tablo IX.5
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TETIF ve TRANS Programlarinin Ortak Girig Bilgileri(III.Grup)

Kart| Sira | Program Kolon
No. | No. Sembolii | Girig Degigkeninin Tanim|No. FORMAT |
1 1 G Zemin ortaminin kayma mo- | 1-10 E10.0
dild
2 RY Zemin ortaminin birim ha- |11-20 {.E10.0
cim kiitlesi :
2 1 BL Tabaka yiiksekliginin yari | 1-10.| E10.0

temel genigliZine orani

3 |1-6 | Exg" | Rijit temel ig¢in ortamin | 1-60 | 6E10.0
rijitlik matrisinin ele-~
manlari

4" |1-6 | EMpT | Her a, boyutsuz frekansi | 1-60 | 6E10.0

igin ortamin kiitle matri-
sinin elemanlari

5 1 CB ki temelin ara uzakligi- | 1-10 | E10.0
nin, temel genigligine
orani = c¢/b.(Iki iistyapa
durumunda okunur.)

Yeteri kadar kartla okunur.

IK dediskeninin aldi§i dedere gdre (2x2) veya (3x3) boyut-
lu matrislerin elemanlarl_okunur.

Tablo IX.5 (Devam)

Bu ¢aligmada, zemin ortaminin ideallegtirilmesinde diiz-
lem gekil degistirme durumu esas alindifindan, TETIF ve
TRANS programlarinda ilistyapinin, birbirine paralel diizlem
coooeoelerden olustugu kabul edilmektedir. Basitligi saglamak
‘ v oulamada kullanilan D r1larindan vararlanmek amaci

iz usu gergeveler, bi kayws corcevesi olarvak ideal-

. I N . I
nptir. Bu nedenlerie. gergeve avsinzkisri ile bivlik—
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te, {istyapinin her katinda kolon kayma rijitliklerinin veya
D sayilarinin toplaminin girig bilgisi olarak verilmesi
gerekmektedir.

TETIF ve TRANS programlari, tek ve iki iistyapi durum-—
larini kapsadiklarindan, bu iki durumu tanimlayvan bir anah-
tar degigkenin girig bilgisi olarak verilmesi gerekmektedir.
IK program sembolii ile gdsterilen ve ayni zamanda rijit
temelin serbestlik derecesini ifade eden degigken, tek iist-
yapil durumunda 2, iki styapi durumunda ise 3 degerini al-
maktadir.

TETIF ve TRANS programlar:i, biliylk kismi ayni olan
girig bilgileri ile galigmaktadir. Her iki program iginm or-
tak olan I. ve III. Grup girig bilgileri Tablo IX.5 de
6zetlenmigtir. Programlara &zgii diger girig bilgileri ise
agagidaki Kisim IX.3.1 ve Kisim IX.3.2 de verilmisgtir.

IX.3.1. TETIF Program

Bu program, tek veya yanyana iki eg lstyapidan olusan
istyapi-zemin ortak sisteminin birinci titresim frekansini
hesaplamakta ve titregim modunu elde etmektedir. Programin
genel akig diyagrami Sekil IX.2 de gSriilmektedir. TRANS
programr ile ortak olan I. ve III. grup girig bilgileri
Tablo IX.5 de, TETIF programina &zgii II. grup ek girig bil-
gileri ise Tablo IX.6 da Szetlenmistir.

TETIF programinda, I. ve II. grup girig bilgilerinin
okunmasindan sonra g¢agirilan FYY altprogrami, iistyapi olarak
gbzOniline alinan kayma ¢ergevesinin fleksibilite matrisini
kurmaktadir. Matrisin dogrudan dogruya kurulabilmesini sagla-
mak ig¢in, Kisim VI.2.1 deki (VI.23) bagintilarindan yarar-—
lanilmaktadir. Program, daha sonra, IK girig degigkeninin
aldigyr degere gdre, tek veya iki es listyapr durumuna dallan-
maktadir. MITYl adli altprogram, tek ilistyapi durumu igin
Kisim VI.1 de elde edilen [Myl¢y ve [MO] alt matrisle-
rini kurmaktadir. FMUl adli altprogrami isg, (VI.22) bagin-

tilari ile verilen [E]yt ve [E]yy alt matrislerini lretmek-
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TETIF Programinin EK Girig Bilgileri

Grup|KartjSira|Program ’ . Kolon
No. |[No. [No. |Sembolii|Giris Degigkenini Tanimi No. |FORMAT

1 1 |MITSM |0zel deger hesabinda izin| 1-5 15
verilen maksimum iteras-
yon sayisi

2 |MITSF |Frekans iterasyonunda 6-10| 15
‘ izin verilen maksimum
iterasyon sayisi

II 2 1 |HATAM |0zel deger hesabinda mod<4 1-10| E10.0
larin yaklagim: ig¢in ka-
bul edilen hata limiti

2 |HATAF |Frekans iterasyonu ig¢in |11-20| E10.0
kabul edilen hata limiti

3% | D 0zel deger hesabinda 1-80 | 8E10.0
tahmin edilen baglangig
modu

*

Yeteri kadar kartla okunur.

Tablo IX.6

tedir. MITY2 ve FMU2 adli altprogramlar, ayni iglemleri
iki eg iistyapi durumu igin yapmaktadirlar. Bu programlarin
icrasindan sonra, [E] alt matrisinden yararlanilarak,ze-
min ortaminin gbzdniine alinmamasi veya diger deyimle sonsuz
rijit zemin durumunda, Ustyapinin birinci titresim frekansi
hesaplanmaktadir. Bu iglem, Vianello-Stodola ydntemini bi-
rinci mod igin uygulayan EIGEN adli altprogramla yapilmak-
tadir. EIGEN programi i¢in tanimlanan IKN degigkeni

IKN = IK + 1

seklinde hesaplanarak, deplasman vektdvriinde ilk iki veys g
siraya yer1c§t1x11en bagimeiz Lere; de smanlari ¢ s
ve sadece istyapi ic¢in & defer ve tlivegim modo
mektedir,
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TETIF programinin ikineci kismi, verilen III.Grup girig
bilgilerinin okunmasi ile baglamakta ve bu kisim, yenilenen
III.Grup girig bilgileri igin tekrarlanmaktadir. Bbylece
listyap1r sistemi sabit tutularak, farkli zemin ve temel ko-
sullari ig¢in programin ¢aligtirilmasi olanagi saglanmakta-—
dir. Tablo IX.5 de III.Grup girig bilgileri iginde yer
alan EK$ ve EM@ dizileri, tek veya iki temel durumu
igin zemin ortaminin (2x2) veya (3x3) mertebeden rijitlik
ve kiitle matrislerini ifade etmektedirler. Bu matrisler,ay-
rintilary Kisim IX.2 de agiklanan RITERl, RITEK1l, RITER2
ve RITEK2 programlari ile elde edilmektedir. Bu programla-
rin birer altprogrami olarak diizenlenmesi ve TETIF progra-
m1 ig¢inde lretilmeleri miimkiindlir. Ancak, kiitle matrisi tit-
regimin frekansina bagli oldufundan, bu matrisi {ireten
RITEK1. ve RITEK2 programlarinin, birer altprogram olarak
TETIF programi tarafindan iterasyon sayisi kadar ¢agirilma-
lari gerekmektedir. RITEK1 ve RITEK2 programlarinin icra
siirelerinin pek kisa olmayigi nedeni ile bu programlar ge-
gitli a, boyutsuz frekans deferleri igin bagimsiz olarak
icra edilmig, elde edilen sonuglarin TETIF programinda kul-
lanilabilmesi i¢in Lagrange interpolasyonundan yararlantl-
migtir. Tablo IX.5 de I. Grup girig bilgileri iginde yer
alan LG degigkeni, kullantlabilecek a, hoyutsuz frekans-—
larinin sayisini, ASL degigkeni ise bunlarin degerlerini
gbstermektedir. NEG girig degigkeni yardimi ile interpo-
lasyonun kag¢ nokta arasinda yapilacagi belirtilmektedir.in-
terpolasyon, LAGRAN adli altprogramdan yararlanilarak ya-
pirlmaktadir. TETIF programinin ikinci kisminda bulunan
FMA1 altprogrami, tek listyapi durumu ig¢in, (VI.22) baginti-
larinda yer alan ve frekansa bagli olarak degigen [E]tt
ve [E]ty alt matrislerini Uretmektedir. Ayni iglemler,iki
listyap1r durumu ig¢in FMAZ altprogrami ile gergeklestiril-
mektedir. Daha sonra, IKN = 1 alinarak cagirilan EIGEN
altprogrami ile ortak sistemin birinci titregim frekansi ve
modu hesaplammaktadir. Hesaplanan 6zel deger, bir Onceki
adimda hesaplanan defere egit oluncaya veya verilen maksi-
mum iterasyon sayisina erigilinceye kadar igleme devam edil-
mektedir.

TETIF programinin g¢ikig bilgileri olarak, I. ve ITI.grup
girig bilgilerinden sonra, sonsuz rijit zemin durumu ig¢in
istyapi birinci titregim frekansi ve modu basilmaktadir.
Programin ikinci kisminin icras: sonucunda ise, ortak siste-
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min birinci titresim frekansi ve modu ile iterasyon sayisi
basilmaktadir.

IX.3.2. TRANS Program

Bu program, tek veya yanyana iki eg {listyapi durumunda
{istyapi-zemin ortak sisteminin, tanimi VI. Boliimde verilen
transfer fonksiyonlarini elde etmektedir. Programin. genel
akig diyagrami $Sekil IX.3 de goriilmektedir. TETIF programi
ile ortak olan I. wve III. grup girig bilgileri Tablo IX.5
de bzetlenmigtir. Sekil IX.3 deki akig diyagraminda goriil-
diigi gibi, I. grup girig bilgilierinin ardindan, iistyapinin
yapisal sénlim orani okunmaktadir. Program sembolii BETA olan
degiskenin girig formati E10.0 dir. III. grup ortak giris
bilgilerinden sonra okunan kart; WB, WS ve WARA defig-
kenlerini kapsamaktadir. WB ve WS degerleri, harmonik
zor i¢in gdzdniine alinan frekans bdlgesinin alt ve iist s1-
nirlarini gdstermektedirler. WARA degigkeni ise, frekans
degerleri iizerinde yapilan egit degerli artimlari ifade et-
mektedir.

TRANS programinda ilk olarak g¢agirilan CSYY adli alt-
program, yapisal sdniimli tUstyapinin kompleks rijitlik matri-
sini kurmaktadir. Daha sonra, IK degigkeninin deferine gidre
gagirilan CM1 ve CM2 altprogramlari, bir ve iki listyapi
durumlari igin ortak sistemin kiitle matrisini lretmektedir-
ler. TRANS programinin ikinci kismi, III. grup giris bilgi=~
lerinin okunmas: ile baglamakta ve bu kisim, yenilenen ITI.
grup girig bilgileri ig¢in tekrarlanmaktadir. Bu kisimda yer
alan LAGRAN altprogrami, TETIF programinda oldugu gibi,or-
tamin kiitle matrisinin elde edilmesi igin Lagrange interpo-
lasyonu yapmaktadir. GAUJPR adli altprogram ise, harmonik
zor etkisi altinda elde edilen kompleks katsayili lineer
denklem takimini Gauss—Jordan yodntemi ile ¢dzmektedir.Elde
edilen kompleks genlik vektdriinden yararlanilarak, deplas-
man ve ivmelerin mutlak genlikleri ve faz farklar:i hesaplan-
makta ve her frekans degeri igin basilmaktadir.
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IX.4. DURDUNCU GRUP PROGRAMLAR

Bu grupta yer alan programlar, lstyapi-zemin ortak sis-
teminin ve sonsuz rijit zemin durumunda {istyapinin deprem
hesabini yapmaktadir. Ustyapi-zemin ortak sisteminin deprem
hesab:r ig¢in bu galigmada uygulanan ydntemle ilgili ayrinti-
lar VIII. BSliimde agiklanmistir.

Agagida ag¢iklanacak olan programlar, lineer elastik ze-
min ve listyapi ig¢in hazirlanmiglardir. Ancak, lineer olmayan
sistemlerde, yeterince kiiciik zaman ve gekil degigtirme artim-
larinda, sistemlerin lineer elastik olarak davrandigi kabul
edilmektedir. Bu bakimdan, bu tilir sistemlerin hesab: da
lineer elastik hesaba indirgenmis olmaktadir.

IX.4.1. ORSIDE Programy

Bu pregram, ayrintilari IX. BSlimde agiklanan yintem
cergevesinde, listyapir~zemin ortak sisteminin deprem hesabi-
nin yapilmasini saglamaktadir. Programin genel akig divag-
ram: Sekil IX.4 de, givig bilgileri igze Tablo I%.7 de ve-
rilmigtir.

