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ÖZET  
 

Mantıksal fonksiyonlarının sadeleştirilmesi tasarımcılara daha kısa zaman süresinde ve 

daha sade lojik devreler tasarlama imkânı sağlamaktadır. Fonksiyonların sadeleştirilmesi şu 

avantajları bize sunmaktadır: 

• Güç tüketimi azaltılması, 

• Daha küçük hacim, 

• Daha az maliyet, 

 Bu konu ile ilgili olarak tek ve çok çıkışlı fonksiyonların sadeleştirilmesi için çeşitli 

teknikler geliştirilmiştir. Bu tekniklerin çoğu iki ana aşamada gerçekleştirilir. Birinci 

aşamada, asal implikantların tümü belirlenir. İkinci adımda fonksiyonu sadeleşmiş olarak 

örtecek, esas asal implikantlar kümesi belirlenir. Anahtarlama fonksiyonlarını sadeleştirecek 

algoritmaların tümü O(2n) karmaşıklığına sahiptirler. Araştırmalar göstermiştir ki n’ in çok 

yüksek değerlerinde esas asal implikantların tam kümesini belirleme yöntemi pratik olarak 

gerçekleştirilemez duruma gelmektedir. Bu yüzden bu doktora tezinde asal implikantların 

belli kıstaslara cevap verecek alt kümeleri oluşturularak, doğrudan örtme (direct cover) 

prensibine dayanan bir minimumlaştırma yöntemi geliştirilmiştir. 

Anahtar Kelimeler - Mantıksal fonksiyon, sadeleştirme, minimumlaştırma, Boole ifadesi, asal 

implikant, küp cebri, örtme algoritması, algoritmaların karmaşıklığı, Off-küme tabanlı 

minimumlaştırma, doğrudan örtme prensibi. 
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ABSTRACT  

 

 The Minimization of Boolean functions allows designers these advantages: 

 

• Fewer components 

• Reducing the cost of particular system, 

• Reducing power consuming,  

 Most of single-output and multiple-outputs boolean minimization techniques work on 

a two step principle, the first step identifies all of the prime implicants (PI’ s) and the second 

step selects the subset of PI’ s that covers the function(s) being minimized. All procedures for 

reducing either two-level or multilevel Boolean networks into prime and irredundant form 

have O(2n) complexity. Prime Implicants identification step can be computational impractical 

as n increases. Thus, in this master thesis, subsets of prime implicants that can prove direct 

cover principle which based on determineted criters use for mimimization method. 

 

Keyword(s): logic functions, simplification, mimimization, boolean expression, Prime 

implicant, cube algebra, cover algorithm, complexity, direct cover principal. 
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SİMGELER  

 

�  Koordinatlı Çarpma (Coordinate Product, Star Product). 

#  Koordinatlı çıkarma (Coordinate Subtraction, Sharp product). 

∩  Koordinatlı Kesişme (Coordinate Intersection). 

∆  Değişmeli yutma işlemi (commutative absorption operation). 

* - d   Belirsiz ya da keyfi değer (Don’t Care). 

↔  Ancak ve ancak bağlantısı. 

∪  Birleşme işlemi. 

m  Minterm (Çarpım Terimi) . 

M Maxterm (Toplam Terimi) . 

{0, 1, x} Boolean değişkenin tanımlanma uzayı. 

{0,1,d} Boolean fonksiyon tanımlama uzayı. 

x  Değişken. 

n  Fonksiyonun bağlı olduğu değişken sayısı. 

ki  küpün koordinat ekseni. 

~

ik   ki koordinat ekseni üzerindeki bir değer. 

O(g(n)) Karmaşıklık ifadesi. 

L  Fonksiyon için gerekli olan mintermler,  

Q  Fonksiyon için yasak olan mintermler, 

D  Fonksiyon için gereksiz olan mintermler.  

SON  Doğru mintermlerin kümesi. 

SOFF  Yanlış mintermlerin kümesi. 

SDC  Fonksiyonun belirlenmemiş olduğu mintermlerin kümesi. 

X  Örtülmek için seçilen On-minterm. 

AIi(x)  X mintermini kapsayan i. asal implikant. 

SAI(x)  X minterminin kapsadığı tüm asal implikantların kümesi. 

EAI(x) X mintermin esas asal implikantı. 

F  On-kümesi (Espresso Algoritması). 

R  Off-kümesi (Espresso Algoritması). 

D  Belirsizler kümesi (Espresso Algoritması). 

v Düğüm. 

 



 

 VIII 

KISALTMALAR 
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AİT  Asal İmplikantlar Tablosu (Prime Implicant Table). 

EAI  Esas Asal İmplikant (Essential Prime İmplikant). 

DST  Dallandırma ve Sınırlandırma Tekniği (Branch and Bound Technique). 
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LSI  Büyük Ölçekli Devre (Large Scale Integrated). 
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PLA  Programlanabilir Lojik Diziler (Programmable Logic Arrays). 
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1 GİRİŞ 

 

Boole cebri olarak bilinen matematiksel sistem üzerine ilk çalışmalar 1854 yılında 

George Boole tarafından başlatılmıştır. 1904 yılında Amerikalı Matematikçi E.V. Hungtinton, 

Boole cebrine yeni aksiyomlar eklemiştir. 1938 yılında Shannon, Boole cebrini devre 

tasarımlarına uygulamıştır. Bunun sonucunda Anahtarlama Cebri (Switching algebra) adı 

altında yeni bir bilim dalı ortaya çıkmıştır (Brayton ve ark. 1984).  

Dijital tasarımın başladığı 1950’ li yıllarda lojik kapılar (Logic Gates) pahalı devre 

elemanlarıydı. Bundan dolayı, verilen lojik fonksiyonu daha az sayıda elektronik elemanla 

(kapılar ve diyot, direnç gibi kapıların temel bileşenleri) gerçekleştirmek için yeni tekniklerin 

geliştirilmesinin önemi artmıştır. Böylece o yıllarda, lojik fonksiyonların sadeleştirilmesi 

araştırmaları çok aktif bir Alan haline gelmiştir. Karnaugh haritaları, iki seviyeli lojik 

fonksiyonların (Two-Level Logic Functions) sadeleştirilmesi için manüel olarak 

kullanılmıştır. Bu yöntem 1953 yılında Karnaugh tarafından geliştirilmiştir. Daha sonraları, 

Quine ve McCluskey (McCluskey 1965) tarafından yeni bir teknik geliştirilmiştir. Bu yöntem 

1952 yılında Quine tarafından başlatılmış ve 1956 yılında McCluskey tarafından 

geliştirilmiştir. Bu yöntem iki aşamadan oluşmaktadır: 

 

1- Bütün asal implikantların (prime implicants - AI) üretilmesi 

2- Minimum örtünün oluşturulması. 

