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PREFACE 

The successive energy crises have stimulated the study of more efficient ways for the 
use of the available energy in fuels. As consequence new technical plants have been 
conceived seeking the primary energy conservation. Cogeneration maybe defined as 
the simultaneous production of electrical or mechanical energy and useful thermal 
energy from a single energy source. After the process the waste heat can be 
converted to useful refrigeration by using a heat operated refrigeration system. The 
use of heat operated refrigeration system help to reduce problems related to global 
warming, such as the so called green house effect from CO2 emissions from the 
combustion of fuels in utility power plant. The absorption systems are more 
prominent for the zero ozone layer depletion.  

My special thanks to my supervisor, Prof. Dr. Taner Derbentli, whose guidance and 
inspiration has benefitted me a great deal through the project. 

I thank the Sudanese Ministry of higher education and scientific research for having 
arranged and recommended me for the studies that led to this work. 

Finally, I wish to extend my sincere thanks for my wife, sons and daughters for the 
assistance rendered to me while I have been for these studies. 
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COGENERATION OF ELECTRICITY AND COOLING BY GAS TURBINES 

SUMMARY 

The object of this thesis is to do the thermoeconomic analysis of the gas turbine 
cogeneration systems where the exhaust gases are used for refrigeration purposes. 
The thermoeconomic analysis involves thermodynamic considerations as well as the 
calculation of economic feasibility of such systems and cost rates of the products.  

Cogeneration is defined as the simultaneous production of power and heat. In 
essence it aims to utilize the exhaust heat of prime movers such as gas turbines, 
steam turbines and gas motors for producing electricity. Thus a more effective 
utilization of fuel is achieved. This has two important consequences. First of all use 
of lesser amounts of fuel in context of decreasing fossil supplies and secondly 
reduced carbon dioxide emissions in view of the global warming concerns. The fact 
that the exhaust heat may be used in absorption chillers introduces a new direction 
for cogeneration. Thus besides electricity and process heat, cooling effect may be 
produced by cogeneration. This application is sometimes called trigeneration in the 
literature. There are two types of absorption refrigeration cycles that are widely used 
in practice. These are the aqua–ammonia cycle and the lithium bromide–water cycle. 
The former can be used for refrigeration at temperatures below 0°C. The latter is 
generally used in air conditioning systems and the minimum temperature is limited to 
approximately 4°C.  

A numerical model of a cogeneration system consisting of a gas turbine system, heat 
recovery steam generator, a steam turbine, a pump and an absorption refrigeration 
unit was formed in this study. The steam turbine and the absorption refrigeration unit 
are coupled to the gas turbine system through the heat recovery steam generator. The 
gas and steam cycles were considered as steady flow systems, air and the combustion 
products were assumed to be ideal gas mixtures. Natural gas (methane) was used as 
fuel. Two programs were written to realize the computations of the model.  
 
The first program does the first law analysis of the system, calculates the mass flow 
rates of fuel and air, temperatures, pressures and exergy rates at all points of the 
system.The second program calculates the cost rates and cost per unit exergy at all 
state points of the system. The numerical model was simulated for different values of 
the pressure ratio of the compressor, cost of the natural gas, the investment cost of 
the gas turbine and the investment cost of the steam turbine. Furthermore an 
economic analysis was done to compute the payback period of the system for 
different parameters.  

It was found that the cost of electricity that can be produced by such a system, would 
vary between 0.04 and 0.06 $/kWh, and the cost of the cooling effect would vary 
between 0.018 and 0.026 $/kWh. These values compare favorably with the current 
costs of these commodities in the market. The fuel utilization effectiveness has been  
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found as 70 %, as compared to 50% for the separate production of products. The 
payback period was found to be between 7 and 9 years.   
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GAZ TÜRBİNLERİ İLE BİLEŞİK ELEKTRİK ÜRETİMİ VE SOĞUTMA 

ÖZET 

Bu çalışmanın amacı atık gazların soğutma elde etmek için kullanıldığı gaz türbinli 
bileşik ısı-güç (kojenerasyon) sistemlerinin termoekonomik çözümlemesidir. 
Termoekonomik çözümleme, termodinamik çözümlemenin yanında bu tür 
sistemlerin ekonomik olurluluğunu ve ürünlerin maliyetlerini irdeler.  

Bileşik ısı-güç üretimi elektrik ve ısının aynı santraldan elde edilmesi anlamına 
gelmektedir. Bileşik ısı-güç üretimi temelde, elektrik üretiminde kullanılan gaz 
türbini, buhar türbini ve gaz motorları gibi ısı makinalarının atık ısısından 
yararlanmayı amaçlar. Böylece yakıt enerjisi daha etkin kullanılmış olur. Bunun iki 
önemli sonucu vardır. İlk olarak giderek tükenen fosil yakıtlardan tasarruf etmek, 
ikinci olarak küresel ısınma kaygısını atmosfere daha az karbon dioksit atarak 
azaltmak.  

Atık gazların abzorpsiyonlu soğutucularda kullanılarak soğutma elde edilmesi bileşik 
ısı-güç üretimi için yeni bir yön göstermektedir. Böylece elektrik ve proses ısısı 
yanında, bileşik ısı-güç üretimiyle soğutma etkisi de elde edilebilir. Bu uygulamaya 
kaynaklarda ‘trijenerasyon’ adı verilmektedir. Uygulamada yaygın olarak kullanılan 
iki abzorpsiyonlu soğutma çevrimi vardır. Bunlar amonyak-su ve su-lityum bromür 
çevrimleridir. Birinci çevrim 0 oC’ nin altındaki sıcaklıklar için kullanılabilir. İkinci 
çevrim ise daha çok iklimlendirme sistemlerinde kulanılmaktadır ve elde edilebilecek 
en düşük sıcaklık  yaklaşık 4 oC ile sınırlıdır.  

Bu tezde gaz türbini, atık ısı kazanı, buhar türbini ve abzorpsiyonlu soğutucudan 
oluşan bir bileşik ısı-güç sisteminin sayısal bir modeli oluşturulmuştur.  Buhar 
çevrimi ve abzorpsiyonlu soğutucu, gaz türbini çevrimine atık ısı kazanı ile 
bağlanmışlardır. Bileşik ısı güç sistemi sürekli akışlı bir sistem olarak alınmış, hava 
ve yanma sonu gazları mükemmel gaz karışımları varsayılmışlardır. Yakıt olarak 
doğal gaz (metan) kullanılmıştır.  

Modelin hesaplamalarını yapmak için  Fortran dilinde iki program yazılmıştır. 
Birinci program sistemin birinci yasa çözümlemesini yapmakta, yakıt ve hava 
debilerini hesaplamakta, sistemin her noktasında sıcaklık, basınç ve ekserji akılarını 
bulmaktadır. İkinci program sistemin her kütle akısı için maliyet akılarını ve birim 
ekserji maliyetlerini hesaplamaktadır. Sayısal model, karar parametrelerinin değişik 
değerleri için çalıştırılmıştır. Bu parametreler, gaz türbini çevriminin basınç oranı, 
doğal gaz fiyatı, gaz türbini ve buhar türbininin maliyetleridir. Ayrıca parametrelerin 
değişik değerleri için sistemin geri ödeme süresini hesaplayacak ekonomik 
çözümlemeler yapılmıştır.  
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Sonuçlar böyle bir sistemden elde edilecek elektriğin fiyatının 0.04 and 0.06 $/kWh, 
soğutma etkisinin maliyetinin ise 0.018 and 0.026 $/kWh arasında olacağını 
göstermiştir. Bu değerler piyasada bugün karşılaşılan değerlerin altındadır. Enerjiden 
yararlanma oranı %70 olarak bulunmuştur. Ayrı ayrı üretim durumunda bu değer 
%50 olmaktadır. Geri ödeme süreleri 7-9 yıl arasında bulunmuştur. 
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1. INTRODUCTION 

The object of this thesis was to do the thermoeconomic analysis of the gas turbine 

cogeneration systems where the exhaust gases are used for refrigeration purposes. 

The thermoeconomic analysis involves the thermodynamic considerations as well as 

the calculation of the economic feasibility of such systems and cost rates of the 

products. It is hoped that this study will lead to energy conservation in hot countries 

where electric power generation and refrigeration are needed simultaneously. 

Cogeneration is defined as the simultaneous production of power and heat. In 

essence it aims to utilize the exhaust heat of prime movers such as gas turbines, 

steam plants and gas motors used for producing electricity. Thus a more effective 

utilization of fuel is achieved. This has two important consequences. First of all use 

of lesser amounts of fuel in the context of decreasing fossil supplies and secondly 

reduced carbon dioxide emissions in view of the global warming concerns. 

The fact that the exhaust heat may be used in absorption chillers introduces a new 

direction for cogeneration. Thus besides electricity and process heat, cooling effect 

may be produced by cogeneration. This application is sometimes called trigeneration 

in the literature. 

Cogeneration was used in Europe and especially in former eastern block countries 

mainly in counjunction with district heating. But it has also gained wide usage in 

industry around the world in the last 20 years. There are many applications of 

cogeneration in industrial plants where electricity and process heat are produced 

simultaneously. These plants in general pay themselves back within 3 to 4 years by 

savings in fuel. 

This thesis consists of five chapters. After the introduction the second chapter is a 

literature review on cogeneration and absorption refrigeration. 

The third chapter discusses the underlying concepts of the model. First of all 

cogeneration is examined in depth, parameters characterizing cogeneration are 

explained. A special emphasis is given to gas turbine cogeneration. Secondly 
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absorption refrigeration is considered. Aqua – ammonia and lithium – bromide water 

systems are explained with the help of two numerical examples. Finally the 

thermoeconomic principles are examined. The cost balance equation is stated, the 

formation of cost rate is explained. 

The fourth chapter is a detailed explanation of the model. The thermodynamic and 

economic rules governing the behaviour of each component of the system are 

examined. The assumptions made in the analysis are given, magnitudes of the 

parameters of the system are stated.  

The fifth chapter is a detailed explanation of the results and discussion. Exergy rates, 

cost rates and cost per unit exergy were calculated for all state points (streams) of the 

system. Exergy destruction, relative cost difference and exergoeconomic factor were 

calculated for all components. Furthermore an economic analysis was done to 

determine the pay back period of the system for various values of the decision 

variables.  

For the compressor ratio of 10 and 10 MW power production the cost per unit exergy 

of the cooling effect is 0.1153 $/kWh. The cost per unit energy of the cooling effect 

is 0.022 $/kWh. The cost per unit energy of the cooling effect in the literature is 

0.0256 $/kWh. The cost per unit exergy of the gas turbine electricity is             

0.0413 $/kWh. The cost per unit exergy for the steam turbine electricity is          

0.083 $/kWh. The industrial cost of electricity in Europe is 0.095 $/kWh. 

The pay back period for different parameters including the pressure ratio, price of the 

natural gas, investment cost of the gas turbine system, the absorption refrigeration 

system and the steam turbine was found to be between 7 and 9 years. The value of 

the pay back period in Europe is 12 years. 

 



 3

2. LITERATURE REVIEW 

2.1. Introduction 

Cogeneration involves the production of both thermal energy, generally in the form 

of steam or process heat and electricity. The thermodynamic and engineering 

performance of combustion gas turbine cogeneration systems can be found in the 

literature (Rice, 1987). The use of process heat to power an ammonia-water 

absorption refrigeration (AAR) plant is viable and under certain circumstances an 

economical option. While lithium Bromide chillers are becoming more wide spread 

and therefore their production is standardized to particular need, AAR is an old 

refrigeration technology, but until recent times it was applied mainly in large scale 

process plants, mostly in petrochemical industry. New developments in AAR 

technology in the smaller range appeared in the literature in the last few years and 

new installations are known Bassols et al. (2003), (Apte, 1999). The study aimed 

primarily the analysis of application of cogeneration in hot climates where electricity 

and cooling are simultaneously required. 

2.2. Literature Review 

Bilgen (2000) has investigated the exergetic and engineering aspects of gas turbine 

based cogeneration plants. The exergy analysis is based on the first and second laws 

of thermodynamics. The engineering analysis is based on both the methodology of 

levelized cost and the pay back period. To simulate these systems, an algorithm was 

developed. Two cogeneration cycles, one consisting of a gas turbine and the other of 

a gas turbine and steam turbine to produce electricity and process heat were 

analyzed. The aim of Bilgen’s study was to complement previous studies using 

exergy concept, to present a modular technique for engineering economics and to 

develop an algorithm useful for modeling cogeneration systems. The thermodynamic 

models were based on the methodologies using the first and second laws of 
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thermodynamics and the exergy concept. The engineering methodology was based 

on standard engineering methodologies for design, cost evaluation and economics of 

the electrical energy produced and the pay back period of the additional investment 

for process heat production. For 22 MWe gas turbine cycle the total cost was      

7.741 M$, typical product cost without cogeneration was 0.037$/kWh, typical 

product cost with cogeneration was 0.021 $/kWh, and the pay back period was    

0.175 years. While for the gas turbine and steam turbine cycle, the total cost was 

9.623 M$, typical product cost with cogeneration was 0.023 $/kWh and pay back 

period was 0.906 years. In this thesis the investment cost is in the range of              

600 to 700 $/kW for the gas turbine system, 1000 to 1200 $/kW for the steam turbine 

system. The final product is the cooling effect while in Bilgen’s study the final 

product is the process heat.  

El-sayed (1992) found that heat and power integration in industries can save both 

fuel and cost and this is observed in the cogeneration system considered in this 

thesis. El-sayed found that heat pump assisted cogeneration is one way of integration 

when the heat / power ratio for a given product is large. It has the advantage of more 

fuel saving than the conventional grid cogeneration (selling back electricity). With 

the current state of art of vapour compression heat pumps, the advantage is also 

economic in many of the situations where power needs do not exceed 30MW, 

temperature levels do not exceed 67°C and electricity fuel price ratios do not exceed 

3. For wider applicability with economic superiority new directions of developments 

are needed for power driven heat pumps. El-sayed concluded that a power driven 

absorption heat pump may be the answer.  

Colonna and Gabrielli (2003) proposed that the increase in fuel prices and the 

ecological implications are giving an impulse to energy technologies that better 

exploit the primary energy sources and integrated production of utilities should be 

considered when designing a new production plant. The number of so called 

trigeneration systems installations (electric generator and absorption refrigeration 

plant) were increasing. This system is adopted in this thesis. If low temperature 

refrigeration is needed (from 0 to - 40°C) ammonia – water absorption refrigeration 

plants can be coupled to internal combustion engines or turbo – generators. A 

thermodynamic study of trigeneration configurations using a commercial software 

integrated with specially designed modules was presented. The study analyzed and 
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compared heat recovery from the prime mover at different temperature levels. In the 

last section a simplified economic assessment that took into account prices in 

different European countries compared conventional electric energy supply from the 

grid with  an optimized trigeneration plant. For a generator temperature lower than 

the optimal generator temperature, which implies decreasing evaporator pressure, 

increases the amount of heat flow that can be transmitted to AAR cycle, therefore the 

generating temperature which maximizes the refrigerating heat flow is 120°C. This 

corresponds to a heat recovery steam generator evaporating pressure of 0.27 MPa. In 

this condition the trigeneration system produces 10.14 MWe, 25.8 t/h of steam 16.2 

MWth from which 9.57 MWref of refrigerating effect can be generated. The energy 

flow entering the system is 32.84 MWth. The cost per unit energy of cooling effect 

was found to be 0.0256 $/kWh while in this thesis the cost per unit energy is 0.022 

$/kWh .  

Rice (1987) has established a heat balance for evaluating various open cycle gas 

turbines and heat recovery systems based on the first law of thermodynamics. This 

relates to this thesis as it takes into consideration the gas turbines and recovery 

systems.  A useful graphic solution is presented that can be readily applied to various 

gas turbine cogeneration configurations. An analysis of seven commercially 

available gas turbines is made showing the effect of pressure ratio, exhaust 

temperature, intercooling, regeneration and turbine rotor inlet temperature in regard 

to power output, heat recovery and overall cycle efficiency. The method presented 

can be readily programmed in a computer, for any given gaseous or liquid fuel, to 

yield accurate evaluations.  