Kisim II.5 wve Kisim VIII.1 de agiklandigr gibi dst-
yvapi~zemin ortak sisteminin deprem hesabi igin bu ¢al:ismada
geligtirilen modelde, zemin ortam: belirli Bir derinlije ka-
dar sonlu elemanlarla ideallegtirilmektedir. @RSIDE progra-
minda bu zemin kesiminin, kendi icinde homogen clan vyatay
tabakalardan olugtugu kabul edilmigtir. Tabakalarin ayrik-
lagtirilmas: igin, deplasman degigimi ayritlari boyunc
lineer olan dikddrtgen sonlu elemanlardan yararlanil
Sonlu elemanlarla ideallestirilen zemin kesiminin al
bulunan tek tabakali ortamda, diglim noktalari aval:kiari bir-
birlerine esit olarak alindigindan, sistemdeki tiim dikddrt-
gen sonlu elemanlarin yatay ayritlari egit vzunluklu olmak-
tadir (Bkz. X.B8liim, Sekil X.20).Bu duruvmda, her yatsy taba-

ka icin sadece bir tek sonlu elemana ait Zzelliklerin girig
bilgisi olarak verilmesi yeterli olmaktadrr. TETIE TRANS

programlarinda oldugu gibi, @RSTIDE prosraminda da
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@RSIDE programinin Girig Bilgileri

Kart| Sira}Program Kelon
No. |[No. |Sembdlii] Giris Degigkeninin Tanimi |No. FORMAT
1 1 NK Uistyapinin kat sayisi 1-5 15
2 CA Cerceve araligi 6-15 [ E10.0
v H Kat yikseklikleri 1-80 | 8E10.0
3 EK Her katta kayma rijitlikleri-{ 1-80 | 8E10.0
nin toplam
¥ EM | Her katta kiitlelerin toplami | 1-80 | 8E10.0
5 1 KTAB |Sonlu elemanlarla ideallegti-; 1-5 i5

rilen bBlgede zemin tabakala-
rinin sayisi

2 NZ Yarim sistemde, yatay dogrul-| 6-10 15
tuda her tabaka igin egit
olan diigim noktasi sayisi

6 1 NTEM |[Temel tabanindaki diiglim nok- | 1-5 I5
talari araliklarinin yarisi

2 KTEM |{Temelin zemine g8mili olup 6-10 15
olmadigini belirleyen degig-
ken (KTEM = 0 ise temel
yizeysel, KTEM # 0 ise
zemine gdmiilii)

7 1 HT . |Temel yiiksekligi 1-10 |E10.0

2 RPT Temelin birim hacim kiitlesi |[11-20 |E10.0

8 1 Vs Tek tabakali sonsuz ortamin 1-10 |El0.0
kayma dalgasi hizi

2 RO Ortamin birim hacim kiitlesi 11-20 |E10.0

3 P@I Ortamin Poisson orani 21-30 |E10.0

4 A Ortam sinirinda diiglim nokta—- |31-40 [E10.0

lari ara uzakligi

* Yeteri kadar kartla okunur.

Tablo IX.7.



175

$RSIDE Programinin Girig Bilgileri
Ra Kolon
No Girig Degigkeninin Tanimi {No. FORMAT
8 5 AL Tabaka yitksekliginin diiglim 41-501 E10.0
noktalar: ara uzaklifina
orani
S 1 BETA Sistemin vapisal sOniim orani| 1-10{ E10.0
2 TETA Lineer ivme yonteminde kulla-< 11-20] E10.0
nilan ekstrapolasyon katsayi-
St
Lok
10 ! Q 1-80| 8E10.0
11 1 1-5 5
2 6-15; E10.0
12% | 1 Ng Sonuglarin basilmasinin 1-80| 8E10.0
istendigi bilinmiyen
numaralari
.i,- . .
13 1 YSZ Tabakanin kayma dalgasi hizi 1-10} El0.0
2 ROZ Tabakanin birim hacim kiit- 11-20| E10.0
lesi
3 PPIZ Tabakanin Poisson orana 21-30] E10.0
4 Tabakanin vyiksekiigi 31-40! E10.0
¥ L e _
Yateri kadar kartla okunur.
' Sonlu elemanlarla ideallegtirilen bdlgede her zemin tabakas:
igin SIRIKU altprogrami tarsfindan okunur.
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sisteminin birbirierine paralel kayma cercgevelerinden olug-
tugu kabul edilmekte ve ilistyapi temeli sonsuz rijit bir
plak olarak gdzdniine alinmaktadir. Program ayrica temelin
bir kisminin veya tiimliniin zemine gdmili olmasi durumunu da
kapsamaktadzr.

@RSIDE programinda tek listyapi durumu gdzdniine alinmak-
tadir. Bu durumda sistem antimetrik olarak gekil degigtirdi-
ginden, hesap sistemin yarisi ile yapilabilmektedir.

@RSIDE programi, Sekil IX.4 de goriildiigi gibi, birbi-
ri ardindan ¢agirilan alti altprogramdan olugmaktadir.

SIRIKU adli altprogram, zeminin sonlu elemaniarla ideal-
legtiren kesimi ile ilgili rijitlik ve kiitle alt matrisleri-
ni kurmaktadir. Altprogramin {irettigi rijitlik alt matrisle-
ri, VIII.BSliimde, rijit temel durumu i¢in (VIII.4) bafintisi
ile verilen sistem rijitlik matrisindeki [S]zz . [S]zs ’

zt s [So]tt alt matrisleri ile (VIII.2) bagintisindaki

S|gg alt matrisine sonlu elemanlarin katkisini ifade eden
S;gs alt matrisidir. Altprogramda ayrica, rijit temel du-
rumu i¢in (VIII.22) ile verilen sistem kiitle matrisindeki
Dﬂss, [}ﬂzz alt matrisleri-=ilei temele bagli olan sonlu
elemanlarin Mb]tt matrisine katkisini ifade eden ve
(VIII.23) bagintisindaki ikinci terimi olugturan alt matris
iiretilmektedir. Ustyapi temeline bagli olan sonlu elemanlar-
la ilgili alt matrislerin bagimsiz temel deplasmanlarina go-
re indirgenmesi i¢in (VIII.10) ve (VIII.12) bagintilarindan
yararlanilmigtir. SIRIKU altprograminda ilk olarak, her ya-
tay tabaka igin, o tabakada yer alan tipik sonlu elemana

ait 6zellikler okunmakta; g¢agirilan ELRIMA adli altprogram
diizlem gekil degigtirme durumu i¢in dikddrtgen sonlu elema-
na ait birim deplasman matrisini {iretmektedir. Daha sonra,
s8z konusu tabakada yer alan sonlu elemanlarin, yukarida ta-
nimlanan alt matrislére katkisi hesaplanmakta ve bu. iglem
| biitlin tabakalar icin tekrarlanmaktadir. @RSIDE programinda
girig bilgisi olarak verilen KTEM degiskeni araciliji ile,
iustyap1 temelinin zemine g&miili olup olmamasi durumlari goz—
.onune alinabilmektedir (Bkz. Tablo IX.7).



177

Ikinci sirada c¢agirilan STRATA adli altprogram,sistem
rijitlik matrisinin tek tabakali sonsuz ortamla ilgili i
[S_?s alt matrisinin statik kismi olan ve (VIII.3) ifade~
sindéki ilk terimi olusturan [st]ss alt matrisini iiret-
mektedir. Bu amagla, STRATA altprograminin ig¢inde,dnce
BIDE altprogrami g¢agirilarak statik birim deplasman sabit-
leri hesaplanmakta ve daha sonra gagirilan ANTIMA adl:
altprogram yardimi ile tek tabakali ortama ait antimetrik
rijitlik matrisi elde edilmektedir.

STRATA altprogramindan sonra g¢agirilan MIYAPI adli alt-
program, rijit temel durumu ig¢in (VIII.22) ifadesinde yer
alan [Mp]ee ve [M,]e, kiitle alt matrislerini lretmekte,
RIYAPI adli altprogram ise iistyapinin yatay rijitlik mat—
risini elde etmektedir.

WITERA adli altprogram, tek tabakali sonsuz ortamin
dinamik rijitlik matrisinin frekansa bagliligini gdzdniinde
tutarak, {istyapi~zemin ortak sisteminin birinci titregim
frekansini hesaplamakta, bu iglem sirasinda elde ettifi kiit-
le matrisinden yararlanarak, (VIII.3) ile verilen [S]gs
alt matrisini {iretmektedir. Birinci titregim frekansinin
hesab: igin Rayleigh orani ardisik olarak elde edilmekte,
bu iglem sirasinda frekansa bagli olarak degigen kiitle mat-
risi, her adimda MTRATA adli altprogram yardimi ile kurul-
maktadir. MTRATA altprogrami kiitle matrisini, BIVME ve
ANTIMA altprogramlarindan yararlanarak iiretmektedir.

ORSIDE programinda, ortak sistemin kiitle ve rijitlik
matrisleri kurulduktan sonra, (VIII.20) bagintisi ile egde-
ger viskoz sOniim matrisi elde edilmekte ve son adimda
LINEIV adli altprogram g¢afirilmaktadir.

LINEIV altprogrami, © ekstrapolasyon katsayisi yardi-
m1 ile ¢&ziim stabilitesi saglanan lineer ivme ydntemini[71]
probleme uygulayarak, listyapi-zemin ortak sistemini,bilinen
gercek bir deprem kaydina gdre hesaplamaktadir. Deprem kay-
di,belirli zaman araliklarinda elde edilmisg ivme degerleri
olarak manyetik geritten alinmakta ve programa girig bilgi-
si olarak aktarilmaktadir. LINEIV altprograminin genel
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akig diyagrami $ekil IX.5 de verilmigtir.

PRSIDE programinda ¢ikig bilgileri olarak &nce,girisg
bilgileri olarak okunmug bulunan sistem &zellikleri basil-
maktadir. Bu bilgilerin ardindan, WITERA altprogrami tara-—
findan hesaplanan birinci titregim frekansi basilmaktadair.
Daha sonra, 12 No.lu girig karti ile okunan diigiim noktala-
rindaki deplasman ve ivme deZerleri ile deprem ivmesinin
degeri ve LINEIV altprooramlnda hesaplanan iistyapyr top~ .
lam kesme kuvveti, her (t) ani ig¢in yapilan hesap sonucun-
da dig ortama alinmaktadir.

iX.4.2. YYSIDE Program

Bu program, sonsuz rij’t zemin durumunda, Ustyapi sis-—

teminin deprem hesabini lineer ivme yOntemi ile yapmaktadlr
Programin EbﬂPL akig diyagrami Sekil IX.6 da verilmis, gi-
rig bilgileri ise Tablo IX.8 de oaetlenmlgt;r. Slstem ri~
jitlik, sBniim ve kiitle matrislerinin kuruvimasindan son

1ir cemi ile her kattaki deplasman, hiz ve ivme
deg : k bir deprem kaydina gdre hesaplanmaktadir
Linesr ivme ydnteminin stabilitesini saglamak iizere burada

da © ekstrapolasyon katsayisindan yararlanilmistir.

@¢RSIDE programinda oldugu gibi, deprem kaydi manyetik serit-

ten alinarak programa girig bilgisi olarak verilmektedir.
Programin ¢ikig bilgileri olarak, sistem dzelliklerinin ba-
silmasindan sonra, deprem ivmesinin deferi ve her katta he-
saplanan deplasman, hiz, ivme deferleri ile iistyapiya etki-
yen toplam kesme kuvveti, her (t) ani igin yapilan hesap so-
nucunda dis ortama alinmaktadir.
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UYSIDE Programinin Girig Bilgileri

Kart|Sira|Program Kolon
No. |No. |Sembolii | Giris Degigkeninin Tanimi |No. 'FORMAT
1 1 NK Ustyapinin kat sayisi 1-5 15
2% H Kat yiikseklikleri 1-80 | 8E10.0
3% EK Her katta kayma rijitlikle- |
rinin toplami 1-80 | 8E10.0
4% EM Her katta kiitlelerin topla-
mi 1-80 | 8E10.0
5 1 BETA Sistemin yapisal sOniim orami| 1-10 | E10.0
2 TETA Lineer ivme y6nteminde kul- | 11-20| E10.0

lanilan ekstrapolasyon kat-
say1si

Yeteri kadar kartla okunur.

Tablo IX.8
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BULOM X
SAYISAL URNEKLER

X.1- ORNEK 1 : TEK OSTYAPI DURUMUNDA ORTAK SISTEMIN SERBEST
TITRESIMI

Bu sayisal Ormekte, VII.BGliimde yapilan ideallegtirme
gergevesinde, bir {istyapi ile zeminden olugan ortak siste-
min serbest titresimi incelenmigtir.Ornekte, kayma gerceve-—
si olarak ideallegtirilen {istyapi sistemi sabit tutularak,
farkli zemin ve temel kogullari igin ortak sistemin birinci
titregim frekansi hesaplanmigtir. Ayrica, birinci titresim
frekans1 civarindaki bir frekans bSlgesinde, ortak sistem
harmonik yer hareketi ile titregtirilerek, bazi dinamik
biiylikliiklere ait transfer fonksiyonlarinin bu bdlgedeki de-
gigimi elde edilmigtir.