Bütün asal implikantların üretilmesi çok etkili bir hale gelse de, Hong ve Ostapko 

tarafından IBM’ de geliştirilen MINI (Hong ve ark. 1974) programı, n değişkenli lojik 

fonksiyonun asal implikantlarının sayısının 3n/n kadar büyük olabileceğini göstermiştir. Buna 

ek olarak, ikinci adım, genellikle dallandırma ve sınırlandırma tekniği ile gerçekleştirilir. Bu 

teknik NP-karmaşıklık problemleri sınıfına ait olan minimum örtme probleminin çözümünü 

içermektedir. Bu ise etkili kesin bir Algoritma bulma ümidini azaltır. Örnek olarak, minimum 

örtme Algoritmasının çalışma zamanı, örtme problemindeki eleman sayılarındaki bir polinom 

ile sınırlandırılır. Örtüm probleminin elemanları sayısı lojik fonksiyonunun giriş 

değişkenlerinin sayısıyla logaritmik olarak orantılı olabileceğinden, bu tekniklerin kullanımı 

orta ölçekteki problemler için bile pratik değildir (10–15 değişken) (Brayton ve ark. 1984).  
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Lojik fonksiyonların, sadeleştirilmesinden elde edilen çarpım terimlerinin 

minimumlaştırılması gerekli fiziksel Alanın üzerinde doğrudan güçlü bir etkisi vardır. Çünkü 

her bir çarpım terimi, PLA’ nın bir satırı olarak gerçekleştirilir. Çok Büyük Ölçekli Devre 

(VLSI) lojik tasarımı sıklıkla otuzdan daha fazla giriş, çıkış ve çarpım terimli lojik 

fonksiyonları içerir. Bu durumda kesin sadeleştirme pratik değildir. Bu gibi durumlarda 

gerekli olan en uygun şekle sokma (optimizasyon), farklı tecrübe yaklaşımları, probleme 

uygulamaktadır. 

Bu yaklaşımlardan bir tanesi klasik lojik sadeleştirme tekniklerinin yapısını takip eder 

ve birinci olarak tüm asal implikantları üretir. Bununla birlikte minimum bir örtü üretmek 

yerine yakın minimum bir örtü, tecrübelere dayanarak seçilir. Bu prosedür hala çok yüksek 

sayıda asal çarpan üretme ihtimali içermektedir. İkinci bir yaklaşım eşzamanlı olarak örtü için 

implikantları tanımlar ve seçmeye uğraşır. Bıı grupta birkaç tane Algoritma ileri sürülmüştür 

(Hong ve ark. 1974, Rhyne ve ark. 1977). 

Son zamanlarda, sezgisel yaklaşımlar, pratik PLA’ ların tasarımında geniş uygulama 

alanları bulmuştur. Bunların çok erken ve çok başarılı olması, 1970’ lerin ortasında IBM’ de 

MINI programının geliştirilmesine sebep olmuştur (Hong ve ark. 1974). Sonraları sezgisel 

sadeleştirme programı PRESTO, Brown tarafından tanıtılmıştır (Brown 1981). Bu, büyük      

PLA’ ların minimumlaştırılmasına imkân verdi. 

1981 yılının yaz aylarında ESPRESSO-I (Brayton ve ark. 1982) programı 

geliştirilmiştir. ESPRESSO-I sırasıyla gelen işleri kontrol etmek için birçok anahtarı olan tek 

bir programdır. Bir yıl sonra 1982’ nin yazında ESPRESSO-II geliştirilmiştir. Sadeleştirilmiş 

yanlış küme ve totoloji algoritmalarına dayanan iki yeni metot sunulmuştur. Bu metotlarda 

verilen sonuçlar Espresso’ nun sonuçları kadar iyidir. (Brayton ve Somenzi 1989) bu 

çalışmalarında Quine-McCluskey metoduna benzer bir yöntem sunmuşlardır, (Lin ve 

Somenzi 1990) sembolik ilişkilerin basitleştirilmesiyle ilgilenmişlerdir.  

Çarpım terimlerinin toplamındaki sadeleştirme ikili (binary) sistem içerisinde önemli 

bir yer tutmuştur (Tirumalai ve Butler 1991). Son zamanlarda sunulan çarpım terimlerinin 

toplamı şeklinde sadeleştirme yapan Algoritmaların birçoğu doğrudan örtme metodunu 

kullanmıştır. Doğrudan örtme metodu üç adım halinde gerçekleştirilir (Tirumalai ve Butler 

1991): 
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a- Mintermin seçilmesi, 

b- Asal implikantların üretilmesi 

c- Esas asal implikantın seçilmesi ve örtme. 

 

1.1  Anahtarlama Fonksiyonlarının Sadeleştirilmesi için Çözüm Yöntemleri 

 

Kesin (exact) ve segisel (heuristic) SOP minimumlaştırma bilgisayar destekli tasarım 

(computer aided design-CAD) Alanında çok iyi araştırılan problemlerden bir tanesidir 

(Mishchenco ve Sasao 2003). SOP minimumlaştırma; PLA optimizasyonunda, çok seviyeli 

lojik sentezde (muti-level logic synthesis), durum şifrelemede, güç kestirimde, test üretmede 

ve diğer Alanlarda kullanılır (Mishchenco ve Sasao 2003). Kesin SOP minimumlaştırma 

probleminin üssel doğasından dolayı modem Algoritmalar, (Brayton ve ark. 1984, Coudert ve 

Madre 1993, Coudert 1994, McGeer ve ark. 1993) minimum SOP kümesinde yüzlerce çarpım 

terimi oluncaya kadar sadeleştirilmek istenen fonksiyonu işleyebilir. Bu arada pratik 

uygulamaların ve CAD araçlarının çoğu buluşsal minimumlaştırmaya dayanır (Brayton ve 

ark. 1984, Rudell ve Sangiovanni-Vincentelli 1987). 

 

Sezgisel Algoritmaların karmaşıklığı çarpımların sayısında yaklaşık olarak kareseldir 

(Mishchenco ve Sasao 2003). Bu Algoritmalar kesin (exact) olanlardan fark edilebilecek 

kadar hızlıdır fakat çok çarpımlı fonksiyonlar için yavaş olabilir (Mishchenco ve Sasao 2003).  

 

Sezgisel SOP minimumlaştırmayı hızlandırmak için çeşitli yaklaşımlar önerilmiştir. 