Huang (1990) discussed the thermodynamic performance of selected combustion gas 

turbine cogeneration systems based on first law as well as second law analysis. The 

effect of the pinch point used in the design of heat recovery steam generator, and 

pressure of process steam on fuel utilization efficiency, power to heat ratio, and 

second law efficiency, are examined. Results of three systems using state of  the art 

industrial gas turbines show clearly that performance evaluation based on first  law 

efficiency alone is inadequate. A more meaningful evaluation must include second  

law analysis. The object of this thesis was to do the thermoeconomic analysis of the 

gas turbine, which involves the thermodynamic considerations. The first program in 

this thesis does the first law analysis of the system.  
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Bassols et al. (2002) have shown that in the food industry cogeneration plants are 

widely used. Many industries use cogeneration plants with either gas engines or 

turbines to cover their steam, hot water and electrical demands. The combination of 

absorption refrigeration with a cogeneration plant allows the use of generated heat 

for the  production of cooling effect. Absorption refrigeration plants working with 

ammonia as refrigerant can be driven either by steam, pressurised hot water or 

directly with exhaust gases. Examples of typical plants are illustrated in different 

sectors of the food industry.  In this thesis a gas turbine system is used to cover the 

steam demand. The absorption refrigeration system is coupled to the gas turbine 

through the steam turbine and the heat recovery steam generator to produce the 

necessary cooling effect.  

Srikhirin et al. (2001) have conducted a literature review on absorption refrigeration 

technology. A number of research options such as varios types of absorption 

refrigeration systems, research on working fluids and improvement of absorption 

processes  were discussed. The COP of a single stage ammonia refrigeration system 

was taken as 0.6. In this thesis a single stage ammonia – water refrigeration system is 

used. The average COP of the absorption refrigeration system in this thesis has been 

taken as 0.6.  

Siddiqui (1997) has investigated the economic analysis of absorption system 

components with the aim to optimize the various operating parameters. The absorber, 

condenser, generator, rectifier, precooler and preheater have been designed using 

standard procedures and their costs have been estimated based upon material used, 

fabrication, installation and overhead charges. Four types of refrigerant – absorbent 

combinations (H2O – LiBr, NH3 – H2O, NH3 – NaSCN and NH3 – LiNO3) using 

either solar collectors, biogas or liquified petroleum gas as the source of heat have 

been selected. In this thesis the investment cost data for all components are taken as 

input data for the first program.  

Mone et al. (2001) have investigated combined heat and power (CHP) systems which 

often use absorption technology to supply heating and cooling to a facility. With the 

availability of gas turbines spanning an increasingly wide range of capacities, it is 

becoming more and more attractive to utilize CHP via a combination of gas turbines 

and absorption chillers. They investigated the economic feasibility of implementing 

such CHP systems with existing commercially available gas turbines and single, 
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double and triple stage absorption chillers. The maximum amount of thermal energy 

available for the chiller was calculated based on the size of the turbine, exhaust flow 

rate and exhaust temperature, yielding approximately 300,000 kW of cooling   

(85,379 tons of refrigeration) for 600 MW power turbine. The annual demand and 

avoided costs for varying turbine and absorption system sizes were discussed as well, 

showing that a CHP system is capable of large savings. In this thesis the system 

study focuses on the comparison of plant configuration for a 3,5,10,15,20 and 30 

MW trigeneration system for industrial applications. The cooling effect for 30 MW 

power turbine is 15823.08 kW (4495.19 tons of refrigeration) . 

Adewusi and Zubair (2004) applied the second law of thermodynamics to study the 

performance of single stage and two stage ammonia-water absorption refrigeration 

systems (ARS) when some input parameters are varied. The entropy generation 

(Sgen) of each component and the total entropy generation of all the system 

components as well as the coefficient of performance (COP) of the ARS were 

calculated from thermodynamic properties of the working fluids at various operating 

conditions. The results show that the two stage system has a lower entropy 

generation and a higher COP while the single stage has a higher entropy generation 

and a lower COP. In this thesis the first law of thermodynamics, calculates the mass 

flow rates of fuel and air, temperatures, pressures and exergy rates at all state points. 

A single stage ammonia refrigeration system is considered.  

Misra et al. (2002) have reported that the optimization of thermal systems is 

generally based on thermodynamic analysis. However the systems so optimized often 

are not viable due to economic constraints. The theory of exergetic cost is a 

thermoeconomic optimization technique, combines the thermodynamic analysis with 

that of economic constraints to obtain an optimum configuration of a thermal system. 

This technique is applied to optimize a LiBr / H2O vapour absorption refrigeration 

system run by pressurized hot water for air – conditioning applications. The 

mathematical and numerical optimization of thermal systems is not always possible 

due to plant complexities. Hence a simplified cost minimization methodology, based 

on “Theory of Exergetic cost”, is applied to evaluate the economic costs of all the 

internal flows and products of the system under consideration. Once these costs are 

determined, an approximately optimum design configuration can be obtained. In this 

thesis the second program calculates the cost rate per unit exergy for all state points 
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of the system. Input data to this program are the capital cost of components, fuel cost 

and exergy rates at all state points of the system. The input data is generated in the 

first program. 

Usta and Ileri (1999) have discussed the importance of economic optimization of 

large capacity or industrial refrigeration systems and present the results and 

conclusions obtained by a computer software which was developed specially to 

determine the economic optimum values of the design parameters of refrigeration 

systems. Both liquid chillers and group of cold storage rooms operating at various 

levels of low temperatures are considered. Various case studies and sensitivity 

analyses were performed to provide specific numerical examples and to determine 

the effects of certain parameters. It was found that condenser type, ambient 

temperature, yearly operating hours, electricity price, real interest rate and refrigerant 

are the most important parameters in the economic optimum design of refrigeration 

systems. The condenser temperature for chillers with either water or air cooled 

condensers were investigated. The optimized condenser temperature is lower up to 

several degrees, when the yearly operating time is high or the relative interest is low. 

This is so no matter whether the condenser is cooled by water or ambient air. The 

condenser temperatures are significantly lower about 33°C for air cooled condenser 

and 50°C for water cooled condenser. It was found that the systems with lower 

capacities requires slightly lower condenser temperature. In this thesis two computer 

programs were written to calculate mass flow rates of fuel and air, temperatures, 

pressures and exergy rates, the cost rates and cost per unit exergy at all states points 

of the system.  

Kuak et al. (2003) have done the exergetic and thermodynamic analyses of a 500MW 

combined cycle plant. Mass and energy conservation laws were applied to each 

component of the system. Quantitative balances of the exergy and exergetic cost for 

each component and for the whole system was carefully considered. The 

exergoeconomic model, which represented the productive structure of the system 

considered, was used to visualize the cost formation process and the productive 

interaction between components. A computer program was developed which can 

determine the production costs of power plants, such as gas and steam turbines plants 

and gas turbine cogeneration plants. The program can be also used to study plant 

characteristics, namely thermodynamic performance and sensitivity to changes in 
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process or component design variables. In this thesis the second program calculates 

the cost of the gas, steam turbines electricity, steam from the heat recovery steam 

generator and the cooling effect from the absorption refrigeration system.  

Guarinello et al. (2000) have investigated application of thermoeconomic concepts to 

a projected steam injected gas turbine cogeneration system, which aims at providing 

the thermal and electrical demands of an industrial district. The power plant is 

evaluated on the basis of the first and second laws of thermodynamics. A 

thermoeconomic analysis using the theory of exergetic cost, was performed in order 

to determine the production cost of electricity and steam. In this thesis the second 

program is used to determine the cost per unit exergy of electricity, steam and the 

cooling effect. 

Sun (1997) compiled up to date thermodynamic properties for LiBr / H2O and 

H2O/NH3 solutions and used them in cycle simulation. Detailed thermodynamic 

design data and optimum design maps were presented. These results form a source of 

reference for developing new cycles and searching for new absorbent / refrigerant 

pairs. They can also be used in selecting operating conditions for existing systems 

and achieving automatic control for maintaining optimum operation of the systems. 

In this thesis the thermodynamic calculations related to the aqua – ammonia cycle 

and the lithium bromide – water cycle are explained by two numerical examples. The 

methodology follows that given by (Therlkeld, 1970). 

White and Oneil (1995) found that the aqua – ammonia cycle is particularly suitable 

for applications in the process industries, where the refrigerant is required to be at 

temperatures below 0°C. A modification of the conventional cycle configuration is 

proposed and investigated. In conventional absorption refrigeration cycles, which 

employ a volatile absorbent (water), a fraction of the absorbent is carried over into 

the refrigerant stream. The absorbent is concentrated in the liquid phase in the 

evaporator and must be removed otherwise this lowers the quantity of useful 

refrigeration, resulting in a decrease in the thermodynamic performance of the cycle. 

The contamination in the refrigerant is removed by blowdown to the absorber. The 

modified cycle employs liquid blowdown from the evaporator to provide reflux for 

distillation – column generator. This modification can be employed to eliminate the 

use of fresh refrigerant, from the condenser, as reflux in the conventional             

aqua - ammonia absorption refrigeration cycle. Simulation of the modified cycle, 
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using the processTM computer simulation package, predicts an improvement in the 

coefficient of performance (COP) of approximately 5% coupled with a net reduction 

in total heat transfer area required. In this thesis an aqua – ammonia cycle is coupled 

to the gas turbine system through the steam turbine and the heat recovery steam 

generator to produce a cooling effect and suitable for application in the food, 

pharmaceutical and ice production industries.  

Ziegler and Trepp (1984) developed a new correlation of equilibrium properties of 

ammonia – water mixtures for use in the design and testing of absorption units and 

especially for heat pumps. The temperature range has been extended to 500°K and 

the pressure range to 5MPa. The equation of state used is based on those of Schulz. 

Values of specific volume, vapour pressure, enthalpies and equilibrium constants for 

mixtures are compared with the best experimental data. The results are presented in 

the form of vapour pressure and enthalpy – concentration diagrams. In this thesis the 

enthalpy - concentration diagrams were used to calculate the states and mass flow 

rates at all nodes of the system.  

The COP of the single stage absorption cycle was found as 0.6 while that of the 

double stage cycle was 0.96. Several types of multi-stage absorption cycle were 

analysed such as the triple stage absorption cycle and quadruple stage absorption 

cycle.However an improvement of COP is not directly linked to the increment 

number of stage. It must be noted that, when the number of stages increase, COP of 

each stage will not be as high as that of a single stage system. Moreover the higher 

number of stage leads to more system complexity and increase in cost. Therefore the 

double  stage cycle having COP of 0.96 is the one that is available commercially.   



 11

3. UNDERLYING CONCEPTS OF THE MODEL 

3.1. Cogeneration 

3.1.1. How cogeneration is done 

Cogeneration is defined as the production  of both electricity and useful thermal 

energy (steam or process heat) in one operation, thereby utilizing fuel more 

effectively than if the desired products were produced seperately. The heart of the 

cogeneration system is a prime mover with waste heat at a high temperature, this 

requirement may be realized by using different types of prime movers, such as gas 

turbines, steam turbines, gas engines or combined cycles. 

The general concept of a cogeneration system is shown in Figure 3.1 

 

 

 

 

 
Figure 3.1: General concept of a cogeneration system (Huang, 1990) 

3.1.2. Parameters characterizing cogeneration 

The useful products of a cogeneration system are electrical energy ( W& ) and thermal 

energy or process heat ( pQ& ). 
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One parameter used to assess the thermodynamic performance of such a system is 

the fuel utilization efficiency ( fη ) which is the ratio of all the energy in the useful 

products ( W&  and pQ& ) to the energy of fuel input ( fE& ). By definition  

f p f(W Q ) / Eη = + && &  (3.1) 

Since electrical power is worth more than three times the proces heat, the cost  

effectiveness of a cogeneration system is directly related to the electrical power it 

can produce for a given amount of process heat. Consequently another parameter 

commonly used to assess the thermodynamic performance of a cogeneration system 

is the power to heat ratio. By definition, the power to heat ratio (RPH) is: 

RPH = pW / Q&&  (3.2) 

In both the fuel utilization efficiency and the power to heat ratio, power and process 

heat are treated as equal. This reflects the first law of thermodynamics, which is 

concerned with energy quantity and not energy quality. But electrical power is much 

more valuable than process heat according to the second law  of thermodynamics. 

Exergy, the key parameter in second law analysis, is something that is always 

consumed or destroyed in any real process. A process is better thermodynamically if 

less exergy is destroyed. Consequently the ratio of the amount of exergy in the 

products to the amount of exergy supplied is a more accurate measure of the 

thermodynamic performance of a system. By definition 

II p f(W B ) / Bη = +& & &  (3.3) 

where  

pB&  is the exergy content of process heat produced and fB&  is the exergy content of 

fuel input. IIη  is the second law efficiency of the cogeneration system. 

Efficiencies of different cogeneration systems are compared in Table 3.1 
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Table 3.1: Comparison of the efficiencies of different cogeneration systems                         
  Kartchenko et al. (1998), (Bilgen, 2000) 

System First law efficiency Utilization 
efficiency 

Second law 
efficiency 

Gas turbine based 
cogeneration 

41.28 86.3 50.06 

Steam turbine 
based cogeneration 

26.7 85.1 - 

Gas engine based 
cogeneration 

38.1 87.6 - 

Combined cycle 
based cogeneration 

- 64.49 49.22 
 

3.1.3. Gas turbine based cogeneration systems 

There are many gas turbines in the market today ranging from 1 MW to 100 MW 

providing a variety of power output, cycle efficiencies, cycle pressure ratios, firing 

temperatures, exhaust temperatures and exhaust flow rates. Heat recovery of one 

form or another plays an important part in equipment selection. 

A gas turbine based cogeneration system consists of a gas turbine (compressor, 

combustion chamber and expander) and a heat recovery system for steam 

production. Steam produced can be used either for process heat or to produce more 

electric power by a steam turbine. These two cases are illustrated in Figure 3.2 and 

Figure3.3 

3.2. Absorption Refrigeration 

The thermal energy produced in a cogeneration system can be converted to a useful 

refrigeration effect by using an absorption refrigeration cycle. There are two types of 

absorption refrigeration cycles that are widely used in practice. These are the aqua – 

ammonia cycle and the lithium bromide – water cycle. The former can be used for 

refrigeration at temperatures below 0°C. The latter is generally used in air 

conditioning systems and the minimum temperature is limited to approximately 4°C. 

The thermodynamic calculations related to these cycles are explained with the help 

of two numerical examples below. The methodology follows that given by 

(Threlkeld, 1970). 
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Figure 3.2:  Schematic of the cycle for gas turbine electric power production –    
                     process heat production 

 

 

 

 

 

 

 

 

 
Figure 3.3:  Schematic of the cycle for gas turbine electric power production  

                    electric  power production by steam turbine – process heat production 

3.2.1. Ammonia water (aqua – ammonia) absorption refrigeration cycle  

The aqua ammonia absorption is one of the oldest methods of refrigeration. 

Ammonia is the refrigerant and water is the absorbent. An industrial aqua – 

ammonia absorption refrigeration system is shown in Figure 3.4 . 
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Figure 3.4: An industrial aqua – ammonia absorption refrigeration system                                          

 (Threlkeld, 1970) 

Almost pure refrigerant flows through the condenser and the evaporator. The vapour 

leaving the evaporator is mixed with a weak liquid solution in the absorber resulting 

in a liquid solution stronger in the refrigerant. The pressure of liquid solution is then 

raised to the generator pressure by a pump. By addition of heat in the generator, 

refrigerant vapour is driven out of the solution. This rather complex process which is 

partly mechanical partly thermal is realized in the rectifying column. A heat 

exchanger is placed in the solution circuit between the generator and absorber to 

improve the performance of the cycle. The generator and condenser are on the high 

pressure side of the system, while the evaporator and absorber are on the low 

pressure side Figure 3.4 . Another heat exchanger may be placed between the 

condenser and the evaporator for the same purpose. A typical aqua - ammonia 

absorption refrigeration cycle is described below. The evaporator pressure is 0.2MPa 

and the condencer pressure is 1.5MPa. The generator temperature is 127 °C, 

temperature of the strong solution is 107°C and the temperature of the vapour 

leaving the dephlegmator is 87°C.  