Bu Ornekteki ilistyapi sistemi, 5 m 1lik araliklarla bir-
birlerine paralel olarak yerlegtirilen 10 katli diizlem cer-
¢evelerden olugmaktadir. Kayma gergevesi olarak ideallegtiri-
len herhangi bir ilistyapi gergevesi ile zeminden olugan ortak
sistem ve dzellikleri Sekil X.1 de gdriilmektedir. Zemin or-
taminin gézodniine alinmamasi halinde iistyapi gergeve51n1n bi-
rinci titregim perlyodu,

Tir) =0,81 sn

olarak hesaplanmigtir. Bu deger, 6rnek olarak alinan 10 kat-
11 {istyapi gercevesinin normal bir rijitlige sahip bulundu-
gunu gostermektedir. Ornek sistemde iistyapi temeli sonsuz
rijit olarak kabul edilmektedir. Temel genigliZi olarak si-
rasi1 ile, 2b = 13,33 m, 16 m ve 20 m 1lik genislikler alin-
migtir. Bu duruma gére, toplam lstyapi yiliksekliginin temel
'geniglifine orani sirasi ile, H/(2b) ==3,0 ; 2,5 ve 2,0
~olmaktadir. DSrt defigik zemin durumu igin hesap yapilmigtir.
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GSzdniline alinan zeminlerin kayma dalgasi hizlari sirasi ile,
Vg = 100; 200; 300 ve 400 m/sn dir. Biitiin zeminlerin
Poisson oran: V = 0,40 dir. Antimetrik gekil degistirme du-
rumuna gdre sonsuz rijit temel igin elde edilen (2x2) merte-
beden rijitlik ve kiitle matrislerinin hesabinda,temel taba-
ninin yarisinda 10 diigiim noktas1 alinmig; temelin disinda
bir tarafta kalan diigiim noktalarinin sayisi 40 olarak sinir-
landirilmigtir (Bkz.Kisim V.2).

Yukaridaki verilere gdre, iistyapi-zemin ortak sistemi-—
nin birinci titregim periyodu, ayrintilari IX.Bolimde agik-
lanan TETIF adli program yardim: ile elde edilmigtir.Birin-
ci titresim periyodunun, gizdniine alinan temel ve zemin pa-
rametrelerine gdre defigimi Tablo X.1 de Szetlenmistir.

Ustyapi-zemin ortak sisteminin birinci
titregim periyodu = Tp (sn)

Zeminin kayma dalgasi hizi Vg=(m/sn)

2b 100 200 300 400 oo

3,0 | 1,9273 1,1858 0,9927 0,9167 0,8107

2,5 | 1.7466 1,1099 0,9520 0,8919 0,8107

2,0 | 1.5997 1,0485 0,9191 0,8719 Q,8107

Tablo X.1

Tablo X.1 de goriildiigi gibi, ortak sistemin birinci
titresim periyodu, H/(2b) oraninin artmasi ve zeminin za-—
yiflamasi ile orantili olarak belirgin bir artig gOstermek-—
tedir.
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Zeminin katkisi nedeni ile iistyapinin davranisinda or-
taya ¢ikan degigmeleri saptamak amaci ile, Srnek sistem bi-
rinci serbest titregim frekansi civarinda, birim genlikli
harmonik yer hareketi ile titregtirilmig ve Kisim VI.2 de
tanimlanan transfer fonksiyonlari elde edilmigtir. Bu fonk-
siyonlarin sayisal hesabinda, ayrintilari IX.B&liimde agikla-
nan TRANS adli programdan yararlanilmistir. Rezonans durumun-
da dinamik biyikliklerin sonsuza gitmesini Onlemek amaci ile
sadece {istyapida yapisal nitelikte kiigiik bir s&niimiin bulun-
dugu kabul edilmig ve hesaplarin tiimiinde yapisal s®niim ora-
n1 olarak B= 0,01 alinmistir.

GGzOniine . alinan dért zemin tiiri ig¢in, iistyapinin 10.
katina ait deplasman transfer fonksiyonlari $ekil X.2,
Sekil X.3, Sekil X.4 ve Sekil X.5 de goriilmektedir. Zemi-
nin sonsuz rijit olmasi halinde, ayni deplasmana ait trans-
fer fonksiyonu Sekil X.6 da gSsterilmigtir. Sekillerde djg
ile gdsterilen 10. kat deplasmani, sistemde gekil degistir-—
me meydana getiren kat deplasmanidir. Bu deplasmana,temel-
den "kuasi-statik" anlamda aktarilan deplasmanlarin da ek-
lenmesi ile elde edilen djg toplam deplasmanina ait trans-—
fer fonksiyonlari ise, Sekil X.7, Sekil X.8, Sekil X.9 ve
Sekil X.10 da gdriilmektedir. $ekillerin incelenmesinden
anlagilabilecegi gibi, djgy ve dj, deplasmanlarina ait
maksimum genlikler, zemin ortami saglamlastikga kiiglilmekte
ve sonsuz rijit zemin durumu igin elde edilen degere dogru
yaklagmaktadirlar. Ote yandan, iistyapinin temele gdre basik-
11gin1 ifade eden H/2b orani biiyiidiikge ;310 deplasmani
kiigilmekte buna kargin djy toplam deplasmani biiylimektedir.
11k bakigta geligkili gibi gdriinen bu durum gu gekilde agik-
lanabilir : H/2b oraninin artmasi ile temel tabanindaki
zeminin agisal rijitligi relatif olarak azalmakta ve teme-
lin ddnmesi artmaktadir. Bu durumda temelden listyapiya
kuasi-statik anlamda aktarilan deplasmanlar da biiylimekte ve
sonug olarak ortak sistemin birinci titregim frekansi kiigiil-
mektedir. Frekansin kiiclilmesi ise ilistyapiya gelen eylemsiz-
1lik kuvvetlerinin ve dolayisi ile iistyapinin Ei deplasman-
larinin kiigiilmesi sonucunu dogurmaktadiri Sonsuz rijit lst-
yap1l temelinin, yer hareketine gdre relatif yer defigtirme-
sini ifade eden dy, deplasmanin Vg = 100 m/sn ve
Vg =200 m/sn 1lik zeminler ig¢in $ekil X.11 ve Sekil X.12
de gdsterilen transfer fonksiyonlarinin H/2b orani ile de-
gisimi de, yukaridaki agiklamay: dogrulamaktadir.



186

dn/dth V=100 m/sn
100
" A ﬁ
60 - ‘

40 H s j H _,5 H 2 —
\zb . ]\2» ] 75

2 /J\; A £\

L73
i 'l .} i 2 i3 1 —4 E S
31 32 33 34 35 36 37 38 38 40
Sekil X.2
d / din |
100 Vs = 200 m/sn
80 .
H a H. H.2
: 253 . /\Zb » 25
40 / " \ / \ 7 \
&
1 1 h e 1 ] A 2 3 "l w




80

20

42
©

£0

Kol

187

dp /din
V,=300m/sn
H H H
——=3 e T ° ——
Zb 252" 752
'y 3 Iy 1 1 1 4 1 .
61 62 63 ©s4 65 66 67 68 69 10
Sekil X.4
dg/din
Vg= 400 ri/sn
ANVANVA
/N / N/ N
H_3 H 25  H_ 2
25 7b 2b
L] 1 L 1 1. 1 1. L1 i
€6 67 68 63 20 11 72 13 14 15
Sekil X.5
d,/den
80 “’s'= bt
- /\\
p /
?0 1 A 3 *JA ] w
75 716 17 78 19 80 81

Sekil X.6




188

450
dy/dn
Vs=100rn/sn
400
350
300
200
150 H_ H_ 25 | | H o |
Zb BEE Zb
50 : _ - / /
i $ 3 A 3 i ] i3 Y w
31 32 33 34 35 36 27 38 38 L0 L3
Sekil X.7
410/ dtn Y, =30 m/sn
150 /ﬂ\
N //\\ //\\
50
H_ H_ 25 H_
25 3 2b z 2h z
1 L 1 A L I 1 L i i w
st s2 53 S5, S S5 & S8 S 60 61 62
Sekil X.8



150

190

10

100

100

80

L0

S0
40
30
20
10

189

%/dth Ve~ 300 m/sn
VANEEVA
H H H
——33 —— 20 —
7 T T
1 . . A k. 1 1 ' 1 A w
3 6.2 5.3 oL 65 56 6.7 68 69 A 71
Sekil X.9
dio/dtn V, . 400 m/sn
H H H
T 75-2% =7
i i i 1 1 i i i 1 w
66 67 68 69 70 11 72 713 14 15 1%
Sekil X.10
d /4
x0/ “th Y. =100m/sn H
s / 5E-Z
_H _2s
| 75
H_3
A 2b
J\ /N a
1 1 1 1 —d 1 1 "} 1 w
31 32 33 34 35 3% 37 38 39 40 L1
Sekil X.11
%/dih Y. = 200 m/sn
H H H-
o3 o =25 32
A P AN
/ ~ — N~ w
A i 1 L 1 1 —1 i .
51 82 53 5S4 55 s6 57 S8 59 60 61

Sekil X.12



190

X.2- ORNEK 2 : 1Kt ES OSTYAPI DURUMUNDA ORTAK SISTEMIN
SERBEST TITRESIMI '

Bu sayisal Ornekte, VII. BSliimde agiklanan esaslar ger-
cevesinde, yanyana ayni fazda titregen iki eg listyapr ile
zeminden olugan ortak sistemin serbest titregimi incelenmig-
tir. Incelemenin amaci, {istyapi ve zemin parametreleri ile
birlikte, ilistyapilarin birbirlerine gdre konumlarinin ortak
sistemin birinci titresim periyoduna etkisini g&sterebilmek-
tir. Tek iistyapi durumu ile kargilagtirma yapilabilmesini
saglamak lizere, ORNEK 1' deki i{istyapi g¢ergevesi,yanyana iki
eg listyapinin biri olarak gbzdniine alinmaktadir. Bu gekilde
elde edilen ortak sistem, 8zellikleri ilie birlikte Sekil X,13
de gdriilmektedir. ORNEK 1'de oldugu gibi bu 3rnekte de,birin-
ci titregim frekansi civarindaki bdlgede transfer fonksiyon-
larinin degisgimi elde ediimigtir. Temel geniglikleri sirasi
ile, 2b =13,33 m ve 16 m olarak alinmigtir. BSylece,top-
lam yapi yliksekliginin temel geniglifine orani sirasi 1ile
H/(2b) = 3,0 ve 2,5 olmaktadir. ORNEK 1' de oldugu gibi,
kayma dalgasi hizlari sirasi ile, Vg = 100 ; 200 ; 300 ve
400 m/sn olan dbrt zemin cinsi ig¢in birinci titregim peri-
yodu hesaplanmigtir. Biitlin zeminlerde Poisson orani v=0,4%
olarak alinmigtir. Iki eg iistyapi temeli arasindaki uzakli-
gin temel geniglifine orani olarak sirasi ile, ¢/b = 1,5;
1,0 ve 0,5 degerleri gbzdnline alinmigtir. Sonsuz rijit
iistyap1l temellerinden her biri i¢in tek tabakal:i ortamin
(3%x3) mertebeden rijitlik ve kiitle matrislerinin hesabinda,
temel tabaninda 10; temel tabani disinda bir tarafta kalan
zemin ylizeyinde ise 40 diiglim noktasi alinmigtir (Bkz.Kisim
V.2). '

Yukaridaki verilere gdre, iki eg iistyapr durumunda or-
tak sistemin birinci titregim periyodu TETIF adli program-
la sayisal olarak elde edilmigtir. Birinci titregim periyo-
dunun zemin, temel ve iki temel arasindaki uzaklikla ilgili
parametrelere gdre degigimi Tablo X.2 de Szetlenmigtir.
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iki es iistyap: durumunda ortak sistemin
birinci titresim periyodu = T;(sn)

H c Zeminin kayma dalgasi hizi  Vg(m/sn)

2| b 100 200 300 | 400 w

1,5 1,8424 | 1,1553 | 0,9779 | 0,9082 | 0,8107

3,0 1,0 1,8355 | 1,1526 | 0,9765 | 0,9073 | C,8107

0,5 1,8141 | 1,1439 | 0,9719 | 0,9046 | 0,8107

1,5 1,6287 1,0711 | 0,9342 | 0,8820 | 0,8107

2,5 1,0 1,6219 1,0694 | 0,9334 | 0,8815 | 0,8107

0,5 1,6085 1,0635 | 0,9304 | 0,8797 | 0,8107

Tablo X.2

Tablo X.2 nin incelenmesinden, c¢/b oranindaki degigi-
min, 8rnek olarak alinan sistemin serbest titregim periyodu-
na Onemli oranda etkimediji sonucu ¢ikarilabilir. H/2b orani-
nin biiyiik ve zeminin zayif oldufu durumda ¢/b oranina gdre
degigim biraz ortaya c¢ikmakta, ancak zemin saglamlagtikca
¢/b oranindaki degigim etkisini yitirmektedir. Buna karsgin,
bu 8rnekte yer alan iki eg {istyapidan sadece birinin gdzdnii~
ne alindigi ORNEK 1'deki Tablo X.1 ile Tablo X.2 nin karsz-
lagtirilmasi halinde, iki eg iistyapi durumunda titregim peri-
yodunun, tek listyapi durumuna oranla kiiclildligi gdrilmektedir.
Bunun nedeni, Kisim V.2 deki Sekil V.6 da gdriildiigii gibi,
temel tabanindaki zeminin agisal rijitligin, ¢/b oraninin
kiigilmesine bagli olarak hizla artmasidir.