Örneğin, Off-kümesinin (Sasao 1985) hesaplaması minimum SOP’ da az sayıda çarpımlı 

fonksiyonlar için bile zaman tüketici olabildiği gözlenmiştir (Mishchenco ve Sasao 2003). Bu 

yüzden sadeleşmiş off-kümesinin hesaplanması önerilmiştir (Malik ve ark. 1991). Lojik 

sentez araçları için optimizasyonda genişçe kullanılan başka hızlandırma şekli, buluşsal 

minimumlaştırmanın sadece bir döngüde gerçekleştirilmesidir. Bu tür kısa yolların bedeli 

çalışma zamanı problemi hala dururken, daha düşük minimumlaştırma kalitesidir. Bir çok 
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benchmark için optimizasyon programları buluşsal SOP minimumlaştırmanın uzun çalışma 

zamanından dolayı sona ermez. (Mishchenco ve Sasao 2003).  

Başka hızlı buluşsal SOP minimumlaştırma Algoritmaları BDD gösterimini kullanır 

(Minato 1992). Bu Algoritma, sonuç kalitesinin kritik olmadığı durumlarda dikkat çekecek 

derecede iyi çalışır. Ancak (Sasao ve Butler 2001) da gösterilen bu Algoritma (Minato 1992) 

minimum SOP lardan daha fazla çarpım içeren artıksız (irredundant) SOP lar üretir 

(Mishchenco ve Sasao 2003). Bu yüzden birçok pratik problemler için uygun değildir. İki 

seviyeli lojik minimumlaştırma lojik sentezin temel problemidir (Sasao ve Butler 2001). 

Geniş fonksiyon kümeleri için kesin minimum SOP ifadeleri elde edecek Algoritmalar 

olmasına rağmen (Coudert 1994), pratik sistemlerin çoğunluğu buluşsal lojik 

minimumlaştırma algoritmalarını kullanır. 

Sasao ve Butler (2001) fonksiyonların sınıflarını, değişken sayısının sınırsız olduğu 

durumlarda en kötü SOP boyutunun minimum SOP boyutuna oranının büyük olduğunu 

göstermişlerdir. Sasao ve Butler (2001) verilen fonksiyon için bütün gerekli SOP ifadelerini 

üreten algoritmayı göstermişlerdir.  

 

1.2 Tezin Amacı ve Önemi  
 

Bilgisayar devreleri ve programlarının mümkün olduğu kadar basit ve etkili kılınması 

yolunda en etkin olan araçlardan biri lojik fonksiyonlarının minimumlaştırılmasıdır. Halen 

çoklu miktarda minimumlaştırma yöntemleri mevcuttur. Fakat bunların ürettikleri aralık 

sonuçlarının sayısı, değişken sayısına göre üssel bir fonksiyonla belirlenir. Bu durumda 

mesela, 20 değişkenli fonksiyonların minimumlaştırılması sırasında meydana çıkabilecek 

aralık sonuçlarının sayısı bugün mevcut olan bilgisayarların bellek kapasitesini çok fazla 

aşmaktadır. Pratikte 40’ a kadar değişken değeri olan fonksiyonların minimumlaştırılması 

ihtiyacı göz önüne alınınca, mümkün olduğu kadar az sayıda aralık sonuçları üreten bir 

sadeleştirme algoritmasının elde edilmesine ihtiyaç olduğu şüphesizdir. Bu tezde böyle bir 

algoritmanın meydana çıkarılması hedeflenmiş ve gerçekleştirilmiştir.  

Bu tezde geliştirilen algoritma sayesinde daha az lojik elemanlar kullanılarak yapılamayan 

programlanabilir lojik dizileri (PLA) kolaylıkla tasarlanabilecek ve bu sayede büyük sayısal 
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sistemlerin tasarlanmasında donanım ve zaman kaybı büyük ölçüde önlenecektir.  

 

Bu tez çalışması yedi bölümden oluşmuştur.   

Birinci bölümde: Konunun tarihsel gelişimi anlatılarak, minimumlaştırma 

problemlerinin bugünkü durumuna değinilmiştir. Çalışmanın amacı ve önemi açıklanmıştır ve 

kaynak araştırmasına yer verilmiştir.  

İkinci bölümde: Boolean fonksiyonları minimumlaştırma metotları özet şeklinde 

anlatılmıştır. Haritasal ve cebirsel yöntemler gösterilmiş ve bu yöntemlerin  avantaj ve 

dezavantajlarına değinilmiştir. 

Üçüncü bölümde: Geliştirilen algoritmada matematik araç olarak kullanılan küp cebri 

anlatılmıştır. Anahtarlama fonksiyonları için yerel basitleştirme algoritmaları için geliştirilen 

Yakın Minimal Örtme Algoritması (Near-Minimal Cover Algortihm). Geliştirilen Algoritma 

örneklerle açıklanmıştır. Matematik araç olarak kullanılan küp cebri işlemlerinin standart 

bilgisayar işlemleri üzerinden gerçekleştirilmesi gösterilmiştir. Algoritmanın daha iyi 

anlaşılması için birkaç örnek çözülmüştür. 

Dördüncü bölümde: Karmaşıklık değerlendirilmesi yapılmıştır. Quine McCluskey 

Metodu ile Yakın Minimum Örtme Algoritması karmaşıklık yönünden karşılaştırılmıştır. 

Geliştirilen yöntemler ESPRESSO ile karşılaştırılmış ve sonuçları bu bölümde verilmiştir. 

Beşinci bölümde: Bu tez çalışmasından elde edilen sonuçlara değinilerek bu konuda 

çalışmak isteyenler için bazı önerilerde bulunulmuştur.  

Altıncı bölümde: Bu yüksek lisans çalışmasında yararlanılan kaynaklar verilmiştir. 

Yedinci bölümde:  Geliştirilen algoritmanın program kodları verilmiştir. 
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1.3 Materyal ve Metot  

 

Mantık fonksiyonlarının ifade biçimleri, sadeleştirme yöntemleri, Algoritmaları ve 

programları kullanılacaktır. Bu yolda elde edilmiş son teorik sonuçlara dayanarak ve minterm 

yöntemiyle küp cebri yöntemleri bir arada kullanılarak daha etkin olan yeni bir yöntem 

meydana çıkarılacaktır.  

Bir lojik fonksiyonun, birden fazla değişik ifadesi bulunabilir. Tüm olası ifadeler 

arasından minimum ifade bulunmaya çalışılır. Buradaki minimumluk en iyilik ölçütüne göre 

tanımlanabilir (Çırpan 1992). Bu en iyilik ölçülü; 

 

a- En az sayıda lojik kapı gereksinimi 

b- Çarpım Terimlerinin Toplamı (sum of product-SOP) biçiminde en az terim, 

c- Toplam Terimlerinin Çarpımı (product of sum-POS) biçiminde en az terim,  

d- Giriş ile çıkış arasındaki katman sayısının minimumlaştırılması ve dolayısıyla 

gecikme zamanını en aza indirebilmeyi sağlamak.  

 

Çarpım terimlerinin toplamı biçimindeki bir fonksiyon, mantıksal değeri 

değiştirilmeden hiçbir teriminin çıkartılamayacağı biçimde ise, indirgenemezlik özelliğine 

sahiptir. Genelde indirgenemezlik ve minimumluk birbirlerini içermez ya da gerektirmezler. 

