T.C.
SELCUK UNIVERSITESI
FEN BILIMLERI ENSTITUSU

MANTIKSAL FONKSIYONLARIN

SADELESTIRILMESI

Ibrahim SAVRAN

YUKSEK LISANS TEZi
BILGISAYAR MUHENDISLIGI
ANABILIM DALI

Konya - 2006

Yiiksek Lisans Tezi
Selcuk Universitesi Fen Bilimleri Enstitiisii
Bilgisayar Miihendisligi Anabilim Dali

Yil: 2006
Sayfa: 82

OZET

Mantiksal fonksiyonlariin sadelestirilmesi tasarimcilara daha kisa zaman siiresinde ve
daha sade lojik devreler tasarlama imkéani1 saglamaktadir. Fonksiyonlarin sadelestirilmesi su

avantajlar1 bize sunmaktadir:

e @iic tiikketimi azaltilmast,
e Daha kii¢iik hacim,
e Daha az maliyet,

Bu konu ile ilgili olarak tek ve ¢ok ¢ikish fonksiyonlarin sadelestirilmesi i¢in ¢esitli
teknikler gelistirilmistir. Bu tekniklerin ¢ogu iki ana asamada gergeklestirilir. Birinci
asamada, asal implikantlarin tiimii belirlenir. ikinci adimda fonksiyonu sadelesmis olarak
ortecek, esas asal implikantlar kiimesi belirlenir. Anahtarlama fonksiyonlarin1 sadelestirecek
algoritmalarin tiimii O(2") karmasikligina sahiptirler. Aragtirmalar gostermistir ki n” in ¢ok
yiikksek degerlerinde esas asal implikantlarin tam kiimesini belirleme yontemi pratik olarak
gerceklestirilemez duruma gelmektedir. Bu yiizden bu doktora tezinde asal implikantlarin
belli kistaslara cevap verecek alt kiimeleri olusturularak, dogrudan oOrtme (direct cover)

prensibine dayanan bir minimumlastirma yontemi gelistirilmistir.

Anahtar Kelimeler - Mantiksal fonksiyon, sadelestirme, minimumlastirma, Boole ifadesi, asal
implikant, kiip cebri, Ortme algoritmasi, algoritmalarin karmasikligi, Off-kiime tabanh

minimumlastirma, dogrudan drtme prensibi.

II

Master Thesis

Selcuk University Graduate School of
Natural and Applied Sciences
Departman of Computer Engineering
Year: 2006

Page: 82

ABSTRACT

The Minimization of Boolean functions allows designers these advantages:

e Fewer components
¢ Reducing the cost of particular system,
® Reducing power consuming,

Most of single-output and multiple-outputs boolean minimization techniques work on
a two step principle, the first step identifies all of the prime implicants (PI’ s) and the second
step selects the subset of PI’ s that covers the function(s) being minimized. All procedures for
reducing either two-level or multilevel Boolean networks into prime and irredundant form
have O(2") complexity. Prime Implicants identification step can be computational impractical
as n increases. Thus, in this master thesis, subsets of prime implicants that can prove direct

cover principle which based on determineted criters use for mimimization method.

Keyword(s): logic functions, simplification, mimimization, boolean expression, Prime

implicant, cube algebra, cover algorithm, complexity, direct cover principal.

I

TESEKKUR

Bu yiiksek lisans tez calismalarim boyunca bana yol gosterip her tiirlii yardimim
esirgemeyen tez danismanim degerli hocam Dog. Dr. Sirzad KAHRAMANLI ya, akademik
calismalarimda bana sabirla ¢calismamu tavsiye eden Bilgisayar Miihendisligi Bolim Baskani
Prof. Dr. Ahmet ARLAN’ a, tez ve makale arastirma asamasinda bana yol gosteren hocalarim
Ars. Gor. Omer KAAN BAYKAN’ a ve Ars. Gor. Omer Harun UGUZ ’a, yetismemde emegi
gecen tiim hocalarima, maddi ve manevi yardimlarim1 hi¢bir zaman esirgemeyen ve daima

beni tesvik eden anneme ve babama tesekkiir ederim.

v

ICINDEKILER

OZET ...ttt et I
ABSTRACT ...ttt ettt ettt et eh ettt et et st e e b e et nbe et I
TESEKKUR ..ottt es s ee s se s sasa e aeses s s eeasasanannas v
ICINDEKILER........c.coouitiiiieieieeeeie ettt ettt sesenaesaes \%
SIMGELERcooouiiiiiiitie ettt e Vil
KISALTMALAR ..ottt sttt sttt et sa st e b ettt ees VI
I GIRIS ottt 1
1.1 Anahtarlama Fonksiyonlarinin Sadelestirilmesi i¢in Coziim Yontemleri.................. 3
1.2 Tezin AMACt V& ONEMIoeovvveceeiieceeeeeeeee ettt n e 4
1.3 MaALETYal V& MELOL ...ttt et ettt ettt see e et eaee e e e e et eene 6
1.4 Kaynak ATatirmasi......coccueeiuiiiiiiiiie ettt ettt ee et e s e e 7

2 MANTIK FONKSIYONLARINI SADELESTIRME METOTLARI..........cccccovevrneann 9
2.1 Fonksiyon TanimIartc.oeoieeiiriieieiee ettt 9
2.2 Karnaugh Haritast MetOAUccceeeiiiiiiiinienieee ettt 10
2.2.1 KH Metodunun Kullanimi «.....cooceeeiiiiiiiiiiiiiiiccte e 11

2.3 Cebirsel Sadelestirme YONtEMIETI......ccuvveieiuiieieeiiie ettt 11
2.3.1 Tablo Yontemi (Quine-McCluskey metodu)coeevveeviieeiieeniieeinieeeiie e 11
2.3.1.1 Asal implikantlarin bulunmasiccecceeriiiiniiinnie e 12

2.3.1.2 Minimum Al kilmesinin SeGilmesicoeverveveiruereieieereeereeieeeee e 12

2.3.1.3 QMM kullanim alanlari............cc..cooeviiiinireeeieeieiiiiirreee e e 14

232 Petrick MELOAUco.eiiuiiiiiiiiiiitet ettt st 15
2.3.3 ESPRESSO-IT AIZOTItMASTvveeeiieeiieeiieeeiteeeiieeeiie et eesveeesereesbaeeneeeens 16
2.3.3.1 Daraltma islemi (F€dUCE)eeeeeeviiiieeiiii et 20

2.3.3.2 Genisletme islemi (EXPand)........cccueerrrieeriiieriieenieeeiie e 20

2.3.3.3 KOFAKLOT ..ottt ettt 21

2.3.3.4 ESPresso algOritmMasSl......ccccueerieienieeriiieerieesieeesireesieeeseeesseeessseesssseesseesnnns 22

2.3.3.5 ESPRESSO-II Programi.......ccccceeierienieeieeieeieee ettt 23

2.3.3.6 Espresso dosya fOrmMALl.........ccecuieriieriienieeieeieeeee ettt 24

3 YAKIN MINIMALI ORTME ALGORITMASIccevevemiirreieeeeeeeerieee e 26
3.1 ISArEHIErin GOSIEIIIM ... e ee et ee et et ee e neseneseeeeeeeneea 27
3.2 YMOA kullanilan Kiip Cebri’ nin Elemanlar1 ve Uygulama bigimleri.................... 28
321 Kiip Cebri Elemanlar1 Ve Uygulama Bigimicocceviieiieiieniieeieeeeee 29
322 Kiip Cebrinin ISIEMIri.........ccccveviviieieeieiceeieeececie e, 30
3.2.2.1 Koordinatli carpma iglemi (F€- iS1emi)........ccoocerererirerererieieneieeeeeeenes 30

3.2.2.2 Koordinath ¢ikarma islemi (# islemi)ccccoeeiiiniieniiienieceeeeeeee e, 33

3.2.2.3 Doniisimlil YUtma ISIEMI «..o.v.veveeeeeeeeeeeeeeeeeeeeee e 35

3.2.2.4 Asal Implikantlarin Yerel Belitlenmesiccccoeveverveveveueveeceeseeeeeeneanns 36

3.2.2.5 Koordinatli Kesisme Islemi (M 1S18M1) ...ouueeeeeeveeeeeeeeeeeeeeeeeeeeeeeeeeereeeeenns 37

323 Yakin-Minimali Ortme AlgOritmast..........cocoveeveveveerevrereeeereseesceeeesesesenenens 38
3231 YMOA OINETi..ueveieeieieieeiieeieeee et 38

33 Kiip Cebri Islemlerinin Temel Bilgisayar Islemleri Uzerinden Gergeklestirilmesi.41
3.4 Yakin Minimali Ortme Algoritmasi Pseudo Koduccccoevevueveverererrerereceenne. 45

4 SADELESTIRME ALGORITMALARININ KARMASIKLIK ANALIZI 47
4.1 Karmagiklik (COMPIEXILY)....eeuvieieeiieeieeieestie et ie ettt ettt et eae e eeneean 47
4.2 Algoritmalarda Karmasiklik (Complexity) ve Zaman Karmasikligi Analizi........... 48
42.1 Isletim Zamani (RUNNING TiME).........ccooovevivevrieeeceeeeeeeeeeeeees e 48

5

6
7

422 ASITMPLOtIK ANALIZ ...ttt e 49

4.2.2.1 Biiylk-O GOsterimi (NOtaSYONU)cc.cereerruerrieeneerieeieeieenieeneeeseeeseeesseesnnes 49
4.2.2.2 Pratikte KarmagiKIiK.........ccccooiiiiiiiiniiiiieeeee e 52

4.3 Algoritmalarin Karmagiklik Degerlendirmesi.........ccocceeveerieiierieeneenieenniensieeneeene. 53
44 QMM Aralik Degerleri Sayisinin Bulunmasi ve Karmagiklik Degerlendirilmesi... 58
4.5 Metodlarin KarstlagtirtimasT.......cc.ueeeeeevieeieiiiee et ettt e s 60
SONUC VE ONERILERccoitiiiiiieeieieeieee e 67
5.1 SOMIUG ..ttt et et ettt ettt et e e at e e te e bt e e at e et e e st e eeteeateeateene e neeeneean 67
5.2 OMEIILET...oveveeieceecee ettt sttt 69
KAYNAKLAR ..ottt sttt ettt s b e e st 70
Ek-A YMOA ALGORITMASININ PROGRAM KODLARL...........ccccocevverrrerrrran. 76

VI

SIMGELER

Koordinatli Carpma (Coordinate Product, Star Product).

*
Koordinath ¢ikarma (Coordinate Subtraction, Sharp product).
M Koordinatli Kesisme (Coordinate Intersection).

A Degismeli yutma islemi (commutative absorption operation).
*-d Belirsiz ya da keyfi deger (Don’t Care).

Ancak ve ancak baglantisi.

Birlegsme islemi.

Minterm (Carpim Terimi) .

22 C ¢

Maxterm (Toplam Terimi) .
{0, 1, x} Boolean degiskenin tanimlanma uzay1.
{0,1,d} Boolean fonksiyon tanimlama uzay1.

X Degisken.

n Fonksiyonun bagl oldugu degisken sayisi.
k; kiipiin koordinat ekseni.
k,

i k; koordinat ekseni iizerindeki bir deger.

O(g(n)) Karmasiklik ifadesi.

L Fonksiyon icin gerekli olan mintermler,
Q Fonksiyon i¢in yasak olan mintermler,
D Fonksiyon i¢in gereksiz olan mintermler.

Son Dogru mintermlerin kiimesi.

Sorr Yanlis mintermlerin kiimesi.

Spc Fonksiyonun belirlenmemis oldugu mintermlerin kiimesi.
X Ortiilmek icin segilen On-minterm.

Ali(x) X mintermini kapsayan i. asal implikant.

Sai(x) X minterminin kapsadig tiim asal implikantlarin kiimesi.
EAI(x) X mintermin esas asal implikanti.

F On-kiimesi (Espresso Algoritmast).

R Off-kiimesi (Espresso Algoritmasi).

D Belirsizler kiimesi (Espresso Algoritmast).

v Diigiim.

viI

KISALTMALAR

Al
AIT
EAI
DST
KH
LSI
VLSI
POS
NPT
PM
PLA
SFs
QMM
YV
KV
(A%
SV
SOP
NP

Asal Implikant (Prime Implicant).

Asal Implikantlar Tablosu (Prime Implicant Table).

Esas Asal Implikant (Essential Prime implikant).
Dallandirma ve Sinirlandirma Teknigi (Branch and Bound Technique).
Karnaugh Haritasi.

Biiyiik Olcekli Devre (Large Scale Integrated).

Cok Biiyiik Olcekli Devre (Very Large Scale Integrated).
Toplam Terimlerinin Carpimi (Product of Sum).

Ortiideki ¢arpim terimlerinin sayis.

Petrik Fonksiyonu.

Programlanabilir Lojik Diziler (Programmable Logic Arrays).
Anahtarlama Fonksiyonlar1 (Switching Functions).

Quine McCluskey Metodu.

Yutma Vektorii (Absorption Vector).

Kesisme Vektorii (Vector Intersection).

Carpim Vektorii (Vector of Product).

Cikarma Vektorii (Vector of Subtraction).

Carpim Terimlerinin Toplam1 (Sum of Product).

Belirsiz Polinomal (Non deterministic Polinominal).

YMOA Yakin-Minimali Ortme Algoritmasi (Near-Minimal Cover Algortihm).

VIII

1 GIRIS

Boole cebri olarak bilinen matematiksel sistem iizerine ilk calismalar 1854 yilinda
George Boole tarafindan baglatilmistir. 1904 yilinda Amerikali Matematik¢i E.V. Hungtinton,
Boole cebrine yeni aksiyomlar eklemistir. 1938 yilinda Shannon, Boole cebrini devre
tasarimlarina uygulamistir. Bunun sonucunda Anahtarlama Cebri (Switching algebra) adi
alinda yeni bir bilim dali ortaya c¢kmstir (Brayton ve ark. 1984).
Dijital tasarimin bagladigi 1950’ 1i yillarda lojik kapilar (Logic Gates) pahali devre
elemanlariydi. Bundan dolayi, verilen lojik fonksiyonu daha az sayida elektronik elemanla
(kapilar ve diyot, direng¢ gibi kapilarin temel bilesenleri) gerceklestirmek icin yeni tekniklerin
gelistirilmesinin onemi artmistir. Boylece o yillarda, lojik fonksiyonlarin sadelestirilmesi
aragtirmalar1 ¢ok aktif bir Alan haline gelmistir. Karnaugh haritalari, iki seviyeli lojik
fonksiyonlarin (Two-Level Logic Functions) sadelestirilmesi icin maniiel olarak
kullanilmistir. Bu yontem 1953 yilinda Karnaugh tarafindan gelistirilmistir. Daha sonralari,
Quine ve McCluskey (McCluskey 1965) tarafindan yeni bir teknik gelistirilmistir. Bu yontem
1952 yilinda Quine tarafindan baslatilmis ve 1956 yilinda McCluskey tarafindan

gelistirilmistir. Bu yontem iki asamadan olusmaktadir:

1- Biitiin asal implikantlarin (prime implicants - Al) iiretilmesi

2- Minimum Ortiiniin olugturulmast.

Biitiin asal implikantlarin tiretilmesi ¢ok etkili bir hale gelse de, Hong ve Ostapko
tarafindan IBM’ de gelistirilen MINI (Hong ve ark. 1974) programi, n degiskenli lojik
fonksiyonun asal implikantlarinin sayisinin 3"/n kadar biiyiik olabilecegini gdstermistir. Buna
ek olarak, ikinci adim, genellikle dallandirma ve sinirlandirma teknigi ile gerceklestirilir. Bu
teknik NP-karmagiklik problemleri siifina ait olan minimum 6rtme probleminin ¢oziimiinii
icermektedir. Bu ise etkili kesin bir Algoritma bulma iimidini azaltir. Ornek olarak, minimum
ortme Algoritmasinin ¢alisma zamani, 6rtme problemindeki eleman sayilarindaki bir polinom
ile sinrlandirnlir. Ortiim probleminin elemanlar1 sayist lojik fonksiyonunun giris
degiskenlerinin sayisiyla logaritmik olarak orantili olabileceginden, bu tekniklerin kullanimi

orta Olcekteki problemler i¢in bile pratik degildir (10-15 degisken) (Brayton ve ark. 1984).

Lojik fonksiyonlarin, sadelestirilmesinden elde edilen carpim terimlerinin
minimumlagtirilmasi gerekli fiziksel Alanin iizerinde dogrudan giiclii bir etkisi vardir. Ciinkii
her bir ¢arpim terimi, PLA’ nin bir satir1 olarak gerceklestirilir. Cok Biiyiik Olcekli Devre
(VLSD) lojik tasartmi siklikla otuzdan daha fazla giris, ¢ikis ve carpim terimli lojik
fonksiyonlar1 icerir. Bu durumda kesin sadelestirme pratik degildir. Bu gibi durumlarda
gerekli olan en uygun sekle sokma (optimizasyon), farkli tecriibe yaklasimlari, probleme

uygulamaktadir.

Bu yaklagimlardan bir tanesi klasik lojik sadelestirme tekniklerinin yapisini takip eder
ve birinci olarak tiim asal implikantlar1 tiretir. Bununla birlikte minimum bir ortii tiretmek
yerine yakin minimum bir Ortii, tecriibelere dayanarak secilir. Bu prosediir hala cok yiiksek
sayida asal ¢arpan iiretme ihtimali icermektedir. Ikinci bir yaklasim eszamanli olarak ortii icin
implikantlar1 tanimlar ve segcmeye ugrasir. Bu grupta birkac tane Algoritma ileri siirtilmiistiir

(Hong ve ark. 1974, Rhyne ve ark. 1977).

Son zamanlarda, sezgisel yaklasimlar, pratik PLA’ larin tasariminda genis uygulama
alanlar1 bulmustur. Bunlarin ¢ok erken ve cok basarili olmasi, 1970’ lerin ortasinda IBM’ de
MINI programinin gelistirilmesine sebep olmustur (Hong ve ark. 1974). Sonralar1 sezgisel
sadelestirme programi PRESTO, Brown tarafindan tamtilmistir (Brown 1981). Bu, biiyiik

PLA’ larin minimumlastirilmasina imkan verdi.

1981 yilmin yaz aylarinda ESPRESSO-I (Brayton ve ark. 1982) programi
gelistirilmistir. ESPRESSO-I sirasiyla gelen isleri kontrol etmek icin bircok anahtar1 olan tek
bir programdir. Bir yil sonra 1982’ nin yazinda ESPRESSO-II gelistirilmistir. Sadelestirilmis
yanlis kiime ve totoloji algoritmalarina dayanan iki yeni metot sunulmustur. Bu metotlarda
verilen sonuglar Espresso’ nun sonuglarn kadar iyidir. (Brayton ve Somenzi 1989) bu
calismalarinda Quine-McCluskey metoduna benzer bir yontem sunmuslardir, (Lin ve

Somenzi 1990) sembolik iliskilerin basitlestirilmesiyle ilgilenmislerdir.

Carpim terimlerinin toplamindaki sadelestirme ikili (binary) sistem icerisinde énemli
bir yer tutmustur (Tirumalai ve Butler 1991). Son zamanlarda sunulan carpim terimlerinin
toplam1 seklinde sadelestirme yapan Algoritmalarin bir¢ogu dogrudan Ortme metodunu
kullanmistir. Dogrudan 6rtme metodu ii¢ adim halinde gerceklestirilir (Tirumalai ve Butler

1991):

a- Mintermin secilmesi,
b- Asal implikantlarin iiretilmesi

c- Esas asal implikantin se¢ilmesi ve 6rtme.

1.1 Anahtarlama Fonksiyonlarinin Sadelestirilmesi i¢in Coziim Y 6ntemleri

Kesin (exact) ve segisel (heuristic) SOP minimumlastirma bilgisayar destekli tasarim
(computer aided design-CAD) Alaninda cok iyi arastirilan problemlerden bir tanesidir
(Mishchenco ve Sasao 2003). SOP minimumlagtirma; PLA optimizasyonunda, cok seviyeli
lojik sentezde (muti-level logic synthesis), durum sifrelemede, gii¢ kestirimde, test iiretmede
ve diger Alanlarda kullanilir (Mishchenco ve Sasao 2003). Kesin SOP minimumlastirma
probleminin iissel dogasindan dolay1 modem Algoritmalar, (Brayton ve ark. 1984, Coudert ve
Madre 1993, Coudert 1994, McGeer ve ark. 1993) minimum SOP kiimesinde yiizlerce ¢arpim
terimi oluncaya kadar sadelestirilmek istenen fonksiyonu isleyebilir. Bu arada pratik
uygulamalarin ve CAD araglarinin ¢ogu bulugsal minimumlastirmaya dayanir (Brayton ve

ark. 1984, Rudell ve Sangiovanni-Vincentelli 1987).