If the components of the system are considered as steady state steady flow devices 

and the conservation of energy and mass principles are applied, states and mass flow 

rates at all nodes of the system can be calculated. Figure 3.5 and Table 3.2 show the 
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results of such an analysis for a 350 kW (100 tons of refrigeration) system. Details 

can be found in Threlked (1970) and (Derbentli, 2002). The coefficient of 

performance (COP) of this system was calculated as 0.5 COP depends on the 

generator and evaporator temperetarures. The average COP of the absorption 

refrigeration system in this thesis has been taken as 0.6. 

Table 3.2: Properties at state points of the aqua – ammonia refrigeration cycle 

State P (MPa) T (°C / K) Conc. (x) h (kJ/kg) m (kg / s) 
1 0.2 32 / 305 0.32 - 50 2.3712 
2 1.5  0.32 - 48.4 2.3712 
3 1.5 107 / 380 0.32 314 2.3712 
4 1.5 127 / 400 0.22 440 2.0672 
5 1.5 37 / 310 0.22 22.7 2.0672 
6 1.5 37 / 310 0.22 22.7 2.0672 
7 1.5 67 / 340 1.0 1390. 0.304 
8 1.5 29 / 310 1.0 200. 0.304 
9 1.5 31 / 304 1.0 150. 0.304 
10 0.2 - 13 / 260 1.0 150. 0.304 
11 0.2  1.0  0.304 
12 0.2 7 / 280 1.0 1350. 0.304 

3.2.2. Lithium bromide – water absorbtion system 

In recent years the lithium bromide – water system has become prominent in 

refrigeration for air conditioning. Water is the refrigerant, lithium bromide is the 

absorbent. The outstanding feature of the system is the non – volatility of lithium 

bromide. No rectifying equipment is required, since water vapour can be easily 

vaporized from the mixture. In comparison with the aqua – ammonia system, the 

lithium bromide – water system is simple and operates with a higher coefficient of 

performance. Its primary disadvantage is its limitation to relatively high evaporating 

temperatures as the refrigerant is water. 
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                Concentration 

Figure 3.5: Constructions done on the h-x diagram for the aqua – ammonia cycle, 

Derbentli (2002), (Threlkeld, 1970) 

A simple absorption refrigeration system is shown Figure 3.6 . A typical lithium 

bromide –water absorption refrigeration cycle is described below. The evaporator 

pressure is 8kPa and the condenser pressure 65 kPa .  Note that the system operates 
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under vacuum. The generator temperature is 93°C and the strong solution enters the 

generator at 82°C. 

If the components of the system are considered as steady state steady flow devices 

and the conservation of energy and mass principles are applied, states and mass flow 

rates at all nodes of the system can be calculated. Figure 3.7 and Table 3.3 show the 

results of such an analysis for a 3.5 kW (1 ton of refrigeration) system. Details can 

be found in Derbentli (2002) and (Threlkeld, 1970). The COP of this system was 

calculated as 0.78 . The average COP of the absorption refrigeration system in this 

thesis has been taken as 0.6. 

 

 

 

 

 

 

Figure 3.6: A typical lithium bromide  - water absorption refrigeration system 

Table 3.3: Thermodynamic properties and flow rates for  a typical lithium       
bromide – water absorption refrigeration cycle 

State – 
Point 

Pressure 
p (kPa) 

Temperature
T (°C) 

Concentration 
x 

Enthalpy 
h (kJ kg) 

Flow Rate 
m (kg/s) 

1 8 38 0.60 .... 0.02 
2 65 …. 0.60 .... 0.02 
3 65 82 0.60 - 81 0.02 
4 65 93 0.65 - 63 0.018 
5 65 .... 0.65 .... 0.018 
6 8 .... 0.65 .... 0.018 
7 65 93 0.00 2677 0.0015 
8 65 38 0.00 158 0.0015 
9 8 5 0.00 158 0.0015 
10 8 5 0.00 2510 0.0015 
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Figure 3.7: Schematic h-x diagram for a typical lithium bromide – water absorption 

refrigeration cycle 

3.3. Thermoeconomic Principles 

3.3.1. Thermodynamic Principles 

The thermodynamic principles used in the analysis of gas turbine cogeneration 

systems are the first law of the thermodynamics, entropy balance equation and the 

exergy balance equation. These equations were applied to the components forming 

the system. Each of these components were considered as steady state steady flow 

devices. The kinetic and potential energy and exergy changes in these components 

were neglected. Under these assumptions these three equations can be written as 

follows.  

First law (conservation of energy): 

Q W−& &  = e e i i
e i

m h m h−∑ ∑& &  (3.4) 
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Entropy balance equation: 

gen e e i i
e i R

QS m s m s
T

= − −∑ ∑
&

& & &  (3.5) 

where subscript R denotes a thermal reservoir. 

Availability (exergy balance) equation:  

0
D i fi e fe

Ri e

TE m e m e 1 Q W
T

⎛ ⎞
= − + − −⎜ ⎟

⎝ ⎠
∑ ∑ && && &  (3.6) 

where  

f o o oe (h h ) T (s s )= − − −  (3.7) 

f is flow 

3.3.2. Economic principles 

The basic equation in this context is the cost balance equation, which for a steady 

state steady flow component can be written as: 

i e
i e

C Z C+ =∑ ∑& &&  (3.8) 

where, 

.
C is the cost rate of an exergy ($/s) 

.
Z is the cost rate of the capital investment for the component ($/s) 

Cost rate may be expressed in the following forms: 

C&  = cE&  (3.9) 
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C&  = c(me)&  (3.10) 

where, 

c is the cost per unit exergy ($/kJ) 

e is the specific exergy (kJ/kg) 

m& is mass flow rate (kg/s) 

To transform the capital investment CI  ($), to cost rate of capital investment it must 

multiplied with the capital recovery factor (CRF) and divided by the period of 

operation of the system per year (s/year). 

Thus: 

H

CRF.CIZ
3600.n

=&  (3.11) 

where 

nH is the number of hours of operation per year. 

n

n
i(1 i)CRF

(1 i) 1
+

=
+ −

 (3.12) 

i is the interest rate per annum 

n economic life of the investment. 
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4. SIMULATION MODEL 

4.1. Introduction 

The cogeneration system considered in this thesis is shown in Figure 4.1. It consists 

of a gas turbine, heat recovery steam generator, a steam turbine and an absorption 

refrigeration unit. The steam turbine and the absorption refrigeration unit are 

coupled to the gas turbine system through the heat recovery steam generator. The 

thermodynamic analysis of this system is given in section 4.2. The economic 

analysis of the system is given in section 4.3. Two computer programs have been 

written to do the analysis of this system and is explained in section 4.4.  

Table 4.1 shows the mass flow rates, temperatures and pressures for the different 

states of the system considered. (The data is obtained from calculation). 

Table 4.1: Mass flow rates, temperatures and pressures for the different states of the 
system shown in Figure 4.1, for a compressor pressure ratio of 10 and 10 
MW power production 

STATE m&  
(kg/s) 

P 
(kPa) 

T 
(K) 

1 30.10 101.3 298.1 
2 30.10 1013.0 601.9 
3 30.10 962.3 850.0 
4 30.64 914.2 1520.0 
5 30.64 109.9 1004.9 
6 30.64 106.6 764.6 
7 30.64 101.3 427.0 
8 .54 1200.0 298.1 
9 .00 .00 .00 
10 .00 .00 .00 
11 3.88 4000.0 623.0 
12 .00 .00 .00 
13 3.88 300.0 406.6 
14 .00 .00 .0 
15 3.88 300.0 406.6 
16 3.88 4000.0 407.6 
17 .00 .00 .00 
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Figure 4.1: The gas turbine cogeneration ARU system 
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4.2. The Thermodynamic Analysis of the Components 

The assumptions underlying the cogeneration system model Figure 4.1 include the 

following: 

a) The cogeneration system operates at steady state. 

b) Air and the combustion products are assumed to be ideal gas 

mixtures. 

c) The fuel (natural gas) is taken as methane . 

d) Heat transfer from the combustion chamber is 2% of the lower 

heating value of the fuel. 

The thermodynamic analysis of each component of the system is given below as 

they appear in the flow stream: Compressor, air preheater, combustion chamber, 

turbine, heat recovery steam generator, steam cycle, absorption refrigeration unit. 

4.2.1. Compressor 

The air compressor is considered as a steady state steady flow adiabatic device as 

shown in Figure 4.1. The pressure ratio of the compressor is defined as: 

2
p

1

Pr
P

=  (4.1) 

The isentropic efficiency of the compressor is defined as : 

2S 1
c

2 1

T T
T T

−
η =

−
 (4.2) 

Where T2S is the temperature at the end of isentropic compression. This temperature 

is given by : 

(k 1) / k2S
p

1

T r
T

−=  (4.3) 
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where, 

pc
k

cν
=  (4.4) 

The specific heat at constant pressure and volume, pc  and cν  respectively are 

calculated at the average temperature in the compressor. The pc  value in the range 

between 100 °C and 200 °C can be estimated to within 0.1 % by the following 

relationship. 

pc  (T) = 0.2 θ2 + 1.56 θ + 28.48 (kJ / kmol-K) (4.5) 

where, 

θ = T / 100. (4.6) 

Thus, given the inlet state to the compressor and the compressor pressure ratio rp, the 

exit temperature T2S was found iteratively by improving pc , average and using 

equation (4.3). 

The specific work requirement of the compressor can be found by applying the first 

law to the compressor : 

2 1w    − = −h h  (4.7) 

4.2.2. Air Preheater 

Air preheater is considered as a steady state, steady flow device. Effectiveness of the 

air preheater is defined as : 

ap
max

Q
Q

∈ =
&

&  (4.8) 
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where max

.
Q  is the maximum amount of heat that can be transferred from the exhaust 

stream to the air and 
.

Q  is the actual amount. Effectiveness, ∈ of the air preheater 
has been taken as 95% in this study. Applying the first law to the air preheater 
yields: 

( ) ( )2 3 2 ap 5 5 6n   n− = ∈ −& &h h h h  (4.9) 

and 

( )2
6 5 3 2

5 ap

n   
n

= − −
∈
&

h h h h
&

 (4.10) 

T6 corresponding the 6h  is found by trial and error. 

4.2.3. Combustion chamber 

The combustion process is assumed to occur as a steady state, steady flow process 

and the fuel is taken as methane (CH4). The flow diagram of the process is shown in 

Figure 4.2. 

 

 

Figure 4.2: Flow diagram of the combustion process 

The air supplied to the combustion chamber is assumed to be an ideal gas mixture 

and has the following molar composition: 

Nitrogen (N2) 0.7784 
Oxygen (O2) 0.2059 
Carbon dioxide (CO2) 0.0003 
Water vapour (H2O) 0.0190 

The combustion equation is : 

 

Fuel 

air Combustion products 

 cvQ
−

(Heat losses) 
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+ + +

D

D D

D

D

 (4.11) 

where;D  is the molar fuel air ratio, ycc is the molar percentage of the carbon in the 

fuel which is converted to CO2. ycc is 1 for complete combustion. 

D can be calculated from the first law if the temperature of the combustion products, 

state of the inlet air, ycc and the heat losses from the combustion chamber, CVQ are 

given.  The first law for the combustion chamber can be written as: 

R PCVQ H H+ =  (4.12) 

In the model forming the basis of the computer program, the heat losses were 

assumed to be 2% of the lower heating value of the fuel and ycc was taken as 1. 

The enthalpies and entropies of the substances taking part in the combustion process 

were calculated by using Table 4.2 and Table 4.3 and equations 4.13 to 4.16 which 

are given below: 

Table 4.2: Specific heat, enthalpy, absolute entropy, and Gibbs function with 
temperature 298.15 K and 101.325 kPa for various substances in units 
of kJ/kmol or kJ/kmol – K. Knacke et al. (1991) 

1. At Tref = 298.15 K(25°C), Pref = 101.325 kPa  
Substance Formula

pc°  
(kJ/kmol-K)

h°  
(kJ/kmol)

s °  
(kJ/kmol-K) 

g°  
(kJ/kmol)

Nitrogen N2(g) 28.49 0 191.610 -57128 
Oxygen O2 (g) 28.92 0 205.146 -61164 
Carbon monoxide CO(g) 28.54 -110528 197.648 -169457 
Carbon dioxide CO2(g) 35.91 -393521 213.794 -457264 
Water H2O(g) 31.96 -241856 188.824 -298153 
Water H2O(l) 75.79 -285879 69.948 -306685 
Mehane CH4 (g) 35.05 -74872 186.251 -130403 

2. For 298.15 < T ≤ Tmax Pref = 1 bar, with y = 10-3 T 
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o 2 2
pc a by cy dy− −= + + +  (4.13) 

3 2 1 3b dh 10 H ay y cy y
2 3

−
+ −⎡ ⎤= + + − +⎢ ⎥⎣ ⎦

o

 (4.14) 

2 2c dS S a ln T by y y
2 2

−
+ −= + + − +

o

 (4.15) 

g h Ts° ° °= −  (4.16) 

Table 4.3: Constants H-, S-, a, b, c and d required by equations (4.13-16) in Table 
4.2.  Knacke et al. (1991) 

Substance Formula H+ S+ a b c d 
Nitrogen N2(g) - 9.982 16.203 30.418 2.544 -0.238 0 
Oxygen O2(g) - 9.589 36.116 29.154 6.477 -0.184 -1.017 
Carbon monoxide CO(g) -120.809 18.937 30.962 2.438 -0.280 0 
Carbon dioxide CO2(g) -413.886 -87.078 51.128 4.368 -1.469 0 
Water H2O(g) -253.871 -11.750 34.376 7.841 -0.423 0 
Water H2O(l) -289.932 -67.147 20.355 109.198 2.033 0 
Methane CH4(g) 81.242 96.731 11.933 77.647 0.142 -18.414

Combustion products are assumed to form an ideal gas mixture. Mole fractions of 

the constituents of the combustion products are calculated by using equation 4.11.  

Enthalpy, entropy and physical exergy of the combustion products are calculated by 

the following equations: 

N
P ni i

i 1
y

=
= ∑h h  (4.17) 

N

P ni i
i 1

s y s
=

= ∑  (4.18) 

i io ln
0

Ps s R
P

= −  (4.19) 
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( )i,PH i i,0 0 i i,0e T (s s )= − − −h h  (4.20) 

N

P ni i,PH
i 1

e y e
=

= ∑&  (4.21) 

where,  

yni : mole fraction of constituent. 

P0, T0 : environmental pressure and temperature. 

A special attention must be paid to the combustion products when brought to 

environmental conditions (298K, 101.3 kPa) for exergy calculations. If the water 

content of the combustion products is high, condensation may accur. At 

environmental conditions the partial pressure of the water vapour cannot exceed 3.17 

kPa . If condensation occurs the gas and liquid phases of the combustion products 

must be considered separately. It should also be noted that when condensation 

occurs the mole fractions of the constituents of the gas phase changes and this was 

reflected to the calculations. 

4.2.4. Gas turbine 

The gas turbine is considered as a steady state steady flow adiabatic device as shown 

in Figure 4.1. The pressure ratio of the turbine is defined as : 

5
p

4

Pr
P

=  (4.22) 

The isentropic efficiency of the turbine is defined as : 

4 5
st

4 5S

T T
T T

−
η =

−
 (4.23) 

Where T5S is the temperature at the end of the isentropic expansion. This 

temperature is given by : 
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(k 1) / k5S
P

4

T r
T

−=  (4.24) 

where, 

pc
k

cν
=  (4.25) 

The specific heat at constant pressure and volume, Pc  and vc respectively are 

calculated at the average temperature in the turbine. The Pc  value in the range 

between 100°C and 200°C can be estimated to within 0.1% by the following 

relationship: 

Pc (T) = 0.00355 + TAVE + 30.818 (kJ/kmol-K) (4.26) 

where, 

TAVE = T4 – 100 (4.27) 

Thus, given the inlet state to the gas turbine and the gas turbine pressure ratio rp, the 

exit temperature ST5 was found iteratively by improving Pc , average and using 

equation (4.24). 