Sonuç olarak her minimum fonksiyon indirgenemezdir. Fakat her indirgenemez fonksiyon. 

minimum fonksiyon değildir (Çırpan 1992). 
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1.4 Kaynak Araştırması  

 
 
Allahverdi N.M. ve Kahramanlı Ş.Ş. (1995), Küp cebri elemanları ve uygulama biçimlerini 
belirtmişlerdir. Küp cebri işlemlerini göstermişlerdir.  

Beckert ve ark. (1997), çok seviyeli lojik devrelerin minimumlaştırılması için yeni 

yaklaşımlara değinilmiştir. 

Çelikağ M. (1989), çeşitli minimumlaştırma Algoritmaları incelenmiştir. Bu algoritmalar 

birbirleri ile karşılaştırılmış ve değerlendirme yapılmıştır.  

Çölkesen R. (2002), karmaşıklığın (complexity) tanımını belirtmiş ve çeşitli gösterimlerini 

sunmuştur.  

Dagenais M.R. ve ark. (1986), çok çıkışlı fonksiyonların tam minimumlaştırılması için 

geliştirilen yeni prosedüre değinilmiştir.( McBOOLE prosedürü).  

Dietmeyer D.L, (1979), küp cebrini anahtarlama fonksiyonlarının ilk terimlerini (local prime 

implicants) bulmak için kullanılmıştır. Daha sonra lojik fonksiyonların minimumlaştırılması 

üzerinde kullanılmıştır.  

Fiser P. ve Hlavıcka J. (2003), Yeni bir İki seviyeli Boolean sadeleştirme algoritması 

geliştirilmiştir (BOOM Boolean Minimizer) .  

Kahramanlı S.S. ve Allahverdi N.M. (1993), çok değişkenli l3oolean fonksiyonlar için yeni 

bir sadeleştirme algoritması sunulmuştur.  

Karnaugh, M.(1953), Lojik devrelerin sentezi için harita metodunu sunmuştur. Haritanın 

oluşturulması ve sadeleştirme işlemi için haritanın nasıl kullanılacağı gösterilmiştir. 

Mano M. M. (1984), lojik devreler ve lojik fonksiyonlar ile ilgili bilgiler vermiştir. Bir tablo 

metodu olan QMM metodu ve K-Haritaları anlatılmıştır. Fonksiyonları minimumlaştırırken 

elde edilen aralık sonuçlarının sayısını bulmak için gerekli olan formüller verilmiştir. 

McCluskey, E.J.(1956), Boolean fonksiyonları sadeleştirmek için Quine tarafından başlatılan 

metodu geliştirmiş ve sunmuştur.  
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McGeer P.C. ve ark. (1986). Çok çıkışlı fonksiyonların tam sadeleştirilmesi için geliştirilen 

yeni prosedüre değinilmiştir  (ESPRESSO-SIGNATURE). İşaret küpleri kullanılarak Asal 

implikantlar kümesi küçültülmüştür. Karmaşık problemlerde Espresso-II algoritmasına göre 

da iyi sonuçlar vermiştir.  

Nadjafov E ve Kahramanlı S.S. (1973), küp cebrini anahtarlama fonksiyonlarına 

uyarlamışlardır. Daha sonra lojik fonksiyonların minimumlaştırılması üzerinde kullanılmıştır. 

Perkins S.R. ve Rhyne T.(1988), Boolean fonksiyonlarının çoklu çıkışları için Asal 

İmplikantları belirleme ve seçme Algoritmalarını sunmuşlardır.  

Sasao ve Butler 2001 ve Mishchenco ve Sasao 2003, minimumlaştırma problemlerinin 

bugünkü durumları hakkında açıklama yapmışlardır.  

Tirumalai P.P.ve Butler J.T. (1991), son zamanlarda sunulan toplam terimlerin çarpımı 

şeklinde sadeleştirme yapan Algoritmaların birçoğu doğrudan örtme metodunu kullanmıştır. 

Bu makalede çeşitli doğrudan örtme metotları açıklanmıştır.  

Uçar. (1996), lojik devre tasarımları için çeşitli algoritmaları incelemiş ve bu Algoritmalardan 

yeni bir yöntem geliştirmeye çalışmıştır.  
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2 MANTIK FONKSİYONLARINI SADELEŞTİRME METOTLARI 

 

2.1 Fonksiyon Tanımları  

 

Boole fonksiyonlarında, fonksiyonun değişken sayısına göre sahip olduğu çıkış 

durumları değişmektedir. n sayıda değişkene sahip olan fonksiyon 2n sayıda mintermle 

ilişkide olur. Bu ilişkinin karakterine göre söz konusu mintermler aşağıdaki gibi çeşitli 

gruplara bölünür (Kahramanlı ve Özcan 2002)  

 

� Doğru kümesi: Fonksiyonun değerinin 1’ e eşit olduğu mintermler,   

� Yanlış kümesi: Fonksiyonun değerinin 0’ a eşit olduğu mintermler,  

� Etkisiz Elemanlar Kümesi: Fonksiyonun değerinin belirsiz olduğu mintermler. 

 

Bu gruplara uygun olarak F, R, D (belirsiz) kümeleri oluşturulur.  

Tanım 2.1: Yalnız F ve R kümeleriyle ilişkili olan fonksiyonlara Tam Belirlenmiş 

Fonksiyonlar denir,  

Tanım 2.2: F, R ve D ile ilişkili olan fonksiyonlara Tam Belirlenmemiş Fonksiyonlar 

denir. F, R ve D kümelerinin ölçüleri |F|, |R| ve |D| olarak gösterilirse, F, R ve D kümeleri ile 

onlara bağlı olan F fonksiyonu arasında aşağıdaki değer ilişkilerinin olduğu görülebilir 

(Kahramanlı ve Özcan2002). 

 

• |F|= 2n, Bu durumda mintermlerin tümünde fonksiyonun değeri 1 olduğu için aslında 

fonksiyon değil bir sabit (lojik 1) söz konusudur,  

• |R|= 2n, Bu durumda mintermlerin tümünde fonksiyonun değeri 0 olduğu için aslında 

fonksiyon değil bir sabit (lojik 0) söz konusudur,  
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• |F| <2n, |R| < 2n, |D| = 0; |F| + |R| = 2. Bu durumda tam belirlenmiş olan bir fonksiyon 

söz konusudur,  

• |F| <2n, |R| < 2n, |D| < 2n ise  |F| + |R| + |D| = 2n. Bu durumda bu fonksiyona tam 

belirlenmemiş fonksiyon denir.  