Sezgisel Algoritmalarin karmasikligi ¢arpimlarin sayisinda yaklagik olarak kareseldir
(Mishchenco ve Sasao 2003). Bu Algoritmalar kesin (exact) olanlardan fark edilebilecek

kadar hizlidir fakat ¢ok ¢carpimli fonksiyonlar i¢in yavas olabilir (Mishchenco ve Sasao 2003).

Sezgisel SOP minimumlastirmay1 hizlandirmak icin cesitli yaklagimlar onerilmistir.
Ornegin, Off-kiimesinin (Sasao 1985) hesaplamasi minimum SOP’ da az sayida garpimli
fonksiyonlar i¢in bile zaman tiiketici olabildigi gézlenmistir (Mishchenco ve Sasao 2003). Bu
yiizden sadelesmis off-kiimesinin hesaplanmasi Onerilmistir (Malik ve ark. 1991). Lojik
sentez araclar1 icin optimizasyonda genisce kullanilan bagka hizlandirma sekli, bulugsal
minimumlagtirmanin sadece bir dongiide gerceklestirilmesidir. Bu tiir kisa yollarin bedeli

calisma zaman1 problemi hala dururken, daha diisiik minimumlastirma kalitesidir. Bir ¢ok

benchmark icin optimizasyon programlart bulugsal SOP minimumlagtirmanin uzun ¢alisma

zamanindan dolay1 sona ermez. (Mishchenco ve Sasao 2003).

Bagka hizli bulugsal SOP minimumlagtirma Algoritmalar1 BDD gosterimini kullanir
(Minato 1992). Bu Algoritma, sonug kalitesinin kritik olmadigi durumlarda dikkat ¢ekecek
derecede iyi ¢alisir. Ancak (Sasao ve Butler 2001) da gosterilen bu Algoritma (Minato 1992)
minimum SOP lardan daha fazla carpim iceren artiksiz (irredundant) SOP lar iiretir
(Mishchenco ve Sasao 2003). Bu yiizden bir¢ok pratik problemler icin uygun degildir. iki
seviyeli lojik minimumlastirma lojik sentezin temel problemidir (Sasao ve Butler 2001).
Genis fonksiyon kiimeleri i¢in kesin minimum SOP ifadeleri elde edecek Algoritmalar
olmasina ragmen (Coudert 1994), pratik sistemlerin cogunlugu bulussal lojik

minimumlagtirma algoritmalarin1 kullanir.

Sasao ve Butler (2001) fonksiyonlarm siniflarini, degisken sayisinin sinirsiz oldugu
durumlarda en ko6tii SOP boyutunun minimum SOP boyutuna oranimin biiyiik oldugunu
gostermislerdir. Sasao ve Butler (2001) verilen fonksiyon i¢in biitiin gerekli SOP ifadelerini

tireten algoritmay1 gostermislerdir.

1.2 Tezin Amaci ve Onemi

Bilgisayar devreleri ve programlarinin miimkiin oldugu kadar basit ve etkili kilinmasi
yolunda en etkin olan araglardan biri lojik fonksiyonlarinin minimumlastiriimasidir. Halen
coklu miktarda minimumlastirma yontemleri mevcuttur. Fakat bunlarin irettikleri aralik
sonuclarinin sayisi, degisken sayisina gore iissel bir fonksiyonla belirlenir. Bu durumda
mesela, 20 degiskenli fonksiyonlarin minimumlastirilmasi sirasinda meydana cikabilecek
aralik sonuglarinin sayis1 bugiin mevcut olan bilgisayarlarin bellek kapasitesini ¢ok fazla
asmaktadir. Pratikte 40’ a kadar degisken degeri olan fonksiyonlarin minimumlastiriimasi
ihtiyact g6z Oniine alininca, miimkiin oldugu kadar az sayida aralik sonuglart tireten bir
sadelestirme algoritmasinin elde edilmesine ihtiya¢ oldugu siiphesizdir. Bu tezde boyle bir
algoritmanin meydana cikarilmasi hedeflenmis ve gerceklestirilmistir.
Bu tezde gelistirilen algoritma sayesinde daha az lojik elemanlar kullanilarak yapilamayan

programlanabilir lojik dizileri (PLA) kolaylikla tasarlanabilecek ve bu sayede biiyiik sayisal

sistemlerin tasarlanmasinda donamim ve zaman kayb1 biiyilk Olgiide Onlenecektir.

Bu tez caligmasi yedi boliimden olugmustur.

Birinci boliimde: Konunun tarihsel gelisimi anlatilarak, minimumlastirma
problemlerinin bugiinkii durumuna deginilmistir. Caligmanin amaci ve 6nemi agiklanmistir ve

kaynak aragtirmasina yer verilmistir.

Ikinci boliimde: Boolean fonksiyonlar1 minimumlastirma metotlar1 6zet seklinde
anlatilmigtir. Haritasal ve cebirsel yontemler gosterilmis ve bu yontemlerin avantaj ve

dezavantajlarina deginilmistir.

Uciincii boliimde: Gelistirilen algoritmada matematik arac olarak kullanilan kiip cebri
anlatilmigtir. Anahtarlama fonksiyonlar i¢in yerel basitlestirme algoritmalar1 icin gelistirilen
Yakin Minimal Ortme Algoritmasi1 (Near-Minimal Cover Algortihm). Gelistirilen Algoritma
orneklerle agiklanmigtir. Matematik arag olarak kullanilan kiip cebri islemlerinin standart
bilgisayar islemleri tizerinden gergeklestirilmesi gosterilmistir. Algoritmanin daha iyi

anlagilmasi i¢in birkag 6rnek ¢oziilmiistiir.

Dordiincii boliimde: Karmasiklik degerlendirilmesi yapilmistir. Quine McCluskey
Metodu ile Yakin Minimum Ortme Algoritmas1 karmasiklik yoniinden karsilastiriimistir.

Gelistirilen yontemler ESPRESSO ile karsilastirilmis ve sonuglari bu boliimde verilmistir.

Besinci boliimde: Bu tez calismasindan elde edilen sonuglara deginilerek bu konuda

calismak isteyenler icin bazi 6nerilerde bulunulmustur.
Altinc1 boliimde: Bu yiiksek lisans calismasinda yararlanilan kaynaklar verilmistir.

Yedinci boliimde: Gelistirilen algoritmanin program kodlar1 verilmistir.

1.3 Materyal ve Metot

Mantik fonksiyonlarinin ifade bigimleri, sadelestirme yontemleri, Algoritmalar1 ve
programlari kullanilacaktir. Bu yolda elde edilmis son teorik sonuglara dayanarak ve minterm
yontemiyle kiip cebri yontemleri bir arada kullanilarak daha etkin olan yeni bir yontem

meydana ¢ikarilacaktir.

Bir lojik fonksiyonun, birden fazla degisik ifadesi bulunabilir. Tiim olas1 ifadeler
arasindan minimum ifade bulunmaya calisilir. Buradaki minimumluk en iyilik dl¢iitiine gére

tanimlanabilir (Cirpan 1992). Bu en iyilik olg¢iili;

o
1

En az sayida lojik kap1 gereksinimi

b

Carpim Terimlerinin Toplami1 (sum of product-SOP) bi¢iminde en az terim,

(@]
)

Toplam Terimlerinin Carpimi (product of sum-POS) biciminde en az terim,

d

Giris ile ¢ikis arasindaki katman sayisinin minimumlastirilmasi ve dolayisiyla

gecikme zamanini en aza indirebilmeyi saglamak.

Carpim terimlerinin toplami bicimindeki bir fonksiyon, mantiksal degeri
degistirilmeden hicbir teriminin ¢ikartilamayacag bigimde ise, indirgenemezlik 6zelligine
sahiptir. Genelde indirgenemezlik ve minimumluk birbirlerini icermez ya da gerektirmezler.
Sonug olarak her minimum fonksiyon indirgenemezdir. Fakat her indirgenemez fonksiyon.

minimum fonksiyon degildir (Cirpan 1992).

1.4 Kaynak Arastirmasi

Allahverdi N.M. ve Kahramanh $.S. (1995), Kiip cebri elemanlar1 ve uygulama bigimlerini
belirtmislerdir. Kiip cebri islemlerini gostermislerdir.
Beckert ve ark. (1997), cok seviyeli lojik devrelerin minimumlastiriimasi i¢in yeni

yaklagimlara deginilmistir.

Celikag M. (1989), ¢esitli minimumlastirma Algoritmalar1 incelenmistir. Bu algoritmalar

birbirleri ile karsilagtirilmis ve degerlendirme yapilmistir.

Colkesen R. (2002), karmasikligin (complexity) tanimini belirtmis ve ¢esitli gosterimlerini

sunmustur.

Dagenais M.R. ve ark. (1986), ¢ok cikisli fonksiyonlarin tam minimumlastirilmasi i¢in

gelistirilen yeni prosediire deginilmistir.(McBOOLE prosediiri).

Dietmeyer D.L, (1979), kiip cebrini anahtarlama fonksiyonlarinin ilk terimlerini (local prime
implicants) bulmak i¢in kullanilmistir. Daha sonra lojik fonksiyonlarin minimumlagtirilmasi

tizerinde kullanilmuistir.

Fiser P. ve Hlavicka J. (2003), Yeni bir iki seviyeli Boolean sadelestirme algoritmasi

gelistirilmistir (BOOM Boolean Minimizer) .

Kahramanl S.S. ve Allahverdi N.M. (1993), cok degiskenli 13oolean fonksiyonlar i¢in yeni

bir sadelestirme algoritmasi sunulmustur.

Karnaugh, M.(1953), Lojik devrelerin sentezi i¢in harita metodunu sunmustur. Haritanin

olusturulmasi ve sadelestirme islemi i¢in haritanin nasil kullanilacagi gosterilmistir.

Mano M. M. (1984), lojik devreler ve lojik fonksiyonlar ile ilgili bilgiler vermistir. Bir tablo
metodu olan QMM metodu ve K-Haritalar1 anlatilmistir. Fonksiyonlar minimumlastirirken

elde edilen aralik sonuclarinin sayisini bulmak icin gerekli olan formiiller verilmistir.

McCluskey, E.J.(1956), Boolean fonksiyonlar sadelestirmek i¢in Quine tarafindan baslatilan

metodu gelistirmis ve sunmustur.

McGeer P.C. ve ark. (1986). Cok cikisli fonksiyonlarin tam sadelestirilmesi i¢in gelistirilen
yeni prosediire deginilmistir (ESPRESSO-SIGNATURE). lsaret kiipleri kullanilarak Asal
implikantlar kiimesi kiiciiltiilmiistiir. Karmasik problemlerde Espresso-II algoritmasina gore

da iyi sonuglar vermistir.

Nadjafov E ve Kahramanli S.S. (1973), kiip cebrini anahtarlama fonksiyonlarina

uyarlamiglardir. Daha sonra lojik fonksiyonlarin minimumlastirilmasi iizerinde kullanilmastir.

Perkins S.R. ve Rhyne T.(1988), Boolean fonksiyonlarinin ¢oklu ¢ikislari i¢in Asal

Implikantlari belirleme ve segme Algoritmalarini sunmuslardur.

Sasao ve Butler 2001 ve Mishchenco ve Sasao 2003, minimumlastirma problemlerinin

bugiinkii durumlar1 hakkinda agiklama yapmiglardir.

Tirumalai P.P.ve Butler J.T. (1991), son zamanlarda sunulan toplam terimlerin carpimi
seklinde sadelestirme yapan Algoritmalarin bir¢ogu dogrudan 6rtme metodunu kullanmistir.

Bu makalede cesitli dogrudan 6rtme metotlart agiklanmastir.

Ucar. (1996), lojik devre tasarimlari i¢in ¢esitli algoritmalart incelemis ve bu Algoritmalardan

yeni bir yontem gelistirmeye caligmistir.

2 MANTIK FONKSIYONLARINI SADELESTIRME METOTLARI

2.1 Fonksiyon Tanimlar

Boole fonksiyonlarinda, fonksiyonun degisken sayisina gore sahip oldugu ¢ikis
durumlari degismektedir. n sayida degiskene sahip olan fonksiyon 2" sayida mintermle
iliskide olur. Bu iliskinin karakterine gore s6z konusu mintermler agsagidaki gibi cesitli

gruplara béliiniir (Kahramanl ve Ozcan 2002)

» Dogru kiimesi: Fonksiyonun degerinin 1’ e esit oldugu mintermler,
» Yanlis kiimesi: Fonksiyonun degerinin 0’ a esit oldugu mintermler,

» Etkisiz Elemanlar Kiimesi: Fonksiyonun degerinin belirsiz oldugu mintermler.

Bu gruplara uygun olarak F, R, D (belirsiz) kiimeleri olusturulur.

Tamim 2.1: Yalniz F ve R kiimeleriyle iliskili olan fonksiyonlara Tam Belirlenmis

Fonksiyonlar denir,

Tamim 2.2: F, R ve D ile iliskili olan fonksiyonlara Tam Belirlenmemis Fonksiyonlar
denir. F, R ve D kiimelerinin olciileri IFl, IRl ve IDI olarak gosterilirse, F, R ve D kiimeleri ile
onlara bagl olan F fonksiyonu arasinda asagidaki deger iligkilerinin oldugu goriilebilir

(Kahramanli ve Ozcan2002).

¢ [Fl= 2", Bu durumda mintermlerin tiimiinde fonksiyonun degeri 1 oldugu i¢in aslinda

fonksiyon degil bir sabit (lojik 1) s6z konusudur,

¢ IRI= 2", Bu durumda mintermlerin tiimiinde fonksiyonun degeri O oldugu i¢in aslinda

fonksiyon degil bir sabit (lojik 0) s6z konusudur,

¢ [FI <2", IRI < 2", IDI = 0; IFl + IRl = 2. Bu durumda tam belirlenmis olan bir fonksiyon

soz konusudur,

¢ [FI<2", RI < 2", IDI < 2" ise IFl+ IRI + IDI=2". Bu durumda bu fonksiyona tam

belirlenmemis fonksiyon denir.

2.2 Karnaugh Haritas1 Metodu

Her fonksiyonun dogruluk tablosu goOsterimi tektir; ancak, cebirsel olarak ifade
edildiginde degisik sekillerde verilebilir (Mano 2002). Boole fonksiyonlari, cebirsel yollarla
sadelestirilebilirler. Fakat bu minimumlastirma yonteminin, sistematik kurallar1 olmadigindan

kullanish degildir.

Harita metodunun ozellikleri sadelestirilmesine yarayan en basit ve gorsel bir
yontemdir. Bu yontem dogruluk tablosunun sekillendirilmis bir bi¢cimi veya Venn
diyagramlarinin gelismis bir sekli olarak da goriilebilir. Karnaugh tarafindan gelistirilen bu
metot “Karnaugh Haritas1 - KH” adiyla bilinir. KH (Karnaugh Haritas1) metodu en ¢ok dort,

bes degiskenli fonksiyonlarin sadelestirilmesi icin kullamilir ve temel olarak,

f=ax +ax =a(x +x)=a 2.1)

Kuralina dayanir. Degisken sayisi n olan bir fonksiyon i¢in diizenlenen Karnaugh
haritasi 2" tane hiicreden olusur. KH metodu, aslinda bir fonksiyonun standart formda ifade
edilebilecegi tiim sekilleri sunan gorsel bir yontemdir. KH’ de her bir hiicreye karsilik gelen
mintermlerin yazilmasi yerine, onun varligini bildiren bir igaret konur. Hiicreleri isaretleme
yontemine (Mano 2002, Kahramanli ve Ozcan 2002, Karnaugh 1953) kaynaklarinda ayrmtil

bir sekilde yer verilmistir.

10

2.2.1 KH Metodunun Kullanimi

Degisken sayisinin dort veya besi gecmedigi durumlar icin KH metoduyla
minimumlagtirma uygun bir yontem olabilir. Degisken sayisi arttik¢a, ¢ok sayidaki hiicre,
uygun komsu hiicre se¢imini zorlastirir. KH metoduyla minimumlagtirma kullanicinin belirli
kaliplar1 gorebilme yetenegine dayandigindan, ashinda bir deneme yanilma yontemidir. Bu
durum, KH metodunun en belirgin dezavantajidir. Ayrica bes veya alti degiskenli
fonksiyonlar i¢in, en uygun se¢imin yapilmis oldugundan emin olmak bir hayli zordur. Bu

metodu, bilgisayar programlarina uyarlamak oldukca giictiir.

2.3 Cebirsel Sadelestirme Yontemleri

2.3.1 Tablo Yontemi (Quine-McCluskey metodu)

Quine McCluskey Metodu (QMM), bir fonksiyonun minimum sayida SOP seklinde
ifade edilmesini saglar. Bu Algoritma iki asamada gerceklestirilir (Mano 2002, McCluskey
1956, Coudert 1994, Quine W.V.O. 1952):

a- Fonksiyon icin biitiin asal implikant (Prime Implicant-Al) lar1 bulmak,

b- Fonksiyonun biitiin mintermlerini dértmek (cover) icin gereken minimum sayida

asal implikantlar kiimesini se¢cmek.

Bu asamalar asagida aciklanmstir.

11

2.3.1.1 Asal implikantlarin bulunmasi

Verilen Boole fonksiyonun AT’ larinin bulunmasi siireci, s6z konusu fonksiyonun
minterm listesinin diizenlenmesi ile baslanir. Mintermler, icerdikleri 1’ lerin sayisina gore
gruplara ayrilir. Bu gruplar, mintermlerin icerdikleri 1’ lerin sayisia gore kiiciikten biiyiige

dogru siralanir. Bu yontemle olusturulabilecek maksimum grup sayisi (m) kombinasyon

hesab1 geregi ((g] , (TJ (n J , (nj (i=0,1...n)) degiskenlerin sayisindan bir fazla olabilir
n— n

(m=n+1). (Quine 1955).

(2.1) kurali kullanilarak, i. grubun her bir mintermi ile (i+1). grubun her bir mintermi
arasinda yeni terimlerin elde edilip edilemeyecegine bakilir. Eger komsu grup mintermleri
arasinda sadece bir bitlik farklilik varsa, bu farklilik gosteren bit elde edilecek olan ¢arpim

teriminde tire (-) isareti ile gosterilir. Gruplar arasindaki

karsilastirma siireci (i-1) ve in ¢iftine kadar tekrarlanir. Carpim terimlerinde k tane degiskeni
eksik olan terimler yani k tane (-) isareti olanlar k-kiip olarak adlandirilir. Bu tanima gore
mintermler O-kiip olarak adlandirilir (Mano 2002, McCluskey 1956, Celikag 1989).

0-kiip siitunundaki biitiin komsu grup mintermlerin karsilastirilmasi la 1 -kiip siitunu
olusturulur. Ayni islemler 1-kiip siitununa uygulanir ve buradan 2-kiip siitunu olusturulur.
Ayni islemler siitunlar arasinda birlesme yapilamayacak duruma gelinceye kadar tekrarlanir.
Bu k-kiip siitunlarin sonunda isaretlenmemis ¢arpim terimler, A’ lardir (Mano 2002,

McCluskey 1956, McCluskey 1986, Celikag 1989).

2.3.1.2 Minimum Al kiimesinin secilmesi

Esas Asal Implikantlar kiimesinin bulunmasi: Minimum kiimesi, minimum sayida esas
ve ikincil esas Al (essential and secondary essential prime implicant, EAI, IEAI) kiimesinden

olusur. LA lar, Al’ lardan secilir. Eger fonksiyonun biitiin mintermleri, EAD’ lar tarafindan

12

ortiilmiiyorsa, IEAI’ larin secilmesi gerekmektedir. Burada ortiilmek, fonksiyonu olusturan
biitiin mintermlerin, minimum sayida AI’ lar tarafindan kapsanmasi demektir. Ustiinliik
(dominance) ve denklik (equivalent) kurallari, AI’ larin fazla olanlarim eleyerek, IEAT" lan
bulmak i¢in kullanilir (Mano 2002, McCluskey 1956, McCluskey 1986, Celikag 1989). A’
larin minimum kiimesini bulmay: kolaylastirmak igin Asal Implikantlar Tablosu (prime
implicant table - AIT) kullamlir (Mano 2002, McCluskey 1956, McCluskey 1986, Celikag
1989). AIT’ de, AT’ lar satirlara, mintermler de siitunlara yerlestirilir. Fonksiyonun minimum
seklini olusturacak Al’ lar1 belirlemek icin 6nce EAI lar segilir. Eger bir minterm sadece bir
Al tarafindan ortiiliiyorsa, bu Al, EAT’ dir ve SOP kiimesine dahil edilir. Ciinkii bu mintermi
ortecek baska bir Al yoktur. Biitiin EAI’ lar secildikten sonra, biitiin mintermler ortiildiiyse
minimum SOP kiimesi olusturulmus demektir. Eger hala bazi ortiilmeyen mintermler varsa,
bu mintermleri ortecek olan AI’ larin diger A’ lardan secilmesi gerekir. Bu yolla secilecek
olan her bir Al, ikincil esas asal implikant (secondary essential prime implicant - IEAI) olarak

adlandirilir.