The specific work requirement of the turbine can be found by appling the first law to 

the turbine : 

4 5w    = −h h  (4.28) 

4.2.5. Heat recovery steam generator 

Heat recovery steam generator is considered as a steady state steady flow adiabatic 

device as shown in Figure 4.3. 
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Figure 4.3: Schematic diagram of the heat recovery steam generator 

Considering the control volume enclosing the heat recovery steam generator, first 

law yields: 

6 6 7 16 11 16m (h h )    m (h h )− = −& &  (4.29) 

The minimum exit temperature of the combustion products from the heat recovery 

steam generator is stipulated as 154°C so that condensation of water vapour within 

the device is prevented. The minimum pinch temperature difference in the heat 

recovery steam generator is set to 20°C. The mass flow rate of water on the steam 

cycle side is calculated by considering the first law and the pinch condition. This is 

illustrated in Figure 4.4 . 

 

 

 

 

 

Figure 4.4: Pinch temperature difference in the heat recovery steam generator 

The pinch condition restricts the mass flow rate of water so that a minimum 

temperature difference is kept between the two streams. The first law applied to the 

heat recovery steam generator before and after the pinch yields: 

  
 
              HRSG 

1611

6 7 

ΔT 
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( ) ( )p p 6 ng w 11 nwm C T T    m h h− = −& &  (4.30) 

( ) ( )p p ng 7 w nw 16m C T T    m h h− = −& &  (4.31) 

Mass flow rate of water is determined so that both of the above equations is satisfied 

and pinchT 20Δ ≥ . 

4.2.6. Steam turbine cycle 

For the steam cycle selected, the turbine inlet conditions are 4 Mpa, 350°C and the 

turbine exit pressure is 300 kPa. The T-s diagram of the steam cycle is shown in 

Figure 4.5 and the properties at various states are given in Table 4.4 . 

 

 

 

 

 

Figure 4.5: Steam cycle part of the system shown on a T-s diagram 

Table 4.4: Properties at various states of the steam cycle (Refer to Figure 4.5) 

State T(°C) P (kPa) h (kJ(kg) s (kJ/kg.K) 
15 133.6 300 561.5 1.6718 
16 134.7 4000 566.1 1.6832 
11 350 4000 3092.5 6.5821 
13 133.6 300 2638.7 6.7791 

The turbine isentropic efficiency was taken as 85%. The net specific work of the 

cycle was calculated as 449.1 kJ/kg. The heat transfered to the absorption 

refrigeration system per unit mass of water was calculated as 2077.2 kJ/kg. 

(16) 

T 

S

350°C 

133.6°C (13) 

(11) 

(15) 
•

•

•

•

4MPa 

300 KPa 
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4.2.7. Absorbtion refrigeration unit 

The absorption refrigeration unit operates with heat given off in the condenser of the 

steam cycle. The coefficient of performance of the absorption refrigeration unit is 

given as input to the program. The refrigerating effect of the absorption refrigeration 

unit is calculated by the following equation: 

( )R w 13 15 ARUQ   m h h   .  COP= −& &  (4.32) 

The exergy of the refrigerating effect is defined as the work required to produce the 

same refrigerating effect and this is: 

14 R VCE   Q / COP= &&  (4.33) 

Where COPVC is the average COP of the equivalent vapour compression unit. 

4.3. Economic Analysis of the Cogeneration Cycle 

4.3.1. Cost balance equations 

The economic analysis of the cogeneration cycle is done by applying the cost 

balance equation to each component, specifying the auxiliary equations and giving 

the external inputs. This yields a set of linear algebraic equations when solved gives 

the cost rate ($/s) and the cost per unit exergy ($/kJ) of each stream. For a steady 

state steady flow component of the system the cost balance equation is : 

i e
i e

C Z C+ =∑ ∑& &&  (4.34) 

where  

C& is the cost rate in $/s 

Z&  is the cost rate of the capital investment for the component $/s. 
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The capital investment rate is obtained by multiplying the total capital investment in 

$ with the capital recovery factor and dividing by the time length of annual operation 

of the system. Thus, 

HZ   CRF.CI / (3600.n )=&  (4.35) 

As a rule n – 1 auxiliary equations are required if there are n exiting streams. The 

external inputs in a sense form the boundary conditions of the set of equations. The 

equations for the components are given below: 

Compressor    : 

1 10 COMP 2C  C  Z C+ + =& & &&  (4.36) 

1C 0=&  (external input) (4.37) 

Air preheater  : 

2 5 APH 3 6C C  Z C C+ + = +& & & &&  (4.38) 

The auxiliary relation for the air preheater, the purpose of which is to heat the air 

stream, is that the cost per unit exergy on the hot side remains constant (c6=c5). 

Thus, 

5 6 5
5 6

5 6 6

C C E  or  C C
E E E

= =
& & &

& &
& & &

 (4.39) 

Combustion chamber : 

3 8 cc 4C  C   Z C+ + =& & &&  (4.40) 

8
8 F

F

mC C=
ρ
&& (External input) (4.41) 
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where 

Fρ  is the density of fuel  

CF is the cost per unit volume for the fuel ($/m3) 

Turbine  : 

4 TUR 5 9 10C  Z C C C+ = + +& & & &&  (4.42) 

Ignoring the losses during the trasmission of power from the gas turbine to the air 

compressor, the cost per unit exergy of power is equal i.e (c10 = c9). Thus the first 

auxiliary equation is : 

10
10 9

9

EC C
E

=
&

& &
&

 (4.43) 

The other auxiliary relation for the gas turbine is that cost per unit exergy of the 

stream remains constant (c4 = c5). Thus the second  auxiliary equation becomes: 

5
5 4

4

EC C
E

=
&

& &
&

 (4.44) 

Heat – recovery steam generator (HRSG)  : 

6 16 HRSG 7 11C C Z C C+ + = +& & & &&  (4.45) 

Here the cost per unit exergy of the product stream remains constant (c6 = c7), thus 

the auxiliary equation becomes: 

7C 0=&   or  7
7 6

6

EC C
E

=
&

& &
&

 (4.46) 
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Steam turbine  : 

11 ST 12 13 17C +  Z C C C= + +& & & &&  (4.47) 

The first auxiliary equation specifies that the cost per unit exergy of steam as it 

flows through the turbine remains constant. 

13
13 11

11

EC C
E

=
&

& &
&

 (4.48) 

The second auxiliary equation states that the cost per unit exergy of all work streams 

are equal. 

17
17 12

12

EC C
E

=
&

& &
&

 (4.49) 

Absorption refrigeration unit : 

13 ARU 14 15C Z C C+ = +& & &&  (4.50) 

The auxiliary equation specifies that the cost per unit exergy of steam passing 

through the absorption refrigeration unit remains constant. 

15
15 13

13

EC C
E

=
&

& &
&

 (auxiliary equation) (4.51) 

Pump  : 

17 15 P 16C C Z C+ + =& &&  (4.52) 

4.3.2. Capital costs of the components 

The overall capital costs of the gas turbine subsystem, steam turbine subsystem and 

the absorption refrigeration unit were fed to the model as inputs. The break down of 

the capital costs between the components were as follows: 
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Gas turbine subsystem : 

Compressor 36.6% 
Air preheater 10% 
Combustion chamber 3.4% 
Turbine 35% 
Heat  recovery steam generator 15% 

Steam turbine subsystem : 

Turbine 90% 
Pump 10% 

For the cogeneration system considered in this thesis there are 8 components 

including the ARU. The external inputs are the cost rates of the fuel and air streams 

entering the boundaries. 

For the calculation of the capital recovery factor, the annual interest rate and the 

economic life were entered as inputs. Typical values for these variables were 10% 

and 10 years respectively. 

4.4. Implementation of the Numerical Model 

Two computer programs were written to realize the computations of the model 

explained in this chapter. The flow charts of these programs are given in Figure 4.6 

and Figure 4.7 . The listing of these programs are given in appendix A and appendix 

B respectively.  

The thermodynamic analysis program does the first law analysis of the system, 

calculates the mass flow rates of fuel and air, temperatures, pressures and exergy 

rates at all state points. The input data for this program are the pressure ratio of the 

compressor, net power of the system, inlet temperature to the combustion chamber 

and the turbine, pressure drops, efficiencies and investment cost data for all 

components. This program also prepares the input data for the second program. 

The cost analysis program calculates the cost rates and cost per unit exergy at all 

state points of the system. Input data to this program are the capital cost of 

components, fuel costs and exergy rates at all state points of the system. This input 

data is generated in the first program. 
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Figure 4.6: Flow chart for the thermodynamic analysis program 

Input P2/P1, T3, T4 
Pressure drops, component 

efficiencies, inlet conditions from 
GTARIN.DAT

Calculate compressor 
work, exergy rate at comp. 

exit 

Apply first law to 
combustion chamber, 
calculate fuel input 

Calculate the exergy of the 
combustion products 

Calculate air preheater exit 
temp. and exergy rate. 

Apply first law to HRSG to 
determine the mass flow 
rate of water in the steam 

cycle 

Calculate exergy rates in 
the steam cycle 

Calculate the cooling 
effect of ARU  

Output:  
Temperatures, pressures, 
mass flow rates, exergy 

rates at all state points of 
the cycle and capital cost 

of the equipment 
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Figure 4.7: Flow chart for the cost analysis program 

 

 
Input economic parameters, 
capital cost of equipment, 
exergy data from the first 

program 

 
Calculate cost rate of capital 
investment for components 

 
Form the cost balance 

equations. 

 
Form the coefficient matrix 
and the right hand vector for 

solving cost rates 

 
Solve the linear system of 

equations. 

 
Output cost rate, specific 

cost per unit exergy for each 
state point. 
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5. RESULTS AND DISCUSSION 

The numerical model was simulated with different values of the decision variables. 

These are the pressure ratio of the compressor, cost of the natural gas, the investment 

cost of the gas turbine and the investment cost of the steam turbine. The net power 

produced in the gas turbine cycle was taken as 10 MW in all simulations. 

Range of the decision variables for which simulations were done are given below: 

P2/P1 : 8 to 12 

fNG   : 0.15 to 0.25 $/m3 

ZGT : 600 to 700 $/kW 

ZST : 1000 to 1200 $/kW 

Exergy rates, cost rates and cost per unit exergy were calculated for all state points 

(streams) of the system. Exergy destruction, relative cost difference and 

exergoeconomic factor were calculated for each of the components.  

Furthermore an economic analysis was done to determine the pay back period of the 

system for various values of the decision variables. Results are given and discussed 

in the tables below. 

Table 5.1 shows the mass flow rates, temperatures, pressures and exergy rates for all 

state points of the system for a compressor pressure ratio of 8. States 1,2 and 3 refer 

to air. States 4 to 7 represent the combustion products. Flows at 9, 10 and 14 

represent the net power, work input to the compressor and the cooling effect 

respectively. States 11, 13, 15 and 16 are states of the steam cycle. 

The decrease of pressure  from state 2 to 3 and state 3 to 4 are due to pressure drops 

in the air preheater and the combustion chamber respectively. On the exhaust side, 

pressure drops in the air preheater between state 5 and 6 and the heat recovery steam 
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generator between state 6 and 7. The turbine entry and condenser pressures of the 

steam cycle were chosen as 4 MPa and 300 kPa respectively. 

Table 5.1: Exergy rates of the system for a compressor pressure ratio of 8 (Refer to 
Figure 4.1 for states) 

STATE m&  
 kg/s 

P  
(kPa) 

T 
(K) 

Exergy Rate 
 (kW) 

1 31.43 101.3 298.1 .0 
2 31.43 810.4 565.2 8225.4 
3 31.43 769.9 850.0 13836.8 
4 32.00 731.4 1520.0 34312.4 
5 32.00 109.9 1048.7 14536.2 
6 32.00 106.6 774.5 7369.6 
7 32.00 101.3 427.0 957.1 
8 .57 1200.0 298.1 29269.4 
9 .00 .0 .0 10000.0 
10 .00 .0 .0 8884.0 
11 4.23 4000.0 623.0 4805.9 
12 .00 .0 .0 1900.6 
13 4.23 300.0 406.6 2637.0 
14 .00 .0 .0 1883.7 
15 4.23 300.0 406.6 287.3 
16 4.23 4000.0 407.6 292.6 
17 .00 .0 .0 19.8 

Table 5.2: Exergy rates of the system for a compressor pressure ratio of 10 (Refer to 
Figure 4.1 for states) 

STATE m&  
kg/s 

P  
(kPa) 

T 
(K) 

Exergy Rate  
(kW) 

1 30.10 101.3 298.1 .0 
2 30.10 1013.0 601.9 9051.2 
3 30.10 962.3 850.0 13830.1 
4 30.64 914.2 1520.0 33454.6 
5 30.64 109.9 1004.9 12755.0 
6 30.64 106.6 764.6 6835.5 
7 30.64 101.3 427.0 916.5 
8 .54 1200.0 298.1 28026.0 
9 .00 .0 .0 10000.0 
10 .00 .0 .0 9721.8 
11 3.88 4000.0 623.0 4402.8 
12 .00 .0 .0 1741.2 
13 3.88 300.0 406.6 2415.8 
14 .00 .0 .0 1725.7 
15 3.88 300.0 406.6 263.2 
16 3.88 4000.0 407.6 268.1 
17 .00 .0 .0 18.1 
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The gas turbine thermal efficiency increased with the pressure ratio. Efficiency is 

0.340 for the pressure ratio of 8, 0.357 for the pressure ratio of 10 and 0.365 for the 

pressure ratio of 12. Since the net power production of the gas turbine cycle is 

constant at 10 MW, the mass flow rate decreases as the compressor pressure ratio 

increases. Comparison of Table 5.1, 5.2 and 5.3 yields the following results. Exergy 

rate is influenced by three variables, namely temperature, pressure and mass flow 

rate. Changes in these variables are reflected in the exergy rates given in these 

tables. Specific exergy which can be determined by dividing the exergy rate with the 

mass flow rate, increases due to increase in pressure as the compressor pressure ratio 

increases in the gas turbine cycle. However, the decrease in mass flow rate causes 

the exergy rate to become smaller in Tables 5.2 and 5.3. 

Increase of the compressor pressure ratio of the gas turbine cycle decreases both the 

mass flow rate and the temperature of the exhaust products at state 6. Therefore heat 

that can be transferred to the steam cycle decreases. For this reason the mass flow 

rate and the net power output of the steam cycle, as well as the cooling effect of the 

ARU decrease. 

Table 5.3: Exergy rates of the system for a compressor pressure ratio of 12 (Refer to 
Figure 4.1 for states) 

STATE m&   
kg/s 

P  
(kPa) 

T 
(K) 

Exergy Rate  
(kW) 

1 29.42 101.3 298.1 .0 
2 29.42 1215.6 633.3 9839.2 
3 29.42 1154.8 850.0 13982.6 
4 29.95 1097.1 1520.0 33179.7 
5 29.95 109.9 970.6 11597.7 
6 29.95 106.6 759.7 6577.0 
7 29.95 101.3 427.0 895.8 
8 .53 1200.0 298.1 27394.4 
9 .00 .0 .0 10000.0 
10 .00 .0 .0 10523.3 
11 3.71 4000.0 623.0 4209.9 
12 .00 .0 .0 1664.9 
13 3.71 300.0 406.6 2310.0 
14 .00 .0 .0 1650.1 
15 3.71 300.0 406.6 251.6 
16 3.71 4000.0 407.6 256.3 
17 .00 .0 .0 17.3 
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5.1. Exergy Destruction in the Components 

Exergy destruction is defined by equation (3.6) mentioned earlier. The exergy 

destructions in the components are due to one or more of the three principal 

irreversibilities namely combustion, heat transfer and friction. 