 

2.2 Karnaugh Haritası Metodu  
 
 

Her fonksiyonun doğruluk tablosu gösterimi tektir; ancak, cebirsel olarak ifade 

edildiğinde değişik şekillerde verilebilir (Mano 2002). Boole fonksiyonları, cebirsel yollarla 

sadeleştirilebilirler. Fakat bu minimumlaştırma yönteminin, sistematik kuralları olmadığından 

kullanışlı değildir.  

Harita metodunun özellikleri sadeleştirilmesine yarayan en basit ve görsel bir 

yöntemdir. Bu yöntem doğruluk tablosunun şekillendirilmiş bir biçimi veya Venn 

diyagramlarının gelişmiş bir şekli olarak da görülebilir. Karnaugh tarafından geliştirilen bu 

metot “Karnaugh Haritası - KH” adıyla bilinir. KH (Karnaugh Haritası) metodu en çok dört, 

beş değişkenli fonksiyonların sadeleştirilmesi için kullanılır ve temel olarak,  

 

 (2.1)                                                                            a )xa(x  xa ax   f =+=+=  

Kuralına dayanır. Değişken sayısı n olan bir fonksiyon için düzenlenen Karnaugh 

haritası 2n tane hücreden oluşur. KH metodu, aslında bir fonksiyonun standart formda ifade 

edilebileceği tüm şekilleri sunan görsel bir yöntemdir. KH’ de her bir hücreye karşılık gelen 

mintermlerin yazılması yerine, onun varlığını bildiren bir işaret konur. Hücreleri işaretleme 

yöntemine (Mano 2002, Kahramanlı ve Özcan 2002, Karnaugh 1953) kaynaklarında ayrıntılı 

bir şekilde yer verilmiştir. 
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2.2.1 KH Metodunun Kullanımı 

 

Değişken sayısının dört veya beşi geçmediği durumlar için KH metoduyla 

minimumlaştırma uygun bir yöntem olabilir. Değişken sayısı arttıkça, çok sayıdaki hücre, 

uygun komşu hücre seçimini zorlaştırır. KH metoduyla minimumlaştırma kullanıcının belirli 

kalıpları görebilme yeteneğine dayandığından, aslında bir deneme yanılma yöntemidir. Bu 

durum, KH metodunun en belirgin dezavantajıdır. Ayrıca beş veya altı değişkenli 

fonksiyonlar için, en uygun seçimin yapılmış olduğundan emin olmak bir hayli zordur. Bu 

metodu, bilgisayar programlarına uyarlamak oldukça güçtür.  

 

2.3 Cebirsel Sadeleştirme Yöntemleri 
 
 

2.3.1 Tablo Yöntemi (Quine-McCluskey metodu) 

 

Quine McCluskey Metodu (QMM), bir fonksiyonun minimum sayıda SOP şeklinde 

ifade edilmesini sağlar. Bu Algoritma iki aşamada gerçekleştirilir (Mano 2002, McCluskey 

1956, Coudert 1994, Quine W.V.O. 1952):  

 

a- Fonksiyon için bütün asal implikant (Prime Implicant-AI ) ları bulmak, 

b- Fonksiyonun bütün mintermlerini örtmek (cover) için gereken minimum sayıda 

asal implikantlar kümesini seçmek.  

 

 

 

Bu aşamalar aşağıda açıklanmıştır.  
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2.3.1.1 Asal implikantların bulunması  

 

Verilen Boole fonksiyonun AI’ larının bulunması süreci, söz konusu fonksiyonun 

minterm listesinin düzenlenmesi ile başlanır. Mintermler, içerdikleri 1’ lerin sayısına göre 

gruplara ayrılır. Bu gruplar, mintermlerin içerdikleri 1’ lerin sayısına göre küçükten büyüğe 

doğru sıralanır. Bu yöntemle oluşturulabilecek maksimum grup sayısı (m) kombinasyon 

hesabı gereği ( 








0

n
, 









1

n
… 









− in

n
, 









n

n
 (i=0,1…n)) değişkenlerin sayısından bir fazla olabilir 

(m=n+1).  (Quine 1955).  

 

 

(2.1) kuralı kullanılarak, i. grubun her bir mintermi ile (i+1). grubun her bir mintermi 

arasında yeni terimlerin elde edilip edilemeyeceğine bakılır. Eğer komşu grup mintermleri 

arasında sadece bir bitlik farklılık varsa, bu farklılık gösteren bit elde edilecek olan çarpım 

teriminde tire (-) işareti ile gösterilir. Gruplar arasındaki  

 

karşılaştırma süreci (i-1) ve in çiftine kadar tekrarlanır. Çarpım terimlerinde k tane değişkeni 

eksik olan terimler yani k tane (-) işareti olanlar k-küp olarak adlandırılır. Bu tanıma göre 

mintermler 0-küp olarak adlandırılır (Mano 2002, McCluskey 1956, Çelikağ 1989).  

0-küp sütunundaki bütün komşu grup mintermlerin karşılaştırılması la l -küp sütunu 

oluşturulur. Aynı işlemler 1-küp sütununa uygulanır ve buradan 2-küp sütunu oluşturulur. 

Aynı işlemler sütunlar arasında birleşme yapılamayacak duruma gelinceye kadar tekrarlanır. 

Bu k-küp sütunların sonunda işaretlenmemiş çarpım terimler, AI’ lardır (Mano 2002, 

McCluskey 1956, McCluskey 1986, Çelikağ 1989).  

 

2.3.1.2 Minimum Aİ kümesinin seçilmesi  
 
 

Esas Asal İmplikantlar kümesinin bulunması: Minimum kümesi, minimum sayıda esas 

ve ikincil esas Aİ (essential and secondary essential prime implicant, EAI, İEAI) kümesinden 

oluşur. LA!’ lar, Aİ’ lardan seçilir. Eğer fonksiyonun bütün mintermleri, EAI’ lar tarafından 
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örtülmüyorsa, İEAI’ ların seçilmesi gerekmektedir. Burada örtülmek, fonksiyonu oluşturan 

bütün mintermlerin, minimum sayıda AI’ lar tarafından kapsanması demektir. Üstünlük 

(dominance) ve denklik (equivalent) kuralları, AI’ ların fazla olanlarını eleyerek, IEAI’ ları 

bulmak için kullanılır (Mano 2002, McCluskey 1956, McCluskey 1986, Çelikağ 1989). AI’ 

ların minimum kümesini bulmayı kolaylaştırmak için Asal İmplikantlar Tablosu (prime 

implicant table - AİT) kullanılır (Mano 2002, McCluskey 1956, McCluskey 1986, Çelikağ 

1989). AIT’ de, AI’ lar satırlara, mintermler de sütunlara yerleştirilir. Fonksiyonun minimum 

şeklini oluşturacak Aİ’ ları belirlemek için önce EAİ’ lar seçilir. Eğer bir minterm sadece bir 

Aİ tarafından örtülüyorsa, bu Aİ, EAİ’ dır ve SOP kümesine dahil edilir. Çünkü bu mintermi 

örtecek başka bir Aİ yoktur. Bütün EAİ’ lar seçildikten sonra, bütün mintermler örtüldüyse 

minimum SOP kümesi oluşturulmuş demektir. Eğer hala bazı örtülmeyen mintermler varsa, 

bu mintermleri örtecek olan AI’ ların diğer AI’ lardan seçilmesi gerekir. Bu yolla seçilecek 

olan her bir AI, ikincil esas asal implikant (secondary essential prime implicant - İEAI) olarak 

adlandırılır.  