IEAI kiimesinin bulunmasi: IEAI’ lar, sadelestirilmis AIT’ dan secilir. SAIT’ da
onceden secilmis EAD’ lar ve oOrtiilmiis mintermler bulunmaz (McCluskey 1956, Celikag

1989, Rudell 1989, Quine 1955).

Baskin satir kurali (row dominance):

Tanmim 1. AH” da bulunan herhangi bir i ve j satirlart i¢in, ! satirinda bulunan x”
isaretlerinin tiimii i satirinda da bulunuyorsa, bu iki satir birbirine esittir. Tamim 2. AIT” da
bulunan i ve j satirlari i¢in,] satirinda bulunan biitiin “x” isaretleri i satirinda da varsa ve i
satirinda en az bir tane fazla “x” isareti varsa, i satir1] satirin1 kapsar denir.

Tanim 3. A" nin maliyeti, carpim terimindeki literali sayisi ile belirlenir. Carpim teriminde
daha fazla literali olan daha fazla maliyete sahiptir.

Yukaridaki tanima gore i satir1 kapsayan satir, j satir1 kapsanan satirdir. Kapsanan satir SAIT’
den cikarilabilir. Eger iki satir birbirine esitse bu satirlardan maliyeti fazla olan satir ¢ikarilir

(Basciftci ve ark. 2003).

Baskin siitun kural1 (column dominance):

13

(73 3]

Tanmim 4. AIT’ da bulunan i ve j siitunlar i¢in, i siitununda bulunan “x” isaretleri j

stitununda da bulunuyorsa, bu iki siitun birbirine esittir. (esit siitunlar)

(73]

Tanmim 5. AIT’ da bulunan i ve j siitunlar icin, i siitununda bulunan biitiin “x” isaretleri

j stitununda da varsa ve i stitununda en az bir tane fazla “x” isareti varsa, i siitunu j siitununu

kapsar denir.

Yukaridaki tanima gore i siitunu kapsayan siitun, j siitunu kapsanan siitundur.
Kapsanan siitun SAIT’ den ¢ikarilir. Eger iki siitun birbirine esitse bu siitunlardan maliyeti
fazla olan siitun ¢ikarilir (Bas¢iftci ve ark. 2003). Biitiin sadelestirme kurallari uyguladiktan
sonra AT’ de birden fazla minterm kalabilir. Bu tiir tablolara periyodik tablo denir. Periyodik
problemler Dallandirma Metoduyla veya Petrik metodu ¢oziilebilir (Celikag 1989, Rudell
1989).

2.3.1.3 QMM kullanim alanlar1

KH metodunda, bes veya alt1 degiskenli fonksiyonlar i¢in, en uygun se¢imin yapilmis
oldugundan emin olmak ve bu metodu, bilgisayar programlarina uyarlamak da bir hayli
zordur. Bu zorluklara QMM ¢6ziim getirir. Bu metot, adim adim uygulanarak fonksiyon i¢in
minimumlagtirilmis ifadeyi standart bir bicimde elde eder. Bu metot, cok degiskenli
fonksiyonlara uygulanabilir ve bilgisayarda programlamaya uygundur. Ancak, rutin ve
monoton islemlerinden dolay1 kullanimi1 oldukga sikicidir ve hata yapma olasiligi yiiksektir.
QMM ¢ok girisli - cok ¢ikish fonksiyonlar i¢in genisletilebilir. Pratik uygulamalarda, ¢ok
cikisli problemlerde AT’ larin sayisi ¢ok fazladir. Bundan dolayi, bu metot cok fazla hafizaya
gereksinim duyar (Chai 2000). Giris degiskeni sayisi fazla olursa, minterm sayis1 fazla
olacagindan, iiretilen Al fazla olacaktir ve bu A’ larin depolanmasi i¢in ¢ok fazla hafizaya
ihtiya¢ duyacaktir (Chai 2000). Bundan dolay1 bu metot, ¢cok degiskenli problemler i¢in
uygun degildir. Bununla birlikte, giris degiskeni sayis1 az olursa diger metotlara gére daha

hizl1 olabilir.

14

2.3.2 Petrick Metodu

Bir minterm siitununda L tane Al varsa bu mintermi ortmek i¢in L tane farkli Al var
demektir. Bu mintermi drtmek icin olast A’ larin toplami L tanedir. Periyodik tablodaki N
tane siitun (veya minterm) N tane toplam terimi iiretir. Al fonksiyonu veya p-fonksiyon N
tane toplam terimlerinin ¢carpimi (POS) seklinde tarif edilir. Her siitun i¢in AI’ lar toplanir ve
diger stitunlarin AT’ larinin lojik toplamu ile lojik carpilir. Carpimlar sonra toplam olarak
diizenlenir. Diizenleme yapildiktan sonra en az literale sahip olan bilesen veya bilesenler
minimum ifadeyi olusturur (Celikag 1989). Minimum ifade tek olabilecegi gibi birden fazla

da olabilir.

Asagida bir 6rnek verilerek Petrick metodu agiklanmistir.

1. Adim: tablodaki biitiin satirlar1 numaralandir.

Py, Ps... Py
2. Adim: siitunlardaki her X i¢in P degerlerini seg.

0O 1.2 5 6 7
P, (0,1) ab’ X
P, (0,2) ac X
Ps (1,5) b’c X
P, (2,6) bc X X
Ps (5,7) ac X X
Ps (6,7) ab X X

Birinci siitundaki X iceren P degerlerini secelim (P; ve Py)
(P1+P>)

Bu sekilde devam ederek su sonuca variriz:

P =(P; + P2) (P1 + P3) (P2 + Py) (P3 + Ps) (P4 + Ps) (Ps5 + Pe)
P = (P; + Py) (P; + P3) (P4 + P2) (P5 + P3) (P4 + Ps) (Ps + Pe)
P = (P + Py) (P1 + P3) (P4 + P2) (P4 + Pg) (Ps + P3) (Ps + P)
P = (P, + P, P3) (P4 + P2 Pg) (Ps + P3 P)

P = (P, P4+ P; P, Pg + P, P3Py + P, P3 Pg) (Ps+ P35 Pg)

15

PSdogru = P1 P3 P4 P6 + PI P4 P5+P1+P2 P3 P6+ P1 P2 P5 P6+P2 P3 P4 P6+ P2 P3 P4 P5+
P2P3P6+P2P3P5 P6

Bu ifadeler bize sadelesmis ifadelerin hepsini ifade eder. Yani Py, P, ve P; ye cizgi
cekilerek sadelestirme yapilir. Eger her bir terim esit maliyete sahip oldugu kabul edilirse

(burada esit), bu fonksiyonda en sade ifade nedir?

Iki en sade durum var P, P, Ps and P, P5 Ps.

F=ab’ +bc’ +ac ve F=ac +b’c+ab

2.3.3 ESPRESSO-II Algoritmasi

ESPRESSO-II, fonksiyonunun dogru kiimesini, belirsizler kiimesini ve yanlig
kiimesini giris olarak alir (Brayton ve ark. 1984). Bu Algoritma cikis olarak sadelestirilmis bir
ortii verir. ESPRESSO-II minimuma yakin ¢6ziimii bulmaktadir ve asagida verilen 3 sayiy1
azaltmaya ¢alismaktadir (Brayton ve ark. 1984, McGeer ve ark. 1986, Brayton ve ark. 1993,
McGeer ve ark. 1993).

1. NPT: ortiideki carpim terimlerinin sayisi.
2. NLI: ortiiniin giris kismindaki terimlerinin sayisi.

3. NLO: ortiiniin ¢ikis kismindaki terimlerinin sayisi.

ESPRESSO-II f (NPT, NLI, NLO) vektoriinii kullanarak sadelestirme siiresince (F)’
nin bilesenlerini azaltmaya calismaktadir (Brayton ve ark. 1984, McGeer ve ark. 1986). Bu

isleme, son dongii sirasinda, bilesenlerin hicbirisi degismediginde son verilir (Brayton ve ark.

16

1993, McGeer ve ark. 1993). Sadelestirme islemine ge¢gmeden Once sadelestirilecek olan
fonksiyonlara UNWRAP (dagitma, agma) prosediirii uygulanir. Bu prosediir k tane fonksiyon
tarafindan paylasilan bir kiipii, her biri sadece bir fonksiyon tarafindan paylasilan k tane kiip
ile yer degistirir (Brayton ve ark. 1984, Ucar 1996). Her ne kadar bu sekilde optimaldan daha
uzaklasilsa da boyle bir islem sonucunda sadelestirme islemi girise daha az bagimli olur ve
EXPAND prosediiriinde kiiplerin daha yararli bir sekilde hangi fonksiyon tarafindan
paylasilacagi bulunabilir (Brayton ve ark. 1984). Bu sekilde F (dogru kiimesi), D (belirsizler
kiimesi) ve R (yanlis kiimesi) ortiileri elde edildikten sonra P vektorii hesaplanir. Bu vektoriin
bilesenlerinde bir azalma goriilemeyinceye kadar genisletme (expand), tekrarsiz Ortii
(irredundant_cover) ve daraltma (reduce) prosediirleri calistirilir. (1)’ nin bilesenlerinde
azalma goriilmediginde LAST_GASP prosediirii ¢agrilir. Eger (I’ nin bilesenlerinde azalma
goriiliirse tekrar daraltma prosediirii cagrilir. ESPRESSO-II sadelestirme Algoritmas alt1 tane
temel prosediirden olusur. Bunlar COMPLEMENT, EXPAND, ESSENTIAL_PRIMES,
IRREDUNDANT_COVER, REDUCE, LAST_GASP’ dir. Bunlara ek olarak yukaridaki alt1
algoritmanin pek ¢ogu onemli bir sekilde TAUTOLOGY algoritmasina dayanir. Bu algoritma
ile elemanlan kiipler olan bir kiimenin, bir kiipii ortiip 6rtmedigi belirlenir (Brayton ve ark.

1984).

COMPLEMENT Prosediirii: Bu kisimda birden ¢ok fonksiyon icin tiimleyen alma
yontemi verilmistir. Bu yontemde monoton fonksiyonun 6zelliklerinden yararlanilarak
kendisini ¢agiran (recursive) bir prosediir ile bir fonksiyonun tiimleyeni bulunur ve bu islem
her cikis icin tekrarlamir. EXPAND prosediirii, ESPRESSO-II i¢inde tiimleyen alma
prosediiriinii kullanan tek ana prosediirdiir. Teker teker fonksiyonlarin tiimleyenlerini alma
islemi, baz1 ¢carpim terimlerini tekrar kullanacagindan daha fazla bellek kullanir. Complement
prosediirii, verilen F ve D ortiileri i¢in R Ortiisiinii hesaplar. Bu prosedir EXPAND
prosediiriinde asal bilesen seciminde kullanilir (Brayton ve ark. 1984, Ugar 1996, McGeer ve
ark. 1986).

Tanmim 1: Bir f fonksiyonunun x, degiskeninin degeri 0’ dan 1’ e degismesi ile ¢ikisi da
0 iken 1 (1 iken O) oluyorsa, fonksiyonu x degiskenine gére monoton artandir (azalandir)

denir.

Tanmim 2: Bir fonksiyon biitiin degiskenlerine gére monoton artan veya azalan ise bu
fonksiyona monoton fonksiyon denir. (Brayton ve ark. 1984, Ucar 1996, McGeer ve ark.

1986).

17

EXPAND Prosediirii: Genisletme isleminin amaci F Ortiisiinden miimkiin oldugu
kadar cok sayida kiipiin atilmasidir. Bunun i¢in F Ortiistiniin kiipleri teker teker belirli bir sira
ile ele alinir ve ele alinan kiip ile F Ortiisiinde bulunan maksimum sayida kiip Ortiillmeye
calisilir. Daha sonra genisletme islemi ile elde edilen asal kiipler ortiiye dahil edilir. Bu
kiiplerin E ortiisiindeki kapsadiklar1 kiipler ortiiden c¢ikarilir. EXPAND Algoritmasinin sonucu
genisletilen kiiplerin ele alinma sirasina baghdir (Brayton ve ark. 1984, McGeer ve ark. 1986,

Ucar 1996).

ESSENTIAL_PRIMES Prosediirii: Burada ¢oziilmesi gereken problem, verilen F
ortiisii icin her bir ¢’, f nin bir asal kiipii olmak iizere, verilen bir e’ asal kiipii ,/* nin bir temel
asal bileseni olup olmadiginin belirlenmesidir. Temel asal bilesenler /° nin biitiin asal
ortilerinde bulunmalidir. Bu nedenle EXPAND, REDUCE ve RREDUNDANT_ COVER
prosediirleri yiiriitiiliirken temel asal bilesenleri ortiiden demek, hesaplama zamanim azaltir

(Brayton ve ark. 1984, Ugar 1996, McGeer ve ark. 1986).

IRREDUNDANT_COVER Prosediirii: ESPRESSO-II’ nin EXPAND prosediiriiniin
uygulamasi ile F asal ortiisti elde edilir. Bu ortiide hicbir kiip digerini kapsamaz. Bununla
birlikte F’ nin minimal ortii oldugu kesin degildir. IRREDUNDANT_COVER prosediirii
verilen F ve D icin, F’ nin baz1 kiiplerinden olusan minimale yakin F2 ortiisiinii belirler. Bu
prosediir ile F2 F olan ve miimkiin oldugu kadar az kiipe sahip E2 ortiisii elde edilmeye
calisilir. Bu prosediirden sonra bir minimal ortii elde edilir (Brayton ve ark. 1984, Ucar 1996,

McGeer ve ark. 1986).

c\0 0 1 0 c\0 0 1 0
0 1 1 0 1 1
=
O |l 1] 1 — 0 1 1] | 1 1
'1 1 1 (IRREDUNDANT) '1 1 1
]]] IR

Sekil 1: RREDUNDANT_COVER prosediirii

18

REDUCE Prosediirii: IRREDUNDANT_COVER prosediirii ile elde edilen ortiideki
kiipleri teker teker ele alir. 1-ler e EF kiipii icin, c kiipiiniin (F) D ortiisii tarafindan
kapsanmayan mintermlerden olusan en kiiciik kiip ¢’ yi bulur. Daha sonra E ortiisiinde e kiipii
ile c kiipiinii degistirir. Yani F(F-R) e olur. Bu sekilde elde edilen 6nii EXPAND prosediirti ile
daha ¢ok yonde genisletilebilir. Ayrica F ortiisii bu islemle daha kiiciik kiiplerden olusur ve
genisletilen kiipler tarafindan kapsanma olasilig1 artar. Bu prosediiriin sonucu kiiplerin ele

alinma sirasma baglidir (Brayton ve ark. 1984, Ucar 1996, McGeer ve ark. 1986).

LAST_GASP prosediirii: Bu algoritma sadelestirilecek olan 6rtiiden birkac kiip daha
cikarabilmek i¢in kullanilir. LAST_GASP, degistirilmis bir REDUCE ve degistirilmis
EXPAND prosediirlerini icerir. En son sadelestirilmeye calisilan kiipler en az sadelestirme
sansina sahiptir. Bunun sebebi daha dnce sadelestirilerek kisaltilan kiipler nedeniyle ortii
zaten az sayida minterm icermektedir. Sadelestirilecek kiiplerin kabaca se¢imi, EXPAND
islemi sonunda ortiideki kiip sayisinin azalacagini garanti etmez. LAST GASP prosediiriinde
her bir kiip maksimum sekilde sadelestirilir. Daha sonra sadelestirilen kiipler iizerinde
EXPAND islemi uygulanir. REDUCE prosediirii ayn1 islemi yapmaktadir fakat bu prosediirde
kiipler belirli bir sira ile ele alinmaz. Her kiip bagimsiz olarak ele alinarak REDUCE
prosediirii ile yapilan islem tekrarlanir (Brayton ve ark. 1984, Ucar 1996, McGeer ve ark.
1986).

TAUTOLOGY Prosediirii: Bir fonksiyonun sabit—1 olup olmadiginin belirlenmesi i¢in
ESPRESSO-II tarafindan kullanilan temel bir islemdir. Bu islem IRREDLNDANTCOVER,
REDUCE, ESSENTIAL PRIMES ve LAST GASP prosediirlerinin temel boliimiinii olusturur.
Bu nedenle etkili bir TAUTOLOGY Algoritmast ESPRESSO-II’ nin hiz1 i¢in 6nemlidir
(Brayton ve ark. 1984, Ucar 1996, McGeer ve ark. 1986).

Ornek: Sekilde verilen mantiksal fonksiyonun Espresso algoritmast ile ¢oziimiiniin bulunmasi

Espresso algoritmas1 tarafindan ilk bulunan ortii bu sekilde
verilmistir.

19

2.3.3.1 Daraltma islemi (reduce)

Bir implikanta bir literal (degisken) ekleyerek kapsama alanim azaltma islemidir.

X CX implikant1 B literali eklenerek yapilan azaltma islemi

AB CX implikanti olusur.

2.3.3.2 Genisletme islemi (expand)

Bir implikanttan bir literalin (degisken) ¢ikartilmasi islemi ile implikantin kapsama

alanin1 genigletme iglemidir.

>

BC implikantindan A literalini cikartirsak olusan imlikant XBC
olur. Genisletme isleminde hangi literalin ¢ikarilirsa daha iyi
olacagini se¢mek icin kofaktor kriteri kullanilir

Tekrarsiz implikant eleme islemi

20

2.3.3.3 Kofaktor

Tanim: bir C implikantinin x; literaline baglh olarak olusturulan kofaktor Kx; olsun Kx;
kofaktoru su sekilde bulunur:
* Xxjveya ;J degeri C implikantinda yoksa sonug C dir.
® C\{xj} olur eger xjliterali C implikantinda varsa

¢ C implikanti ;] literalini iceriyorsa sonug¢ & olur eger

Ornek: F fonksiyonu icin b literalinin kofaktor oldugu zaman olusan sonucu bulalim:

F =abc + bc+ cd

Fo=ac +& + cd
Fy=ac + cd
B
C 00 01 11 10 C 00 01 11 10
00 00
01 1 1] 1 1| — 01| 1 1] 1 1
b literal
1 1 1 1 kofakteord (Cb) 11 1 1 1
10 1 1 1 10 1 1 1
L — T

21

2.3.3.4 Espresso algoritmasi

1- Hangi kiip diger kiip/kiipler tarafindan kapsaniyorsa onu kiimeden ¢ikar. (REDUCE)
2- Artik kiipler Kiip’ ten bir degisken ¢ikartmakla ortaya cikar.
3- Implikantlar1 genislet (EXPAND)
¢ Genisletilmis implikantlarin kapsadigi (6rttiigii) diger implikantlar1 kiimeden ¢ikar
e Sonucun iyi olmasi genisletme isleminin sirasina baghdir.
¢ Heruistic metotlar en iyi genisletme sirasim1 bulmaya calisir.
e 1,2, 3 iglemlerini siirekli yaparak alternatif prime imlikantlar1 bul ve fonksiyonun

maliyeti diistiigii miiddetce 1, 2, 3 islemlerini yapmaya devam edilir.

Espresso(F,D) // F Dogru kiimesi D don’t Care ve R Yanlis kiimesi
{

R=TERS(F+D); //Yanlis kiimesini bul
F=Genislet(F,R); //F kiimesini genislet
F=Tekrars1z(F,D); //Baslangi¢ tekrarsiz ortii bulunur
E=Temel (F,D); // Temel birincil implikantlar bulunur
F=F-E; //Bulunan elemanlar1 kiimeden ¢ikar
D=D+E;

F’ in maliyeti diisiiyorken (while)

{ R=Daralt(F,D);

F= Genislet(F,R); //F kiimesini genislet

F= Tekrarsi1z(F,D); //Baslangi¢ tekrarsiz ortii bulunur
}
F=F+E;
Sonu¢=F; // sonug olarak F kiimesini gonder.