Tek listyapi durumunda oldufu gibi bu Srnekte de,zeminin
varligi nedeni ile sistemi olugturan iistyapilarin davranigin-
da meydana gelen degigimler, transfer fonksiyonlari yardimi
ile incelemmigtir. Bu fonksiyonlarin hesabinda, ayrintilar:
IX.Bbllimde agiklanan TRANS-adl: programdan yararlanilmig ve
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sistemdeki iistyapilar icin yapisal sdniim orani B = 0,01 ola-
rak alinmigtir. Iki eg {istyapi durumunda transfer fonksiyon-
lari, kayma dalgasi hizlari sirasi ile, Vg, = 100 m/sn ve
Vg =300 m/sn olan zemin durumlari igin elde edilmigtir.
H/2b = 2,5 olmasi durumunda, gdzoniine alinan iki zemin tii-
rii igin iki eg istyapinin 10.katlarina ait aio deplasman
transfer fonksiyonlari $ekil X.14 wve Sekil X.15 de goril-
mektedir. djp deplasmanina, temelden kuasi-statik olarak
aktarilan deplasmanlarin da eklenmesi ile élde edilen digo
toplam deplasmanina ait transfer fonksiyonlari ise Sekil
X.16 ve Sekil X.17 de gdsterilmigtir. Sekillerde kesik g¢iz-
gilerle ¢izilen egriler, tek iistyapir durumundaki transfer
fonksiyonlarini gostermektedir. Sekillerin incelenmesinden
anlagilabilecegi gibi, iki esg lstyapi birbirinden uzaklag-
‘tikga djg deplasmaninin maksimum genligi azalmakta,buna
‘kargin dyg toplam deplasmaninin genlifi artmaktadir.Bunun
nedeni, c¢/b oranl arttikca zemin rijitliginin relatif olarak
artmasi ve bu durumda sistemin birinci titresim frekansinin
kiiglilmesidir. Frekans kiigliliince listyapiya gelen eylemsizlik
kuvvetleri ‘ve bunun sonucu olarak da listyapinin dj dep-
lasmaniari kiiglilmektedir. Ayni durum, temelin yatay dojrul-
tuda rijit hareketini ifade eden dy, deplasmani bakimin-
dan da sbz konusudur (Sekil X.18 ve Sekil X.19).

Yukarida verilen Srnekten, iki es Ustyapi durumu igin
genel sonuglarin c¢ikarilmasinin dogru olmayacagi agiktir.
H/2b oraninin g¢ok kiiglik cldupu basik iistyapilarin bulundu-
‘$u sistemlerde, c¢/b oraninin kiiglilmesi ils kyx yatay ri-
jitliginin azalmasina bagli olarak (Bkz.Sekil V.6),yukarida—
ki 8rnegin aksine, sistemin birinci titregim frekansinin
kiiglilmesi beklenebilir.

X.3- ORNEK 3 : USTYAPI-ZEMIN ORTAK SISTEMININ GERCEK BIR
, DEPREM KAYDINA GORE HESABI

Bu sayisal Ornekte,listyapi-zemin ortak sisteminin dep-
rem hesabi, VIII.Bolimde ag¢iklanan yontemden yararlanilarak
gercek bir ivme kaydina gdre yapilmistir.Ornekte gdzdniine
alinan ortak sistem, geometrik ve dinamik &zellikleri 1ile
birlikte Sekil ¥X.20 de gdriilmektedir. Sekilde gbdriilen iist-—
yapi, daha 8nceki &rneklerde kullanilan iistyapinin aynidir.
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Ornek 1 de belirtildigi gibi, sonsuz rijit zemin durumunda
iistyapinin birinci serbest titregim periyodu,

Tgr) = 0,81 sn

dir. GOzdniline alinan Jrnekte, iistyapi temeli yilizeysel ve son-
suz rijit olarak kabul edilmigtir. Elektronik hesap makina-
sindaki icra siiresi gdzdniinde tutularak, sonlu elemanlardan
olugan b8lge, kendi iginde homogen iki yatay tabaka olarak
ideallegtirilmis ve bu bdlgede, diizlem gekil degigtirme du-
rumuna ait dikddrtgen sonlu elemanlar kullanilmigtir. Tiim
zemin ortaminda Poisson orani v = 0,40 ve zeminin birim
hacim agirligr vy = 1,8 t/m3 olarak kabul edilmistir.Ortak
sistemin, antimetrik gekil defigtirme durumu ve sonsuz rijit
temel hareketi gdzdniinde tutularak hesaplanan toplam serbest-—
lik derecesi sayisi 96 dir. Bu sistemin s&nilimsiiz birinci
titregim periyodu,

Tic) = 1,21 5n
olarak hesaplanmigtir.

Bu 8rnekte, ideallegtirilen zeminin karakterine uygun
olarak, zayif bir zemin ylizeyinde alinmig bulunan "Latino
Americana Tower” ivme kaydi kullanmilmistir. 19 Mayis 1962
de Mexico City'de meydana gelen depremin N81© W dogrultusun-
daki ivme kaydinin 60 saniyelik kismi Sekil X.21 de gdriil-
mektedir. Ornek olarak alinan lineer elastik sistem bu.ivme
kaydina gdre, ayrintilari IX.Boliimde aciklanan ORSIDE prog-
ramindan yararlanilarak, lineer ivme ydntemi ile hesaplan-—
migtir. Ivme kaydinin, {istyapi mevcut degil iken temel ta-
baninda alindigi ve yer hareketinin temel boyunca iiniform
oldugu kabul edilmektedir. Zeminin varlifinin etkisini g&s-—
terebilmek amaci ile bu Grnekteki iistyapi sistemi, sonsuz
rijit zemin durumu igin UYSIDE adli programdan yararlanila-
rak ayni ydntem ile hesaplanmigtir. Her iki programda da
hesaplar At = 0,05 saniyelik zaman artimlari ile yapilmis,
lineer ivme y®nteminde sayisal stabilitevi saglamak iizere
kullanilan ekstrapolasyon katsayisi 6 =l,4 olarsk alinmig-
tir. Yapilan deprem hesabinda, zemin ve iistyapida sabit
bir yapisal soOniimiin bulundugu kabul edilmig ve sistemin ya-
pisal s6niim orani B ='0,05 alinmistir.
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ORSIDE ve UYSIDE programlarinin icrasil sonucunda,serbest—

1ik derecelerinin tilimiine ait deplasman, hiz ve ivme deBerleri
ile Ustyapiva gelen toplam kesme kuvveti, 60 sanlyellk deprem
sliresince, At =0,05 saniyelik zaman artimlari igin elde
edilmektedir. Yatay dofrultuda zemin igin kabul edilen sini-
rin veterli olup olmadifinin irdelenebilmesi icin sinirdaki
ug noktalarinin yatay deplasmanlari her (t) ani icin g¢ikig
ilg: olarak basilmig ve bu deplasmanlarin, temel tabaninda-
<1 v deplasmanin 71 118 %10 wu arasinda degigtigi gb~

nin varliginin Ustyapinin davranigsina etkisini orta-
amaci ile Hrunek olarak, dstyapinin 10.katina ait
d@plasmaJA ile uscyaﬁﬁg gelen toplam kesme. kuvve—
prem slivesince defisimi agagidaki ge “"lefde g8steril-
; DLTIAT iiit zemin durumundaki de-
dwrumhnuak defigimi ise

7a gel ‘smn?wmmﬂmm

)

e oal) GQu

asmani ile © p iam kesme kuvvetinin meksi-
mum genliklerinde arta ama 460 lik bir artis olmakta—

rin maksimumlari safa dofru kaymaktadir.
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BOLOM XI
SONUCLAR

ﬁstya§1 ve zeminin dinamik kargilikli etkisinin incelen—
digi bu ¢alismada elde edilen genel sonuglar agagidaki gekil-
de 6zetlenebilir:

1) Ustyapi-zemin ortak sisteminin dinamik hesabinda ilk
ve en dnemli agamayl olusturan matematik model se¢imi proble-
mine ¢dzlim getirilmeye g¢aligilmig, bu amagla iki ortak sistem
modeli geligtirilmigtir.

a) Model I adi verilen birinci modelde zemin ortami,list-—
vapiya yakin kesimdeki geometrik, mekanik ve blinyesel sirek-
sizlikleri g&zoOniine almak iizere belirli bir derinlige tadar
sonlu elemanlarla ideallegtirilmistir. Zeminin geri k
kismi ise, mevcut taban kayasina kadar homogen, izotro
lineer elastik bir tabaka olarak kabul edlimlstlr Biyliec
gilikli etkinin sonucu olarzk ilistyapidan zemine aktar:
regimierin, listyapiya yakin zemin kesiminde meydana get
lecegl nonlineer gekil degigtirmeler, sonlu elemanlar ydntemi-
nin olanaklari ile gozonune alinabilmektedir. Buna karsin,be-
1irli bir derinlikten itibaren zeminin tek bir tabaka olarak
ideallegtirilmesi ile, zemin ortaminin rijitlik ve eylemsizli-
gi, mevcut taban kayasina kadar g&zonline alinabilmektedir.Ze-
minin bu kesiminde yapilan ideallegtirme, sistemin serbest
derecesinde herhangi bir artig meydana getirmemektedir.

b) Birinciye oranla daha basit olan ikinci modelde ze-
min, sonlu derinlikte taban kayasi ile sinirlandirilmig, ho-
mogen, izotrop ve lineer elastik bir tabaka olarak idealleg-
tirilmigtir. Ustyap: temelinin ortamin sinirinda yiizeysel
olarak yer aldifi ve sonsuz rijit oldugu kabul edildiZinde,.
lineer elastik listyapi—zemin ortak sisteminin serbestlik de-
recesine zemin ortaminin katkis:i ¢ok kiiglik olmakta,bu basit
model araciligi ile kargilikli etki olayi dahs kolay incele-
nebilmektedir.
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2) Geligtirilen her iki modelde de yer alan tek tabaka-
11 ortam, yilizeyinde alinan diiglim noktalari araciligi ile ay-
riklastirilmigtir. Ayrik sistemde, birim durumlarin tanimla-
di1g1 sinir sartlari altinda elastisite teorisi ile yapilan
¢bzlim sonucunda ortamin birim deplasman sabitleri ile birim
ivme sabitleri elde edilmigtir. Bu sabitlerden yararlanila-
rak, tek tabakali ortama ait dinamik rijitlik matrisinin
yaklagik olarak elde edilebilecefi gbsterilmigtir.

3) Ustyapi ve zemin ile ilgili ideallegtirmelerden ba-
gimsiz olarak, istyapi—zemin ortak sisteminin hareket denk-
lemi en genel gekli ile ¢ikarilmigtir. Zemin, listyapi temeli
ve deprem kogullari ile ilgili olarak, uygulamada s&z konusu
olan 6zel durumlar igin hareket denklemleri elde edilmigtir.
Hareket denklemlerinde deprem verisi, zemin ylizeyindeki yer
hareketi olarak gdzdniine alinabilmektedir.

4) Tek tabakali ortam sinirinda yer alan tek ve yanyana
iki es sonsuz rijit temel plaii icin, ortamin statik rijit-
1ik matrisleri ile frekansa bagli kiitle matrisleri elde edil-
mistir. Bu matrislerin elde edilmesinde kargilagilan ve dzel=-
likle birden fazla temel durumunda elastisite teorisi ile ¢&-
ziimi ¢ok zor olan karigik sinir deger problemi,geligtirilen
ayrik bir ydntem yardimi ile ¢dziilmigtiir. Elde edilen rijit-—
lik ve kiitle matrislerinin boyutu, tek temel i¢in (2x2), iki
es temel durumunda, temellerden her biri igin (3x3) diir. Bu

~matrisler araciligy ile, temeli sonsuz rijit olan {istyapi-ze-
min ortak sistemlerinde, zemin ortam:i basit bir alt sistem
olarak gdzdniine alinabilmektedir.

5) Tek Ustyapi ile zeminden olugan ortak sistemin ser-—
best titregimi incelenmig, zeminin varliginin birinci tit-
regim periyoduna etkisi aragtirilmigtir. Ayrica, zeminin et-
kisi ile iistyapinin davraniginda meydana gelen depisimi sap-
tamak amaci ile, deplasman bilegenlerine ait transfer fonk-
siyonlari elde edilmigtir. GSzéniline alinan bir Jrnek sistem—
de; listyapi, temel ve zemin parametrelerine bagli olarak,
kargilikli etki olayinin birinci titregim frekansina ve bu
frekans civarinda, ilistyapinin davranigina etkisi sayisal
olarak incelenmigtir.
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6) Zemin ortaminin dinamik rijitligini ifade ifade eden
kiigiik mertebeli alt matrislerin elde edilmesindeki  giliglik
nedeni ile, birden fazla Ustyapiyi kapsayan ortak sistemlerin
hesabi, bu konudaki literatiirde pek az bir yer tutmaktadir.