Table 5.4: Exergy destruction in the components for a compressor pressure ratio of 
8 (Refer to Figure 4.1 for states) 

Component Exergy destruction 
(kW) 

Proportion of the total 

Compressor 658.6 4.5 % 
APH 1555.2 10.7 % 
Combustion chamber 8793.8 60.4 % 
Gas turbine 892.2 6.1 % 
HRSG 1899.2 13.1 % 
Steam turbine 268.3 1.8 % 
ARU 466 3.2 % 
Pump 14.5 0.09 % 
Total 14547.8 100 % 

The exergy destruction percentage in the components shown in Table 5.4 clearly 

identify the combustion chamber as the major site of thermodynamic inefficiency. 

Approximately 60% of the exergy destruction in the cycle occurs here. The 

percentage of exergy destructions in the heat recovery steam generator and the air 

preheater are 13.1% and 10.7% respectively. For HRSG and the air preheater heat 

transfer and friction are the sources of exergy destruction. 

Table 5.5: Exergy destruction in the components for a the compressor pressure ratio 
of 10 (Refer to Figure 4.1 for states) 

Component Exergy destruction 
(kW) 

Proportion of the total 

Compressor 670.6 4.9 % 
APH 1104.4 8.1 % 
Combustion chamber 8401.5 61.6 % 
Gas turbine 977.8 7.2 % 
HRSG 1784.3 13.1 % 
Steam turbine 245.8 1.8 % 
ARU 426.9 3.1 % 
Pump 13.2 0.09 % 
Total 13624.5 100 % 
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Comparison of Tables 5.4, 5.5 and 5.6 shows that the exergy destruction in the 

compressor increases as the pressure ratio increases. Exergy destruction in the air 

preheater decreases as the compressor pressure ratio increases because the mean 

temperature difference between the air stream and exhaust products decreases in the 

air preheater. The decrease of exergy destruction in the combustion chamber with 

increase in the compressor pressure ratio is related solely to change in the mass flow 

rate, because the inlet and exit temperatures of the combustion chamber is the same 

for all three cases. In fact the exergy destruction per unit mass flowing through the 

combustion chamber is nearly constant for all three cases.  

Some general observations can be made with respect to exergy destruction. Exergy 

destruction can be lowered by keeping the temperature differences small during heat 

transfer processes and minimizing pressure losses in flow processes. 

Table 5.6: Exergy destruction in the components for a compressor pressure ratio of 
12 (Refer to Figure 4.1 for states) 

Component Exergy destruction 
(kW) 

Proportion of the total 

Compressor 684 5.2 % 
APH 877.3 6.6 % 
Combustion chamber 8197.3 62.1 % 
Gas turbine 1058.7 8.0 % 
HRSG 1727.6 13.1 % 
Steam turbine 235 1.8 % 
ARU 408.3 3.1 % 
Pump 12.6 0.095 % 
Total 13200.8 100 % 

5.2. Analysis of the Cost Rates and Cost per Unit Exergy for Each State                         

Point 

The cost rates and cost per unit exergy for the state points of the simulation model is 

given in Tables 5.7 to 5.9. The cost of fuel which is natural gas is 0.2 $/m3 in Tables 

5.7 to 5.9. 
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Table 5.7: Cost rates and cost per unit exergy of the system for a compressor 
pressure ratio of 10 

State E&   
(kW) 

C&   
($/s) 

c 
($/kJ) 

1 .0 .0000 .0000E+00 
2 9051.2 .1248 .1378E-04 
3 13830.1 .1895 .1370E-04 
4 33454.6 .3453 .1032E-04 
5 12755.0 .1316 .1032E-04 
6 6835.5 .0705 .1032E-04 
7 916.5 .0095 .1032E-04 
8 28026.0 .1546 .5515E-05 
9 10000.0 .1147 .1147E-04 
10 9721.8 .1115 .1147E-04 
11 4402.8 .0721 .1638E-04 
12 1741.2 .0402 .2310E-04 
13 2415.8 .0396 .1638E-04 
14 1725.7 .0552 .3201E-04 
15 263.2 .0043 .1638E-04 
16 268.1 .0056 .2099E-04 
17 18.1 .0004 .2310E-04 

It is observed that the highest unit exergy cost in the gas turbine cycle is achieved at 

state (2) at the exit of the air compressor. This is because the investment cost of the 

compressor is high and the driving input is mechanical power. Considering the 

whole system it was noticed that the cost per unit exergy is considerably higher for 

state (11) than the net power state (9). This is due to the addition of the heat recovery 

steam generator which represents an increase in the investment cost. The cost per 

unit exergy at state (9) is 0.041 $/kWh. The cost per unit exergy at state (12) is 0.083 

$/kWh which is greater than the cost per unit exergy at state (9). This is due to 

additional capital investment in the heat recovery steam generator and the steam 

turbine. The factors affecting the cost per unit exergy are the investment cost, exergy 

destruction and fuel cost.  

Since work is produced by the gas turbine and the steam turbine and cost per unit 

exergy of each is different, an average cost of electricity can be found by weighting 

the costs with the exergy rates. If this is done the cost of electricity produced by the 

model is found as 0.048 $/kWh. As the fuel cost varied from 0.15 $/m3 to 0.25 $/m3 

the average cost of electricity varied from 0.038 $/kWh to 0.057 $/kWh. The 

average industrial cost of electricity in Europe is 0.095 $/kWh. 
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Table 5.8: Cost rates and cost per unit exergy of the system for a compressor 
pressure ratio of 8 

State E&   
(kW) 

C&   
($/s) 

c  
($/kJ) 

1 .0 .0000 .0000E+00 
2 8225.4 .1159 .1409E-04 
3 13836.8 .1940 .1402E-04 
4 34312.4 .3566 .1039E-04 
5 14536.2 .1511 .1039E-04 
6 7369.6 .0766 .1039E-04 
7 957.1 .0099 .1039E-04 
8 29269.4 .1614 .5515E-05 
9 10000.0 .1155 .1155E-04 
10 8884.0 .1026 .1155E-04 
11 4805.9 .0782 .1627E-04 
12 1900.6 .0437 .2297E-04 
13 2637.0 .0429 .1627E-04 
14 1883.7 .0600 .3185E-04 
15 287.3 .0047 .1627E-04 
16 292.6 .0061 .2088E-04 
17 19.8 .0005 .2297E-04 

Table 5.9: Cost rates and cost per unit exergy of the system for a compressor 
pressure ratio of 12 

State E&   
(kW) 

C&   
($/s) 

c  
($/kJ) 

1 .0 .0000 .0000E+00 
2 9839.2 .1334 .1356E-04 
3 13982.6 .1887 .1349E-04 
4 33179.7 .3410 .1028E-04 
5 11597.7 .1192 .1028E-04 
6 6577.0 .0676 .1028E-04 
7 895.8 .0092 .1028E-04 
8 27394.4 .1511 .5517E-04 
9 10000.0 .1142 .1142E-04 
10 10523.3 .1202 .1142E-04 
11 4209.9 .0692 .1644E-04 
12 1664.9 .0385 .2315E-04 
13 2310.0 .0380 .1644E-04 
14 1650.1 .0529 .3208E-04 
15 251.6 .0041 .1644E-04 
16 256.3 .0054 .2104E-04 
17 17.3 .0004 .2315E-04 

The cost per unit exergy of the cooling effect was found as 0.115 $/kWh for a 

natural gas cost of 0.2 $/m3 and pressure ratio of 10 in the gas turbine cycle. If the 
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cooling cost is expressed in terms of per unit energy rather than exergy a value of 

0.022 $/kWh is found. The calculation is shown in Appendix C. 

Variation of the pressure ratio of the gas turbine cycle has little effect on the cost of 

the cooling effect. A 50% change in the fuel cost, causes a change of 25% in the cost 

of cooling. 

5.3. Determination of the Relative Cost Difference of the Components  

The relative cost difference is defined as the relative increase in the average cost per 

unit exergy between fuel and product in a component,  Bejan et. al (1996). 

Pk Fk
k

Fk

c cr
c
−

=  (5.1) 

where, 

Pkc  = cost per unit exergy of the product 

Fkc  = cost per unit exergy of the fuel 

Cost increase of a stream as it passes through a component is caused by two factors. 

First one is the exergy destruction which is related to the thermodynamic 

performance of a component. Second factor is the investment and maintenance 

costs. Table 5.10 gives the relative cost difference values for the components of the 

simulation model. It is seen that the higher relative cost differences are associated 

with the ARU, steam turbine , the HRSG and the APH in that order. This implies 

that improvements in thermodynamic performance and reduction in investment costs 

should first be achieved in these components. It was observed that change in the 

pressure ratio of the gas turbine cycle or the cost of the fuel did not change this 

order. In general, improvements in thermodynamic performance is accompanied by 

an increase in capital investment. Therefore it is important to know the relative 

importance of these factors in increasing the cost. 

The exergoeconomic factor k(f )  is a parameter that gives an indication of this. 
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Table 5.40: The relative cost difference for the components k(r ) . Cost of fuel is 
considered to be 0.2 $/m3. 

Relative cost difference, kr
 

 Pressure Ratio 
Component 8 10 

Compressor 0.216 0.19 
APH 0.33 0.31 
Combustion chamber 0.259 0.254 
Gas turbine 0.110 0.110 
HRSG 0.346 0.360 
Steam turbine 0.415 0.403 
ARU 0.96 0.96 
Pump 0.256 0.22 

5.4. Determination of the Exergoeconomic Factor of the Components  

The exergoeconomic factor k(f )  is defined  as the ratio of investment cost to total 

cost, Bejan et. al (1996) 

k
k

k Fk Dk

Zf
Z c .E

=
+

&

& &
 (5.2) 

where, 

DkE&  is the rate of exergy destruction in kW. 

Fkc  is the cost per unit exergy of the fuel in $/kJ. 

kZ&  is the rate of capital investment including the operation and maintenance costs. 

Table 5.11 gives the exergoeconomic factors of the components of the simulation 

model. It is observed that the exergoeconomic factor is high for the ARU, the 

compressor, the pump, the steam turbine and the gas turbine. This indicates that 

investment and maintenance costs are more influential in the relative cost increase in 

these components. Noting that the ARU was the component with the highest 

exergoeconomic factor also, it can be concluded that lowering the investment cost in 

that component at the expense of thermodynamic performance may result in overall 

cost reduction. Similarly low exergoeconomic factors for the APH and the HRSG 
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suggest that improving the thermodynamic performance even though this will 

require higher investment, may reduce the overall cost of the model. 

Table 5.51: The exergoeconomic factor of the components k(f ) . Cost of fuel is  
considered to be 0.2 $/m3 

Exergoeconomic factor, k(f )  
 Pressure Ratio 

Component 8 10 
Compressor 0.626 0.628 
APH 0.325 0.364 
Combustion chamber 0.014 0.014 
Gas turbine 0.55 0.546 
HRSG 0.158 0.174 
Steam turbine 0.666 0.615 
ARU 0.739 0.72 
Pump 0.88 0.756 

5.5. Calculation of the payback period 

The payback period, pp is defined as the length of time required for the cash inflows 

received from a project to recover the initial investment. 

pp = Total depreciable investment
Annual net profit

                                                                        (5.3)  

The total depreciable investment is the difference between the initial capital 

investment and the salvage value.  

An example of the calculation of the pay back period is given in appendix C. Table 

5.12 shows the pay back period for the different parameters. The examination of 

Table 5.12 shows that the increase in fuel cost increases the annual expenditure and 

hence decreases the annual net profit, resulting in an increase in the pay back period. 

The increase in the investment cost results in an increase in the pay back period. The 

increase in the pressure ratio decreases the pay back period as the system becomes 

more efficient,  less fuel is consumed  and the annual net profit is increased. The 

payback period for the adopted system was found to be between 7 and 9 years for 

different parameters shown in Table 5.12. While the average value given for Europe 

in the literature is 12 years, Colonna and Gabrielli (2003). 
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Table 5.62: Pay back period for 10 MW power production for different parameters 

Case 2

1

P
P

 NGf  
$/m3 

CIGT  
$ 

CIARU  
$ 

CIST  
$ 

Pay back period 
(years) 

1 10 0.15 7000000 3870000 1740000 6.93 
2 10 0.20 7000000 3870000 1740000 8.99 
3 10 0.25 7000000 3870000 1740000 8.05 
4 8 0.20 7000000 4220000 1900000 8.06 
5 10 0.20 6000000 3870000 1740000 8.28 
6 12 0.20 7000000 3870000 1660000 8.89 
7 10 0.20 7000000 3870000 2090000 7.95 

5.6. Conclusions and Recommendations 

A model for a cogeneration system which produces electricity and cooling effect 

(refrigeration) was proposed in this thesis. The model consists of a combined cycle 

(gas and vapour power cycles) driving an absorbtion refrigeration unit. The 

thermodynamic analysis of the model was made for different pressure ratios of the 

gas turbine cycle. The economic analysis of the model was made for different 

investment costs for the components and fuel costs. It was shown that the cost of 

electricity that can be produced by such a system, would vary between 0.04 and 0.06 

$/kWh, and the cost of the cooling effect would vary between 0.018 and 0.026 

$/kWh. These values compare favorably with the current costs of these commodities 

in the market. 

The principal advantage of cogeneration is to enable more effective use of fuel. The 

fuel utilization effectiveness of the proposed system is 70%. If the same amount of 

electricity and cooling effect were to be produced separately approximately 40% 

more fuel would have to be utilized. Therefore the use of these cogeneration systems 

in sectors such as food processing and tourism will produce economic benefits for 

countries with hot climates. 

Finally some follow up studies to this thesis may be recommended. The 

exergoeconomic analysis used in this thesis may be used for thermal system 

optimization. For this study a detailed thermodynamic performance and cost data 

base for components forming the system will be needed. The system proposed is 

flexible in the sense that more electricity may be produced at the expense of the 

cooling effect and vice versa. Therefore the transient operation of these systems 
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under different electricity and refrigeration demands may be studied. Absorption 

refrigeration systems which have higher COP and are more adoptable to 

cogeneration need to be further studied. These may be multistage absorption 

refrigeration systems or systems using different binary mixtures. 
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APPENDIX A 

The thermodynamic analysis program 

The thermodynamic analysis program does the first law analysis of the system, 

calculates the mass flow rates of fuel and air, temperatures, pressures and exergy 

rates at all points of the system. It is written in Fortran. Since the listing of this 

program is longer than 10 pages, it has been given on the attached Fortran File in 

this CD. 

 
Input data for the thermodynamic analysis is given below: 

ANALYSIS OF THE GAS TURBINE ARU TRIGENERATION SYSTEM 
101.3 298.15   10.0    10000.0   
 850.0 1520.0     
0.05 0.05   0.03   0.05   
1200.0   298.15     
0.86   0.86   0.95   1.00   
1.000    427.0   0.60    
0.100 10.0    700.0    800.0   1000.0    0.2 

First row is the title. 

Second row is  the inlet pressure of the compressor in kPa, the inlet temperature of 

the compressor in K, the pressure ratio 2 1P P  and the power output of the turbine in 

kW respectively. 

Third row is the combustion chamber inlet temperature in K, the turbine inlet 

temperature in K respectively.  

Fourth row is  the pressure drop of the air preheater on the air side, the pressure drop 

of the combustion chamber, the pressure drop of the air preheater on the gas side and 

pressure drop of the heat recovery steam generator respectively.  

Fifth row is the inlet pressure of the fuel (methane) in kPa and the inlet temperature 

of the fuel in K. 
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Sixth row is the efficiency of the compressor, the efficiency of the turbine, 

effectiveness of the air preheater and effectiveness of the heat recovery steam 

generator respectively. 

Seventh row is the quality x of the steam, the exhaust temperature in K and the 

coefficient of performance of the ARU respectively.  

Eighth row is the interest rate, economic life of the investment, the specific cost of 

the gas turbine in $/kW, the specific cost of the ARU in $/kW, the specific cost of 

the steam turbine in $/kW and cost of fuel in $/m3 respectively. 