22

2.3.3.5 ESPRESSO-II Programi

ESPRESSO verilen fonksiyonu ¢arpim terimlerinin toplami (SOP) seklinde
sadelestiren, ¢cok secenegi olan bir programdir. ESPRESSO programinin kullanim formati

asagidaki gibidir:

» Espresso [secenekler] [dosya] [> ¢ikti dosyasi]
ESPRESSO programinin kullandig1 dosya formati agagida gosterilmistir. Programin
tanidig1 anahtar kelimeler belirtilmistir. [d] ondalik bir say1y1 belirtir. [s] bir string

ifadeyi belirtir.

Verilen bu secenekler her dosya da olmasi1 gereken durumlardir.
ESPRESSO programinda kullanilan seceneklerden ¢ok kullanilanlar asagida

aciklanmastir.

—Dexact: Exact minimumlastirma Algoritmasi (¢arpim terimlerinin minimum sayida
olmasini garanti eder ve bulussal (heuristic) olarak literallerin sayisini minimumlastirir).

Genellikle pahali olabilecek sonuglar iiretir.

—Dsignature: Kiip tabanl kesin (exact) minimumlastirma Algoritmasi (carpim
terimlerinin minimum sayida olmasini garanti eder ve bulugsal olarak literallerin sayisini
minimumlastirir). Dexact secenegine gore daha hizlidir ve Dexact seceneginin takildig

problemleri ¢ozer (Brayton ve ark. 1993, McGeer ve ark. 1993).

—Dso: 1-ler fonksiyonu tek ¢ikigh fonksiyon gibi minimumlastirir. Terimler

fonksiyonlar arasinda paylastirilmaz.

23

2.3.3.6 Espresso dosya formati

Espresso algoritmasi icin kabul edilmis dosya formati su sekildedir:

» .i[d] Giris degiskeninin sayisini belirtir
» .0 [d] Cikis degiskeninin sayisin belirtir.

. Dosyanin bittigini gosterir.

F(A,B,C,D)=(4, 5,6,8,9,10, 13) D(0, 7, 15) fonksiyonu icin olusturulan giris dosyast,

Giris Anlami:

i4 Girigler

ol Cikislar
dbabcd Giris Degiskenleri
.obf Cikis Degiskenleri
p10 Uriin Sayist
0000 -

0100 1

0101 1

0110 1

0111 -

1000 1

1001 1

1010 1

1101 1

1111 -

.€

Espresso algoritmasi ile F(A,B,C,D)= (4, 5, 6, 8, 9, 10, 13) D(0, 7, 15) kabul edilmis
dosya formati su sekildedir:

24

F(A,B,C.D)=(4,5,6, 8,9, 10, 13) D(0, 7, 15) fonksiyonu i¢in olusturulan ¢ikis dosyast,

Cikis Anlam1:

i4 Girisler

ol Cikislar

dbabcd Girig Degiskenleri
.obf Cikis Degiskenleri
p3 Uriin Sayist
1-01 1

10-0 1

01- - 1

£

F(A,.B,C.D)=A CD+A BC+ AB

25

3 YAKIN MINIMALI ORTME ALGORITMASI

Boole ifadelerinin sadelestirmesi, mantik devrelerinin ve bilgisayar programlarinin
daha etkili olmasina yol agmaktadir. Minimumlastirma ifadeleri énemlidir. Ciinkii elektrik
devreleri, verilen Boole ifadelerinin her bir terim veya literallerinin uygulanmasi i¢in bireysel
bilesenler icerir. Bu tasarimcilarin daha az bilesen kullanmasim1 ve boylece de belirli
sistemlerin maliyetlerinin diigmesini saglamis olur. Tek cikish veya c¢ok cikigli Boolean
minimumlagtirma teknikleri (Mano 1984) anlatilmistir. Bu tekniklerin bircogu iki adimda
calisir. Ik adimda biitiin asal implikantlar1 (prime implicant-Al) belirler ve ikinci adimda da
verilen Boole ifadesini ortecek (kapsayacak) AI’ larin altkiimesini secer (Perkins ve Rhyne

1988).

Biitiin AI’ larin belirlenmesi siirecinde son sonucun tam olarak belirlenmesi i¢in ayri
durumlarda hesaplama yapilabilir. Ozellikle, eger her bir asal implikant tam olarak k tane 0, k
tane 1 ve k tane belirsiz terim igeriyorsa, AI’ nin tamamlanmig kiimesinin giiciit M=(3)!/(k!)3
diir (Kahramanl ve Basciftci 2004). Ornegin k=1,2,3,4 icin sirastyla M=6, 90, 1680 ve 34650
dir. n degiskenli bir fonksiyon i¢in AI’ larin sayis1 3fl/ kadar biiyiik olabilir (Kahramanlh ve
Basciftci 2004). Sonug olarak, Al belirleme adimi degisken sayis1 n arttikca elverissiz bir
duruma gelebilir (Perkins ve Rhyne 1988). A¢ikca goriilmektedir ki ister iki seviyeli veya
isterse ¢ok seviyeli Boole ifadelerini sadelestirme prosediirlerinin hepsi tiim durumlarda 0(2v)
karmasikligina sahiptir (Allahverdi ve ark. 2000, Kahramanl ve Basciftci 2003, Kahramanlh
ve ark. 2005). Burada, tam belirlenmis Boole fonksiyonunun ON mintermlerini orten AI’
larin yerel belirlenmesinin metodu Onerilmistir. n degiskenli Boole ifadelerinin bu tiir
mintermleri maksimum n tek boyutlu kiiplere dahil edilebilir. Gegici sonug kiipleri kiimesinin
giicii n degerini ge¢meyebilir (Allahverdi ve ark. 2000). Boylece, A’ larin minimum
kiimesini bulmak icin O(2")karmasikligi yerine O(n) karmagiklign metodu kullanilabilir

(Kahramanh ve Basciftci 2003, Kahramanh ve ark. 2005).

Bu calismada, Off kiime tabanli dogrudan ortme minimumlastirma metodu (direct
cover Minimization Method) tek ¢ikish fonksiyonlar icin carpim terimlerinin toplami
formunda sunulmustur. Var olan dogrudan ortme metotlarinda verilen On- kiipii iceren yeterli
asal implikantlar kiimesini bulmak icin, bu kiip her defasinda bir koordinat i¢in genisletilir.
Her genislemenin dogrulugu, k < 2 Off-kiiplerin hepsi ile genisletilen kiip kesistirilerek

kontrol edilir. Bir kiipiin genislemesinin polinominal karmasiklifa sahip oldugu dikkate

26

alindiginda, bu yaklagimin toplam karmasikligit O(n)O(2 ") seklinde olmaktadir. Bu
polinominal ve tiissel karmasikligin carpimidir. Verilen On-kiipii iceren asal implikantlarin
tam kiimesini elde etmek i¢in Onerilen metot, bu On-kiip tarafindan genisletilen Off-kiipleri
kullanir. Bu islemin karmasikligi, yaklasik olarak bir koordinat igin bir On-kiipiin
genisletilme karmasikligina esdegerdir. Bundan dolayi, verilen On-kiipii iceren asal
implikantlarin tam kiimesinin hesaplama isleminin karmagikli§i yaklagik olarak O(n) kadar
azaltilmis olur. Pratik olarak bu yaklasim bir defada islenecek olan asal implikant sayisini
yiizlerce ve binlerce defa azaltmaktadir. Bu ise halen problem olan bellek kapasitesi

darbogazini kolaylikla asma imkani saglamaktadir.

YMOA cesitli problemler iizerinde test edilmis ve standart MCNC benchmarklari
kullanilarak ESPRESSO ile karsilastirilmistir. Bu karsilastirmalar sonucunda gelistirilmis
olan yontemlerin ESPRESSO’ ya gore onemli bir dl¢iide hizli oldugu ve az bellek kapasitesi
gerektirdigi goriilmiistiir. Ayrica sadelestirme islemleri sonucunda karsilagtirilan Algoritmaya

gore carpim terimlerinin toplami seklinde daha iyi sonu¢ bulduklan belirlenmistir.

3.1 Isaretlerin Gosterimi

n girisli ve m ¢ikish bir ¢oklu ¢ikisa sahip Boole fonksiyonu asagidaki gibi tanimlanir
(Kahramanh ve Basciftci 2003):

Giris: B{0,1 },
Cikis: Y{0,1,d},
Fonksiyon f: B" 2>Y™

Burada, cikista gosterilen d degeri (belirsiz terim) tam belirlenmemis deger
manasindadir ve fonksiyonun istenildigi yerinde O veya 1 olarak kabul edilebilir. Boyle bir
fonksiyon AI’ larin listesiyle temsil edilebilir. Her bir Al giris ve cikis kisimlarmi icerir

(Kahramanh ve Basciftci 2003, Kahramanh ve ark. 2005).

27

Giris kismu: n sabitler {0,1,x} olabilir;

Cikis kismi: m sabitler {0,1,d} olabilir.
Giris kism kiipe uygulanacak giris uzayini belirler. Giris kismindaki x degeri bu degisken

icin 0 veya 1 degeri olabilir.

Bu tezde, tek ¢ikish Boole fonksiyonlari i¢in yeni bir sadelestirme metodu

gelistirilmistir. Tek ¢ikisli Boole fonksiyonu asagidaki gibi tanimlanir;

Giris: B={0, 1},
Cikis: Y={0, L.d},
Fonksiyon f: B 2> Y.

SON: Fonksiyonun degerini 1 yapan ON mintermlerinin kiimesi,
SOFF: Fonksiyonun degerini O yapan OFF mintermlerinin kiimesi,

SDC: Belirsiz terim mintermlerinin kiimesi.

Bu tezde sunulan Algoritmada SON kiimesi ve SOFF kiimesi tamamen kullanilmistir.

SDC kiimesi ise kullanilmamuistir.

3.2 YMOA kullanilan Kiip Cebri’ nin Elemanlar1 ve Uygulama bicimleri

Lojik cebirdeki minimum terimler, kiip cebrinin temelini olusturmaktadir. Ancak kiip
cebrinde degisken sayisi en az iictiir. U¢ degisken bir kiipii tanimlamaktadir. Kiip cebri ile
geometrik olarak; bir minterm ile bir nokta, iki nokta ile bir hat, dort hattin birlesmesi ile bir
yiiz, alt1 yiiziin birlesmesi ile bir kiip tanimlanir (Nadjafov ve Kahramanov 1973, Giines

2000). Bu kiipiin her bir koordinati, 3 degiskenli bir Boole fonksiyonunun bir degiskenidir.

28

Kiip cehri islemleri, once anahtarlama fonksiyonlarinin (Switching Functions SFs) en
son durumunu bulmak i¢in gelistirilmis ve uygulanmistir (Roth /956, Nadjafov ve
Kahramanov 1973). Yine bu islem SF’ nin ilk terimlerini (local prime implicants) bulmak
icinde kullanilmistir. Daha sonra lojik fonksiyonlarin minimumlastirilmasi iizerinde

kullanilmistir (Nadjafov ve Kahramanov 1973).

3.2.1 Kiip Cebri Elemanlar1 Ve Uygulama Bigimi

n-boyutlu bir kiipiin her bir tepe noktas1 ikili kodlarla belirtilir. Bu kiip koordinatlarina
sahiptir. dogal olarak k1 koordinati (0,1)’ lerle belirtilir ve i1,2,...,n” dir. Bu yiizden aym
zamanda, belirli bir tepe noktasinin kodu, bu tepe noktasinin cebirsel ifadesini gosterir. Tepe
noktalarina komsu olan diger tepe noktalar1 da n bitlik kodlarla belirlenir. n bitlik kodlar,
birbirinden sadece 1 hitlik farka sahipse bunlar komsu olarak adlandirilir. Ornegin 0110 kodu

ile 0100 kodu komsudur (Nadjafov ve Kahramanov 1973, Allahverdi 1999, Giines 2000).

Sekil 3.1. Ug boyutlu kodlanmus kiip

Kiipiin elemanlar1; tepe, dogru, yiiz, kiip, hiperkiip seklinde adlandirilir. Bu elemanlar
tizerinde bir islem yaparken gelebilecek belirsiz durumlarin olusmamasi icin, biitiin
koordinatlar1 ve bu koordinatlarin arasindaki dogrularin kullanilmasi gerekir. Bu amag icin,

{0,1} kiimesine ait olmayan gegersiz koordinatlarin konumlar1 “ * * ile belirtilmistir.

29

3.2.2 Kiip Cebrinin Islemleri

Kiip cebri, lojik 0 ve lojik 1 ile yapilan biitiin islemlerin disinda dort islemi daha

icermektedir. Bunlar;

a) Koordinath ¢arpma (star product, Y<-operation),

b) Koordinatli ¢ikarma (sharp product #-operation),

e) Koordinatl1 kesisme (M -operation)

d) Doniistimlii yutma islemi (commutative absorption operation A- operation)

islemleridir (Allahverdi ve Kahramanli 1995,Giines 2000).

3.2.2.1 Koordinatli carpma islemi (3- islemi)

Koordinatl carpma islemi, aym boyuta sahip iki kiip arasinda uygulanir. Fakat carpimi
yapilacak olan alt kiipler, ayn1 boyutta olmak sart1 ile degisik degerde olabilirler. Koordinatl
carpma islemi iki asamada gerceklestirilir. ilk asamada bir v bileseninin belirlenmesi i¢in

carpim vektorii (vector of product-CV) olusturulur.

Ikinci asamada, olusturulan CV’ nin koordinat degerlerine gore A ve B kiipleri
koordinatli ¢carpima tabii tutulur (Allahverdi ve Kahramanli 1995, Allahverdi 1999).
A ve B kiipleri ayn1 boyuta sahip iki kiip olsun

A= ai, Az... Ap

B=by, by... by

Bu iki kiip arasinda koordinatli arpma islemi uygulansin. ilk asamada v bileseninin

belirlenmesi icin asagidaki islemler sonucunda carpim vektorii CV olusturulur;

CV=A%B=v,v..v

30

Olmak iizere, v; bileseninde i € {0,1... n} dir. v; bileseni;

e Egeraj=b; isev;=a;bolur.
e [Egera =*veb; #* isey;=bjolur.
o Egera;# *veb="%*isev; =aolur.

e Egera,be {0,1} vea;# bjise v;=y olur.

CV’ nin koordinat degerlerine gore A ve B kiiplerinin koordinath ¢arpiminin sonuglari

asagidaki gibi olmaktadir;

a. Eger herhangi bir v; = y bulunmazsa, A ve B’ nin ¢carpimi1 sonucu, A ve B’ nin alt

kiipii olan CV olmaktadir (yani A ¥%B =CV).

b. Eger sadece bir tane i degeri icin v; =y bulunuyorsa ve diger degerler icin vi= bj=a;
ise (burada je {l, 2... i-1, i+l... n} dir) A ve B kiiplerinin koordinatli ¢carpimi sonucu, CV’

de v; yerine * sembolii konularak bulunan bir C kiipiidiir.

c. Eger sadece bir tane v; = y olusuyor ve ax =* veya by= * icin yy# * ise A ve B
kiiplerinin ¢arpimlari sonucu, CV’ de v; yerine * sembolii konularak bulunan bir C
kiiptidiir. C kiipiiniin bir boliimii A tarafindan, diger boliimii B tarafindan ortiiliir. Bu

durum C kiipiiniin A ve B kiipleri ile iliskisi oldugunu gosterir.

d. Eger en az iki tane v; ve v; bileseni i¢in, v; = v; =y olan A ve B kiiplerinin

koordinath ¢arpimi C = ¢ dir. Burada A ve B kiipleri arasinda dogrudan bir baglanti
yoktur.

31

a, b, ¢, d maddelerine gore A™ (m-kiip) ile B' (I-kiip) kiiplerinin ¢arpilmasi sonucu
agsagidaki durumlar olugmaktadir.

1: Her iki A ve B kiipiine giren C kiipii (Sekil 3.2).

CV=A*B=0** v *(0*
C=A*B=VP=00*

011
010
w
o 001 101 001
001 .Cf///xl C}///;] Cr///;]
C _—>
000
000 B 100 000 =
C
A "

Sekil 3.2. C kiipiiniin ortak olmas1 durumu

2: (m+]) kenara sahip olan (m+1-kiip) ve A ve B kiipiiniin birlesmesinden olusan C kiipii

011
o O
010 ® 010
N . 001
Lo !(///'
-
000 000
A B C

Sekil 3.3. C kiipiiniin birlesim olusturdugu durum

CV=AXB=0*0% 0*] = Oy*

32

3: A ve B kiipleri arasinda birlestirilmis bir koprii olan C kiipii.

CV=A*B=01* Y 1*0

011 ‘
oA oA
a 010 / Q
011 110 110
N —> C
010 N u n
a ® 100 - 9 100

Sekil 3.5. C kiipiiniin koprii olusturdugu durum

3.2.2.2 Koordinath ¢ikarma islemi (# islemi)

Koordinath ¢arpmada oldugu gibi, koordinath ¢ikarmada da aym boyuta sahip iki kiip
kullanilir. Cikarma iglemi, kiiplerin aym taraflarinda (nokta, kenar, yiizeylerinde) veya farkli
taraflarinda yapilabilir. Koordinatli ¢ikarma iglemi ilk olarak, tepe noktasi adreslenmemis SFs
nin sinirin1 hesaplamada kullanilmistir. Bununla birlikte, SFs nin yerel asal implikantlarin
(local prime implicants) bulunmasina uygulanmistir (Allahverdi ve Kahramanli 1995,
Kahramanli ve Allahverdi 1993, , Kahramanli ve Allahverdi 1996, Giines ve ark. 2003,
Allahverdi 1999).

A ve B gibi ayn1 boyuta sahip iki vektor verilsin
A= ap az...4an, B= b1 b2...bn

Cikarim Vektorii CV= v va...vy su sekilde bulunur.

* BEgerbj=x VEYA bj=4a; ise vi=7

* Egeraj=x VE bj=g ise v; = b’;

33

* BEger aj=b’; ise vi=Y

Ikinci adim olarak koordinat degerlerine gore sonug su sekilde bulunur:
* Eger, v; =y ise ¢ikarim iglemi olamaz: C=A # B=A

* Eger hi¢ | vi=y yoksa CV=vj... Vi... vi, € { 0,1 } varsa ¢ikarim operasyonu

Sonucu su sekildedir:

{al...aj_laj dj+1...an, al...dk-1dk Ak+1...dpn, d1...dm-1dm am+1...an}

* Eger iigin v; = Z ise islem sonucu bos kiimedir. C=A # B=J

N
N
=<

(=)
N
=<
N

Koordinatli Cikarma Isleminin ozellikleri:

A#B#B#A Degisme 6zelligi yoktur.

(A#B)#C # A#(B#C) Birlesme 6zelligi yoktur.

(AUB#C=(A#C) U (B#C) Birlesme 6zelligi iizerinde dagilma 6zelligi vardir
(ANB#C=(A#C) N (B#C) Kesisme 0zelligi lizerinde dagilma o6zelligi vardir.
A#{B,C) = (A#B)#C = A# B#C) Cikarma isleminde simetriklik vardir.

34

3.2.2.3 Doéniisiimlii Yutma Islemi

Bu islem iki adimda ger¢eklesmektedir.

1- Vektor Absorbe islemi

2- Koordinat degerlerine baglh olarak kurallar uygulanarak Sonuca varilir.

Vektor absorbe islemi su kurala gore yapilmaktadir: AV=AVB=v|,v;... Vi... Vy
* Eger a; = by ise vi=Z
* BEgeraj=x VEYA bi#4a; ise vi=G
* Eger aj=b’; ise vi=Y

* BEgeraj# x VEYA bj=a; ise vi=L

aj

X 1 0
b;
X Z G G
1 L Z Y
0 L Y Z

Koordinat degerlerine bagl olarak Sonug ¢ikarma:
* Eger Ji i¢in v; =Y ise absorbe islemi yapilamaz C = AAB = {A,B}
* Bger Viicin vi=Z ise A=B dir ve Sonu¢ C = AAB=A
* BEger (diicin vi= G) ve (degil dii¢in vi=L)ise C=AAB=A
* Eger (diicin vi= L) ve (degil dii¢in vi=G)ise C=AAB=B

* Eger (i icin vi= G) ve (diicin vi=L) ise absorbe islemi yapilamaz C = A
AB={A, B}

35

Or:
1. A=XI1XX, B=X1X1 AV=XI1XXV XI1XI1 =ZZ7ZG; C=X1XX

2. A=XX1X, B=X011 AV=XX1XV X011 =ZGZG; C=XX1X

3.2.2.4 Asal Implikantlarin Yerel Belirlenmesi

Teorem:

Farz edelim ki A= ajay...a;... a, DOGRU kiimesinin elemani olsun,

B= bklbkz... bkj... bkrl ise YANLIS kiimesi eleman1 olsun.