Bu galigmada, iki eg temel durumu igin elde edilen rijitlik

ve Kiitle matrislerinden yararlanilarsk, iki eg 1
zeminden olugan ortak sistemin serbest titresi H
tir. Diger paramstrelere ek olarak, iki iistyap:
uzakligin birinei titregim periyoduna etkisi a
Ayrreca, tek dstyap:r durumunda oldufu gibi, dep
lerine ait tramsfer fonksiycnlari elde edilmig
sistem lizerinde, Ustyapinin dinamik davranisi
metrelere gbre sayisal olarak incelenmistir.
7y i epre
geligtiri e, h
nin kurul ince
cek bir d sal
man bilesg plam
nin depre igti
sensuz ri 2ilm
durumun k migti
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> ve diizlem sekil deZigtir-—
aygunluk gartinin Airy Geril-

= 0 (XI11.1)

3°F 3°F 3%F
Gx - s a = . A (X11.2)
3y? v 3x2 g %3y

geklinde elde edilirler.

Airy Gerilme Fonksiyonunun x degigkeni {izerindeki
Fourier Integral ddniisiimi, tanimi olarak

+00
F(E,y). = S F(x,y)e 1&x dx (XI1.3)
]
o
dir[58]. TFourier déniigiiminde, tiirevlerin ddniisiimi ile ilgi-

1i kural gdzdniinde tutularak (XII.1l) uygunluk gartina x
degiskeni tizerinde Fourier doniislimi uygulanirsa,
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oo 2 + 00
. . | .
i& 2 g
AAF e xdx= (——-——-—£2) Felxdx*—*o
dy? J
— — &
ve (XII.3) tanimi ile
d2 2. 2 _
( -&) F=0 (XII.4)
dy2

diferansiyel denklemi elde edilir.

Ote yandan, gerilme bilesenlerine ait (XII.2) ifadele-
rinin x degigkeni {izerindeki Fourier ddniliglimleri,

oo

o 2 2
g o°F ‘£ d°F
o elgx dx = ,’ 3 e}L ® dx = —— {X1i.5)
] o2 dy?
— 00 — 00
ey co
a 2 A .
13 94F . .
o} el ® dx = elgx dx = --525‘ (X11.6)
y 2
J 9x
o - &
. fred (o] 2 —
igx 3 F igx R dF
T e dx = |— e dx 3.12’;—-— {XI1.7)
| 9xdy dy
— 0 -0

seklinde yazilirlar. Bunlardan Ters Fourier Doniligiimi ile,
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® 2
1 d°F  _j£x d
o = e £ (XI1.8)
X on dy2
—00
o
1 .
Oy = ~—— 2 Faiox aE (X11.9)
27w ‘
- ®
o0
1 ) . .
T = ig itz g (X11.10)
o 2 dy
-—0

elde edilir.

Deplasman bilegenleri de, TF(&,y) fonksiYonuna bagla
olarak agagidaki sekilde elde edilirler :

Dizlem gekil defigtirme durumu ig¢in bilinen

du 1+V

3x E

-

[O}%—\)(GX + o )]

bagintisina Fourier doniglimi uygulanir ve tiirevlerin ddniigii-
mine iligkin kuralla birlikte (XII.5) ve (XI1.6) gdzdniinde
tutulursa, ters donligsiim iglemi sonucunda
* 2
1+v T ; )
d°F ‘ 2 1 —1E;X
(1-v) — + VE — e dg (X11.11)
dy g

2TE

—00

bulunur. Diger deplasman bilegenine ait ifadenin elde edil-
mesi igin, elastisite teorisinden bilinen
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E. ov ou
( + ) =71
2(1+v) 9% oy

Xy

bagintisindan yararlanilir. Bu baginti ile birlikte (XII.7)
ve (XII.11) ifadeleri gdzdninde tutularak, benzer iglemler
sonucunda

0 i 3_ ‘
1+y a°F @F 1 1 _i¢
v = (1-v) 4 (v-2) B —— | —— ¥ ag
27E dy3 dy g2
—09
(XI1.12)

elde edilir.

(XII.8) den (XII.12) ye kadar verilen gerilme ve deplas-—
man bilegenlerinin belirlenebilmesi igin F fonksiyonunun,
problemin sinir gartlarini saglayan ¢Szliminiin elde edilmesi
gerekmektedir.

(XII.4) differansiyel denkleminin ¢8zilimi
F ==—(Cl-f'Czy)e-'lgIy-i—(,(l:;-l-(lliy)el‘gly (X11.13)

geklinde yazilabilir. Cy,C ,C3 ve C, katsayilari, (A) ve
(B) birim deplasman durum%arl ig¢in (%11.16) ve (III.18)
sinir gartlarindan elde edilecektir. :

(XII1.13) goziim ifadesi ve y deZigkenine gdre tiirevleri
(XII.11) ve (XII.12) deplasman ifadelerinde yerlerine konula-
rak (III.16) ve (III.18) sinir gartlari gerceklegtirilirse;
€1,C,,C3 ve C, katsayilari agafidaki gekilde elde edilir:
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(A) Birim Deplasman Durumu

G B

C T e e

f—(x2+m)+(mz+<~z§g}h-z Kzg}h+4a2h2)e"zlglh]

! Ef ¢ L

g(8)
c,=26 {;K+(K-2gglh)e“2‘glh}
£ L d
CEOr 2.2 h
et -L (KT#ict2{E[ht2c| g h+4E n )e—2|5[h+(K +K)e el ]
5O Y. , |
c,= 26 (+2]E|nye ~|€!h_Ke“4l€|h] (X1I.14)

(B) Birim Deplasman Durumu

" A
c =i__.,§§:;_)_ (2_ (c2e 2,2 -zlglh
1 S KT=K)=(k"~k=2| £ |h+2c | E | h+4E %) e
£ g
c, = 2i¢ —-. f.—K+(K+2l£’h)e—2,glh]
B L
iG g(E)
Cy =~g-;——~[ '—(K2-K+2[E‘h—ZK[g[hi’l&thz)e—ziglh-é-(l(z“K)e_&}gih]
g EE ; o
Cls = 2i¢ E"“:“[‘(K-Zliih)euzig!b-r Ke—”g!h (¥11.15)
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Yukaridaki ifadelerde

© = 34y | (X11.16)

£ = A leuginDy el 2 eleln (XIT.17)

i g8stermektedir. F(&) ise, g(x) sinir garti fonksiyonunun

Fourier doniigiimini ifade etmektedir. g(z) fonksiyonunun
X e gbre bir ¢ift fonksiyon oldufu gdzdniinde tutularak

o a ,
. X
g(&) = g(X)elEde== 2 (1-—)cos&x dx=-—— (l-cos&a)
a Eza
& o

(XII.18)

geklinde elde edilir.

(XII.17) ve (XIL.18) gbzdniinde tutularak (XIIL.1l4) ve

(XIT.}S) deki katsayilarin paylari paydalarina bdliinlir ve
e=61&/h" 3 xadar olan eksponansiyel terimlerle yetinilirse,

agsagidaki yakinsak agilimlar elde edilir :

(A) Birim Deplasman Durumu

(1-cos&a) 1 1 2 1 4e2n% 7 lein
¢, 726 ——— {(1+—)+ [(1+——)+-—(1+——) g |n+ J &2lEl
[E]3a K K K K K
1 4 1 4 3 8 1
+ [(1+—) #— ) |Eln +— (e —) 0P+ — (s —) [€ 70
K K K K K K K

1

1 6 1 12 2
16, 4:, ey [(1+——q)+—(1+—);[£,|h +— (1+—)E°n°

2
K K K K K
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32 16 5 32 1 64 ,
+—-(1+—) e A I 1 W+ — £ hﬁ] &t ‘5“’}»
I(

K K K K K K

(XII.19.a)

(1-cos&a) L 2 4 : _
C, = 46— —+[—+—-f€1‘h +——’€2h2:l e zgg}h
£2a Kk Kk k2 K3

— e I —— 2% — g gt

K K K K K

1 6 24 ' 32 80
+ [

32 55 ﬁgehg ] sleln } | (XIT.19.b)
6 7

K

(1-cos&a) 1 2 1 4£2h2 —Z{E'h
C3 =26 —— [(1+———) +—(1+—) ||+ ] e |

1€]3a K K K K

(1+——q-+——-(1+-——)t£§h+——é(3+——0 €2h2+——§(1+——){£{3h3

l: 1 4 1 4 1 8 1
K K K K K K K

16 LS i 2o
R E"hl‘] e—4|€!h + [(1+._)+-—‘€[h+— (2+—)£2h2
b K K <2 K
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32 1 6 1 ,, 32 1
t— 1+ —) [£%0% +— et — e [E0
K3 K Kk K K K )
64 el
. — g6h6] 6leln (XTI.19.c)
)
(1-cos&a) | r1 2 o7l 1 4
G, = 46— (e Zjen | 2l [—**“ﬂa%h
£a |_K K2 | K k2
4 8 pr— 1 6 12
2, +———|E{3h3:} eHER _ [——.+—gg;h w4
K'3 Kl* K Kz K‘3
32 16 32 |
— e P — gt +—-—-A§E§5h5] OlEl L xr1.19.0)
k4 K> k6 '
(B) Birim Deplasman Durumu
(1-cos&a) 1 1 2 1
C, =26 ——— - (1- —)- [(1———)——-(1——).}%;]11
, £3a K K K K
452112 -2!8ln 1 4 1 4 3 2
- RIS [(1———)——(1-——)1€§h+—<1—-)e; h
3 kK Kk K k2 Kk

8 1 16 _ 1 6 1
-— (1-—) ‘E!3h3f-*-€4h4J HIEl [(1"‘)-;—(1——9 £l
K3 K KS K K K
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12 2 32 1 16 5

F e (1-—) E2h%= — (1-—) |£]°0%s — (1-—) g*n®
;<4 K K3 K K4 K
32 1 T .
~— (- e — %% | e 61Ein (XI1.20.a)
K= K Kk’ J
{i-cos&a) { i rk 2 4 5 _ ;
c, = 4ic ﬁ -—+[——~————~[€‘,h +— g ] o"2|E[n
Eigla | ¢ Lk « 2 K3
1 4 12 8 16 |
: 4 4 -4]Ein
+{—-~—- (E;Ih+-——€2h2- ,zg — &h ] iy <
Kk o «2 K3 - K4 K5
16 24 32 80
+[—~-~——2——[g§h+ «—izl n’ t gnt
K K K K K
32 64 _ |
e j&jshs + — £6h6] e 6/&n (XII.290.b)

K6 K7

(1-cos&a) 1 2 1 4 2 lE]

3 £3a K K K K
1 4 1’ 4 1 8 1
[(1———-)——-(1—_)*axh+-<3——>a n%- — (1-—) £1%3
K K K K K K K
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224 47 -a4lgln 1 6 1 12 1

+— & ] e + [(1__)___.(1_—);g;m—(z--—)gzhz

: K K K k2 k

32 1 16 1 4 32 1

-—1-—) ['€l3h3+—2- -0 B - — a-—) g’
K‘3 K K K K K

+6_: £6h6] e’6|§|h , (X11.20.c)
K

(1-cos&a) 1 2 _ 1 4
c, = 4iG—— [—-—igthe 2»!‘;'“&[——--—— |£|n
glEla K k2 K k2

4 8 1 6 12
2.2 33 -4|&ln [ 2.2
k3 & K4I | } K Kzl | K3

16 3

32 2
—— PRy — gt IEIShS} ,~6lEln | (x11.20.9)
. K4 v |<5 K6

Tek tabakali sonsuz ortamda, (A) ve (B) birim durumla-
rindan olugsan deplasman alanlari (XII.11) ve (XII.12) bagin-
tilari ile elde edilebilir. (XII.13) ¢&ziim ifadesi ile vy
degigkenine gdre tiirevleri (XII.11l) ve (XII.12) de yerleri-
ne konulur ve

3
I
Y
®

(XII.21)

N
I

<
[ :
pe w)x
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doniigiimleri yapilirsa asagidaki deplasman ifadeleri elde
edilir. '

(A) Birim Deplasman Durumu

,‘/ [s¢]
(k+1) _ (l-cosM)  _i_ig _:
u=- J iCZ —e lﬂ»‘e e inz dn
27 nlnl
— 00
1 [ (1-cosm) 6 [ . (1-cosm=[njo -inz
g oo —Inlp -inz ° | iE, ——e e dn
t— | i————e """ e dn +— 2 n
2m nint T
o 2
(o o]
(k+ 1) (1-cosn) v
+ — J 7254———-——————~ e"'ln‘e e mz dn
2m nin]
—~ 0

. .
1 (1-cosn) i
+ J iEB B e+{n‘lee Y% g

n
2 W nin|
[ o]
0 {l-cosn) s
+ T ——— tinje inz g (XII.22.a)
4 .
m n
-0
00
(k-1) (1-cosn) .
Vo= Ez e"‘ﬂ}e e‘lnz dn
27 nz

-0
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-infe  -inz
e

1 (1-cosn) y.
-— Eé eﬂ’n!e e S dn
2m n2
—
o o]
) (l-cos ) i
-— 'Ez _— e+}ﬂ§9 e N2 dan
m in|
-0
(B) Birim Deplasman Durumu
(o]
(x+1) (1-cosn) _ .
u=— Eé 5 e ;ﬂ} e 1Nz dn
2m n