Output data for the thermodynamic analysis program for a compressor ratio of 8 is 

given below: 

STATE MDOT(kg/s) P(kPa) T(K) EX RATE(kW) 
1 31.43 101.3 298.1 .0 
2 31.43 810.4 565.2 8225.4 
3 31.43 769.9 850.0 13836.8 
4 32.00 731.4 1520.0 34213.4 
5 32.00 109.9 1048.7 14536.2 
6 32.00 106.6 774.5 7369.6 
7 32.00 101.3 427.0 957.1 
8 .57 1200.0 298.1 29269.4 
9 .00 .0 .0 10000.0 

10 .00 .0 .0 8884.0 
11 4.23 4000.0 623.0 4805.9 
12 .00 .0 .0 1900.6 
13 4.23 300.0 406.6 2637.0 
14 .00 .0 .0 1883.7 
15 4.23 300.0 406.6 287.3 
16 4.23 4000.0 407.6 292.6 
17 .00 .0 .0 19.8 

First column is the number of state points of the system.  

Second column is the mass flow rates at different state points of the system in kg/s. 

Third column is the pressures at different state points of the system in kPa. 

Fourth column is the temperatures at different state points of the system in degree K. 

Fifth column is the exergy rates at different state points of the system in kW. 
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APPENDIX B 

The cost analysis program 

C       PROGRAM : ABMT07.FOR 
C       THIS PROGRAM WAS WRITTEN TO FORM THE 
C       COEFFICIENT MATRIX AND THE RIGHT HAND VECTOR 
C       TO SOLVE THE SET OF EQUATIONS FOR THE COST RATES 
C       OF THE STREAMS IN THE GAS TURBINE ARU SYSTEM. 
C       CALCULATION OF COST OF EQUIPMENT ( ZC VALUES) 
C       WAS INCORPORATED TO ABMT07. 
C       c A.M.El Hannan and T. Derbentli, July 24, 2005 
C                            Revised, August 21, 2005 
C                            Revised, August 27, 2005 
C       ************************************************* 

                   CHARACTER*6 BASLIK 
          DIMENSION BASLIK(10) 
          DIMENSION A(17,17),B(17),X(17),E(17),SC(17),ZC(8) 
C       **************************************************** 
C       COST PERCENTAGES OF THE GT AND ST CYCLE COMPONENTS 
C       ARE GIVEN IN THE FOLLOWING DATA STATEMENTS 
C       **************************************************** 
          DATA CPCOMP,CPAPH,CPCC,CPTUR,CPHRSG/0.366,0.1,0.034, 
        -0.35,0.15/ 
          DATA CPSTUR,CPPUMP/0.9,0.1/ 
          OPEN(8,FILE='AMEXER.DAT',STATUS='OLD') 
          OPEN(6,FILE='COROUT.DAT',STATUS='NEW') 
C       **************************************************** 
C       DENSITY (ROHF) OF NATURAL GAS IS TAKEN AS 0.7 kg/m3 
C       N IS THE NUMBER OF FLOW STREAMS, 
C       NCOMP IS THE NUMBER OF COMPONENTS IN THE SYSTEM. 
C       **************************************************** 
          ROHF=0.7 
          N=17 
          NCOMP=8 
          DO 2 I=1,N 
          X(I)=0.01 
    2   CONTINUE 
C       ******************************************* 
C       INPUT DATA IS READ FROM THE FILE AMEXER.DAT 
C       RINT : INTEREST RATE, EN : ECONOMIC LIFE 
C       COSTGT,COSTARU,COSTST : CAPITAL COSTS OF 
C       GAS TURBINE, ABSORBTION REF UNIT AND STEAM 



 58

C       TURBINE RESPECTIVELY IN $. 
C       EMDOTF : MASS FLOW RATE OF FUEL (NG) 
C       ZF : COST OF FUEL IN $/m3. 
C       E(I) : EXERGY AT STATE I CALCULATED IN THE 
C       PREVIOUS PROGRAM AND WRITTEN TO AMEXER.DAT 
C       I VARIES FROM 1 TO N WHICH IS 17. 
C       ******************************************* 
          READ(8,210)BASLIK 
   210 FORMAT(10A6) 
          WRITE(6,300)BASLIK 
  300  FORMAT(8X,10A6,/8X,'c (2005) A. Elhannan, T. Derbentli',/) 
          READ(8,212)RINT,EN 
  212  FORMAT(F10.3,F5.1) 
          WRITE(6,310)RINT,EN 
  310  FORMAT(8X,'INTEREST RATE IS',F5.2,' pa,  ECONOMIC LIFE', 
        -' IS',F5.1,' YEARS') 
          READ(8,214)COSTGT,COSTARU,COSTST 
  214  FORMAT(3E10.3) 
          WRITE(6,320)COSTGT,COSTARU,COSTST 
  320  FORMAT(8X,'CAPITAL COSTS OF THE GT, ARU AND', 
        -' THE ST ARE : ',/9X,3F12.1,'  $') 
          READ(8,216)EMDOTF,ZFUEL 
  216  FORMAT(2F10.3) 
          WRITE(6,324)EMDOTF,ZFUEL 
  324  FORMAT(8X,'MASS FLOW RATE OF FUEL : ',F6.4,' kg/s', 
        -/,8X,'COST OF FUEL           : ',F4.2,' $/m3',/) 
          READ(8,220)(E(I),I=1,N) 
   220  FORMAT(6F10.1) 
C       ******************************************* 
          CONMIL=1.0E-06 
          COSTGT=COSTGT*CONMIL 
          COSTARU=COSTARU*CONMIL 
          COSTST=COSTST*CONMIL 
          TER1=(1.0+RINT)**EN 
          CRF=RINT*TER1/(TER1-1.0) 
          FACTOR=CRF/(8.76*3.6) 
C       ************************************************ 
C       CALCULATION OF THE ZC (COST RATE) VALUES 
C       FOR THE COMPONENTS OF THE TRIGENERATION SYSTEM. 
C       ************************************************ 
          TERM1=COSTGT*FACTOR 
          ZC(1)=TERM1*CPCOMP 
          ZC(2)=TERM1*CPAPH 
          ZC(3)=TERM1*CPCC 
          ZC(4)=TERM1*CPTUR 
          ZC(5)=TERM1*CPHRSG 
          TERM2=COSTST*FACTOR 
          ZC(6)=TERM2*CPSTUR 
          ZC(7)=COSTARU*FACTOR 
          ZC(8)=TERM2*CPPUMP 
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C       ***************************************************** 
C       CALCULATION OF THE ELEMENTS OF THE COEFFICIENT 
C       MATRIX (A) AND THE RIGHT HAND VECTOR (b) IN A x = b , 
C       x IS THE VECTOR REPRESENTING THE COST RATES IN $/s 
C       ***************************************************** 
          DO 4 I=1,N 
          DO 6 J=1,N 
          A(I,J)=0.0 
    6    CONTINUE 
          B(I)=0.0 
          A(I,I)=1.0 
    4    CONTINUE 
          A(2,1)=-1.0 
          A(2,10)=-1.0 
          B(2)=ZC(1) 
          A(3,2)=-1.0 
          A(3,5)=-1.0 
          A(3,6)=1.0 
          B(3)=ZC(2) 
          A(4,3)=-1.0 
          A(4,8)=-1.0 
          B(4)=ZC(3) 
          A(5,4)=-E(5)/E(4) 
          A(6,5)=-E(6)/E(5) 
          A(7,6)=-E(7)/E(6) 
          B(8)=EMDOTF*ZFUEL/ROHF 
          A(9,4)=-1.0 
          A(9,5)=1.0 
          A(9,10)=1.0 
          B(9)=ZC(4) 
          A(10,9)=-E(10)/E(9) 
          A(11,7)=1.0 
          A(11,6)=-1.0 
          A(11,16)=-1.0 
          B(11)=ZC(5) 
          A(12,11)=-1.0 
          A(12,13)=1.0 
          A(12,17)=1.0 
          B(12)=ZC(6) 
          A(13,11)=-E(13)/E(11) 
          A(14,13)=-1.0 
          A(14,15)=1.0 
          B(14)=ZC(7) 
          A(15,13)=-E(15)/E(13) 
          A(16,15)=-1.0 
          A(16,17)=-1.0 
          B(16)=ZC(8) 
          A(17,12)=-E(17)/E(12) 
C       ******************************************** 
          W=1.0 
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          ERTOP=0.000006*N 
          NITER=0 
C       ITERASYON BASLIYOR 
C       ******************** 
     52 HATOP=0.0 
          NITER=NITER+1 
          DO 70 I=1,N 
          ABSA=ABS(A(I,I)) 
          IF(ABSA.LT.0.00001)WRITE(*,*)'A(I,I) SIFIR' 
          TOPA=0. 
          DO 72 J=1,N 
          TOPA=TOPA+A(I,J)*X(J) 
     72 CONTINUE 
     80 XOLD=X(I) 
          X(I)=X(I)+W*(B(I)-TOPA)/A(I,I) 
          HATOP=HATOP+ABS(X(I)-XOLD) 
     70 CONTINUE 
          IF(HATOP.LT.ERTOP)GO TO 100 
          IF(NITER.GT.50)GO TO 90 
          GO TO 52 
     90 WRITE(*,*)'CONVERGENCE IS NOT ACHIEVED' 
    100 WRITE(6,330) 
    330 FORMAT(8X,' #      E (kW)   ','    C ($/S) ','   c($/kJ)  ',/) 
           DO 104 I=1,N 
           IF(E(I).LT.0.00001)GO TO 106 
           SC(I)=X(I)/E(I) 
           GO TO 108 
  106   SC(I)=0.0 
  108   WRITE(6,340)I,E(I),X(I),SC(I) 
  340   FORMAT(8X,I2,F12.1,F12.4,E14.4) 
  104   CONTINUE 
           STOP 
           END 

Input data for the cost analysis program is given below: 

ANALYSIS OF THE GAS TURBINE ARU TRIGENERATION SYSTEM 
.100 10.0     
.7E+07     .422E+07   .190E+07    
0.57       0.20     
.0   8225.4   13836.8    34312.4    14536b2 7369.6 
957.1   29269.4   10000.0     8884.0     4805.0    1900.6 
2637.0   1883.7   287.3     292.6     19.8  

First row is the title. 

Second row is the interest rate and the economic life respectively  

Third row is the cost of the gas turbine cycle in dollars, the cost of ARU in dollars 

and the cost of steam turbine cycle in dollars respectively. 
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Fourth row is the mass flow rate of fuel in kg/s and the cost of fuel in $/m3 

respectively. 

Fifth row is the exergy rates of different states from 1 to 17 as shown by Figure 4.1 

respectively. 

Output data fort he cost analysis program for a compressor ratio of 8 is given below: 

STATE E(kW) C($/s) c($/kJ) 
1 .0 .0000 .0000 E+04 
2 8225.4 .1159 .1409 E-04 
3 13836.8 .1940 .1402 E-04 
4 34312.4 .3556 .1039 E-04 
5 14536.2 .1511 . 1039 E-04 
6 7369.6 .0766 . 1039 E-04 
7 957.1 .0099 . 1039 E-04 
8 29269.4 .1614 .5515 E-05 
9 10000.0 .1155 .1155 E-04 

10 8884.0 .1026 .1155 E-04 
11 4805.9 .0782 .1627 E-04 
12 1900.6 .0437 .2297 E-04 
13 2637.0 .0429 .1627 E-04 
14 1883.7 .0600 .3185 E-04 
15 287.3 .0047 .1627 E-04 
16 292.6 .0061 .2088 E-04 
17 19.8 .0005 .2297 E-04 

First column is the number of state points of the system.  

Second column is the exergy rates at different state points of the system in kW. 

Third column is the cost rates at different state points of the system in $/s. 

Fourth column is the cost per unit exergy at different state points of the system in 

$/kJ. 
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APPENDIX C 

1. Determination of the cost of the cooling effect per unit energy. 

Case (a) 

This case considers the system adopted in this thesis. 

 

 

 

 

 

 

Figure C.1: Steam cycle part of the system adopted 

For the case of compressor pressure ratio of 10 and 10 MW net power production in 

the gas turbine cycle, the cooling effect obtained from the ARU of the adopted 

system is: 

REFQ 4835.8=&  kW 

Revenue obtained from the cooling effect is; 

REF RefC 4835.8 7000 c= × ×&  

          = 6
Ref33.85x10 c×  

The electricity production of the steam cycle for the same parameters is 1741.2 kW 

(Table 5.2).  

Cooling effect ARU 

13 

14 

ST Net work (electricity) 
12 

15 

11 
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Therefore the annual revenue obtained from electricity is: 

( )E EC 10000 1741.2 7000 c= + × ×&  

       = 6
E82.19x10 c×  

The annual fuel cost is: 

-6
FC 28026 x 7000 x 3600 x 5.7 x 10=&  

      = 4.026 x 106 $/year 

The annual investment cost of the system consisting of the gas turbine cycle, steam 

turbine cycle and the ARU is: 

Z = 0.1  (7000 000 +  1740000 +  3870000) &  

    = 1 261 000 $/year 

where 0.1 is the capital recovery factor. 

The cost balance equation can be written as: 

R EF E FC C C Z+ = +& & & &  (C.1) 

Substituting : 

6 6 6 6
Ref E33.85x10 c 82.19 10 c 4.026 x 10 1.26 x 10× + × × = +  

Simplifying: 

Ref E33.85 c 82.19 c 5.286+ =  

Considering that approximately 2.5 units of cooling effect can be obtained with 1 

unit of work with conventional means, one can write, 

E Refc 2.5 c= ×  

Solving the above equations yields: 
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Ec 0.0552=  $/kWh 

Refc 0.022=  $/kWh 

Case (b)  

This case considers using only heat recovery steam generator without the steam 

cycle. 

 

 

 

Figure C.2: Schematic diagram of the heat recovery steam generator of the gas  

 turbine cycle. 

Fuel energy input for 10 MW net power production from the gas turbine is 28.026 

MW.  

Heat that can be recovered from the HRSG is: 

HRSG p 6 7Q m c (T T )= × × −& &  

            = 30.46 x 1.147 (764.6 – 427) 

            = 11794.9 kW. 

Heat obtained is multiplied with 0.6 which is the COPARU to get the cooling effect. 

R EFQ 11794.9  x   0.6 7076.9= =&  kW 

Revenue obtained from the cooling effect is: 

REF RefC 7076.9 7000 c= × ×&  

where Refc  is the cost of the cooling effect in $/kWh 

 
 

HRSG 
764.6 K 427 K 
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The capital cost of the gas turbine cycle including the HRSG is 7 000 000 +             

3 870 000 = 10 870 000 $. 

Multiplying with the capital recovery factor of 0.1, the yearly investment cost Z&  is 

found as 1 087 000 $/year. 

The annual fuel cost is: 

-6
FC = 28026  7000  3600  5.7  10× × × ×&    

     = 4.026 x 106 $/year 

where 5.7 x 10-6 is the price of fuel in $/kJ and number of hours of operation per 

year is taken as 7000 h. 

Revenue obtained from electricity is: 

E EC 10000 7000 c= × ×&  

The cost balance equation can be written as: 

REF E FC C C Z+ = +& & & &  (C.2) 

Substituting: 

6 6 6 6
Ref E49.54 10 c 70 10 c 4.026 10 1.087 10× × + × × = × + ×  

Simplifying 

Ref E49.54 c 70 c 5.347× + × =  

Considering that approximately 2.5 units of cooling effect can be obtained with 1 

unit of work with conventional means, one can write: 

E Refc 2.5 x c=  

Solving the above equations yields: 
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Ec 0.0595  $/kWh.=  

Refc 0.0238 $/kWh.=  

Case (c)  

This case considers the determination of the cost of cooling effect from the data 

given in the literature.  

In the system outlined by Colonna and Gabrielli (2003), 

Annual electricity production is: 

6
EE 70.97 10 kWh/year= ×&  

Annual cooling effect is: 

6
REFQ 67 10 kWh/year= ×&  

Annual fuel consumption is: 

9
FE 827.6 10 kJ/year= ×&  

Annual capital investment is: 

Z 1 269 156 $/year=&  

Writing the cost balance equation: 

REF E FC C C Z+ = +& & & &  (C.3) 

Substituting and simplifying: 

6 6 9 6
E Ref70.97 10 c 67 10 c 827.6 10 5.7 10 1 269 156−× + × = × × × +  

E Ref70.97 c 67 c 5.9865× + × =  

Assuming cE = 2.5 cRef as before; one obtains: 
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Ec 0.06123 $/kWh=  

Refc 0.0245   $/kWh=  

2. Example calculation of the pay back period 

The pay back period for 10 MW net power production in the gas turbine, for a 

compressor pressure ratio of 10 and natural gas cost of 0.2 $ / m3 is given below: 

The investment costs for the gas turbine cycle, steam turbine cycle and the ARU 

have been taken as 7 million $, 1.74 millon $ and 3.87 million $ respectively.  