Ki = Kifl # Bi i=1,2...m K() =XX... X

Boylece DOGRU kiimesindeki her bir eleman i¢in YANLIS kiimesinin biitiin elemanlari

tizerinde bu iglem gerceklesir. Bu islem sayesinde a; degeri uygun doniigiimii saglar.

Ispat:
Eger aj= bki ise herhangi bir j koordinat1 icin. vi=x # bki =a’;
Sonug olarak a; = bki oldugunda (a;, bki) ikilisinde fark kiipii olusur (difference cube) yani
A minterm’ linii icermez.
Eger a; <> x VE b"; = x j koordinat1 igin fark kiipii olusmaz yani b¥; Degeri degismez.

Ve yine Eger a; = b’ki isevi=x# bki = b’ki =a j koordinati (ekseni) i¢in fark kiipii a; degerini

kapsar.

Bu teoremi kullanarak su kiip degisimini gerceklestirebiliriz.

Eger bki =X ise qki =X

Eger a; = bki ise qki =X

Eger b= a’; ise qS=bY

36

3.2.2.5 Koordinatli Kesisme Islemi (M islemi)

Bu islem iki kiip arasinda mevcut olabilecek altkiibiin bos olup olmadigini

belirlenmesini amaglamaktadir. C; ve C, kiiplerinin kesigsme islemini sonucu bir vektordiir.

(VK)
VK=v,,v,..v...v,
VK vektoriiniin degeri su esitliklerle verilir:
Eger a; = bjise vi = b;= a; dir.
Eger aj=* ve b; # * ise v; = b; dir.
Eger b;=* ve a; # * ise v; = a; dir.

Eger a, ,b,e{0]} ve a, #b, isevi=ydir

Kesisme isleminin pseudokodu asagida verilmistir.
Procedure KOORDINATLIKESISME ()

CL=AL @By;

Cr = Ar @ Bg;

Sonug = Cp, & Cg;

END Procedure;

37

323

Yakin-Minimali Ortme Algoritmasi

Bu algoritmanin mantiksal fonksiyonun en sade sekillerinden birini iiretir, ama bu

algoritmayla iiretilen Sonug¢ en sade Sonu¢ olmayadabilir. Genelde en sade Sonug icin Sdogru

kiimesinin siralanmasi gerekmektedir.

Algoritmanin adimlart su sekildedir:

1. idegiskenine sifir ata (i = 0)

2. Sdogru kiimesinin birinci elemanini al ve i degiskenini artir (i=i+1)

3. Syanlis kiimesinin her bir elemanina bagh olarak kural x ile verilen doniisiimii
gerceklestir. Sonuclar QO kiimesinde olsun.

4. QO kiimesine absorbe islemini uygula ve Sonuglar Q1 kiimesini olustursun

5. nboyutlu ‘Biitiin Kiip’ ten (xx... x)koordinat ¢ikarma igslemini uygula. (n fonksiyona
giren degisken sayisin1 gosterir). Sonuc SI olarak adlandir.

6. SIkiimesi elemanlaria ‘BUYUK’ ve ‘KUCUK’ islemlerini uygula. (not: a, b’ den
daha biiyiiktiir & Sdogru#a < Sdogru#b)

7. SI kiimesinden biitiin ‘kiiciik’ elemanlar1 (giigsiiz) ¢ikart Sonugta tek eleman kalmigsa
onu veya birkag¢ taneden birini se¢ ve bu elemana EI

8. Sdogru kiimesini yeniden olustur ve EI elemanin1 SPI Sonug kiimesine ekle

9. Eger Sdogru # < ise 2 ye git

10. Bitir.

3.2.3.1 YMOA Ornegi

QM algoritmasinda verilen 6rnegi burada ¢6zelim ¢oziimlersek

F(a,b,c,d)=Ym(0, 1,2,5,6,7,8,9, 10, 14)

Sdogru= {0, 1,2,5,6,7, 8,9, 10, 14}
Syanhs = {3, 4, 11, 12, 13, 15}

h=0000

38

Syanlis Q0 Kiip durumu Q1
0011 XX11 Birincil XX11
0100 X1XX Birincil X1XX
1011 1X11 XX11 tarafindan yutulur | ---
1100 11XX X1XX tarafindan yutulur | ---
1101 11X1 X1XX tarafindan yutulur | ---
1111 1111 XX11 tarafindan yutulur | ---

Ql={ XX11, X1XX,} Tam Kiipten koordinat ¢ikarma islemi:

SI=XXXX # QI =(XXXX #XX11) #X1XX)= { XX0X, XXX0 }#X1XX = {X00X,
X0XO0}

S1.1= X00X

S1.2 = X0X0

P1=Sdogru # X00X ={0000, 0001, 0010, 0101, 0110, 0111, 1000, 1001, 1010, 1110}#X00X

P1={0010, 0101, 0110, 0111, 1010, 1110} (6 elemanl1)

P2=Sdogru # X0X0 ={0000, 0001, 0010, 0101, 0110, 0111, 1000, 1001, 1010, 1110}#X0X0

Sdogru={0001, 0100, 0101, 0111, 1001, 1110} (6 elemanl)

Her ikisi de esit giicte olduklari i¢in S1.1 segebiliriz. Boylece Sdogru kiimemiz su olur
Sdogru={0010, 0101, 0110, 0111, 1010, 1110} (2, 5, 6,7, 10, 14) ve SPI kiimemize S1.1

eklenirse:

SPI={X00X}

Simdi Sdogru kiimesi Bos kiime olmadig icin ayn1 islemleri yeniden baslatacaz i=i+1

i=2

h2=0010

39

Syanlis Qo0 Kiip durumu Ql
0011 XXX1 Birincil XXX1
0100 X10X Birincil X10X
1011 1XX1 XXX1 tarafindan yutulur | ---
1100 110X XXXI1 tarafindan yutulur | ---
1101 1101 XXX1 tarafindan yutulur | ---
1111 11X1 XXX1 tarafindan yutulur | ---

$2 = XXXX # Q1 =((XXXX #XXX1#X10X)= (XXXO0 # X10X) =

{ X0X0, XX10 }

S2.1 = X0X0
Sdogru = Sdogru # X0X0= {0010, 0101, 0110, 0111, 1010, 1110}# XXXO0

Sdogru ={0101, 0110, 0111, 1110} // 4 elemanh

S2.2 =XX10

Sdogru = Sdogru# XX10= {0010, 0101, 0110, 0111, 1010, 1110 }# XXXO0
Sdogru ={0101, 0111} // 2 elemanl
S2.2, S2.1 elemanindan daha giicliidiir.
SPI = {X00X, XX10}

Sdogru kiimesi bos kiime olmadig icin ayn1 islemler tekrarlanacaktir. i=i+1

1=3
h3 =0101
Syanlig Q0 Kiip durumu Q1
0011 X01X Birincil X01X
0100 XXXO0 Birincil XXXO0
1011 101X X01X absorbe eder -
1100 1XXO0 XXXO0 absorbe eder -—
1101 1XXX Birincil 1XXX
1111 1X1X 1XXX absorbe eder -—

S3 = XXXX # Q1 = (XXXX # X01X) # XXX0) # 1XXX)

40

= ({X1XX, XX0X} # XXX0) # 1XXX) = ({XI1X1,XX01} # 1XXX)

= {01X1,0X01}

S3.1=01X1

S3.2 =0X01

P1 = Sdogru # 01X1 ={ 0101, 0111} # 01X1

Pl=g S3.1>S3.2

P2 = Sdogru # 0X01 ={0101, 0111} # 0X01

P2 ={0111}

S3.1 > S3.2 Oldugu i¢in S3.1 SPI kiimesine ekleyelim

SPI = {X00X, XX10, 01X1}

Sdogru: SPI kiimesini degiskenlerle ifade ettigimizde:

F=B'C+CD’ + A’BD

3.3 Kiip Cebri islemlerinin Temel Bilgisayar Islemleri Uzerinden Gergeklestirilmesi

Bu islemelerin hepsi kiip cebri islemleri kullanilarak sadelestirme islemi paralel bir
bicimde bir sekilde yapilmaktadir. Seri bir sekilde bu islemleri gerceklestirirken
algoritmalarin ¢6ziime ulagma zamanlar artmaktadir. Bu yiizden, bu islemleri temel
bilgisayar islemleri yardimu ile paralel bir sekilde yaparak algoritmalarin E ¢6ziim zamanlar
azaltilmaya calisilmistir. Bu islemler sayesinde algoritmalarin daha hizli olmasi saglanmistir.
Ciinkii bu islemler temel bilgisayar islemleri kullanilarak paralel bir sekilde yiiriitiilmesi

saglanmistir. Bu boliimde bu islemlerin nasil gerceklestirildigi aciklanacaktir.

Temel bilgisayar islemlerinin gerceklestirilmesi sirasinda asagida gosterilen islemler

kullanilacaktir.

41

1) Kiiplerin koordinat degerlerinin gosterilmesi
Bir kiipiin her bir koordinat degeri asagida gosterildigi gibi iki bit ile temsil edilmistir.
Bir lojik Fonksiyon f: B">{0, 1, x} tamimlanabilir. f Fonksiyonun alabilecegi degerler olan 0

1 i¢in ve x i¢in doniistimleri kullanilacaktir.

0
Esas koordinatin lojik O degeri : 0 — L
Esas koordinatin lojik 1 degeri: 1— 0’

x veya (-) terimi ile gosterilen esas olmayan koordinatin degeri: x —

Burada belirtilen bit ¢iftleri ile kiipiin koordinat degerlerinin temsil edilmesi saglanmuistir.
Ciinkii kiiptin koordinat degerleri arasinda gosterilecek esas olmayan koordinat degerleri igin x
sembolii kullanilmistir. Bu isareti bir ve sifir cinsinden ifade edebilmek icin bu sekilde bir gosterim
kullanilmugtir. Ornek olarak A= x01 kiipii icin asagida kiipiin her bir koordinat degeri iki bit ile

gosterilmistir.

Tablo 3.3. Bir kiipiin her bir koordinat degerinin iki bit ile gosterilmesi:

Kiip Degeri X 0 1

Iki bit ile gosterilir 11 01 10

a) Off kiimesindeki mintermleri genisletmek icin temel bilgisayar iglemleri

Off-kiip kiimesinde bulunan Bi= b'l, b,... by e Sof mintermleri On-kiip kiimesinin

A=a'}, as... al, ile genisleterek Q; = qil, qiz. . qirl

42

Bu islemleri gerceklestirirken Off kiimesindeki her bir mintermi On kiimesindeki minterm ile bit bit
kargilagtirma yapmak suretiyle Q1 kiipiinii elde ederiz. Bu da zaman agisindan biiyiik kayiplara

ugramamiza neden olur. Bu kurallar1 temel bilgisayar islemleri ile agagidaki gibi gerceklestirebiliriz.

On kiimesindeki mintermi (A), Off kiimesindeki mintermle genisleterek C kiipii elde edilir. Bu
genisletme islemi icin On kiimesindeki minterm ile Off kiimesindeki minterm bit dizisi ¢iftleri haline

doniistiiriiliirler.

b) Iki kiipiin (A ve B) kesisimini temel bilgisayar islemleri ile gerceklestirmek

Uygulanacak iki kiip olsun. Asagida gosterilen C kiipii A ve B kiiplerinin kesisimi

sonucunda elde edilen kiiptiir.
Bi= b' 1 biz. .. bin e Sof mintermleri On-kiip kiimesinin
A= ail, aiz. . airl ile genisleterek

Ci= Ai ﬁBi

Bu kesisim islemi sonucunda elde edilen C kiipiiniin bit dizisi ciftleri CL ve CR bit dizileri A

ve B kiiplerinin bit dizilerinin ‘ve” islemine tabi tutulmasi ile bulunur. Burada,

CL =Al VE Bl

CR = Ar VE Br

Elde edilen CL ve CR bit dizileri sonucunda, A ve B kiiplerinin kesisim degeri
belirlenmeye calisilir. C kiipiiniin degerinin belirlenmesi i¢in asagidaki islemler

gerceklestirilir.

43

1) Sonucun bos kiime olup olmadiginin kontrol edilmesi

Bulunan C1 ve Cr bit dizileri ve C kiipii degeri ile A ve B kiiplerinin kesisim degerinin

herhangi bir degere veya bos kiimeye esit olup olmadig1 asagidaki islemlerle kontrol edilir.

CL = AL @BL;
CR = AR @BR;

Sonug = Cp & Cg;

Bu islemler sonucunda elde edilen sonug kiipii sifira esit degilse C kiipii hos kiimedir,
Yani, A ve B kiiplerinin kesisiminden bir deger elde edilmemistir. Sonug kiipii sifira esitse A

ve B kiiplerinin kesisiminden bir deger elde edilmis olacaktir.

ii) A ve B kiiplerinin C sonug kiipii ile karsilasgtirilmasi

A ve B kiiplerinin kesisimi sonucunda elde edilen C kiipii herhangi bir degere sahipse, bu
degerin A veya 13 kiiplerinden hangisine ait oldugunu asagidaki islemler dogrultusunda
bulabiliriz. Bu islemler sonucunda kesisim degerinin hangi kiipe ait oldugunu bulmakla

beraber kiipler arasindaki kapsama durumlar1 da bulunmug olmaktadir.

» Eger Cl = Al ve Cr=Ar ise C=A dur.
» Eger C = A ise A kiipiinii ¢ikar degilse A kiiptinii tut.

» Eger C= B ise B kiipiinii ¢ikar degilse B kiipiinii tut.

Ornek 3.3: A=0x 1 ve B=00 1 iki kiip olsun. Bu kiipler arasindaki kesisme durumunu ve
birbirini kapsama durumunu temel bilgisayar islemleri ile gergeklestirirsek;

A ve B kiiplerinden A1, Ar ve BI - Br bit dizilerini asagidaki gibi olustururuz.

44

Al=011Ar=110

BlI=001Br=110

Elde edilen bit dizilerinden
Cl=A1VEBI=011VEO001=001

Cr=ArVEBr=110VE110=110

C=A N B=001

i) Sonucun bos kiime olup olmadiginin kontrol edilmesi
D=(C1 VEYA Cr) @ 11... 1 D-(001 v 110) @ 111 =000 oldugu i¢in C # ¢ dir.

Yani bu iglemler sonucunda A ve B kiiplerinin kesisiminden bir deger elde edilmistir.

Kiipler arasindaki kapsarna durumuna bakilirsa,

Cl=BI1=011
Cr=Br=110

Oldugundan B kiipii kapsanmustir.

3.4 Yakin Minimali Ortme Algoritmasi Pseudo Kodu

Tahmini minimali Son kiimesi bos kiimeden farkli oldugu miiddetce genisletme
islemi, degismeli absorbe, koordinatli ¢ikarma islemleri verilen sirayla uygulanmir. En son
olarak asal implikantlar kiimesi iizerinde biiyiik islemi uygulanarak en biiyiik asal implikant

bulunur ve Sespi kiimesine eklenir.

45

Procedure NMINIMAL(Son, Sof)

While Son € @ Do

SQO=GENISLEME(Son[0], Sof);
SQ1=DEGiISMELIABSORBE(SQO0);
SAI=KOORDINATLI_CIKARMA(SQ1);
ESPIBUYUK (Son, SAI);

SESPI= SESPI U ESPI;

END While;
END Procedure;

46

4 SADELESTIRME ALGORITMALARININ KARMASIKLIK ANALIZI

4.1 Karmagiklik (Complexity)

Bir programin performansi genel olarak programin igletimi i¢in gerekli olan bilgisayar
zamani ve bellegidir. Bir programin zaman karmasikligi (time complexity) programin isletim
stiresidir. Bir programin yer karmasikligi (space complexity) programin isletildigi siirece
gerekli olan yer miktaridir. Bir problemin ¢oziimiinde, kullanilabilecek olan algoritmalardan
en etkin olam secilmelidir. En kisa siirede ¢6ziime ulasan veya en az islem yapan algoritma
tercih edilmelidir. Burada bilgisayarin yaptig1 is 6nemlidir. Baz1 durumlarda da en az bellek
harcayan algoritmanin tercih edilmesi gerekebilir. Ayrica, programcinin yaptigi is agisindan
veya algoritmalarin anlasilirliklar1 bakimindan da algoritmalar karsilagtirilabilir. Daha kisa
stirede biten bir algoritma yazmak icin daha ¢ok kod yazmak veya daha cok bellek kullanmak
gerekebilir.

Rakip algoritmalan1 yaptiklart is agisindan karsilagtirmak icin her algoritmaya
uygulanabilecek somut Olgiiler tanimlanmalidir. Ayni isi yapan algoritmalardan daha az
islemde sonuca ulasanin (hizli olanin) belirlenmesi yani daha genel olarak algoritma analizi

teorik bilgisayar bilimlerinin 6nemli bir alanidir.

Yazilimcilar, iki farkli algoritmanin yaptiklari isi nasil 6l¢iip karsilastirirlar? ik ¢oziim
algoritmalar1 bir programlama dilinde kodlayip her iki programi da calistirarak isletim
siirelerini karsilastirmaktir. Isletim siiresi kisa olan daha iyi bir algoritma denilebilir mi? Bu
yontemde isletim siireleri belirli bir bilgisayara 6zeldir. Dolayisi ile isletim siiresi de bu
bilgisayara baghdir. Daha genel bir 6l¢iim yapabilmek i¢in olasi tiim bilgisayarlar tizerinde

algoritmanin calistirllmasi gerekir.

Ikinci ¢oziim, isletilen komut ve deyimlerin sayisim bulmaktir. Fakat bu 6l¢iim
kullanilan programlama diline gore ve programcilarin stiline gore degisim gosterir. Bunun
yerine algoritmadaki kritik gecislerin sayisi hesaplanabilir. Her tekrar igin sabit bir is
yapiliyor ve sabit bir siire gegiyorsa, bu dl¢ii anlamli hale gelir.

Buradan, algoritmanin temelinde yatan bir islemi ayirarak, bu islemin kac¢ kere
tekrarlandigini bulma diisiincesi dogmustur. Ornek olarak bir tamsay: dizisindeki tiim

elemanlarin toplamini hesaplama isleminde gerekli olan is miktarim 6lgmek icin tamsay1

47

toplama islemlerinin sayist bulunabilir. 100 elemanli bir dizideki elemanlarin toplamini
bulmak i¢in 99 toplama islemi yapmak gerekir. n elemanlh bir listedeki elemanlarin toplamini
bulmak i¢in n—1 toplama islemi yapmak gerekir diye genellestirme yapabiliriz. Boylece
algoritmalan kargilastirirken belirli bir dizi boyutu ile sinirhi kalinmaz.

Iki gercel matrisin ¢arpiminda kullanilan algoritmalarin Karsilastirilmasi istendiginde,
matris carpimi icin gereken gercel say1 carpma ve toplama islemlerinin karisimi bir 0l¢ii
olacaktir. Bu Ornekten ilging bir sonuca ulasilir: Bazi islemlerin agirligi digerlerine gore
fazladir. Birgok bilgisayarda bilgisayar zamani cinsinden gercel sayr carpimi gercel sayi
toplamindan ¢ok daha uzun siirer. Dolayisi ile tiim matris ¢arpimu diisiiniildiigiinde toplama
islemlerinin etkinlik tizerindeki etkisi az olacagindan ihmal edilebilirler. Sadece ¢arpma
islemlerinin sayis1 dikkate alinabilir. Algoritma analizinde genelde algoritmada egemen olan

bir islem bulunur ve bu digerlerini giiriiltii diizeyine indirger.

4.2 Algoritmalarda Karmasiklik (Complexity) ve Zaman Karmasikligr Analizi

4.2.1 Isletim Zamam (Running Time)

Isletim zamanini1 girdi boyutunun bir fonksiyonu olarak ele almak tiim gecerli girdileri
tek degere indirir. Bu da degisik algoritmalart karsilastirmayr kolaylastirir. En yaygin
karmagiklik Olciileri “Worst —Case Running Time” (en kotii durum isletim siiresi) ve

“Average-Case Running Time” (ortalama durum isletim siiresi)’dir. (Stockmeyer 1990).