İEAI kümesinin bulunması: İEAI’ lar, sadeleştirilmiş AİT’ dan seçilir. SAİT’ da 

önceden seçilmiş EAI’ lar ve örtülmüş mintermler bulunmaz (McCluskey 1956, Çelikağ 

1989, Rudell 1989, Quine 1955). 

 

Baskın satır kuralı (row dominance):   

Tanım 1. AH” da bulunan herhangi bir i ve j satırları için, ! satırında bulunan x” 

işaretlerinin tümü i satırında da bulunuyorsa, bu iki satır birbirine eşittir. Tanım 2. AİT’ da 

bulunan i ve j satırları için,] satırında bulunan bütün “x” işaretleri i satırında da varsa ve i 

satırında en az bir tane fazla “x” işareti varsa, i satırı] satırını kapsar denir.  

Tanım 3. AI’ nın maliyeti, çarpım terimindeki literalı sayısı ile belirlenir. Çarpım teriminde 

daha fazla literali olan daha fazla maliyete sahiptir.  

Yukarıdaki tanıma göre i satırı kapsayan satır, j satırı kapsanan satırdır. Kapsanan satır SAİT’ 

den çıkarılabilir. Eğer iki satır birbirine eşitse bu satırlardan maliyeti fazla olan satır çıkarılır 

(Başçiftçi ve ark. 2003). 

Baskın sütun kuralı (column dominance):  
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Tanım 4. AIT’ da bulunan i ve j sütunları için, i sütununda bulunan “x” işaretleri j 

sütununda da bulunuyorsa, bu iki sütun birbirine eşittir. (eşit sütunlar) 

 

Tanım 5. AIT’ da bulunan i ve j sütunları için, i sütununda bulunan bütün “x” işaretleri 

j sütununda da varsa ve i sütununda en az bir tane fazla “x” işareti varsa, i sütunu j sütununu 

kapsar denir.  

 

Yukarıdaki tanıma göre i sütunu kapsayan sütun, j sütunu kapsanan sütundur. 

Kapsanan sütun SAİT’ den çıkarılır. Eğer iki sütun birbirine eşitse bu sütunlardan maliyeti 

fazla olan sütun çıkarılır (Başçiftçi ve ark. 2003). Bütün sadeleştirme kuralları uyguladıktan 

sonra AİT’ de birden fazla minterm kalabilir. Bu tür tablolara periyodik tablo denir. Periyodik 

problemler Dallandırma Metoduyla veya Petrik metodu çözülebilir (Çelikağ 1989, Rudell 

1989).  

 

2.3.1.3 QMM kullanım alanları  
 

KH metodunda, beş veya altı değişkenli fonksiyonlar için, en uygun seçimin yapılmış 

olduğundan emin olmak ve bu metodu, bilgisayar programlarına uyarlamak da bir hayli 

zordur. Bu zorluklara QMM çözüm getirir. Bu metot, adım adım uygulanarak fonksiyon için 

minimumlaştırılmış ifadeyi standart bir biçimde elde eder. Bu metot, çok değişkenli 

fonksiyonlara uygulanabilir ve bilgisayarda programlamaya uygundur. Ancak, rutin ve 

monoton işlemlerinden dolayı kullanımı oldukça sıkıcıdır ve hata yapma olasılığı yüksektir. 

QMM çok girişli - çok çıkışlı fonksiyonlar için genişletilebilir. Pratik uygulamalarda, çok 

çıkışlı problemlerde AI’ ların sayısı çok fazladır. Bundan dolayı, bu metot çok fazla hafızaya 

gereksinim duyar (Chai 2000). Giriş değişkeni sayısı fazla olursa, minterm sayısı fazla 

olacağından, üretilen AI fazla olacaktır ve bu AI’ ların depolanması için çok fazla hafızaya 

ihtiyaç duyacaktır (Chai 2000). Bundan dolayı bu metot, çok değişkenli problemler için 

uygun değildir. Bununla birlikte, giriş değişkeni sayısı az olursa diğer metotlara göre daha 

hızlı olabilir. 
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2.3.2 Petrick Metodu 

 

Bir minterm sütununda L tane AI varsa bu mintermi örtmek için L tane farklı AI var 

demektir. Bu mintermi örtmek için olası AI’ ların toplamı L tanedir. Periyodik tablodaki N 

tane sütun (veya minterm) N tane toplam terimi üretir. AI fonksiyonu veya p-fonksiyon N 

tane toplam terimlerinin çarpımı (POS) şeklinde tarif edilir. Her sütun için AI’ lar toplanır ve 

diğer sütunların AI’ larının lojik toplamı ile lojik çarpılır. Çarpımlar sonra toplam olarak 

düzenlenir. Düzenleme yapıldıktan sonra en az literale sahip olan bileşen veya bileşenler 

minimum ifadeyi oluşturur (Çelikağ 1989). Minimum ifade tek olabileceği gibi birden fazla 

da olabilir.  

 

 

Aşağıda bir örnek verilerek Petrick metodu açıklanmıştır. 

 

1. Adım: tablodaki bütün satırları numaralandır. 

P1, P2… Pm 

2. Adım: sütunlardaki her X için P değerlerini seç.  

 

 

 

 

 

 

 

Birinci sütundaki X içeren P değerlerini seçelim (P1 ve P2) 

(P1 + P2) 

Bu şekilde devam ederek şu sonuca varırız: 

 

P = (P1 + P2) (P1 + P3) (P2 + P4) (P3 + P5) (P4 + P6) (P5 + P6) 

P = (P1 + P2) (P1 + P3) (P4 + P2) (P5 + P3) (P4 + P6) (P5 + P6) 

P = (P1 + P2) (P1 + P3) (P4 + P2) (P4 + P6) (P5 + P3) (P5 + P6) 

P = (P1 + P2 P3) (P4 + P2 P6) (P5 + P3 P6) 

P = (P1 P4 + P1 P2 P6 + P2 P3 P4 + P2 P3 P6) (P5 + P3 P6) 

 

   0 1 2 5 6 7 
P1 (0,1) a’b’ X X     
P2 (0,2) a’c X  X    
P3 (1,5) b’c  X  X    
P4 (2,6) bc’   X  X  
P5 (5,7) ac    X  X 
P6 (6,7) ab     X X 
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PSdoğru = P1 P3 P4 P6  + P1 P4 P5+P1+P2 P3 P6+ P1 P2 P5 P6+P2 P3 P4 P6+ P2 P3 P4 P5+   

P2 P3P6 + P2 P3 P5 P6 

 

 

Bu ifadeler bize sadeleşmiş ifadelerin hepsini ifade eder. Yani P1, P2 ve P3  ye çizgi 

çekilerek sadeleştirme yapılır. Eğer her bir terim eşit maliyete sahip olduğu kabul edilirse 

(burada eşit), bu fonksiyonda en sade ifade nedir? 