The cost per unit exergy for electricity from the gas turbine and the steam turbine 

were calculated as 0.041 $/kWh and 0.083 $/kWh respectively (Table 5.8). Similarly 

the cost of cooling effect is 0.1153 $/kWh. The fuel cost per unit exergy is         

0.021 $/kWh.  

Assuming that yearly operating hours is 8400 h, the yearly costs and revenues are 

found as follows: 

Revenue for electricity, 

(10000 x 0.041 + 1741.2 x 0.083) 8400 = 4 658 965 $. 

Revenue for cooling effect, 

1725.7 x 8400 x 0.1153 = 1 671 968 $. 

Cost of fuel,  

28026 x 8400 x 0.021 = 4 943 786 $. 

Net annual operating revenue is thus: 

4 658 965 + 671 968 – 4 943 786 = 1 386 146 $.  

The total investment cost is the sum of the costs for the gas turbine cycle, steam 

turbine cycle and ARU: 

7 000 000 + 1 740 000 + 3 870 000 = 12 610 000 $. 

Letting the salvage value to be 10 % of the initial investment, the payback period, pp 

is found as: 

1261000 1261000pp 8.2 years
1386146

−
= =  
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Fortran File 

The thermodynamic analysis program 

C       ******    ABMT06.FOR   ************************************ 
C       THIS PROGRAM DOES THE ANALYSIS OF A GAS TURBINE 
C       TRIGENERATION SYSTEM. SYSTEM HAS BEEN MODIFIED 
C       ON AUGUST 23, 2005. 
C       METHODOLOGY IS SIMILAR TO THAT GIVEN IN BEJAN, 
C       TSATSARONIS AND MORAN. TABLES ON p. 520 OF THIS 
C       REFERENCE ARE USED FOR H, S AND CP CALCULATIONS. 
C       c A.Moneim El HANNAN, Taner DERBENTLI, August 23, 2005 
C                                   Revised  August 27, 2005 
C                                   Revised  Sept.  19, 2005 
C     *********************************************************** 
          CHARACTER*6 BASLIK(10) 
C       PRESSURE, TEMPERATURE, ENTHALPY, ENTROPY 
C     **************************************** 
          DIMENSION P(17),T(17),H(17),S(17) 
C       EXERGIES AT VARIOUS STATES OF THE TRIGENERATION CYCLE 
C       EWPHX : SPECIFIC PH. EXERGY OF WATER AT VARIOUS STATES 
C       OF THE STEAM CYCLE. 
C       ****************************************************** 
          DIMENSION EX(17),EXPH(17),EXCH(17),EXPHR(17),EWPHX(4) 
          DIMENSION EMDOT(17),NSUBA(4),YA(4),NSUBP(5),HPROD(5) 
C      YA, YP : MOLE FRACTION OF AIR AND PRODUCTS OF COMBUSTION 
C       FOR THE PROD. ORDER IS : CO2, CO, H2O, O2, N2, H2OL, CH4 
C      ********************************************************* 
          DIMENSION YP(7),YPNEW(7),YPS(7),CEX(7) 
          DATA PO,TO/101.3,298.15/ 
          DATA YA/0.0003,0.019,0.2059,0.7748/ 
          DATA NSUBA/1,3,4,5/ 
          DATA NSUBP/1,2,4,3,5/ 
          DATA CEX/14176.,269412.,3951.,8636.,639.,45.,824348./ 
C       MOLECULAR WEIGHTS 
C      ****************** 
          DATA EMAIR,EMPROD,EMFUEL/28.649,28.254,16.043/ 
C       CP VALUE OF THE COMB. PRODUCTS AND THE ENTHALPY 
C       DIFFERNECES RELATED TO THE VAPOR CYCLE. 
C       ************************************************ 
          DATA CPG,TVAP,DH1W,DH2W,DH3W/1.147,250.4,291.1, 
        -1714.1,521.2/ 
          DATA EWPHX/67.88,69.15,1135.64,623.13/ 
C       QARU : HEAT TRANSFERRED TO THE ARU PER UNIT MASS OF 
C       WATER IN THE STEAM CYCLE, WSTUR, WSPMP : SPECIFIC 
C       WORKS OF TURBINE AND PUMP IN THE STEAM CYCLE, 
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C       COPVC : ASSUMED COP OF THE VAPOR COMP. REF. CYCLE 
C       ***************************************************** 
           DATA QARU,WSTUR,WSPMP,COPVC/2077.23,449.12,4.67,2.8/ 
C       INPUT FILE : GTARIN, OUTPUT FILES : AMEXER, GTAROUT 
          OPEN(5,FILE='GTARIN.DAT',STATUS='OLD') 
          OPEN(6,FILE='GTAROUT.DAT',STATUS='NEW') 
          OPEN(8,FILE='AMEXER.DAT',STATUS='NEW') 
C       FOLLOWING ARE GIVEN PRESSURES AND TEMPERATURES AT 
C       VARIOUS STATE POINTS. 
C       ************************************************** 
         P(9)=0. 
         P(10)=0. 
         T(9)=0. 
         T(10)=0. 
         P(11)=4000. 
         T(11)=623. 
         P(12)=0. 
         T(12)=0. 
         P(13)=300. 
         T(13)=406.6 
         P(14)=0. 
         T(14)=0. 
         P(15)=300. 
         T(15)=406.6 
         P(16)=4000. 
         T(16)=407.6 
         P(17)=0. 
         T(17)=0. 
C       **************************************************** 
C       READING INPUT VALUES FROM GTARIN.DAT 
C       PRCOMP : PRESSURE RATIO OF THE COMPRESSOR 
C       POWNET : NET POWER OF THE CYCLE 
C       TCCIN, TCCOUT : COMB. CHAMBER INLET AND EXIT TEMPS. 
C       DPAPA, DPAPB : PRESSURE DROPS (%) ON THE AIR SIDE 
C       AND THE GAS SIDE OF THE AIR PREHEATER RESP. 
C       DPCC,DPHRSG : PRESSURE DROPS IN THE COMB. CHAMBER 
C       AND THE HEAT RECOVERY STEAM GENERATOR RESP. 
C       ETAC,ETAT,ETAAP, ETAWHB  : EFFICIENCY OF DEVICES 
C       YCC : RATIO OF CARBON IN THE FUEL CONVERTED TO CO2 
C       TMINC : EXIT TEMP. OF GASES FROM HRSG (ASSUMED 154 C) 
C       COPARU : COP OF THE ABSORBTION REF. UNIT 
C       RINT : INTEREST RATE, EN : ECONOMIC LIFE OF SYSTEM 
C       SPC... : COST PER KW OF DEVICE, ZF : FUEL COST ($/M3) 
C       ***************************************************** 
          READ(5,100)BASLIK 
  100  FORMAT(10A6) 
         READ(5,110)P1,T1,PRCOMP,POWNET 
    10 FORMAT(F8.1,F8.2,F6.1,F10.1) 
         READ(5,120)TCCIN,TCCOUT 
  120 FORMAT(2F8.1) 
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         READ(5,130)DPAPA,DPCC,DPAPB,DPHRSG 
  130 FORMAT(4F6.2) 
         READ(5,140)PFUEL,TFUEL 
  140 FORMAT(F8.1,F8.2) 
         READ(5,150)ETAC,ETAT,ETAAP,ETAWHB 
  150 FORMAT(4F6.2) 
         READ(5,160)YCC,TMINC,COPARU 
  160 FORMAT(F6.3,F8.1,F6.2) 
         READ(5,170)RINT,EN,SPCGT,SPCARU,SPCST,ZFUEL 
  170 FORMAT(F8.3,F5.1,3F8.1,F8.3) 
C      ********************************************* 
C       CALCULATION OF H,S AND E OF AIR AT T(I),P(I) 
C       SUBROUTINE PROPER IS USED FOR THIS PURPOSE. 
C       ********************************************* 
          EPS=0.00001 
          P(8)=PFUEL 
          T(8)=TFUEL 
          BEYCC=1.0-YCC 
C       ****************************** 
C       STATE 1 IS INLET TO COMPRESSOR 
C       ****************************** 
          HONE=0.0 
          SONE=0.0 
          T(1)=T1 
          P(1)=P1 
          DO 10 I=1,4 
          PARP=PO*YA(I) 
          NV=NSUBA(I) 
          TV=TO 
          CALL PROPER(TV,PARP,CPIV,HIV,SIV,NV) 
          HONE=HONE+YA(I)*HIV 
          SONE=SONE+YA(I)*SIV 
   10   CONTINUE 
          H(1)=HONE 
          S(1)=SONE 
          EXPH(1)=0.0 
          T1A=T(1) 
          TAVE=T1A+100. 
          T2SOLD=TAVE 
C       **************************************** 
C       STATE 2 IS THE EXIT OF THE COMPRESSOR. 
C       TEMP AT THE EXIT IS FOUND ITERATIVELY 
C       BY CONSIDERING CP AS A FUNCTION OF T. 
C       **************************************** 
   22   CONTINUE 
          Y=(TAVE-273.15)/100. 
          CPAV=-0.2*Y**2+1.56*Y+28.48 
          CVAV=CPAV-8.314 
          AK=CPAV/CVAV 
          US=(AK-1.)/AK 
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          T2S=T1A*PRCOMP**US 
          DELTA=ABS(T2S-T2SOLD) 
          IF(DELTA.LT.0.1)GO TO 24 
          T2SOLD=T2S 
          TAVE=0.5*(T1A+T2S) 
          GO TO 22 
   24   T(2)=T1A+(T2S-T1A)/ETAC 
          P(2)=P(1)*PRCOMP 
          HTWO=0.0 
          STWO=0.0 
          TTWO=T(2) 
          DO 26 I=1,4 
          NV=NSUBA(I) 
          PARP=P(2)*YA(I) 
          CALL PROPER(TTWO,PARP,CPIV,HIV,SIV,NV) 
          HTWO=HTWO+HIV*YA(I) 
          STWO=STWO+SIV*YA(I) 
   26   CONTINUE 
          H(2)=HTWO 
          S(2)=STWO 
          EXPH(2)=H(2)-H(1)-TO*(S(2)-S(1)) 
          WC=H(2)-H(1) 
C       ************************************************* 
C       STATE 3 IS THE EXIT OF THE AIR PREHEATER OR THE 
C       INLET TO THE COMB. CHAM., TEMP. TCCIN IS GIVEN 
C       ************************************************** 
          P(3)=P(2)*(1.0-DPAPA) 
          T(3)=TCCIN 
          HTHRE=0.0 
          STHRE=0.0 
          TTHRE=T(3) 
          DO 34 I=1,4 
          NV=NSUBA(I) 
          PARP=P(3)*YA(I) 
          CALL PROPER(TTHRE,PARP,CPIV,HIV,SIV,NV) 
          HTHRE=HTHRE+HIV*YA(I) 
          STHRE=STHRE+SIV*YA(I) 
   34   CONTINUE 
          H(3)=HTHRE 
          S(3)=STHRE 
          EXPH(3)=H(3)-H(1)-TO*(S(3)-S(1)) 
C       **************************************************** 
C       STATE 4 IS THE EXIT OF COMB. CHAM., TCCOUT IS GIVEN 
C       CALCULATIONS IN THE COMBUSTION CHAMBER INVOLVE THE 
C       DETERMINATION OF LAMBDA, THE FUEL/AIR RATIO, THEN 
C       EXERGY IS CALCULATED TAKING INTO ACCOUNT THE 
C       PROBABLE CONDENSATION OF WATER IN THE PRODUCTS WHEN 
C       BROUGHT TO ENVIRONMENTAL CONDITIONS. 
C       **************************************************** 
          TFOUR=TCCOUT 
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          T(4)=TCCOUT 
          P(4)=P(3)*(1.0-DPCC) 
          PFOUR=P(4) 
          DO 36 I=1,5 
          NV=NSUBP(I) 
          CALL PROPER(TFOUR,100.,CPIV,HIV,SIV,NV) 
          HPROD(I)=HIV 
   36   CONTINUE 
          HTERA=HTHRE 
          TERX=YCC*HPROD(1)+BEYCC*HPROD(2) 
          HTERB=0.0003*TERX 
          HTERC=0.5*(0.4121-0.0003*YCC)*HPROD(3) 
        -+0.019*HPROD(4)+0.7748*HPROD(5) 
          HTERD=TERX-0.5*(3.+YCC)*HPROD(3)+2.0*HPROD(4) 
          CALL PROPER(TFUEL,PFUEL,CPIV,HIV,SIV,7) 
          H(8)=HIV 
          S(8)=SIV 
          CALL PROPER(TO,PO,CPIV,HIV,SIV,7) 
          EXPH(8)=(H(8)-HIV)-TO*(S(8)-SIV) 
          ALAM=(HTERB+HTERC-HTERA)/(H(8)-16047.2-HTERD) 
          ENPT=ALAM*(1.5-0.5*YCC)-0.00015*YCC+1.00015 
          YP(1)=(ALAM+0.0003)*YCC/ENPT 
          YP(2)=(ALAM+0.0003)*BEYCC/ENPT 
          YP(3)=0.5*(0.4121-ALAM*(3.0+YCC)-0.0003*YCC)/ENPT 
          YP(4)=(2.0*ALAM+0.019)/ENPT 
          YP(5)=0.7748/ENPT 
          DO 38 I=1,5 
          YPS(I)=YP(I) 
   38   CONTINUE 
          HFOUR=0.0 
          SFOUR=0.0 
          DO 42 I=1,5 
          IF(YP(I).LT.EPS)GO TO 42 
          PARP=YP(I)*PFOUR 
          NV=NSUBP(I) 
          CALL PROPER(TFOUR,PARP,CPIV,HIV,SIV,NV) 
          HFOUR=HFOUR+YP(I)*HIV 
          SFOUR=SFOUR+YP(I)*SIV 
   42   CONTINUE 
          H(4)=HFOUR 
          S(4)=SFOUR 
          PVAP=PO*YP(4) 
          IF(PVAP.LT.3.17)GO TO 48 
          XTH2O=YP(4) 
          XND=1.0-XTH2O 
          XGH2O=0.0323*XND 
          TOTNG=XND+XGH2O 
          DO 44 I=1,5 
          YPNEW(I)=YP(I)/TOTNG 
   44   CONTINUE 



 