En kétii calisma siiresi:

Bu isletim siiresi, her girdi boyutundaki herhangi bir girdi i¢in en uzun isletim siiresini
tanimlar. Ornek olarak bir programin en kotii ihtimalle ne kadar siireceginin tahmin edilmesi
istenen bir durumdur. n elemanli bir listede sirali arama en kotii ihtimalle (aranan
bulunamazsa) n karsilastirma gerektirecektir. Yani worst-case running time (isletim zamani)
T(n) =n’ dir. Tiim problemlerde sadece en kotii girdi dikkate alindigi icin worst-case running

time degerini hesaplamak goreceli olarak kolaydir.

48

Ortalama calisma siiresi:

Bu igletim siiresi, her girdi boyutundaki tiim girdilerin ortalamasidir. n elemanin her
birinin aranma olasiliginin esit oldugu varsayildiginda ve liste disindan bir eleman
aranmayacag varsayilldiginda ortalama isletim siiresi (n+1)/2°dir. Ikinci varsayim
kaldirildiginda ortalama igletim siiresi [(n+1)/2,n] araligindadir (aranan elemanlarin listede
olma egilimine bagh olarak). Ortalama durum analizi basit varsayimlar yapildiginda bile

zordur ve varsayimlar da gercek performansin iyi tahminlesememesine neden olabilir.

4.2.2 Asimptotik Analiz

Algoritmalarin karsilagtirilmasinda asimptotik etkinlikleri de dikkate alinabilir. Girdi
boyutu sonsuza yaklasirken isletim siiresinin artisi. Asimptotik gosterimin elemam olan 4
onemli gosterim vardir: O-notasyonu, o- notasyonu, - notasyonu, - notasyonu. Burada
sadece O gosterimi iizerinde durulacaktir. O gosterimi, fonksiyonlarin artis oraninin {ist
sinirint belirler. O(f(n)), f(n) fonksiyonundan daha hizli artmayan fonksiyonlar kiimesini

gosterir.

4.2.2.1 Biyiik-O Gosterimi (notasyonu)

n elemanl bir listedeki elemanlarin toplamini bulmak i¢in n-1 toplama islemi yapmak
gerekir diye genellestirme yapmustik. Yapilan isi, girdi boyutunun bir fonksiyonu olarak ele
almis olduk. Bu fonksiyon yaklagimini matematiksel gosterim kullanarak ifade edebiliriz:
Big-O gosterimi veya biiylikliik derecesi (order of magnitude). Biiyiikliikk derecesini
problemin boyutuna bagl olarak fonksiyonda en hizli artis gosteren terim belirler. Ornek

olarak:

f(n) =n’ + 100n” + 50 = O(n’)

Fonksiyonunda n' in derecesi n*tiir yani n' in bityiik degerleri icin fonksiyonu en fazla
n* etkiler. Peki, daha diisiik dereceli deyimlere ne olmaktadir? n' in ¢ok biiyiik degerleri igin

n', 100n*den ve 50'den ¢ok biiyiik olacagindan daha diisik dereceli terimler dikkate

49

alinmayabilir. Bu diger terimlerin, islem siiresini etkilemedikleri anlamina gelmez; bu

yaklagim yapildiginda n' in ¢ok biiyiik degerlerinde 6nem tagimadiklari anlamina gelir.

n, problemin boyutudur. Yigit, liste, kuyruk, agac gibi veri yapilarinda eleman sayilaridir. n

elemanl1 bir dizi gibi...

Bir listedeki tiim elemanlarin dosyaya yazilmasi icin ne kadar is yapilir : Cevap,

listedeki eleman sayisina baghdir.

Algoritma
OPEN (Rewrite) the file

WHILE more elements in list DO

Print the next element

Islemi yapmak icin gecen siire:

(n*(Bir elemanin dosyaya yazilmasi i¢in gegen siire))+dosyanin agilmasi sirasinda
gecen siire Algoritma O(n)'dir (Algoritmanin zaman karmasikligit O(n)’dir) . Ciinkii n tane
islem + sadece dosya agilmasi islemi vardir. Yiizlerce elemanin dosyaya kaydedildigi
diisiiniiliirse, dosya acilmasi sirasinda gecgen siire miktar1 rahatlikla ihmal edilebilir. Ama az
sayida eleman varsa dosya agilmasi sirasinda gecen siire miktar1 6nem tasiyabilir ve toplam

stireye katilim1 daha fazla olur.

Bir algoritmanmin biiyiikliik derecesi, bilgisayarda isletildiginde sonucun ne kadar
siirede alinacagini belirtmez. Bazen de bu tiir bir bilgiye gereksinim duyulur. Ornek olarak bir
kelime islemcinin 50 sayfalik bir yazi iizerinde yazim denetimi yapma siiresinin birkag saniye
diizeyinden fazla olmamasi istenir. Boyle bir bilgi istendiginde, Big-O analizi yerine diger
Olciimler kullanilmalidir. Program degisik yontemlere gore kodlanir ve karsilastirma yapilir.
Programi ¢alistirilmasindan 6nce ve sonra bilgisayarin saati kaydedilir. iki saat arasindaki
fark alinarak gecen siire bulunur. Bu tiir bir "Benchmark" testi, islemlerin belirli bir

bilgisayarda belirli bir islemci ve belirli kaynaklar kullanilarak ne kadar siirdiigiinii gosterir.

50

Bilgisayarin yaptig1 isin programin boyutu ile, 6rnek olarak satir sayisi ile ilgili olmasi
gerekmez. N elemanh bir diziyi 0’layan iki program da O(n) oldugu halde kaynak kodlarinin

satir sayilart oldukga farklidir:

Program 1: Program 2:

Dizi[0] = 0; for(int 1=0; i<n; ++1)
Dizi[1] = 0; Dizi[i] = 0;
Dizi[2] = 0;

Dizi[3] = 0;

Dizi[n-1] = 0;

1’den n’ e kadar olan sayilarin toplamin1 hesaplayan iki kisa programi diisiinelim:

Program 1: Program 2:
Toplam = 0; Toplam =n * (n+1) / 2;

for(int i=0; i<n; ++1)
Toplam = toplam + i;

Program 1, O(n)’dir. n=50 olursa programin ¢alismasi sirasinda n=5 icin harcanan
stirenin yaklasik 10 kat1 siire harcanacaktir. Program 2 ise O(1)’dir. n=1 de olsa n=50’de olsa

program ayni siirede biter.

Sekil 4.1 Biiyiik O ifadeleri ve anlamlar1

1.1 Fonk [1.2 Isim
siyon
1 Sabit
Log(n) |Logaritmik
n Dogrusal
n* Polinomal
X" Ussel
n! Faktoriyel

Sekil 4.1: Biiyiik O ifadeleri

51

O(1) : Sabit zaman

Ornek: n elemanl bir dizinin i. elemanina bir deger atanmas1 O(1)’dir. Ciinkii bir elemana
indisinden dogrudan erisilmektedir.

O(n) : Dogrusal zaman

Ornek: n elemanl: bir dizinin tiim elemanlarinin ekrana yazdirilmasi O(n)’dir.

Ornek: siral1 olmayan bir dizideki (listedeki) elemanlardan birinin aranmas1 O(n)’dir (en kotii
durumda da, ortalama durumda da).

O(ogyn) : O(1)’den fazla O(n)’den azdir.

Ornek: Siral1 bir listenin elemanlar1 iginde ikili arama (binary search) uygulanarak belirli bir
degerin aranmas1 O(logyn)’dir.

O(nz) - Tkinci dereceli zaman

Ornek: Basit siralama algoritmalariin birgogu (selection sort gibi) O(n?)’dir.

O(n logzn) : Bazi izl siralama algoritmalart O(n logyn)’dir.

O(n3): Kiibik zaman

Ornek: Ug boyutlu bir tamsayi tablosundaki her elemanin degerini artiran algoritmadar.

O(2") : Ustel zaman, ¢ok biiyiik degerlere ulasr.

4.2.2.2 Pratikte Karmasiklik

Degisik artis fonksiyonlarimin aldiklar1 degerlere gore bir tablo, Sekil 4.2°de

gosterilmistir.

logn n nlogn n n 2"
0 1 0 1 1 2
1 2 2 4 8 4
2 4 8 16 84 16
3 8 24 64 512 256
4 16 64 256 4096 65536
5 32 160 1024 32768 |4294967
706

Sekil 4.2: Degisik fonksiyonlarin f(n) degisik girdi boyutlarina (n) gére degerleri

Bir programun isletimi n® adim siiriiyorsa ve n=1000 ise, program 1000” adim siirecek

demektir. Yani 1.000.000.000 adim.

52

Kullanilan bilgisayar saniyede 1.000.000.000 adimi gerceklestirebilecek kadar hizli ise bu

program tam 1 saniye siirecektir.

Sekil 4.2’ deki fonksiyonlardan elde edilmis bir grafik Sekil 4.3’te goriilmektedir.
50 3 o P nlog

40 -

30

20 / —

10 A

f(n)

01 2 3 45 6 7 8 9 10 11 12 13 14 15
n

Sekil 4.3: Degisik fonksiyonlarin grafikleri

4.3 Algoritmalarin Karmagiklik Degerlendirmesi

Bu béliimde Yaki Minimali Ortme Metodunun asal implikantlari olusturan kisminin
karmagiklig1 karsilastirmali olarak hesaplanacaktir. Ciinkii bunlarin esas asal implikant
belirleme ve ortme kisimlart var olanlar ile aynidir.

Verilen On-kiipii ortmek i¢in asal implikantlarin yeterli bir kiimesini olusturan belli bulugsal
metotlar dogrudan 6rtme prensibini kullanarak asagidaki algoritmaya gore calisirlar (Fiser ve

Hlavicka 2003).

1. Yeterli asal implikantlar kiimesini elde etmek i¢in bir tane On kiip secmek.
2. Bu On kiipii orten implikantlar1 iiretmek

3. Verilen implikanti, heniiz dokunulmamus literallerden (koordinat degerleri) bir

tanesini cikararak (x ile degistirerek) genisletmek

53

4. Sonucu, Off kiimesi ile kesistirmek
5. Eger kesisme isleminin sonucu bos degilse c¢ikarilan literali geri koymak

6. Eger isleme tabi tutulmayan bir literal varsa 3. adima geri donmek, degilse devam

etmek
7. Genisletilen implikanti, asal implikantlardan bir tanesi olarak kaydetmek
8. Eger biitiin implikantlar genisletildiyse 11. adima gitmek degilse devam etmek

9. Heniiz isleme tabi tutulmamis implikantlardan birisini yeni implikant olarak kabul

etmek
10. 3. adima geri donmek

11. Ortme problemini ¢ozmek

Bu algoritma SON kiimesi bosalincaya kadar tekrarlanir. Bu algoritmaya dayanarak,
verilen terimin literalleri (veya koordinatlart) birer birer etkisiz duruma getirilir. Bu islem sz
konusu terim asal implikant oluncaya kadar siirdiiriiliir. Bu islemler polinornal zamanda
(O(n!)) yapilabilir. Bu, matematiksel olarak asagidaki gibi formiile edilebilir. On-kiipii i esas
ve n-i esas olmayan (removed) koordinatla ifade edebilmek amaciyla genisletebilmek i¢in i
tane incelemeye ihtiya¢ vardir. Bundan dolayi, genisletilen kiipiin koordinatlarinin hepsi icin

gereken incelemelerin toplam sayis1 asagidaki gibi ifade edilebilir;

n-1

Q=2
i=0
_(I+m*
=0T % (4.1)

_ (n* +n%

Fakat genellikle, incelenen bir kiip 0 <m < n koordinatlar1 ¢ikarildiktan sonra asal

implikant olur. Bunu dikkate alarak, incelemelerin beklenen sayilarinin genel ifadesi Tablo

54

4.4’ iin birinci ve ikinci siitunlarinda sunulan verilerin tiimevarimiyla elde edilmistir. Yani,

(4.1) deki formiil yerine asagidaki formiil kullanilacaktir.

0, = (1+my*n— " +m% 4.2)

Varsayalim ki, minimumlastirilan n degiskenli bir fonksiyon, On-kiimesi icin K1 x 2
boyutuyla ve Off-kiimesi icin K2 x 2 boyutuyla gosterilmis olsun.
Tablo 4.3 n ve m degerlerine bagh olarak genisletilen kiipiin

incelemelerinin sayisi

Esas olmayan

koordinatlarin | Gereken incelemenin sayisi (QO) QO0’ in genel ifadesi
sayist (m)
0 n
1 n+(n-1) 2n-1
2 n+(n—1)+(n-2)= 3n-3 .
Q,=n(m+1)- D
3 n+(n—-1)+(n-2)+(n-3)= 4n-6 =l
- — — —4) = 5n- 24
4 n+(n-1)+(n—-2)+(n-3)+(n—4) = 5n-10 0, = (1+m)*n—(m m%

n+(n-1)+(n-2)+(n-3)+(n—4)+...+(n-

m) =n(m+1)-(1+243+...+m)

Incelenen On-kiiplerin maksimum muhtemel sayisi, a < K; oldugu durumlarda a x 2"
dir ve genisletilmis kiip ile bire bir karsilagtirilan Off-kiiplerin sayis1 K, x 2" dir. Sonug
olarak, On-kiiplerin genisletilmesi metoduna dayanarak bir asal implikantin olusturulmasinin

karmagiklig1 asagidaki formiil ile ifade edilebilir.

55

0,=a*2"Q,*K,*2" =a*K,*2" (2n—m)(m+1) 4.3)

Fakat genellikle, bir minterm birden fazla asal implikant tarafindan ortiilebilir. Bu
nedenle sezgisel metotlarin ¢ogu d’ nin baslangic boyutunun her bir terimi i¢in n-d adete
kadar asal implikant iiretir (Fiser ve Hlavicka 2003). Her bir izole edilmis minterm bir tek asal
implikant tarafindan oOrtiildiigtinden, bir minterm i¢in olusturulmus asal implikantlarin
ortalama sayis1 yaklagik olarak (n-d)/2 ye esit varsayilabilir. Biitiin mintermler icin d sifir
oldugundan, verilen mintermi orten yeterli sayida asal implikantlarin (Fiser ve Hlavicka 2003)

olusturulmasinin toplam karmasikligi, asagidaki formiil ile hesaplanabilir:

Q, =a*n*K,*2*" (2n—m)(m+1) (4.4)

Diger taraftan, burada 6nerilen metot agagidaki algoritmada ki gibi calisir.

1. Asal implikantlar kiimesinin tamamin elde etmek i¢in gerekli bir tane On kiip

(minterm) se¢mek. Bunu genisletici olarak kullanmak
2. Genisletilmesi gereken kiip olarak birinci Off-kiipii secmek
3. Verilen Off-kiipii genisletmek (genisletme kuralina gore)

4. Genigsletilen kiipii, 6nceden genisletilmis olanlarla bire bir karsilastirmak. Eger
genisletilen kiip digerlerini iceriyorsa, kapsanan kiipleri silmek. Veya 6nceden

iiretilmis kiiplerden birisi bu kiipii i¢eriyorsa bu kiipii silmek
5. Eger biitiin Off-kiipler isleme tabi tutulduysa 8. adima gitmek degilse devam etmek
6. Heniiz isleme tabi tutulmamis bir sonraki On-kiipii secmek

7. 3. adima geri donmek

56

8. n-kiip den genisletilmis asal kiipler kiimesini ¢ikartmak
9. Asal olmayan kiipleri silmek
10. Ortme problemini ¢ozmek.

Bu algoritma SON kiimesi bosalincaya kadar tekrarlanir. Bu algoritmaya gore, verilen
On-kiipii Orten tiim asal implikantlarin kiimesini iiretmede Off-kiiplerin hepsinin
genisletilmesi i¢in On-kiip ile bire bir karsilastirilmas1 gereklidir. Bundan dolayi, her bir a x
2" On-kiip, genisletilen K, x 2" Off-kiip ile karsilastirilir. Bununla, yeni genisletilmis Off-kiip
onceden genisletilmis olanlarla asal olmayanlarin silinmesi i¢in karsilastirilir. Yapilan
uygulamalar gostermistir ki buna benzer karsilagtirmalarin sayisi n/2’ yi ge¢memektedir.

Sonug olarak, sunulan metodun karmasikliginin en kotii zaman degeri:

Q,=a*2"*K,*2"(1+ o) =a*(2+m)K,*2"" 4.5)

Bu yiizden, burada sunulan asal implikant iiretme algoritmasinin var olan herhangi bir
algoritmaya gore asagidaki deger kadar daha hizli gergeklestirilebilir olmasini beklemek
miimkiindiir.

0 _a*n*K2*22”_l(2n—m)(m+l)
F(n,m)= /Q3 = a2+ mK, PPSTE (4.6)

Daha fazla gorsellik icin, Sekil 4.2° de m’ nin farkli degerlerine karsilik gelen F(n)’

nin egrileri gosterilmistir. Yaklagik olarak m’ nin ortalama degerinin 0.25n alinmastir.

57

1200

1000 A m=0.4n /
800

— }a—/().?an

£ 600 m=(.25n

L
400 m=(-2n
200 — nf=0.1n
0 17 1T T TT T T T T T 1T T T T T T 1T T 1T

1 4 7 10 13 16 19 22 25 28 31

n

Sekil 4.2: n ve m degerleri artarken F(n,m) ¢ok hizl artar

4.4 QMM Aralik Degerleri Sayisinin Bulunmasi ve Karmasiklik Degerlendirilmesi

Fonksiyonun ¢ikiglarinin 1 oldugu kiimenin elemanlar1 (mintermleri) icerdikleri 1
sayisina gore gruplandirilir. n degiskenli fonksiyon icin n+1 tane altkiime vardir. Birincisi
stfirlar altkiimesidir, hi¢ 1 eleman1 icermez. Bir tane 1 eleman1 igerenler birler altkiimesidir. n
tane 1 elemam icerenler n. altkiimedir. Buradan i. altkiimenin i tane 1 elemam icerdigini

sOyleyebiliriz. Bundan dolayi i. altkiimenin giicii (Mano 2002, Miller 1965),
P=C, 4.7

Bir altkiimedeki biitiin mintermler bir sonraki altkiimenin biitiin mintermleri ile
karsilastirilir. Omegin; ikinci altkiimenin mintermleri, {i¢iincii altkiimenin mintermleri ile
karsilagtirilir. i. kiime ile (i+1). kiimenin karsilastirilmasinin asimptotik degeri ve biitiin
kiimelerin birbirleri ile karsilastirilmasindan olusan toplam asimptotik degeri, sirasiyla

asagidaki formiiller ile hesaplanir (Mano 2002, Kahramanl ve Basciftci)

W, = Cn"xcnHl 4.8)
Ve

58

Vl_l . .
W, =>(C,'xC,"™) (4.9)

i=0

i. altkiime ile (i+]). Altkiimenin karsilastirilmasinin sonucunda bos olmayan sonuglarin

asimptotik degeri ve bu sonuglarin toplam asimptotik degeri agagidaki formiiller ile hesaplanir

(Mano 2002, Kahramanh ve Basgiftci)

R, =(n-i) xC,’ (4.10)

Ve

R, :f((n-i) xC,") (4.11)
i=0

Yukarida da deginildigi gibi, biitiin kargilagtirmalarin asimptotik degeri ve bos

olmayan biitiin sonuclar (AAA) ve (AAA) da gosterilen ve asagida tekrar verilen formiiller ile

hesaplanir.

n—1 . .

W, =>(C,'xC,"™) (4.12)
i=0

Ve
n—1 .

R, =) ((n-i)xC,") (4.13)
i=0

Asagida 20 degiskene kadar olan degerler bir tablo halinde verilmistir. Tablo 4.4.
YMOA ile QMM nun karmasiklik karsilastirilmast

59

Tablo 4.4. YMOA ile QM Metodunun karmasiklik analizi

Quine-McCluskey metodu YMOA
Des Toplam Gegici Sonuglar Bos Olmayan Gegici Sonuglar Gegici
cg. - - — - -

Say. Asimptotik Deger 0(2") Karmas. Asimptotik 0(2") Karmas. Sonug.