—00

(X11.22.b)
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(1~-cosn) T | -1
‘;ﬂie e ine dn

c
I 1
T ) nZ
6 [ (I-cosn)  _ing —inz
U g e 1N e dn
2 Int
- i
Mi in
(c+1) (1=-cosn) -1
_ [ 0700 spnje ine
o 4 2
— OO n
) _};ﬁ,{ C3(1-cosn) +njo -inz 4o
2n n?
6 (1-cosn) i
_ ( C,——— FInle iz g
T In|
— 00
[oo]
(k-1 ._ (1-cosn) _in'e -inz
v = ’ ]'CZ_—M'—“—__.e | )
2T _i} nin|
[e'e]
r -
1 _ (1-cosm) -in|e _-inz
, 101 T e
2m T‘.iﬂi

dn

dan

(XII.23.a)
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o
9 (l-cosn) -
+— 1C2 ﬂ d 6 inz dn
™ n
- 00
[oo]
(k=1) (1-cosn) ' .
+ i¢, —— eﬂnfe inz dn
4 v
2w njnl
—-—00 .
o0 .
1 (1-cosn) i
-—| i€, —— eFIne minz 4
2n n |nl
-0
[oo]
0 (1-cosn) -
-— | ig,—— e i e =G (XII.23.b)
m n
—00

Yukaridaki deplasman ifadelerinde yer alan Cl’ 'EQ;ES

ve C, katsayilari, (XII.19) ve (XII.20) acilimlarinda { }
gseklindeki parantezlerin iginde kalan kisimlari gdstermekte-—
dir. Bu katsayilarin yukaridaki ifadelerde yerlerine konul-
mas1 ile deplasman bilegenleri n,z ve 8 ya bagli integ-
ral toplamlari geklinde elde edilir. Kisim III.3.2 de bi-
rim ivme sabitlerinin hesabinda, deplasman bilesgenlerinin

bu gekilleri ile kullanilmasi daha uygun oldugundan, bu adim—
da integrallerin hesabina gerek gdrlilmemigtir.

y = 0 sinir dogrusu boyunca gerilme bilegenleri(XII.9)
ve (XII.10) bagintilari ile elde edilebilir. (XII.13) ¢dzim
ifadesi ile y degigkenine gdre tiirevleri (XII.9) ve(XIIL.10)
da yerlerine konulur ve (XIIL.21) ddniigiimleri gbzdniinde tu-
tularak diizenlenirse agagidaki gerilme ifadelerine varilair:
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(A) Birim Deplasman Durumu

00
' 2G 1 (1~-cosn) -
(o) == — (1+—) —— cosnz dn
Y y-0 Ta K n :
0
(l-cosn) _
+ 2 J _— 2om cosnz dn
n
o
[~ <]
Q .
+4 — j(l-(:o'sn)e_-zom cosnz dn.
K
o
2 x
. -2
+4 n (1-cosn)e M cosnz dn
K2
o
o o]
(1-cosn)
+2 j “—‘ﬁ“““- e 4an cosNz dn
o
o
* ~4or
+8— | (l-cosn)e ™" cosnz dn
K
o

o]

2

a -4an :
+16 — [ N(l-cosn)e aancosnz dn
K2



oo}

a3

+ 16 — J hz(l—cosn)e_4an cosnz ~dn-

K3
(o]

00

ab

4 —40n
+ 16 — J n3(1-cosn)e 4 cosnz dn

h
(o]

o]

) J (l—cosn)v —60M

+

n e
(8]

o

* -6
+ 12 — (1-cosn)e
K

(o]
0

[ n(l—cosn)e-6

il

+
=)
B~

n%l—gosn)e‘6

o .

96 —— n3(1—cosn)e_6
K4 J

o

+

oo

OLS
4 -6
+ 64 ———ij N (l-cosn)e
>
o

6 ©0
o s _
+ 64 -——-I N (l-cosN)e
K6
)
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cosnz

an

an

an

an

an

69N

cosnz

cosNz

cosnz

cosnNz

cosnz

cosNz

dn

dn

dn

dn

dn

dn

3

(XII.24)
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[o0]

2G 1 (1-cosn)
{t_) - (1-—) sinnz dn
xy'y=0 Ta K n
o
2 o o]
8G 1 a ~20m .
+— (l+ —) —— n(l-cosn)e sinnz dn
Ta K K2
o
{ -4an .
+ 2 ’ n{l-cosn)e sinnz dn
o
2
+ 4 — g 7 (1 cosn)e —4on sinnz dn
K i
o
o0
+ 3 n(l—cosn)zgunsinnz dn
o
oo
a2 3 -6Qan .
+16——E n~{1l-cosn)e sinnz dn
2
o
o0

o
Q
- +16 -j; ] n (l-cosn)e -6on sinnz dn]
o}

(XII.25)
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(B) Birim Deplasman Durumu

(c.)
y'y=0
(Txy)y==0 ifadesine (XII.25) ters isaretle egittir.Bu durum

Betti teoreminin geregidir. Isaret farki elastisite teori-
sindeki igaret kurali nedeniyle olugmaktadir.

ifadesi, (A) Birim Deplasman Durumundaki

¢ cosnz dn

2G 1 [ m(l—cosn)
)

Txydy= 0= ~ma 1t .

o
-

(l-cosn) _ n
+2 | ——e cosnz dn

n
o

a .
-4 — (l1-cosn)e 2om cosNz dn
K

o

o?

+ 4 — l'l(l—cosr’l)e‘.zom
k2

cosTNz dn

o
o

_ (l-cosn) _
+ 2 —_— e 4an cosNz dn

n

n

-~ 8 — (l—cosn)e-aa cosnz dn

+16-—§—' n(l—cosh)e-aan

cosnz dn
K .
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[+
a3 .
‘16“3' nz(l-cosn)e N cosnz dn
K> ,

o
[+ -3
Al
a _
+16 — n3(1—cosn)e aan'cosnz dn
k& |
o

[‘(l-cosn) —60m
+2 [|——e

n

cosnjz. dn
o

(=]

a -
- 12— (1-cosn)e 6an cosnz dn
K
o

©
a2

+36 —— J ﬂ(l‘COSﬂ)e_6cm cosNz dn
K2
o

o

w

6an

- 64 nz(l—cosn)e_ cosnz dn

%1 8
o

400

+ 96 J n3(l—cosn)e—6an cosnz dn

» I Q
o~

o
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5 00
a —
- 64 — n4(1—cosn)e 6an cosnz dn
D
o
6 (=]
+ 64 -g-l n (1—cosn)e on cosnz dn‘] (XII.26)
K
o

XIT.1.1. Ozel durum : Yari sonsuz ortam

Tabaka kalinlifinin sonsuza gitmesi ile yari sonsuz or-
tam 8zel durumu elde edilir. Bu durumda (XII.19) ve (XII.20)
ile verilen katsayilardan C3 ve C4 sifira esit olacak,C]
ve Cy katsayilarinin ise sddece ilk terimleri kalacaktir.Bu
6zel duruma karsi gelen deplasman ve gerilme bilegenlerine
ait ifadeler agagida toplu olarak verilmigtir.

(A) Birim Deplasman Durumu

26
u=—-—-1

mK 1

2 26
v=— I,+ —1I

n 2 3

2G 1

o == —— (1l+—)1I
@)y g™ L,

. 2G 1
T = —-—— (1-—)I XII1.27
Ty 0= "m0 (XI1.27)
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(B) Birim Deplasman Durumu

2 26
g =— 12 —-——-13
™ IFS
26
v=—1
TK 1
2G 1
(o) =— (1-—)1
y'y=0 Ta K ) :
2G 1
T = = — (1+—)1
xy)y==0 " ( < ) 4

Yukaridaki ifadelerde

[e o]
(l-cosn) _
If= — e sinNz dn
n
o
X0
(l-cosn) _
Ii= e cosNz dn
n2
o
co
. (l-cosn) _
I, )| —— e cosNz dn
3 n

(XII.28)
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oo
(1-cosn)
.14 = - cosnz .dn
n
o .
w N
{1-cosn)
I5== simnz dn (XII.29)
n
o

integrallerini gostermektedir. I, integralinin I, iin,
I, integralinin ise I, in 0 =0 &zel durumuna Ear§1
géeldigi gdriilmektedir.

Yukaridaki integrallerin kapali ¢3ziimleri, Kisim XII.4
de (XII1.60), (XII.61l) ve (XII1.62) ile verilen Fourier
Convolution bagintilari yardimi ile elde edilmigtir. Bu ¢&-
ziimler (XII.27) ve (XII.28) de yerlerine konularak, yari
sonsuz ortam 6zel durumu igin deplasman ve gerilmeler agagi-
daki gekilde elde edilir :

(A) Birim deplasman durumu

0 20z
u = arctg
T (82+422)2-92_,2
1 26 z 20z
v = —— arctg - arctg
™ 02+422-1 7 (62+22)2-92_52
1 1 (62+72-1) 24402

-— (1-—)6 1n
pat K (62+422)2
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G 1 (z2-1)?

@) == (1 +—)1n

y'y =0 2wa K z4
.
- & a-1y 0<z<1
a K
T =<
(ny=o
0 . 1<z < o

\

(B) Birim deplasman durumu

1 26 - 20z
u = — arctg ——— — — arctg ' 5

™ 82+z2-1 (62+22) “+62-22

. 1 - (0%2?-1yese?
— — (1L +—)0 1n 5

2T K (62+22)
S 26z

v =—— arctg




230

£ -t 0<z<1
a
O ==
(y)y=0
0 1<z < ®
G 1 ‘ (zz—l)2
(t. ). o==-—(l+—)ln
xy'y =0 2Ta K z4

Yukaridaki ifadelerde deplasman fonksiyonlarinin
0 >0 ig¢in limiti g(x) sinir sarti fonksiyonunu saglamakta-
dir. g(x) fonksiyonu boyutsuz oldugundan yukaridaki baginti-
larin uzunluk boyutu ile garpilarak kullanilmasi gerekmekte-

dir.

XII.2. TEK TABAKALI SONSUZ ORTAMDA STATiK BIRIM DEPLASMAN
SABITLERININ KAPALI IFADELERI VE INTEGRASYON
SONUCLARI

Tek tabakali sonsuz ortamda, statik birim deplasmén sa-
bitlerinin, ters Fourier ddniisiim integralleri halinde elde
edilen ifadeleri agagida verilmigtir.

4G 1 * (1-cosn) 2
k., ). =—(1+—) —————— cosnz. dn
xx’ jo . < n3 jo
o
- 2
(l-cosn) ")

+2 e n cosnz. dn

n3
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- 4 — e cosnz. dn
K J 2
n
o
co
2
ol { (1-cosn) —2an
+ 4 — " cosnz. dn
| o
o
o0
2
(1-cosn)™ _
+ 2 e 4om cosnz. dn
R
n
o
8 2
o (1l-cosn) —40n
-8 — e cosNz. dn
K T]Z
o
2 [eoe]
a (1—cosn)2 —4a
+ 16 — e n cosnz. dn
2 n jo
o
o 3¢
- 16 —3 (1‘COSU)26-4an cosnz. dn
3 jo
K™
o
,
o
+ 16 — n(l-‘cosn)ze—4om cosnz. dn
Ké jo
o
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® 2
(1l~cosn) _
2 —_— e 6an cosnz. dn
n ‘ Ie

(o]

s e}

o (l—cosn)2 —60m

2 — _— .
1 e cosano

K n2

2
a2 (1=cosm)™ _.an
- €&
n
o]

s 2 -6an
4 — (l-cosn) e cosnz.
jo
o

60N

bl &~

a
a
64 ——; [ n (l cosn) e 60N cosnzJ dn
o

6 [s]
o .
64 % n3(1—cosn)ze—6an
K
o

cosNz,
n jo

(e o]
2_
] n(l-cosn)“e cosnzjO
o

dn

dn

dn

dn

cosNz. dn]
jo

(XII1.32)
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[o0)
4G 1 (1—cosl’])2
k )., =k ).= —(1-—) —————— sinnz. dn
Xy 10 yx 30 iy K n3 jo
o

16G 1 a2 * (l-cosn)zr —20m
= (I+—) — — e sim‘tz:.lo dn

K2 n

4on

+ 44— T](l-cosn)2 e sinnz dn

+ 3 e e_6Cm sinnz. dn
jo

+ 16 — n(l—cosn)zr—_\_60m sinnzjo dn

0]

4
o

- 16 713(1—<:osn)2e—6om sinnz. dn:l
K4 jo

(XII.33)
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(k). birim deplasman sabitini olugturan biitlin terim—
ler, hegglnln igareti (-) olmak iizere, (XII 32) ile verilen
(kxx) ifadesinin aynidair,

Yukaridaki ifadelerde yer alan integrallerin tiimi kapa-
11 olarak elde edilebilmektedir. Integrasyon iglemleri ile

ilgili ayrintilara burada yer verilmemigtir.