 7 
 

          YP(6)=YP(4)-XGH2O 
          YP(4)=XGH2O 
          YPNEW(4)=XGH2O/TOTNG 
          GO TO 56 
   48   CONTINUE 
          DO 50 I=1,5 
          YPNEW(I)=YP(I) 
   50   CONTINUE 
   56   HPRODO=0.0 
          SPRODO=0.0 
C       *************************************** 
C       CALCULATION OF THE CHEMICAL EXERGY FOR 
C       THE COMBUSTION PRODUCTS 
C       *************************************** 
          CHEMA=0.0 
          CHEMB=0.0 
          DO 58 I=1,5 
          IF(YPNEW(I).LT.EPS)GO TO 58 
          CHEMA=CHEMA+YPNEW(I)*CEX(I) 
          CHEMB=CHEMB+YPNEW(I)*ALOG(YPNEW(I)) 
   58   CONTINUE 
          CHEMEX=TOTNG*(CHEMA+8.314*298.15*CHEMB)+YP(6)*CEX(6) 
          DO 60 I=1,5 
          PERMOL=YPNEW(I) 
          NV=NSUBP(I) 
          IF(PERMOL.LT.EPS)GO TO 60 
          PARP=PERMOL*PO 
          CALL PROPER(TO,PARP,CPIV,HIV,SIV,NV) 
          HPRODO=HPRODO+YP(I)*HIV 
          SPRODO=SPRODO+YP(I)*SIV 
   60   CONTINUE 
          HPRODO=HPRODO+YP(6)*(-285829.0) 
          SPRODO=SPRODO+YP(6)*69.948 
          EXPH(4)=(H(4)-HPRODO)-TO*(S(4)-SPRODO) 
          P(7)=PO 
          P(6)=P(7)/(1.0-DPHRSG) 
          P(5)=P(6)/(1.0-DPAPB) 
          PRTINV=P(5)/P(4) 
          TAVE=T(4)-100. 
          T5SOLD=TAVE 
C       *********************************************** 
C       STATE 5 IS THE EXIT OF THE TURBINE 
C       TEMP. AT STATE 5 IS CALCULATED ITERATIVELY BY 
C       CONSIDERING CP AS A FUNCTION OF T 
C       *********************************************** 
   62   CONTINUE 
          CPAV=0.00355*TAVE+30.818 
          CVAV=CPAV-8.314 
          AK=CPAV/CVAV 
          US=(AK-1.)/AK 
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          T5S=T(4)*PRTINV**US 
          DELTA=ABS(T5S-T5SOLD) 
          IF(DELTA.LT.0.1)GO TO 64 
          T5SOLD=T5S 
          TAVE=0.5*(T(4)+T5S) 
          GO TO 62 
   64   T(5)=T(4)-ETAT*(T(4)-T5S) 
          TFIVE=T(5) 
          PFIVE=P(5) 
          HFIVE=0. 
          SFIVE=0. 
          DO 68 I=1,5 
          IF(YPS(I).LT.EPS)GO TO 68 
          NV=NSUBP(I) 
          PARP=YPS(I)*PFIVE 
          CALL PROPER(TFIVE,PARP,CPIV,HIV,SIV,NV) 
          HFIVE=HFIVE+HIV*YPS(I) 
          SFIVE=SFIVE+SIV*YPS(I) 
   68   CONTINUE 
          H(5)=HFIVE 
          S(5)=SFIVE 
          EXPH(5)=H(5)-HPRODO-TO*(S(5)-SPRODO) 
          ALAMP1=ALAM+1. 
          WT=H(4)-H(5) 
          ENDAIR=POWNET/(ALAMP1*WT-WC) 
          ENDPRD=ENDAIR*ALAMP1 
C       ************************************************** 
C       CALCULATION OF H6 AND T6 AT EXIT OF AIR PREHEATER 
C       ************************************************** 
          HSIXA=H(5)-ENDAIR*(H(3)-H(2))/(ENDPRD*ETAAP) 
          PSIX=P(6) 
C       ************************************************** 
C       34.91 IS THE CP OF PRODUCTS AT 875 C IN KJ/KMOL-K 
C       ************************************************** 
          T6P=T(5)-(H(5)-HSIXA)/34.91 
   70   HSIX=0. 
          SSIX=0. 
          DO 72 I=1,5 
          IF(YPS(I).LT.EPS)GO TO 72 
          NV=NSUBP(I) 
          PARP=YPS(I)*PSIX 
          CALL PROPER(T6P,PARP,CPIV,HIV,SIV,NV) 
          HSIX=HSIX+HIV*YPS(I) 
          SSIX=SSIX+SIV*YPS(I) 
          CPIX=CPIX+CPIV*YPS(I) 
   72   CONTINUE 
          DIFREN=HSIXA-HSIX 
          IF(ABS(DIFREN).LT.1.0)GO TO 76 
          T6P=T6P+(HSIXA-HSIX)/CPIX 
          GO TO 70 
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   76   H(6)=HSIX 
          S(6)=SSIX 
          T(6)=T6P 
          EXPH(6)=H(6)-HPRODO-TO*(S(6)-SPRODO) 
C       *********************************************** 
C       CALCULATION OF H7,S7 AND EX7, EXIT OF HRSG 
C       A MINIMUM TEMPERATURE IS SITIPULATED TO BE ON 
C       THE SAFE SIDE FOR DANGER OF CONDENSATION. 
C       THIS TEMPERATURE IS APPROX. 427 K  (154 C). 
C       *********************************************** 
          TSEVEN=TMINC 
          PSEVEN=P(7) 
          HSEVEN=0. 
          SSEVEN=0. 
          DO 82 I=1,5 
          IF(YPS(I).LT.EPS)GO TO 82 
          NV=NSUBP(I) 
          PARP=YPS(I)*PSEVEN 
          CALL PROPER(TSEVEN,PARP,CPIV,HIV,SIV,NV) 
          HSEVEN=HSEVEN+HIV*YPS(I) 
          SSEVEN=SSEVEN+SIV*YPS(I) 
   82   CONTINUE 
          T(7)=TSEVEN 
          H(7)=HSEVEN 
          S(7)=SSEVEN 
          EXPH(7)=H(7)-HPRODO-TO*(S(7)-SPRODO) 
C       *************************************************** 
C       STATE 8 REPRESENTS THE ENTRY OF FUEL 
C       STATES 9 AND 10 ARE FICTITIOUS STATES REPRESENTING 
C       WORK FLOWS (TO COMP. AND NET) FROM THE GAS TURBINE 
C       *************************************************** 
          EMDOT(1)=ENDAIR*EMAIR 
          EMDOT(2)=EMDOT(1) 
          EMDOT(3)=EMDOT(1) 
          EMDOT(4)=ENDPRD*EMPROD 
          EMDOT(5)=EMDOT(4) 
          EMDOT(6)=EMDOT(4) 
          EMDOT(7)=EMDOT(4) 
          EMDOT(8)=ALAM*EMFUEL*ENDAIR 
          EMDOTF=EMDOT(8) 
          POWERC=WC*ENDAIR 
          POWERT=WT*ENDPRD 
          EXPHR(1)=EXPH(1)*ENDAIR 
          EXPHR(2)=EXPH(2)*ENDAIR 
          EXPHR(3)=EXPH(3)*ENDAIR 
          EXPHR(4)=ENDPRD*(EXPH(4)+CHEMEX) 
          EXPHR(5)=ENDPRD*(EXPH(5)+CHEMEX) 
          EXPHR(6)=ENDPRD*(EXPH(6)+CHEMEX) 
          EXPHR(7)=ENDPRD*(EXPH(7)+CHEMEX) 
          EXPHR(8)=ALAM*ENDAIR*(EXPH(8)+CEX(7)) 
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          PWRNET=POWERT-POWERC 
          EXPHR(9)=PWRNET 
          EXPHR(10)=POWERC 
          COSTGT=SPCGT*PWRNET 
C       *********************************************** 
C       CALCULATION OF THE STEAM SIDE AND ARU EXERGIES 
C       STATES 11 AND 13 ARE ENTRY AND EXIT OF THE S.T. 
C       STATES 15 AND 16 ARE ENTRY AND EXIT OF PUMP 
C       ENTRY AND EXIT TO ARU HX ARE STATES 13 AND 15 
C       FICTITIOUS STATES 12 AND 17 REPRESENT WORK OF 
C       THE STEAM TURBINE AND THE PUMP. 
C       FICTITIOUS STATE 14 REPRESENT THE COOLING 
C       EFFECT OF THE ARU. 
C       *********************************************** 
          CAPRAT=CPG*EMDOT(6) 
          TPINCH=TVAP+20.0 
          EMW=CAPRAT*(TPINCH-TMINC+273.)/DH3W 
   84   TMT=TPINCH+EMW*(DH2W+DH1W)/CAPRAT 
          TFARK=T(6)-273.0-TMT 
          IF(ABS(TFARK).LT.0.1)GO TO 86 
          EMW=EMW+0.01*TFARK 
          GO TO 84 
   86   EMDOT(11)=EMW 
          EMDOT(13)=EMW 
          EMDOT(15)=EMW 
          EMDOT(16)=EMW 
          EMDOT(17)=EMW 
          EXPHR(11)=EMW*EWPHX(3) 
          EXPHR(12)=EMW*WSTUR 
          EXPHR(13)=EMW*EWPHX(4) 
          ARUCE=EMW*QARU*COPARU 
          EX14TR=ARUCE/COPVC 
          EXPHR(14)=ARUCE/COPVC 
          EXPHR(15)=EMW*EWPHX(1) 
          EXPHR(16)=EMW*EWPHX(2) 
          EXPHR(17)=EMW*WSPMP 
          COSTST=SPCST*EXPHR(12) 
          COSTARU=SPCARU*ARUCE 
C       ************************************************ 
C       END OF CALCULATIONS OUTPUT IS WRITTEN TO FILES : 
C       8 = AMEXER.DAT AND 6 = GTAROUT.DAT 
C       ************************************************ 
          WRITE(8,400)BASLIK 
  400  FORMAT(10A6) 
          WRITE(8,410)RINT,EN 
  410  FORMAT(F10.3,F5.1) 
          WRITE(8,420)COSTGT,COSTARU,COSTST 
  420  FORMAT(3E10.3) 
          WRITE(8,430)EMDOTF,ZFUEL 
  430  FORMAT(2F10.3) 
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          WRITE(8,440)EXPHR 
  440  FORMAT(6F10.1) 
C       ********************************************** 
          WRITE(6,300)BASLIK 
  300  FORMAT(8X,10A6,/, 
        -8X,'c (2005) A. Elhannan, T. Derbentli',/) 
          WRITE(6,310)P1,T1 
  310  FORMAT(8X,'AIR INLET  PRES. : ',F8.1,' kPa, AND TEMP. :', 
        -F7.1,' K') 
          WRITE(6,312)PFUEL,TFUEL 
  312  FORMAT(8X,'FUEL INLET PRES. : ',F8.1,' kPa, AND TEMP. :', 
        -F7.1,' K') 
          WRITE(6,314)PRCOMP,POWNET 
  314  FORMAT(8X,'COMP. PRES. RATIO :',F6.1,' ,    NET POWER : ', 
        -F8.1,' kW') 
          WRITE(6,320)TCCIN,TCCOUT 
  320  FORMAT(8X,'COMB. CHAMBER INLET AND OUTLET TEMPS : ', 
        -F6.1,F7.1,' K',/) 
         WRITE(6,322)DPAPA,DPAPB,DPCC 
  322  FORMAT(8X,'PRESSURE DROPS AS FRACTION OF INLET PRESSURE,  
        -/8X,'AIR PREHEATER, AIR SIDE : ',F4.2,'  GAS SIDE : ',F4.2, 
        -/8X,'COMBUSTION CHAMBER : ',F4.2,/) 
          WRITE(6,326)ETAC,ETAT,ETAAP 
  326  FORMAT(8X,'COMPRESSOR AND TURBINE EFFICIENCIES :  
          ',F4.2,F5.2,/ 
        -8X,'AIR PREHEATER EFFECTIVENESS         : ',F4.2) 
          WRITE(6,330)TMINC 
  330  FORMAT(8X,'FLUE GAS TEMPERATURE : ',F6.1,' K') 
          WRITE(6,340)COPARU 
  340  FORMAT(8X,'COP OF THE ABSORPTION REF. UNIT : ',F5.2,/) 
          WRITE(6,344) 
  344  FORMAT(8X,'STATE   MDOT(kg/s)  P(kPa)      T(K)', 
        -'EX RATE (kW)',/) 
          DO 90 I=1,17 
          WRITE(6,350)I,EMDOT(I),P(I),T(I),EXPHR(I) 
  350  FORMAT(8X,I3,5X,F8.2,2F10.1,F14.1) 
    90  CONTINUE 
          STOP 
          END 
C       ****************************************************** 
          SUBROUTINE PROPER(TEMP,PRES,CPV,HV,SV,MKOD) 
C       T (K) , P (kPa) BIRIMLERINDE OLMALIDIR. 
C       MKOD : SUBSTANCE CODE = CO2,CO,H2O,O2,N2,H2O(L),CH4 
C       ****************************************************** 
          DIMENSION HARTI(7),SARTI(7),A(7),B(7),C(7),D(7) 
          DATA HARTI/-413.886,-120.809,-253.871,-9.589,-9.982, 
        --289.932,-81.242/ 
          DATA SARTI/-87.078,18.937,-11.75,36.116,16.203, 
        --67.147,96.731/ 
          DATA A/51.128,30.962,34.376,29.154,30.418,20.355,11.933/ 
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          DATA B/4.368,2.439,7.841,6.47,2.544,109.198,77.647/ 
          DATA C/-1.469,-0.28,-0.423,-0.184,-0.238,2.033,0.142/ 
          DATA D/3*0.0,-1.017,0.0,0.0,-18.414/ 
          M=MKOD 
          Y=TEMP/1000. 
          PPART=PRES 
          YKAR=Y*Y 
          YKUB=YKAR*Y 
          HAV=HARTI(M) 
          SAV=SARTI(M) 
          AV=A(M) 
          BV=B(M) 
          CV=C(M) 
          DV=D(M) 
          CPV=AV+BV*Y+CV/YKAR+DV*YKAR 
          HV=1000.0*(HAV+AV*Y+0.5*BV*YKAR-CV/Y+DV*YKUB/3.0) 
          SBO=SAV+AV*ALOG(TEMP)+BV*Y-0.5*CV/YKAR+0.5*DV*YKAR 
          SV=SBO-8.314*ALOG(PPART/100.0) 
          RETURN 
          END 
 
Input data for the thermodynamic analysis program is given below: 
 

Table A.1. Input data of the thermodynamic analysis program 
 

ANALYSIS OF THE GAS TURBINE ARU TRIGENERATION SYSTEM 
101.3 298.15  10.0    10000.0   
 850.0 1520.0     
0.05 0.05   0.03   0.05   
1200.0   298.15     
0.86   0.86   0.95   1.00   
1.000    427.0  0.60    
0.100 10.0   700.0   800.0   1000.0   0.2 

 

First row shows the inlet pressure of the compressor in kPa, the inlet temperature of 

the compressor in degree K, the pressure ratio 
1

2

P
P  and the power output of the 

turbine in kW respectively. 

Second row shows combustion chamber inlet temperature degree K, the turbine inlet 

temperature degree K respectively.  

Third row shows the pressure drop of the air preheater on the air side, the pressure 

drop of the combustion chamber, the pressure drop of the air preheater on the gas 

side and pressure drop of the heat recovery steam generator respectively.  

Fourth row shows the inlet pressure of the fuel (methane) in kPa and the inlet 

temperature of the fuel in degree K. 
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Fifth row shows the efficiency of the compressor, the efficiency of the turbine, 

effectiveness of the air preheater and effectiveness of the heat recovery steam 

generator respectively. 

Sixth row shows the quality x of the steam, the exhaust temperature in degree K  and 

the coefficient of performance of the ARU respectively.  

Seventh row shows the interest rate, economic life of the investment, the specific 

cost of the gas turbine in $/kW, the specific cost of the ARU in $/kW, the specific 

cost of the steam turbine in $/kW and cost of fuel in $/m3 respectively. 

Output data for the thermodynamic analysis program is given below: 
Table A.2. Output data of the thermodynamic analysis program 

STATE .
m  

(kg/s) 

P 
(kPa) 

T 
(K) 

EX RATE 
(kW) 

1 31.43 101.3 298.1 .0
2 31.43 810.4 565.2 8225.4
3 31.43 769.9 850.0 13836.8
4 32.00 731.4 1520.0 34213.4
5 32.00 109.9 1048.7 14536.2
6 32.00 106.6 774.5 7369.6
7 32.00 101.3 427.0 957.1
8 .57 1200.0 298.1 29269.4
9 .00 .0 .0 10000.0
10 .00 .0 .0 8884.0
11 4.23 4000.0 623.0 4805.9
12 .00 .0 .0 1900.6
13 4.23 300.0 406.6 2637.0
14 .00 .0 .0 1883.7
15 4.23 300.0 406.6 287.3
16 4.23 4000.0 407.6 292.6
17 .00 .0 .0 19.8

 

First column shows the number of state points of the system.  

Second column shows the mass flow rates at different state points of the system in 

kg/s. 

Third column shows the pressures at different state points of the system in kPa. 

Fourth column shows the temperatures at different state points of the system in 

degree K. 

Fifth column shows the exergy rates at different state points of the system in kW. 
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