(W) (Rt) Sayisi
1 1 0,5%2" 1 0,50%2" 1
2 4 1,0%2° 4 1,00%2% 2
3 15 1,9%2° 12 1,50%2° 3
4 56 3,5%2° 32 2,00%2* 4
5 210 6,6%2° 80 2,50%2° 5
6 792 12,4%2° 187 2,92%42° 6
7 3.003 235%)7 414 3,23%27 7
8 11.440 44,7%28 893 3,49%2% 8
9 43.758 85,5%2° 1.930 3,77%2° 9
10 167.960 164,02 4.246 4,15%2" 10
11 646.646 315,7%21 9.516 4,65+2!1 11
12 2.496.144 609,421 21.542 5,26%2"2 12
13 9.657.700 1.178,9%2" 48.764 5,95%27° 13
14 37.442.160 2.285,3+21 109.581 6,692 14
15 145.422.675 4437921 243.554 743421 15
16 565.722.720 8.632,2#21 534.891 8,16%2" 16
17 2.203.961.430 | 16.814,9%2" 1.161.526 8,862 17
18 8.597.496.600 | 32.796,8*%2'° 2.497.440 9,53#2'° 18
19 33.578.000.610 | 64.045,0%2" 5.325.568 10,162 19
20 131.282.408.400 | 125.200,7%2%° 11.280.076 10.76%2% 20

4.5 Metodlarin Karsilagtirilmasi

60

Gelistirilmis olan Yakin Minimali Ortme Algoritmast1 (YMOA), ESPRESSO-II
algoritmasi ile karsilastirilmistir. Karsilagtirma kriteri olarak ii¢ ana durum belirlenmistir.

Bunlar:

» Algoritmalarin ¢6ziim sonucunda bulduklar1 ¢arpim terimlerinin toplam ifadesinin
sayist (SOP Sayisy),
» Algoritmalarin ¢6ziime ulagma siireleri,

» Algoritmalarin ¢6ziime ulasirken kullandiklar1 bellek kapasitesi

Gerceklestirilen bu karsilagtirmalar asagidaki Tablo 4.5 Tablo 4.6 ve Tablo 4.7’ de

verilmistir.

» YMOA algoritmas1 C++ programlama dilinde kodlanmistir.

» Espresso-II algoritmasi da C programlama dilinde kodlanmustir.

Biitiin algoritmalar aym dosya formatim kullanmustir. Yani YMOA ve Espresso-II
algoritmalar1 icin ayn1 benchmarklar kullamlmistir. Algoritmalart aym sartlarda
karsilagtirabilmek icin Espresso-1I algoritmasinin belirledigi durumlar dikkate alinmistir.
Karsilastirmalar tek c¢ikishh fonksiyonlar kullanilarak yapilmistir. Benchmarklarin
karsilagtirilmasi i¢in tam tanmimlanmamis ve tam tanimlanmis fonksiyonlar kullanilmistir.
Fonksiyonlarin tam tanimlanmig veya tam tanimlanmamis fonksiyonlar oldugunu belirtmek
icin Espresso-II algoritmasinin. type secenegi kullanilmistir. Bu segenekte (.type fdr)
fonksiyonun durumunu belirlemektedir. Bu secenekteki f dogru kiimesi i¢in, r yanis kiimesi

icin ve d belirsizler kiimesi i¢in kullanilmaktadir.

Karsilastirmalarin gerceklestirilmesini kolaylagtirmak icin Visual Basic programlama

dilinde ara yiiz program1 hazirlanmistir.
Asagidaki tablolarda benchmarklara ait, giris degisken sayisi, SON sayisi, SOF sayisi,
SOP sayisi, algoritmalarin sadelestirme zamanlart ve kullandiklar1 bellek kapasiteleri

verilmistir.

Tablo 4.5. Standart MCNC benchmarklari i¢in SOP sayis1

61

2 ; Al sayis1

E L 2z A

5° |25 | E D3 Ay

2 - SRER
Addm4 9 18 18 1
bll 12 12 13 0,923
br2 12 9 9 1
Life 9 16 19 0,842
EXS5 8 14 14 1
ex51 9 25 25 1
EXPS 9 20 16 1,25
m?2 10 11 11 1
max5 9 23 23 1
P3 8 18 21 0,857
prom1 9 22 21 1,047
z9sym 9 18 18 1
root 9 16 15 1,066
SYO 20 136 143 0,961
T10 10 125 130 0,960
test2 11 261 287 0,909
test3 10 133 135 0,985
T4 18 35 35 1

Performans ve sonug¢ kalitesini karsilastirmak i¢in standart MCNC Benchmarklari

YMOA algoritmasi ve ESPRESSO tarafindan sadelestirilmistir.

Karsilastirmalar Intel P4 2.26 Ghz islemcili ve 256 MB RAM bellegi olan standart bir
kisisel bilgisayarda gerceklestirilmistir. Tablo 4.5’ de verilen on sekiz farkli tek-cikish

fonksiyon kullanilmastir.

62

Fonksiyonlara ait olan degisken sayilari, SON sayilar1 ve SOF sayilan tablolarda
verilmistir. Carpim terimlerinin toplami ifadesi seklinde verilen sonucglar (SOP sayisi)
acisindan algoritmalar karsilastirildiginda

Tablo 4.5’ den elde edilen bilgiler soyledir:

Yakin Minimali Ortme Algoritmasi ile Espresso-1I karsilastirildiginda; fonksiyonlarin
%45’ inde esit sayida SOP sayisina sahip olduklar1 goriilmiistiir. Bu algoritmalardan
Espresso, fonksiyonlarin % 38,75 inde daha iyi sonug¢ bulurken YMOA % 16,66’ inde daha
iyi sonu¢ bulmustur. SOP sayilarmin ortalama degerlerine gore YMOA ile Espresso’ yu
karsilastirdigimizda Espresso’ nun daha iyi sonu¢ buldugu fonksiyonlarda ortalama % 4,3
daha az SOP bulmustur. Burada Espresso algoritmasinin daha iyi sonug¢ buldugu goriilse de
YMOA ile Espresso algoritmalarinin ¢oziime ulasma yontemleri farklidir. YMOA olabilecek
ihtimal sonuglar1 bulurken Espresso algoritmasi kesin olan sonuglar1 bulmaya calismaktadir.
Bu sartlarda dahi YMOA’ nin daha iyi sonug buldugu fonksiyonlarin olmasi bu algoritmanin

giiclii ve gelistirilebilecek yonlerinin oldugunu gostermektedir.

63

Tablo 4.6. Standart MCNC Benchmarklari i¢in calisma zamanlari

Calisma zamani

‘EE % (milisaniye) ,

5 z ZE

g % = < < n

2 8 |« E |8 ¢

M N >~ N

ADDM4 9 43,750 28,120 1,554
bl1 12 60,937 23,435 2,599
br2 12 60,930 23,435 2,589
Life 9 64,065 25,002 2,562
ex5 8 43,750 26,562 1,647
ex51 9 25,000 43,750 0,571
Exps 9 62,500 25,122 2,499
m?2 10 62,584 26,255 2,451
max5 9 64,065 26,562 2411
P3 8 60,935 25,240 2,437
prom1 9 60,937 23,437 2,6
Z9sym 9 23,437 43,750 0,535
Root 9 62,500 23,437 2,666
syO 20 10,625 25,000 4,249
t10 10 60,937 26,562 2,294
test2 11 15,312 51,562 2,969
test3 10 70,312 26,562 2,647
t4 11 60,937 25,000 2,437

Tablo 4.6° da goriildiigii gibi, bu benchmarklari YMOA ve Espresso tarafindan

sadelestirilmisti. YMOA ve Espresso’ nun sadelestirme islemlerini yaparken ihtiyac

duyduklarn1 zaman agisindan degerlendirilmesi Tablo 4.6

degerlendirmeye gore;

64

da gosterilmistir.

Bu

Yakin Minimum Ortme Algoritmasi ile Espresso Algoritmasimi karsilastirildiginda
YMOA’ sinin sadelestirme islemlerini ¢ok daha hizli gerceklestirdigi goriilmektedir.
Fonksiyonlarin % 88,8" sinda YMOA daha hizli bir sekilde sadelestirme yapip sonuca
ulagmustir. Bu iki algoritma acisindan bakildiginda YMOA’ s1 Espresso algoritmasina gore
cok daha hizlidir. Ortalama olarak YMOA Espresso’ ya gore 2,31 kat daha hizli sadelestirme
yapmaktadir.

Tablo 4.7. Standart MCNC benchmarklar i¢in bellek kullanim durumlart

_ Bellek Kullanimi

= % (bay) 5

£ £ . 3 Sz | B

3 2 4 3 z A
ADDM4 9 151552 274432 0,552
bll 12 282624 307200 0,92
BR2 12 262144 278528 0,941
Life 9 442368 479232 0,930
EXS 8 8192 90112 0,1
ex51 9 180224 237568 0,758
EXPS 9 294912 311296 0,947
m2 10 372736 409600 0,91
MAXS 9 577536 622592 0,927
P3 8 671744 708608 0,945
PROM1 9 745472 724992 1,028
Z9sym 9 778240 806912 0,964
root 9 851968 880640 0,967
SYO 20 917504 950272 0,965
T10 10 937984 970752 0,966
TEST2 11 1028096 1114112 0,922
TEST3 10 1257472 1265664 0,993
T4 11 1331200 1363968 0,975

65

Algoritmalarin sadelestirme yaparken kullandiklar1 bellek alanm1 bakimindan
degerlendirilmesi yapildiginda, Espresso’ un YMOA’ na gore %S5,5 fonksiyonda daha iyi
oldugu goriilmesine ragmen %94,5 fonksiyonda YMOA daha az bellek alan1 kullanmustir.

66

5 SONUC VE ONERILER

5.1 Sonug

Bu tez ¢calismasinda anahtarlama fonksiyonlarini sadelestirmek i¢in iki tane yeni

yontem sunulmustur. Bu yontem Yakin-Minimali Ortme Algoritmas1 (YMOA) dur.

Sunulan yontemde kiip cebri isglemleri kullanilmaktadir. Sunulan algoritma kiip
cebrinin koordinath ¢ikarma, koordinatli kesisim ve doOniisiimlii yutma islemleri
kullanilmistir. Bu islemlerin gergeklestirilmesi seri bir sekilde yapilmaktadir. Seri gerceklesen
bu islemler ¢oziime ulasma siiresini artirmaktadir. Bu islemlerden koordinath kesisim ve
doniisimlii yutma islemleri temel bilgisayar islemleri {iizerinden paralel bir sekilde
gerceklestirilmistir. Bu sayede algoritmalarin daha hizli bir sekilde coziime ulasmalar
saglanmistir. Ciinkii kiip cebri islemlerini gergeklestirebilmek icin yapilacak
karsilagtirmalarin - hepsi bit bit yapilmaktadir. Temel bilgisayar isleri {iizerinden
gerceklestirildiginde ise sayilarin karsilastirilmast yapilmistir. Veya sonuglarin elde
edilmesinde Ve (And), Veya (Or), Degil (Not). Veya Degil (Exor) lojik islemleri

kullanmlmaistir. Bu sayede bit bit kargilagtirma yapmaktan kagcinilmastir.

Sunulan YMOA da verilen fonksiyonun ON kiimesi mintermlerinden bir tanesini
rasgele secilmekte ve bu mintermi kapsayan asal implikantlar (AI) olusturulmaktadir. YMOA
bityiik implikant1 secme islemi kullanilarak esas asal implikantlar (EAI) bir bir secilmektedir.
Belirlenen asal implikant i¢in esit sayida minterm Ortiiliirse iiretilmis AI’ lardan bir tanesi
secilmektedir. Bu islemlerin yapilmasi ile fonksiyonun sadelesmis halini temsil edecek esas
asal implikantlar belirlenmis olur. Sunulan YMOA 6nemli bir sekilde var olan metotlardan
hizli ¢aligmaktadir ve daha az bellek kapasitesine ihtiyag duymaktadir. Ciinkii minimum
sayida gecici sonuglar iireterek isleme tabi tutmaktadir. Bu 6zellikler sunulan yonetimi 6zlii

ve son derece verimli yapmaktadir.

Gelistirilen algoritma olan Yakin Minimali Ortme Metodunun asal implikantlart
olusturan kisminin karmasiklig1 karsilastirmali olarak hesaplanmistir. Ciinkii bunlarin esas
asal implikant belirleme ve Ortme kisimlar1 var olanlar ile aynidir. Verilen algoritma C++

programlama dilinde kodlanmistir. Karsilastirmast yapilacak olan Espresso programi da C

67

programlama dilinde kodlanmistir. Sunulan algoritmada ve karsilastirmasi yapilan Espresso
programinda ayni dosya yapis1 kullanilmistir. Programlarin kullanimini kolaylastirmak igin
Visual Basic programlama dilinde ara yiiz programi yazilmistir. Kargilagtirmalarda tek c¢ikisl
fonksiyonlar kullanilmistir. Karsilagtirmasi yapilan fonksiyonlar tam tanimlanmamis veya
tam tanimlanmis fonksiyonlardir. Algoritmalarin karsilastirmasi ii¢ duruma gore yapilmistir.
Bunlar, algoritmalarin verilen fonksiyonlar1 sadelestirdikten sonra elde ettikleri carpim
terimlerinin toplami (SOP) sayisina gore, algoritmalarin sadelestirme zamanlar1 ve bellek
kullanma durumlardir.

Performans ve sonug kalitesini karsilastirmak icin on sekiz farkli tek-cikish fonksiyon
YMOA ve ESPRESSO tarafindan sadelestirilmistir. Fonksiyonlara ait olan degisken sayilari
tablolarda verilmistir. Carpim terimlerinin toplami ifadesi seklinde verilen sonuglar (SOP
sayis1) acisindan algoritmalar karsilastirildiginda YMOA ile Espresso algoritmasi
sonuclarinda; fonksiyonlarin %75’ inde esit sayida SOP sayisina sahip olduklari, Espresso
programinin fonksiyonlarin %18,75° inde daha iyi SOP sayist buldugu, YMOA’ ninda
fonksiyonlarin %6,25° inde daha iyi SOP sayis1 buldugu goriilmiistiir. Algoritmalarin
bulduklari1 SOP sayilarina gore; Espresso’ nun daha iyi sonu¢ buldugu fonksiyonlarda
ortalama %9,7 daha az SOP bulurken, YMOA’ nin daha iyi sonug¢ buldugu fonksiyonlarda
ortalama %45 daha az SOP bulunmustur.

YMOA algoritmasinin ve Espresso’ nun fonksiyonlar sadelestirme zamanlarma gore
karsilastirildiginda; YMOA® smin sadelestirme islemlerini cok daha hizli gerceklestirdigi
goriilmektedir. Fonksiyonlarin %89,6’ sinda YMOA daha hizli bir sekilde sadelestirme yapip
sonuca ulagsmistir. %10,4° iinde ise algoritmalarin sonuca ulasma zamanlar: esittir. Ortalama
olarak YMOA Espresso’ ya gore 7,9 kat daha hizli sadelestirme yapmaktadir.

Algoritmalarin kullandiklar1 bellek alan1 bakimindan karsilastirildiginda, Espresso’
nun YMOA’ na gore %16,7 fonksiyonda daha iyi Oldugu goriilmesine ragmen %83,3
fonksiyonda YMOA tarafindan daha az bellek alam1 kullamlmistir. Algoritmalarin daha az
bellek alan1 kullandiklar1 fonksiyonlardaki durumlarina bakildiginda ise YMOA %13,2 daha

az bellek alam kullanirken Espresso %9 daha az bellek alan1 kullanmistir.

68

5.2 Oneriler

Bu yiiksek lisans tez calismasinda gelistirilen algoritma tek ¢ikish fonksiyonlara
uygulanmistir. Bu calismanin bir sonraki adimi olarak cok cikisli fonksiyonlar igin bu
algoritmalar gelistirilebilir. Bu algoritmalarin ¢ok cikisli fonksiyonlar i¢in gelistirilmesi ile
cok cikish diger algoritmalarla ¢6ziime ulagsma zamanlari, kullandiklan bellek alam1 ve SOP
sayillar1 durumlarina gore karsilastirilabilirler. Tek c¢ikish fonksiyonlar ile cok ¢ikigh
fonksiyonlarin ortak noktalar arastirilarak bu algoritmalarin verimlilikleri incelenebilir.

YMOA verilen fonksiyonun SON kiimesinden hedef mintermi secerken rasgele secim
yapilarak bu mintermi kapsayacak asal implikantlar bulunmaktadir. Hedef mintermi secerken
izole edilmis mintermler belirlenebilir ve daha sonra bunlarin arasindan bir tanesi secilebilir.
Hedef mintermi se¢mek icin bagka bir prosediir olarak komsuluk faktorleri dikkate alinarak
gelistirilebilir. Bu prosediir i¢in Once biitiin mintermler icin komsuluk faktorleri hesaplanir.
Daha sonra en diisiik komsuluk faktoriine sahip olan minterm secilir. Bu islem, sonucun kesin
olmasi istenen durumlarda iyi sonuglar vermesi beklenirken sadelestirme zamani ac¢isindan da
kotii sonuglar ortaya koyabilir.

Bu tez calismasinda sunulan algoritmalarda kiip cebri islemleri kullanilmistir. Bu
islemler seri bir sekilde gergeklestirildigi icin bunlardan koordinatli kesisim ve doniisiimlii
yutma islemleri temel bilgisayar isleri iizerinden gerceklestirilerek paralel bir duruma

getirilmistir. Bu paralel islemler sayesinde algoritmalar 6nemli bir sekilde hizlanmistir.

69

6 KAYNAKLAR

Allahverdi N.M. and Kahramanl1 S.S., 1995, Routing Algorithm in Hypercube with
Application Cube Algebra.

Allahverdi N.M., Kahramanl $.S., Erciyes K., 2000, A Fault Tolerant Routing Algorithm
Based On Cube Algebra For Hypercube Systems. Journal of Systems Architecture 46, pp.
201-205.

Atallah M. J., 1998, Algorithms and Theory of Computation Handbook, CRC Press.

Basciftei F., Kahramanh S., Tiitiincii K., Saragoglu R., 2003, Quine McCluskey Lojik
Fonksiyonlar1 Sadelestirme Metodu, II. Ulusal Meslek Yiiksekokullar1 Sempozyumu, 15-17
Ekim, s.365-378, Ege Universitesi, [zmir.

Bovet DP., Crescenzi P., 1994, Introduction to the Theory of Complexity. Prentice Hall,
Eaglewood Cliffs, New Jersey.

Brayton, R., Hachtel, G.D.. Hemachandra, L.. Newton, A.R. and Sangiovanni Vincentelli,
A.L., 1982, A Comparison Of Logic Minimization Strategies Using ESPRESSO. An APL
Program Package For Partioned Logic Minimization. Proc. Int. Symp. On Circ. And Sys., pp:
43-49, Rome, May.

Brayton, R.K., Hachtel, G.D., McMullen, C., Sangiovanni-Vincentelli, A.L., 1984, Logic
Minimization Algorithms For VLSI Synthesis. ISBN 0-89838-164-9, Kluwer Academic

Publishers.

Brayton R.K., McGeer P.C., Sanghavi J., Sangiovanni-Vincentelli, A.L., 1993, A New Exact

Minimizer for Two-Level Logic Synthesis, Kluwer Acadernic Publishers, pp: 1-31.

Bryant, R.E., 1986, Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. On Computer, 35 pp: 677-691, Aug.

70

Bryant R.E., 1995, Binary Decision Diagrams and Bey. En. Tech. for. Ver. The Proc. Int.
Conf. On CAD, pp: 236-243, Nov.

Chai, L., 2000, ESOP Circuit Minimization Based On The Function On-Set. Master of

Sciences, Mississippi State University.

Coudert O., Madre J. C., 1993, Towards a Symbolic Logic Minimization Algorithms. Proc.
VLSI Design, Jan.

Coudert O., 1994, Two-Level Logic Minimization: An Overview, Integration, the VLSI
Journal, 17-2, pp: 97-140, Oct.

Celikag M.., 1989, An implementation and Assessment of Some of the Boolean Function

Minimization Methods. Master Thesis, Middle East Technical University.

Cirpan H.A., 1992, Lojik Fonksiyonlarin Bilgisayarla Basitlestirilmesi I¢in Algoritmalar.

Yiiksek Lisans Tezi, Fen Bilimleri Enstitiisii, Istanbul Universitesi.

Colkesen R., 2002, Veri Yapilar ve Algoritmalar. Papatya Yayincilik, May1s 2002, ISBN:
975-6797-23-1

Dagenais M.R., Agarwal V.K., Rumin N.C., 1986, McBOOLE: A New Procedure for Exact
Logic Minimization. IEEE Transactions On Computer Aided Design, Vol. CAD, No:1, Jan.

Dietmeyer D.L., 1979, Logic Design of Digital Systems. Boston, Bacon.

Fiser P., Hlavicka J., 2003, BOOM - A Heuristic Boolean Miniinizer. Joumal of Computing
and Informatics, pp: 1001-1033 jun.

Gurunath B., Biswas N.N., 1989, An Algorithm for Multiple Output Minimization. IEEE
Transactions On CAD, Vol. 8, No:9, Sep.