Asagidaki ifadelerde gu kisaltmalar yapilmistir :

1 1 1 1
Ky=1l+— , K, =l-—, Ky=2+—, K =2-—
K K K «
(X11.34%4)
[ 1/4 (k = -2)
- = -1
' (k 2 (XII.35)
Ck-—« 'ﬁ 3/2 (k = 0)
-1 (k = +1)
| 1/4 (k = +2)
Zik T %o T K (k = =2, -1, 0,+1, +2) (XII.36)
2
J, = C 22 in(z.,)
1 k j.k n\z.
k= =2
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2
zZ Z:-
2 jk k
I,(B)= p } ¢, arctg (——)
k=2 p P
2 2
Z .
‘ 2 jk
3, = p } ¢, 1o (1 + )
k=2 p?
2
zik
2 -
JS(P)== P } Ck (1+ ) 1
%
z.
, jk 23k -
g = p° } ¢ (1-——) (1+—1)72
k=12 P2 p2

el

2
2 “jk Sk
3, (p) = } € (1= 3 ——) (1+ —)~
ke

2
2 Zik Zjik
Je(p)=p C, (1-6 + ) (1+
kK

2
2 “ik
Jg(p)= P Ck arctg
k=2 p
2 2
2 Zik zjk -
I = p } c, (e —)7
k=2 P P
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2 2
. - ) z.}k ij z k -4
M@=t ) G ) )
L, e P P
(XI1.37)

Yukaridaki kisaltmalar gdzdniine alinarak elde edilen
statik birim deplasman sabitlerine ait ifadeler agagida ve-
rilmigtir.

G 1
(kxx)jo = 2-;- Kl{:Jl-Jz(ZOL)‘P 4K1J3(20c)——,—<— K3J4(2a)
1 1
- J2(4oc) + 4K1J3(4OL)-—K3J4(40L) - = 2 Js(aoa)
K 2K
1 ‘ 1
+ J,_(4a) - J.(60)+ 4K, J. (60)-——K,_ J, (6Q)
A 6 2 173 - 3,
16 4 8 4
- J.(6a) + —— J_(60) - ——— J_(62)+—— J (6
27¢3 2 27d ® 275 ! 27¢6 8
(X1I.38)
G 1
(kyy)jo = 27 K, [ J3,-3,(20)+ 4K2J3(20c)+?K4J4(20L)
1 1 ,
- 32(4a)+4K233(40c) +'—K4J4(4OL) +—~§- J5(4OL)
) K 2K :
1 1

+—'—ZJ6(4(1) - J2(6oc) +4K2J3(60L) +——K4J4(6a)
8k K

)
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16 4 8 4
+ J_(6a) + J, (6a) + ——J (6Q) + —— J (6(1)]
273 YL 2765 7 27¢6 8
(X11.39)
(kxy)jo =0 (zjo= 0)
G ——
(k, ). =—K, = (k_). : _
xy'jo 2 xy’ jo (zjo 1)
(kxy)jo = -(kxy)jo (1< zj0< ® )
_ G 2 1 1
(k. ). =2— K [—-— J. (2)+— J_ (4a) + — J_ (4Q)
xy’ jo x tle2 9 <2 9 KQ 10
2 16 16
+— J (6Q)+ —8— J. (6Q) + —— J (6a)]
w2 20 ans Y07 g U
(XII.40)

Tek tabakali sonsuz ortamda statik birim deplasman sa-
bitlerinin sayisal hesabi, IX. Bdliimde agiklandigi gibi,
BIDE altprogrami yardimi ile yapilmisgtir,
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- XII.3. TEK TABAKALI SONSUZ ORTAMDA BIRiM IVME SABITLERININ
KAPALI IFADELERI VE SAYISAL INTEGRASYON iSLEMLERI

Tek tabakali sonsuz ortamda, birim ivme sabitleriunin
integral ifadeleri agagida  verilmistir.
o

2pa2 1 1 (1—cosn)2
(m )., =-— [(1—~—'+——-) ——————— cosNz. dn
xxJo T kK k2| n° Jo
ap
® 2
1 1 (l1-cos ) —20
+2 (1 ——+—) _—_— g cosnz.o dn
s
2
1 1 2 (1~-cosn) —oom
=4 (1L +—=-——+—) « —_— cosnz. dn
k k2 3 n4 Jo
2o
4 1 1 3 (1l-cosn) -20n
Fl2 p—e—— g2} o? B e cosnz, | dn
K kK k% k3 ; n->
o
oo
8 3 (1-—cosn)2 —2an
- “‘5““—“'e cosnz. dn
k2 n Jo
-ag
1 1 (1~cosn) —4an
+ 2(l-— +——) —_—e cosnz. dn
K K2 ns . Jjo
a_ o )
1 1 2 (1-cosn) —4an
-8 (l+—=—+—)y —_— e cosnz. dn
kK k% «3 nk Jjo
a

¢]
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CO

16 11 3 9 (l*cosn)2 n
+—(2 +———+—)0 —_— cosnz.O dn
K K k2 k3 J ne J
ap
- 2
16 1 1 4 3 (1~cosn) 4om
(4 t———t—) — e cosnz. dn
K2 Kk k2 K3 n-’ J
hars
o 2
16 11 5, (1-cosn) —4om
+— (4 +———+—)Q —_— e cosnz.  dn
k3 Kk k2 k3 n
- %o
64
‘——"'as (l-cosn)ze o cosnzjo dn} (XII1.41)
K
g
2pa2 1 (l-cosn)2
(m ). =(mn ). = '[-—— sinnz. dn
STxy’jo yx'io 2 s
4
*® 2
+—42(1+—37) 2 | 220 2an sinnz, dn
K K 3 jo
R
a
(o)
® 2
8 (1-cosn)™ _
———-a3 —_ e 2en sinnz. dn
ag -
3 3 9 { (1—cosn)2 4om
+— (l+——)Q sinnz.o dn
2 2 J n3 R
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[»]
2
32 3 (1-cosn) —4an .
-—q —_—— e sinnz. dn
2 n2 jo
a
o [e ]
16 5 (1-cosn)
+—(1 +--——)0L4 —*~——————e_4an sinnz, dn
kb K2 n 3o
a
o
[e]
64 v
—— a5 (l-cosn)ze 4an sinnz. dn (XII.42)
Kb Jo
o)
2 = 2
2pa 1 1 (l-cosn)
(m ). = (l+—+—) ———— cosNz. dn
yy 3o m kKo K2 nd I°
e
= 2
1 1 (l-cosn) on
+ 2( 1 +—+—) —_— e cosnz. dn
kK k2 ChHo
aq i
1 1 2 (l—cosn)2 —2an
-4(l-—=-—-—) a e Y cosnz. dn
K k2 k3 nh
o a,
- 2
4 1 1 3 9 (l-cosn) 20N
-—(2-— -—=—)a e cosNz. dn
K K k2 k3 3
a
o
[os]
8 (l-cosn)2 20m
——qQ e cosNz. dn
K2 n2
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1 1 (l-cosn)2 —4an
+ 2 (1L +—+ ) e cosnz. dn
K K n> '
a, - )
1 1 2 (1-cosn)™ _
-8 (1 __.‘-_______)az e 4on cosnz. dn
Kk k2 k3 n4
aq
16 1 1 3 (1=cosn)
- (2 ________--——-)az - e 4an cosnz. dn
K kK k%2 K3 n3
a
o
& 2
16 1 1 4 (l1-cosn)™ _
-—( 4 -—————~———-)u3 e ey cosnz. dn
K2 Kk k2 k3 n2
ap
¥ 2
16 1 1 5 (l-cosn)
-—( 4 _~_—-———-——~)a4 e “d cosnz.o dn
K Kk k2 k3 M
4
[ee]
64 :
c—a | (1-cosm)Ze™*™ cosnz. dn} (XII.43).
K 1°
a
o

Yukaridaki ifadelerde yer alan integrallerin birkagi
diginda digerleri kapali olarak ifade edilebilmektedir.An-
cak burada, biitiinl{iglin bozulmamasi diiglincesiyle her {i¢ ifa-
dede yer alan integrallerin hesabinda, ayrintilari agagida
agiklanacak olan yari sayisal ydntem uygulanmigtir.

Kisim III.3.2.1. de belirtildizi gibi, (XII.41),(XII.42)
ve (XII.43) ifadelerindeki ilk terimler, yari sonsuz ortamin
birim ivme sabitlerine kargi gelmektedirler. Bu terimlerdeki
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integraller, yari sonsuz ortamda dalga denkleminin ¢d8ziimi
ile elde edilen dinamik birim deplasman sabitlerinin
Kisim XII.5 de verilen sayisal hesabinda elde edilmigler-
dir. S8z konusu 1ntegra11er1n sonuglari asagida verilmig-
tir :

2022 1 1
= = 1.’.__.’...__- .
(mm()Jo (myy)JO 7; ( - K)
2 .
} [ | S agz%
C — (1 = ) cos(a z..)
k 4 jk
k=2 f bag 6
2 v
ij aOij ka .
= (1 - H) sxn(a z ) - Ci(a z.k) ‘
12a3 2 26 - 0%
(XII1.44)
Zpa2
()50 = ¢ x50 = )
Z 1 a z
} Cel — (1 - ) sin(a z.,)
4at 6 k
k=2 (]
ij aonk ka .
+ (1 - Ycos(a z.k) - si(a z.k)
12ag 2 24 °1
(X11.45)

Yukaridaki ifadelerde yer alan C, ve Z.1» (XII.35)
ve (XII.36) da tan1mlandlgl gibidir. C1 ve si?d seklinde

gosterilen kosiniis ve siniis integral fonksiyonlari,tanimla-

rli uyarinca
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[+e]
cost
Ci(x) = - — dt (XII.46)
t
X
' [¢o]
sint
si(x) = - dt - (XI1.47)
t
X

dir. Bu fonksiyonlar, yakinsak seri agilimlari veya hesap-
lanmig deZerler olarak matematik el kitaplarinda verilmig-
tir [l]. Fonksiyonlarin sayisal hesabi ile ilgili ayrinti-
lar IX. Bdliimde agiklanmigtir. '

(X1I.41) ve (XII1.43) ifadelerinde ikinci ve altinci
terimlerde yer alan

e}

(l—cosn)2 »
— e P osnz.  an (p = 2,4)
ﬂ5 jo

e

integrali kaéall olarak elde edilememektedir. Sayisal ola-
rak yapilan integrasyonda asagidaki yol izlenmigtir.

Integrandda yer alan (l—cosn)2 ifadesi Maclaurin seri-
sine agilarak
10
, n*on® nd a7 31 n*? nl
(1-cosn)”™ =—~ + - + - 4o
‘ 4 24 320 120960 7257600 10644480

(XII.49)

elde edilmigtir., e PV terimindeki p degerinin en kiiglik
degeri 100 olarak kabul edildiginde integrasyon iglemi
iginde (XII.49) agilimindaki alti terim yeterli olmaktadir.
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Bu agilim (XII1.48) integralinde yerine konulur ve
t = pn ‘ (XII.50)

doniiglimi yapilirsa,

(l-cos )2 - 1 e—t z: o
—_— P cosnz., dn =—| — cos (4J t)dt
nS Jo 4 t P
3 3op '
1 : _ zig 1 _ Zj0
- ; te tcos 6—1—t)dt-+-————z- t3e tcos(-———--t)dt
24p2 P 320 p P
aop agp
[+ o] [¢ ]
17 r Z:o 31 A z:
e { tse tcos(-—-:]-—t)dt-l--——————————-- t7e tcos(—i—ﬁ)dt
120960 p° P 7257600 p8 p
asp a,p
[o+]
1 _ : zjo
- £? e tcos( t)dt + -+ (XII.51)
10644480 plO ' P '
Calp

elde edilir.

(X1I.51) ifadesinde birinci integral digindaki tiim in-
tegraller kapali olarak elde edilebilir. Bu integrallerin
sonuglari genel olarak

[ee]
= Zjo
J t%e tcos( t)dt
. p
ap 41 _
of n o (aop)(n m+l)
= } . cos(my+acz.o) (XI1.52)
(n-m+1)! rm 1
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seklindedir. Bu genel ifadede
2

z.
o

r — (1 +—§_—~—)1/2
p2
z.
Y = arctg J
P

dir.

(XII.51) ifadesindeki birinci integraiin hesab1i igin
ilk adimda, kisim kisim integrasyonla
[o0] e o]
et z: z;
o Al -
cos(—= t)dt = - e 2P ci(a z, )+ | e Tci(
2 o jo
t P p

agp aop

(o]

(XII.53)

bagintisi elde edilir. Bagintinin sag tarafindaki integra-
lin alinabilmesi igin Ci fonksiyonunun

oo m 2m
X

- (-1)
Ci(x) = 0,5772156649 + In(x) + } p—eer
2m (2m)!

=

seklindeki yakinsak agilimindan faydalanilmigtir.Bdylece

oo 0
[ -t .. “jo -t
e Ci( t)dt = 0,57721566 e dt
aJp P
000 aop 0o
( z3 S (—].)m z3
_ jo jo —
+ | et 1n( t)dt + } ( )zm 207t g
aop m= , aop

(XII.54)

t)dt
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elde edilir. a p Dbiiyiikliiglinlin alabilecegi degerler gbzdniin-
de tutularak, ygkarldaki toplamda en.fazla 20 terimin yeter-—
1i olacagi sayisal aragtirmalarla saptanmistir. (XII.54)

deki integrallerin sonuglari agagidaki gekilde elde edilir:

.
| o tar — o3P (XII.55)
agPeo
. 2o e
e 1ln(——t)dt = e ln(aozjo)+ El(aop) (X1I1.56)
] P
agp
- ;
S TR (m-i+1)
tPe tdt = e P } ———e (aop) (XI11.57)
J 2 (m-i+1)!
aop ' ==

(XI1.56) ifadesindeki E, fonksiyonu

=)
-t
e

Ey(x) = dt  (XII.58)

t
X

gseklinde tanimlanan "eksponansiyel integral” fonksiyonunu gds-
termektedir. Bu fonksiyon ile ilgili yakinsak seri agilimlari
Ref. [1] de verilmistir.