 

İki en sade durum var P1 P4 P5 and P2 P3 P6:  

F = a’b’ + bc’ + ac                     ve             F = a’c’ + b’c + ab 

  

 

2.3.3 ESPRESSO-II Algoritması 

 

ESPRESSO-II,  fonksiyonunun doğru kümesini, belirsizler kümesini ve yanlış 

kümesini giriş olarak alır (Brayton ve ark. 1984). Bu Algoritma çıkış olarak sadeleştirilmiş bir 

örtü verir. ESPRESSO-II minimuma yakın çözümü bulmaktadır ve aşağıda verilen 3 sayıyı 

azaltmaya çalışmaktadır (Brayton ve ark. 1984, McGeer ve ark. 1986, Brayton ve ark. 1993, 

McGeer ve ark. 1993).  

 

 

1. NPT: örtüdeki çarpım terimlerinin sayısı.  

2. NLI: örtünün giriş kısmındaki terimlerinin sayısı.  

3. NLO: örtünün çıkış kısmındaki terimlerinin sayısı.  

 

 

 

ESPRESSO-II f (NPT, NLI, NLO) vektörünü kullanarak sadeleştirme süresince (F)’ 

nin bileşenlerini azaltmaya çalışmaktadır (Brayton ve ark. 1984, McGeer ve ark. 1986). Bu 

işleme, son döngü sırasında, bileşenlerin hiçbirisi değişmediğinde son verilir (Brayton ve ark. 
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1993, McGeer ve ark. 1993). Sadeleştirme işlemine geçmeden önce sadeleştirilecek olan 

fonksiyonlara UNWRAP (dağıtma, açma) prosedürü uygulanır. Bu prosedür k tane fonksiyon 

tarafından paylaşılan bir küpü, her biri sadece bir fonksiyon tarafından paylaşılan k tane küp 

ile yer değiştirir (Brayton ve ark. 1984, Uçar 1996). Her ne kadar bu şekilde optimaldan daha 

uzaklaşılsa da böyle bir işlem sonucunda sadeleştirme işlemi girişe daha az bağımlı olur ve 

EXPAND prosedüründe küplerin daha yararlı bir şekilde hangi fonksiyon tarafından 

paylaşılacağı bulunabilir (Brayton ve ark. 1984). Bu şekilde F (doğru kümesi), D (belirsizler 

kümesi) ve R (yanlış kümesi)  örtüleri elde edildikten sonra P vektörü hesaplanır. Bu vektörün 

bileşenlerinde bir azalma görülemeyinceye kadar genişletme (expand), tekrarsız örtü 

(irredundant_cover) ve daraltma (reduce) prosedürleri çalıştırılır. (1)’ nin bileşenlerinde 

azalma görülmediğinde LAST_GASP prosedürü çağrılır. Eğer (I’ nin bileşenlerinde azalma 

görülürse tekrar daraltma prosedürü çağrılır. ESPRESSO-II sadeleştirme Algoritması altı tane 

temel prosedürden oluşur. Bunlar COMPLEMENT, EXPAND, ESSENTIAL_PRIMES, 

IRREDUNDANT_COVER, REDUCE, LAST_GASP’ dır. Bunlara ek olarak yukarıdaki altı 

algoritmanın pek çoğu önemli bir şekilde TAUTOLOGY algoritmasına dayanır. Bu algoritma 

ile elemanları küpler olan bir kümenin, bir küpü örtüp örtmediği belirlenir (Brayton ve ark. 

1984).  

COMPLEMENT Prosedürü: Bu kısımda birden çok fonksiyon için tümleyen alma 

yöntemi verilmiştir. Bu yöntemde monoton fonksiyonun özelliklerinden yararlanılarak 

kendisini çağıran (recursive) bir prosedür ile bir fonksiyonun tümleyeni bulunur ve bu işlem 

her çıkış için tekrarlanır. EXPAND prosedürü, ESPRESSO-II içinde tümleyen alma 

prosedürünü kullanan tek ana prosedürdür. Teker teker fonksiyonların tümleyenlerini alma 

işlemi, bazı çarpım terimlerini tekrar kullanacağından daha fazla bellek kullanır. Complement 

prosedürü, verilen F ve D örtüleri için R örtüsünü hesaplar. Bu prosedür EXPAND 

prosedüründe asal bileşen seçiminde kullanılır (Brayton ve ark. 1984, Uçar 1996, McGeer ve 

ark. 1986).  

Tanım 1: Bir f fonksiyonunun x, değişkeninin değeri 0’ dan 1’ e değişmesi ile çıkışı da 

0 iken 1 (1 iken 0) oluyorsa, fonksiyonu x değişkenine göre monoton artandır (azalandır) 

denir.  

Tanım 2: Bir fonksiyon bütün değişkenlerine göre monoton artan veya azalan ise bu 

fonksiyona monoton fonksiyon denir. (Brayton ve ark. 1984, Uçar 1996, McGeer ve ark. 

1986).  
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EXPAND Prosedürü: Genişletme işleminin amacı F örtüsünden mümkün olduğu 

kadar çok sayıda küpün atılmasıdır. Bunun için F örtüsünün küpleri teker teker belirli bir sıra 

ile ele alınır ve ele alınan küp ile F örtüsünde bulunan maksimum sayıda küp örtülmeye 

çalışılır. Daha sonra genişletme işlemi ile elde edilen asal küpler örtüye dahil edilir. Bu 

küplerin E örtüsündeki kapsadıkları küpler örtüden çıkarılır. EXPAND Algoritmasının sonucu 

genişletilen küplerin ele alınma sırasına bağlıdır (Brayton ve ark. 1984, McGeer ve ark. 1986, 

Uçar 1996).  

ESSENTIAL_PRIMES Prosedürü: Burada çözülmesi gereken problem, verilen F 

örtüsü için her bir c’, f nin bir asal küpü olmak üzere, verilen bir e’ asal küpü ,/‘ nin bir temel 

asal bileşeni olup olmadığının belirlenmesidir. Temel asal bileşenler /‘ nin bütün asal 

örtülerinde bulunmalıdır. Bu nedenle EXPAND, REDUCE ve RREDUNDANT_COVER 

prosedürleri yürütülürken temel asal bileşenleri örtüden demek, hesaplama zamanını azaltır 

(Brayton ve ark. 1984, Uçar 1996, McGeer ve ark. 1986).  