Giines S., 2000, Hiperkiip Paralel Islem Sisteminde Arizaya Toleransli Veri iletimi

Yontemlerinin Analizi Ve Simiilasyonu. Doktora Tezi, Selguk Uni. Fen Bilimleri Enstitiisii.

71

Hong, S.J., Cam, R.G. and Ostapko, D.L., 1974, MINI: A Heuristic Approach For Logic
Minimization. IBM J. of Res. and Dev., Vol..18, pp: 443-458, Sep.

Jacob J., Mishehenko A., 2001, Unate Decomposition of Boolean functions. Proc. IWLS, pp:
66-71.

Johnson baugh R., Schaefer M., 2004, Algorithms. Pearson Prentice Hall.
Kahramanli S.S. and Allahverdi N.M., 1993, Compact Method of Minimization of Boolean
Functions with Multiple Variables. Proc. Inter. Symp. Application of Computers, Selguk

University, Konya, Turkey, 433—440.

Kahramanl S., Allahverdi N., 1996, An Algebraic Approach to Transformations on
Hypercube System. Mathematical and Computational Applications, pp: 50-59.

Kahramanly, S., Ozcan, M., 2002, Lojik Tasarimin Temelleri ve Uygulamalari. Atlas Yayin
Dagitim. Istanbul.

Kahramanl §., Bascift¢i F., 2003. Boolean Functions Simplification Algorithm Of O(n)
Complexity. Mathematical Computational Applications, Volume 8 Num: 3, pp:271-278.
ISSN:1300-686X

Kahramanl §., Basciftci F., Savran 1., 2005, O(n) Karmasikliginda Anahtarlama
Fonksiyonlarini Sadelestirme Algoritmasi. 4. Uluslararasi Ileri Teknolojiler Sempozyumu,

Selcuk Universitesi, Konya, 28-30, Eyliil, s: 214-219

Karnaugh, M., 1953, A Map Method for Synthesis of Combinational Logic Circuits. Trans.
Comm. And Electronics, Vol: 72

Kruse R.L., 1987, Data Structures And Program Design. Prentice Hall.

Lee, C.Y., 1959, Representation of Switching Circuits by Binary Decision Diagrams. Bell
System Technical Joumal, pp: 985-999, June.

72

Lin B., Somenzi F., 1990, Minimization of Symbolic Relations. IEEE Ini. Conf. on Computer
Aided Design, pp: 88-91.

Malik S., Wang A.R., Brayton R.K., Sangiovanni-Vincentelli A., 1988, Logic Verification
Using Binary Decision Diagrams in a Logic Synthesis Environment. The Proc. Int. Conf. on

CAD, pp: 6-9.

Malik A.A., Brayton R.K., Newton A.R., Sangiovanni-Vincentelli A., 1991, Reduced Offset
for Two Level Multi-Valued Logic Minimization. IEEE Trans. on Computer-Aided Design,
CAD, pp: 413-426.

Mano M. M., 1984, Digital Design, Prentice-Hall Int. Ed. Mano, M.M., 2002, Say1sal

Tasarim. Literatiir Yayincilik, Istanbul.

McCluskey, E., 1956, Minimization of Boolean Functions. Beli System Technical Journal,

Vol. 35, No.5, pp: 1417-1444.

McCluskey, E.J., 1965, Introduction To The Theory Of Switching Circuit. McGraw Hill,

McCluskey, E.J., 1986, Logic Design Principles with Emphasis on Testable Semicustom

Circuits., Englewood Cliffs, New Jersey, Prentice-Hall.

McGeer P., Jagesh S., Robert Brayton, Alberto Sangiovanni Vincentelli, 1986, Espresso-
Signature: A New Exact Minimizer for Logic Functions. University of California al Berkeley,

CA 94720.
McGeer P., Sanghavi J, Brayton, R.K., Sangiovanni-Vincentelli, 1993, ESPRESSO
SIGNATURE: A New Exact Minimizer for Logic Functions. IEEE Transactions on VLSI,

Vol. 1, No. 4, pp: 432-440.

McGeer P., Sanghavi 3., Brayton R., Sangiovanni-Vincentelli A., 1993, ESPRESSO
SIGNATURE: A new exact Minimizer for Logic Functions. Proc. DAC 93, pp. 618- 624.

73

Minato, S. 1992, Fast Generation of Irredundant Sum-Of-Product Forms From Binary

Decision Diagrams. Proc. 92, pp: 64-73.

Mishchenco A., Sasao T., 2003, Large-Scale SOP Minimization Using Decomposition and
Functional Properties. DAC, June 2-6, pp: 49-154.

Nadjafov E.M. and Kahramanov S.S., 1973, On the Synthesis of Multiple Output Switching
Scheme. Scientific Notes of Azerbaijan Institute of Petroleum and Chemistry, Baku,

Azerbaijan. Vol. IX, No 3 pp: 65-69.

Perkins S.R., Rhyne T., 1988, An Algorithm for Identifying and Selecting The Prime
Implicants of a Multiple-Output Boolean Function. IEEE Transactions On Computer Aided
Design, Vol. 7, No:1 1, Nov.

Pomper G. and Armstrong J.A., 1981, Representation of Multi Valued Functions Using the
Direct Cover Method. IEEE Trans. Comput, pp. 674-679, Sept.

Quine W.L., 1952, The problem of Simplifying Truth Functions. Amerikan Mathematics
Monthly, Vol. 59, pp: 521-531.

Quine, W.L., 1955, A Way of Simplifying Truth Functions. Amerikan Mathematics Monthly,
Yol. 62, No. 9, pp: 627-631.

Roth J.P.,1 956, Algebraic Topological Methods for the Synthesis of Switching Systems in n-

variables. The Ins. for Adv. Study, Princeton, New Jersey.

Roth, J.P., 1980, Computer Logic, Testing and Verification. Computer Sciences Press.
Rudell R.L. and Sangiovanni-Vincentelli A., 1987, Multiple-Valued Minimization for PLA
Optimization. IEEE Trans. CAD. Vol. 6(5), pp: 727-750, Sep.

Rudell R.L. 1989, Logic Synthesis for VLSI Design. PhD. Thesis, M89/49.

Rudell R.L., 1993, Dynamic Variable Ordering for Binary Decision Diagrams. The

Proccedings International Conference on Computer-Aided Design, pp: 42- 47, Oct.

74

Sasao T., 1985, An Algorithm to Derive the Complement of a Binary Function With
Multiple-Valued inputs. IEEE Trans. Comp. Vol. C- 34, No. 2, pp: 131-140, Feb.

Sasao T., Butler J.T., 2001, Worst and Best Irredundant Sum-of-Product Expressions. IEEE
Transactions on Computers, Vol. 50(9), pp. 935-947.

Savoj. Malik A.A., Brayton R.K., 1989, Fast Two-Level Logic Minimizer for Multi-Level
Logic Synthesis. IEEE Int. Conf. on Computer Aided Design, pp: 426—429.

Tirumalai P.P., Butler J.T., 1991, Minimization Algorithms for Multiple-Valued
Programmable Logic Arrays. IEEE Transactions on Computers, Yol. 40(2), pp: 167-177.

Ucar 0., 1996, Lojik Devre Tasarimi Algoritmalari, Istanbul Teknik Universitesi, Fen

Bilimleri Enstituisii, Yiiksek Lisans Tezi.

Umans C., 2001, The Minimum Equivalent DNF Problem and Shortest Implicants. Journal of
Computer and System Sciences, 63, pp: 597-611.

75

7 Ek-A YMOA ALGORITMASININ PROGRAM KODLARI

[st steste st s e ke she st sfe st sk s s ke she e sheste sk s s s ke shesheste st st s s ke she shesteste st s s e sheshesteste st s s e shestesteste st st sk s ke stestesfeste st sk sk sk skt stesteskekok ok

Standart Kiitiiphaneler
**/
#include<stdio. h>
#include<stdlib. h>
#include<STRING.H>
#include<MATH. H>

[/t st ke e e s s sk sk st st st sfe st sfe e sheshesheske ke ke ke sk s sk sk sie sk st st st sfesfe sfesfeshesteskesteske skt st sk kst sk st st stestestestestestesteskoskoloslkolkokoskokoskoskokoskokok

Degisken Dosyast

e e e e s s st st st st st sfe st sfesheshesheskeskeske s s s s sk sk st st st st sfe st sfestestesheskeskeskeskeoske skt sk sk sk sk st st stesteste st stestestestokokokoloskokokokokokskokoskokoskok /

#include "DEGISKEN.CPP"

[/t steshe sesie se se she s st st st sfeste e sfesheshesheste ke ke ke sk s s sk sk sk st st st sfe st sfesteshesteskeske ke skt st sk kst sk st st stestestestestestesteskoskoloskolokoskokoskok kool

Temel Fonksiyonlar Dosyasi
**/
#include "T2FONK.CPP"
void GENISLETME()

{ unsigned f;
Sofsimdiki=Sofkok;

QOkok=NULL;
for(f=1;f<Yeleman;f++)
{ QOislenen =(struct sinif *)calloc(1,sizeof(struct sinif));

F_GENISLETMEY();

if (QOkok==NULL)

{ QOkok = QOislenen;
QOsimdiki = QQislenen;

}

QOsimdiki->sonraki = QOislenen;
QOsimdiki = QOsimdiki->sonraki;
Sofsimdiki=Sofsimdiki->sonraki;

}
}
—
void DEGISMELL_YUTMA()
{

unsigned Cr, CL, f, elenir=1;
Q1kok =(struct sinif*)calloc(1,sizeof(struct sinif));
Q1=Q1lkok->sonraki;
Q1simdiki=Q1kok;
QOislenen=Q0kok;
for(f=1;f<Yeleman; f++)
{ Q1=QIlkok->sonraki;
Q1simdiki=Q1kok;
while(Q1!=NULL)
{
elenir=0;
if(F_DEGISMELI_YUTMA(Q1->R,Q1->L,Q0isl->R,Q0is->L)
==0)

76

{ elenir=1;

break;
}
if(F_DEGISMELI_YUTMA(Q1->R,Q1->L,Q0isle->R,Q0islenen->L)
==1)

{ if(Q1simdiki==Q1)

{ Q1->R=Q0islenen->R;
Q1->L=QO0islenen->L;
elenir=1;
break;

}

Q1simdiki->sonraki=Q1->sonraki;

free(Q1);

Q1=Q1simdiki->sonraki;

continue;

}
Q1simdiki=Q1;
Q1=Q1->sonraki;

}

if(!elenir | (Q1kok->sonraki==NULL))

{ Qlyeni=(struct sinif*) calloc(1,sizeof(struct sinif));
Qlyeni->R=Q0islenen->R;
Qlyeni->L=Q0islenen->L;
Q1lsimdiki->sonraki=Q1yeni;

Qlsimdiki=Qlyeni;

}

QOislenen=Q0islenen->sonraki;

} }
unsigned KOORDINATLI_KESISME((unsigned Ar, unsigned Al, unsigned Br, unsigned Bl)

{
unsigned Cr, Cl;
Br = OZELVEY A(Br, sabit);
Cr = OZELVEYA(Ar, Br);
Bl = OZELVEYA(BI, sabit);
Cl = OZELVEYA(AI, Bl);
Cr = OZELVEY A(Cr, sabit);
Cl = OZELVEYA(CI, sabit);
return VE(Cr, Cl);

}
void elemanekle(unsigned R,unsigned L)
{ Klyeni=(struct sinif *)calloc(1,sizeof(struct sinif));
K1son2->sonraki=K1yeni;
Kl1son2=Klyeni;
Klson2->R =R;
Klson2->L =L;
}
void KOORDINATLI_CIKARMA()
{ unsigned sonuc, D, E;

K1kok=(struct sinif*)calloc(1,sizeof(struct sinif));
K1kok->R = K1kok->L=sabit;

7l

K1=K1gecici=K1son2=K1kok;
Q1=Q1kok->sonraki;
while(Q1!=NULL)

{

while(K1!=K1gecici->sonraki)

{
sonuc=KOORDINATLI_KESISME(K1->R,K1->L,Q1->R,Q1->L);
if (sonuc!=0)

{ elemanekle(K1->R,K1->L);
Sil=K1;
K1=K1->sonraki;
free(Sil);
continue;

}

D = VE(K1->R, K1->L);

E = VE(Q1->R, Q1->L);

D =0OZELVEYA(D ,E);

E =OZELVEYA(K1->R, K1->L);

E=0OZELVEYA(E, sabit);

D =VE(D,E);

if (D!=0)
{ for (i=0; i < bituzunluk; i++)
{ E=(unsigned)pow(2, (double)i);
if(E & D)
if (VE((unsigned)pow(2, (double)i), Q1->L))
elemanekle(K1->R, VE(~E,K1->L));
else
elemanekle(VE(~E,K1->R),K1->L);
}
}
Sil=K1;
K1=K1->sonraki;
free(Sil);
}
Sil=Q1;
Q1=Q1->sonraki;
free(Sil);

Klgecici=K1son2;
}
}
void DOSYA_OKU(char *argv[])
{ unsigned tam,D;
if (((kaynakdosya = fopen(argv[1], "r+b")) == NULL)
ll((SPIdosya = fopen(argv[2], "w+b")) == NULL))
{ printf("\n...HATA... DOSYALARIN ACILMASINDA HATA OLUSTU..\n");
exit(0);

}
kontrol=fscanf(kaynakdosya, "%s%s", kaynakbilgi, kaynakbilgi);

78

}

bituzunluk=atoi(kaynakbilgi);

fprintf(SPIdosya, "%s %s", kaynakbilgi, kaynakbilgi);
Kontrol=fscanf(kaynakdosya, "%s%s", kaynakbilgi, kaynakbilgi);
Deleman=atoi(kaynakbilgi);

Kontrol=fscanf(kaynakdosya, "%s%s", kaynakbilgi, kaynakbilgi);
Yeleman=atoi(kaynakbilgi);

tam=sabit<<bituzunluk;

Sonkok=(struct sinif *) calloc(1,sizeof(struct sinif));
Sofkok=(struct sinif *) calloc(1,sizeof(struct sinif));

Sonsimdiki=Sonkok;
Sofsimdiki=Sofkok;

Yeleman=0;
while (!feof(kaynakdosya))
{

Kontrol=fscanf(kaynakdosya, "%s %s", kaynakbilgi, fonkdeger);

Islenen=(struct sinif *) calloc(1,sizeof(struct sinif));
if(fonkdeger[0] =="1")
{

Sonsimdiki->sonraki=islenen;

Sonsimdiki =islenen;

Sonsimdiki->R = VEY A(tam, atoi(kaynakbilgi));
D = OZELVEY A(Sonsimdiki->R, sabit);
Sonsimdiki->L = VEYA(tam, D);

}

else if(fonkdeger[0]=='0")

{
Sofsimdiki->sonraki=islenen;
Sofsimdiki=islenen;

Sofsimdiki->R=VEY A(tam, atoi(kaynakbilgi));
D =OZELVEY A(Sofsimdiki->R, sabit);
Sofsimdiki->L=VEYA(tam, D);
Yeleman++;
}
}

Sonkok=Sonkok->sonraki;
Sofkok=Sofkok->sonraki;

void main(int arc, char *argv[])

{

DOSYA_OKU(argv);

while(1<2)

{
if (Sonkok==NULL)
{ return;
}

79

Else

{
GENISLETME();
DEGISMELI_YUTMAJ();
KOORDINATLI_CIKARMA();
F_BUYUK_ASAL_IMP();

}

}
}
/***

Degisken Dosyast

**/
FILE *kaynakdosya,*SPIdosya;
unsigned i, Sofadet;
int fsimdiki, bituzunluk, Deleman, Yeleman, kontrol, fonkbitti;
unsigned const sabit= 65535;
struct sinif
{ unsigned R,L,

absorbesayisi;

struct sinif *sonraki;
}
struct sinif
{ unsigned long R,L,

absorbesayisi;

struct sinif *sonraki;
}
struct sinif
{ unsigned char R,L,

absorbesayisi;

struct sinif *sonraki;
}
*K1kok=NULL, *Klyeni=NULL, *K1=NULL,
*Klgecici=NULL, *Klsimdiki=NULL, *KIlson2=NULL,
*Q0kok=NULL, *QO0simdiki=NULL, *QOislenen=NULL,
*Qlkok=NULL, *Qlgecici=NULL, *Qlyeni=NULL,
*Ql1simdiki=NULL, *Qlislenen=NULL, *Q1=NULL,
*K1lislenen=NULL, *Sonkok=NULL, *Sofkok=NULL,
*Sofsimdiki=NULL, *Sonkok2=NULL, *Sonsimdiki=NULL,
*Sonsimdiki2=NULL, *islenen=NULL, *Sil=NULL,
*islenen2=NULL, *Boskok=NULL;
char Rtxt[50], Ltxt[50], kaynakbilgi[30], fonkdeger[30];

[steste st s ke shesteste st st s s se ke sheshesheste sk s s se ke shesfeste st sk s s ke sheshesteste st s s ke sheshesteste st s s ke she st stesteste st s sk skestesteste st stttk st steskokokok

Temel Fonksiyonlar Dosyasi

80

e ste st sfe st st s s ke ke shesfe st st sk s s ke sheshesteste st s s ke sheshesteste st s s ke sheshesteste st s s e ke stestesteste st s s ke stestestesteste stttk steste stk sdeokostokeiok /

unsigned VE(unsigned a, unsigned b)

{ unsigned c;
c=a&b;
return c;
}
unsigned VEY A(unsigned a, unsigned b)
{ unsigned c;
c=alb;
return c;
}
unsigned OZELVEY A(unsigned a, unsigned b)
{ unsigned c;
c=a’b;
return c;
}
void F_GENISLETME()
{
unsigned D;

D= OZELVEYA(Sonkok->L, Sofsimdiki->L);
D= OZELVEYA(D, sabit);
QOislenen->L = VEYA(D,Sofsimdiki->L);
QOislenen->R = VEYA(D,Sofsimdiki->R);
}
int F_DEGISMELI_YUTMA (unsigned Ar, unsigned Al, unsigned Br, unsigned Bl)
{
unsigned Cr, Cl;
Cr=VE(Ar, Br);
CI=VE(Al, Bl);
if((Cr==Br)&(Cl==Bl))
return O;
if((Cr==Ar)&(Cl==Al))
return 1;
return 2;

}

int F_KOORDINATLI_KESISME(unsigned Ar, unsigned Al, unsigned Br, unsigned BI)

{ unsigned Cr, Cl;
Br = OZELVEY A(Br, sabit);
Cr = OZELVEYA(Ar, Br);
Bl = OZELVEYA(BI, sabit);
Cl = OZELVEYA(AI, Bl);
Cr = OZELVEYA(Cr, sabit);
Cl = OZELVEYA(CI, sabit);
return VE(Cr, Cl);

}

void F_BUYUK_ASAL_IMP()

{ unsigned f, Cr, CI;

81

Sonsimdiki=Sonkok;
K1kok=K1;

while (Sonsimdiki!=NULL)
{ K1=K1kok;

while(K1!=NULL)

{ Cr=VE(K1->R, Sonsimdiki->R);
Cl=VE(K1->L, Sonsimdiki->L);
if((Cr==Sonsimdiki->R)&(Cl==Sonsimdiki->L))

K1->absorbesayisi++;
K1 = K1->sonraki;
}

Sonsimdiki=Sonsimdiki->sonraki;
}
K1simdiki= K1= K1kok;
while(K1simdiki!=NULL)
{ if((K1simdiki->absorbesayisi >=K1->absorbesayisi))K1=K1simdiki;
K1simdiki = K1simdiki->sonraki;
}
fprintf(SPIdosya,"%u%u",K1->R,K1->L);
Sonkok2=NULL;
Islenen=Sonkok;
while (islenen!=NULL)
{ Cr=VE(K1->R, islenen->R);
CI=VE(K1->L, islenen->L);
if(!((Cr==islenen->R) & (Cl==islenen->L)))
{ islenen2=(struct sinif*)calloc(1,sizeof(struct sinif));
if(Sonkok2==NULL)
{ Sonkok2=islenen2;
Sonsimdiki2=Sonkok2;
telse
{ Sonsimdiki2->sonraki=islenen2;
Sonsimdiki2=islenen?2;

}

Sonsimdiki2->R=islenen->R;
Sonsimdiki2->L=islenen->L;
}
Islenen=islenen->sonraki;
}
while(Sonkok!=NULL)
{ Sil=Sonkok; Sonkok=Sonkok->sonraki; free(Sil);}
Sonkok=Sonkok?2;
Sonkok2=NULL;
K1son2=K1=NULL;

82