(XII.55), (XII.56) ve (XII.57) sonuglari (XII.54) de,
onun da (XII.53) de yerine konulmasi sonucunda, (XII.51)ifade-
sindeki ilk integral de elde edilmig olmaktadir.

(XII.41) ve (XII.43) ifadelerinde, yukarida sonuglari el-
de edilenlerin diginda kalan integrallerin tiimi (XII.49) seri
agilimi gozdnilinde tutularak (XII.52) bagintisi yardim ile
hesaplanabilmektedir.
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(X11.42) ifadesindeki birinci terimin diginda kalan
integraller de (XII1.49) acilimi ile birlikte, (XII.52)
bagintisina benzer olarak elde edilen

z.
- o
te tsin( J t) dt
P
agp
— } . sin{my+a z. ) (X11.59)
(n-m+1)! il ©Jo ‘
m=1

bagintisi ile hesaplanirlar.

Tek tabakali sonsuz ortamda birim ivme sabitlerinin sa-

visal hesabinin yapilmasini saglayan BIVME altprograminin
ayrintilara IX. Boliimde agiklanmistir.

XIT.4. FOURIER CONVOLUTION BAGINTILARI

Fs(n) ve Fc(n), bir £(z) fonksiyonunun; Gs(n) ve Gc(n)

ise bir g(z) fonksiyonunun sirasi ile Fourier siniis ve kosi-
niis doniiglimleri ise, agagidaki Convolution bagintilari yazi-

labilir:
0 1 rm _
Fs(n)GC(n)sinnz dn =— £(r) g(z—t)-g(z+t)] dt
2| L
[o]
- o . (XII.60)
1 B
Fc(ﬂ)Gc(ﬂ)coan dn =—- f(t) g(z+t)+g(z-t)] dt
2 L
o Te) V

(XII.61)
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1
FS(U)GS(n)cosnz dn=— | £(t) [g(z+t)—g(z—t)]~dt
2

° 4 ° (X11.62)

F(n) ve G(n), £(z) ve g(z) fonksiyonlarinin eksponan-
siyel Fourier ddniiglimlerini gosterdlglne gbre, bir diger
Fourier Convolution bagintisi

o0 0

F(n)G(n)einzdn==2ﬂ f(-z)g(z)dz (XII.63)

gseklindedir [58].

XIT.5. YARI SONSUZ ORTAMIN DINAMIiK BiRiM DEPLASMAN SABITLE-
RININ SAYISAL HESABI.
ITI.BSlliimde, Kisim III.2.1 de, dalga denkleminin ¢dzi~
mi ile elde edilen yari somsuz ortamin dinamik birim deplas-
man sabitleri Fourier Ters Ddniiglim Integralleri halinde
(I11.12), (III.13) ve (III.14) ifadeleri ile verilmigtir.
Kisim III.2.1 de agiklandi3i gibi, bu ¢aligmada sbz konusu
integrallerin gergel kisimlarinin hesabi ile yetinilmektedir.
Deprem hesabinda sz konusu olan frekans deferleri g&zdniin-
de tutularak yapilan sayisal aragtirmalar; Tablo (III.1l)de
gosterilen ilk iki bdlgedeki gercgel degerlerin, a, <n <
blgesindekilere oranla terkedilebilecek derecede kiigiik ol~
dugunu gdstermigtir. Bu bakimdan, her {i¢ integralin de ger-
gel deBerler aldifi a  <n < bdlgesindeki integrasyon
0zel bir Onem kazanmaktadir. Yapilan sayisal aragtirmalar;
(II11.12), (ITI.13) ve (III.1l4) ifadelerinin integrandlarinda,
trigonometrik terimler disinda kalan kisimlarin hizli bir
asimptotik egilim gdsterdiklerini ortaya ¢ikarmigtir.RBu neden-—
le, integrandlarin bu kisimlari asimptotik serilere a¢ilarak
asagidaki ifadeler elde edilmigtir :
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p(m=n* [n2-m’-a2 2 (n?-g%a2) 2]

kisaltmasi ile,

2,2 2 2.1
a2 (n?-g? a5 1/? Dygel
o = :3§£;iy (X11.64)
pin m=1
2,2 2.1/2 >
ao(n & / E2mﬁ1 (XII.65)
p(M (2o
m=1
2 5
an F
0 _ } 2mtl (XII.66)
p(n) Q2m+1)
m=1 TN

elde edilir. D, E ve F katsayilari agagida verilmigtir :

2
D [ S —
3 a+sd
_ a%(1+38%)
St
> 2014892
a2(1+282-684+1086+58)
D, = -

8(1+8%)°
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a®(1+3g%+8"4168%+216%+55 4%

16(1+82)%

~al(s+208%+228"-208°-1506%+1808" O+ 708 2285 #45815)

128(1+8%)°

2

(1+8%)

a§(3+34)
2(1+82)2

a2(1+1082-684+286+88)

8(1+82)3

ag(1+562+2184—16B6+Bg+3810+812)

16(1+32)4

a3(5+288%+708"+1808%-1508%-2081%+228 242081 %+ 5510)

128(1+8%)°
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2
F e
3 (1Y
a”(1-g%)’
F ==
> 2(1+82)2
2t (1-8M)2 (1+687 ")
Fp=- 2.3
8(1+B°)
28 (1+48”+78%-248%4 7854610417
Fgq = —~ )
? 16(1+2) %
ai(5+2432+4434+aoe6-22688+4051°+44612+24314+5516)
F. == =
11

128(1+8%)°

Bu asimptotik ag¢ilimlar, pek biiylik olmayan a_ deger-
leri ig¢in, alinan beg terimle, asil fonksiyonlara Rabul edi-
lebilir bir hata limiti ig¢inde temsil edebilmektedirler.Da-
ha biliylik a_ degerleri ig¢in serilerin asil fonksiyonlara
yakinsadigi bir n =7, ¥ a_  degeri saptanarak a_ 1ile
ng arasindaki kisim ~herhangi bir sayisal yontem ile in-
- tegre edilebilir. ¥

= Ozellikle, trigonometrik garpanli ve sonlu integraller
i¢in Filon tarafindan geligtirilen ydntem [1]v, bu bélge-
deki integrasyon igin kullanilabilir. :
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Kisim XII.2 de kullanilan

z,, =z, +k (k = -2, -1, 0, +1,+2)  (XII.36)

donliglimii gdzodnilinde tutularak, (IIT.12), (III.13) ve (III.14)
bagintilarinda yer alan trigonometrik terimler agagidaki ge-—
killerde ifade edilebilirler :

+2
2
(l-cosn) cosnzjo = } Ck cosnzjk (X11.67)
k=2
+2
2 . _ . ‘
(1-ccsn) 51nnzjo = } Ck 51nnzjk (XII.68)
k=2
Bu ifadelerde
1
cC,=C,,=—
2 +2 4
C,=C,q=-1 (XIT.35)
3
c, =—
2

degerlerini almaktadirlar. Bu durumda, a_ ile ® arasindaki
bdlge ig¢in integral ifadeler agagidaki geﬁilde diizenlenebilir:
oo
e 2 ag(nz_szaz)l/z
o)
(k_ ). =——-> C
xx’ jo - k
k=2

- cosnz., dn (XII1.69)
ik
p(m)
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o
| 4G +2 a‘z)(hZ__az 1/2
(kyy)jo =— } Ck — cosn zjk dn  (XII1.70)
m p(n)
k=2 a
o]
©
4G ¥ , a(2) n
k=2 a
o

(XI1.64), (XII.65) ve (XII.66) serileri, yukaridaki ifa-
delerde yerlerine konularak diizenlenirse,

+2 5
4G cosn zjk
k. )., =— } C,. } D ——= dn (X1I1.72)
XX" Jo - k . 2m+1 @m+1)
k2 gl a n
o
©
4G *2 5 c:osT]zJ.k
k ). =— c E —_—d XII.73
Uy 0 o } k } it Qw1 ! )
k=2 == a n
o
0
4G *2 2 sinn zjk :
- k=2 =1 a2 N
o

elde edilir. Bu ifadelerde yer alan integraller, Kisim XIT.3
de (XII1.46) ve (XI1I.47) ile tanimlari verilen kosiniis ve si-
niis integral fonksiyonlari yardimi ile elde edilebilirler.
(XITI.46) ve (X1I1.47) den kisim kisim integrasyonla, m iistel
parametresine bagli olarak asgagidaki rekiirans bagintilari el-
de edilir :
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Q [}
( cosnzjk dn=A cos(a é. )-A sin(a z. )+A COSﬂZiE_dﬁ
m ml 0" ik’ "m2 o jk’ "m3 } (2
n
a . n
o a_
(X11.75)
[es) oo
sinnz. sinnz.
ik . . ( 1k
{ —_ dn=Aml sm(aozjk)+Am2 Cos(aozjk)+Am3 }-——?;;5; dn
n® a n
4 o
(XII.76)

Bu bagintilarda m = 3,5,7,9,11 degerlerini almakta,
Ami katsayilari ise,

1

A =

ml (m-1)a (m-1)
o
EL (XI1.77)

A = XI .

m2 (m—l)(meZ)ao(m-z) ;
2
Zik

A 3= =

" (m-1) (m-2)

geklinde ifade edilmektedir. (XIL.75) ve (XII.76) nin saj
taraflarindaki son terimleri olusturan integraller, m = 3
igin Ci(a z.,) ve si(a z.k) fonksiyonlarina indirgendi-
ginden; (X%IJ§2), (XII.78)J ve (XI1.74) deki tiim integral-
ler bu fonksiyonlara bagli olarak ifade edilmis olmaktadir.
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a ) ve si(a z., ) fonksiyonlari, Ref.[l] den
yararlanlga% k hazirlanan Is101 altprogrami ile hesaplan-
wigtiv. 253 = 0 dan baglamak lizere her zjp degeri igin
hesaplanan fonksiyonlar (¥II1.75) ve (XII.76) da yerlerine
konularak bu integrallerin sonuglari m = 3,5,7,9,11 igin
ayri ayri elde edilmig ve daha sonra (XII.72), (XII.73) ve
(XII.74) deki i¢ ve dig toplamlar hesaplanmigtir.



N N

djg,dg-d3g
dXO’dyo’¢ZO
dths dey

E,G
F

g(x)
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[

"

(X3
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e

e

(1)

pe

e
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NOTASYON

Zamana gdre birinci tiirev
Zamana gbre ikinci tiirev

Tek tabakali ve yari sonsuz ortamda digim
noktalarinin ara uzakligi

Boyutsuz frekans katsayisi _
Sonsuz rijit temelin yar:i genigligi
ki temel arasindaki uzakligin yarisi

Diiglim noktasinin deplasmaninin x ve ¥y
eksenleri dogrultusundaki bilegenleri

Rijit cismin bagimsiz deplasmanlari

Rijit cismin bagimsiz deplasmanlari

Temel tabanindaki yer hareketinin yatay ve
diigey bilegenleri

Elastisite ve kayma modiilleri

Airy gerilme fonksiyonu

Tek tabakali ve yari sonsuz ortam sinirinda
birim durumlar i¢in tanimlanman genlik
fonksiyonu

Tek tabakali ortamin tabaka kalinlig:

- Ustyapinin i 1inci katinin temel tabanin-

dan itibaren yiiksekligi

Temel yiiksekligi

Temel iistiinden itibaren toplam Ustyapa
yiksekligi

Birim sanal sayi
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Birim deplasman sabiti
Birim ivme sabiti

i 1inci serbestlik derecesine kargi gelen
tekil kiitle

Koordinat eksenleri

Zaman
Yatay ve diigey deplasman bilesgenleri

Kayma dalgasi hizi

Tek tabakali ve yari sonsuz ortamda boyutsuz
absis.

Sistem viskoz sOniim matrisi

Deplasman vektdri

Hiz vektdrii

Ivme vektdri

Rijit cismin bagimsiz deﬁlasman vektdrd
Kompleks genlik vektdril

Dinamik matris

Sistem fleksibilite'matrisi

Birim matris veya vektdr

Birim deélasman matrisi (eleman rijitlik matrisi)
Birim ivme matrisi (eleman yayili kiitle matrisi)
Sistem kiitle matrisi

RKuvvet vektdrid
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Dig yik vektdrii

Sistem rijitlik matrisi

rﬁénﬁgtﬁfme matrisi

tiniform de?rem igin doniigtiirme vektdrd

Tek tabakali ortamda hoyutsuz tabaka kalinligi
Yapisal sonilim crani

Poisson orani

Diizlemsel gerilme bilegenleri

Birim hacim kiitlesi

Tek tabakali sonsuz ortamda boyutsuz ordinat

Acisal frekans
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