IRREDUNDANT_COVER Prosedürü: ESPRESSO-II’ nin EXPAND prosedürünün 

uygulaması ile F asal örtüsü elde edilir. Bu örtüde hiçbir küp diğerini kapsamaz. Bununla 

birlikte F’ nin minimal örtü olduğu kesin değildir. IRREDUNDANT_COVER prosedürü 

verilen F ve D için, F’ nin bazı küplerinden oluşan minimale yakın F2 örtüsünü belirler. Bu 

prosedür ile F2 F olan ve mümkün olduğu kadar az küpe sahip E2 örtüsü elde edilmeye 

çalışılır. Bu prosedürden sonra bir minimal örtü elde edilir (Brayton ve ark. 1984, Uçar 1996, 

McGeer ve ark. 1986).  

 

 
 
 
 
 
 
 
 
 

Şekil 1: RREDUNDANT_COVER prosedürü 
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REDUCE Prosedürü: IRREDUNDANT_COVER prosedürü ile elde edilen örtüdeki 

küpleri teker teker ele alır. 1-ler e EF küpü için, c küpünün (F) D örtüsü tarafından 

kapsanmayan mintermlerden oluşan en küçük küp c’ yi bulur. Daha sonra E örtüsünde e küpü 

ile c küpünü değiştirir. Yani F(F-R) e olur. Bu şekilde elde edilen önü EXPAND prosedürü ile 

daha çok yönde genişletilebilir. Ayrıca F örtüsü bu işlemle daha küçük küplerden oluşur ve 

genişletilen küpler tarafından kapsanma olasılığı artar. Bu prosedürün sonucu küplerin ele 

alınma sırasına bağlıdır (Brayton ve ark. 1984, Uçar 1996, McGeer ve ark. 1986). 

LAST_GASP prosedürü: Bu algoritma sadeleştirilecek olan örtüden birkaç küp daha 

çıkarabilmek için kullanılır. LAST_GASP, değiştirilmiş bir REDUCE ve değiştirilmiş 

EXPAND prosedürlerini içerir. En son sadeleştirilmeye çalışılan küpler en az sadeleştirme 

şansına sahiptir. Bunun sebebi daha önce sadeleştirilerek kısaltılan küpler nedeniyle örtü 

zaten az sayıda minterm içermektedir. Sadeleştirilecek küplerin kabaca seçimi, EXPAND 

işlemi sonunda örtüdeki küp sayısının azalacağını garanti etmez. LAST GASP prosedüründe 

her bir küp maksimum şekilde sadeleştirilir. Daha sonra sadeleştirilen küpler üzerinde 

EXPAND işlemi uygulanır. REDUCE prosedürü aynı işlemi yapmaktadır fakat bu prosedürde 

küpler belirli bir sıra ile ele alınmaz. Her küp bağımsız olarak ele alınarak REDUCE 

prosedürü ile yapılan işlem tekrarlanır (Brayton ve ark. 1984, Uçar 1996, McGeer ve ark. 

1986).  

TAUTOLOGY Prosedürü: Bir fonksiyonun sabit–1 olup olmadığının belirlenmesi için 

ESPRESSO-II tarafından kullanılan temel bir işlemdir. Bu işlem IRREDLNDANTCOVER, 

REDUCE, ESSENTİAL PRİMES ve LAST GASP prosedürlerinin temel bölümünü oluşturur. 

Bu nedenle etkili bir TAUTOLOGY Algoritması ESPRESSO-II’ nin hızı için önemlidir 

(Brayton ve ark. 1984, Uçar 1996, McGeer ve ark. 1986).  

 

Örnek: Şekilde verilen mantıksal fonksiyonun Espresso algoritması ile çözümünün bulunması 

  

 
 
 

Espresso algoritması tarafından ilk bulunan örtü bu şekilde 
verilmiştir. 
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2.3.3.1 Daraltma işlemi (reduce) 

 

Bir implikanta bir literal (değişken) ekleyerek kapsama alanını azaltma işlemidir. 

 
 
 
 
 

A XCX implikantı B literali eklenerek yapılan azaltma işlemi 

ile ABCX implikantı oluşur. 

 
 
 
 

2.3.3.2 Genişletme işlemi (expand) 

 

Bir implikanttan bir literalin (değişken) çıkartılması işlemi ile implikantın kapsama 

alanını genişletme işlemidir. 

 
 
 
 

 
 

A BC implikantındanA literalini çıkartırsak oluşan imlikant XBC 
olur. Genişletme işleminde hangi literalin çıkarılırsa daha iyi 
olacağını seçmek için kofaktor kriteri kullanılır 

 
 
 
 
 
 

Tekrarsız implikant eleme işlemi  
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2.3.3.3 Kofaktör 

 

 

 Tanım: bir C implikantının xj literaline bağlı olarak oluşturulan kofaktor Kxj olsun Kxj 

kofaktoru şu şekilde bulunur: 

• xj veyaxj değeri C implikantında yoksa sonuç C dir. 

• C\{xj} olur eğer xj literali C implikantında varsa 

• C implikantıxj literalini içeriyorsa sonuç ∅ olur eğer 

 

 

 

Örnek: F fonksiyonu için b literalinin kofaktor olduğu zaman oluşan sonucu bulalım: 

 

F  = abc +bc +cd 

 Fb= ac +∅ +cd 

 Fb= ac +cd  
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2.3.3.4 Espresso algoritması 

 

 

1- Hangi küp diğer küp/küpler tarafından kapsanıyorsa onu kümeden çıkar. (REDUCE ) 

2- Artık küpler Küp’ ten bir değişken çıkartmakla ortaya çıkar. 

3-  İmplikantları genişlet (EXPAND) 

• Genişletilmiş implikantların kapsadığı (örttüğü) diğer implikantları kümeden çıkar 

• Sonucun iyi olması genişletme işleminin sırasına bağlıdır. 

• Heruistic metotlar en iyi genişletme sırasını bulmaya çalışır. 

• 1, 2, 3 işlemlerini sürekli yaparak alternatif prime imlikantları bul ve fonksiyonun 

maliyeti düştüğü müddetçe 1, 2, 3 işlemlerini yapmaya devam edilir. 

 

Espresso(F,D) //  F Doğru kümesi D don’t Care ve R Yanlış kümesi 

{  

R=TERS(F+D);    //Yanlış kümesini bul 

F=Genişlet(F,R);      //F kümesini genişlet 

F=Tekrarsız(F,D);  //Başlangıç tekrarsız örtü bulunur 

E=Temel (F,D);  // Temel birincil implikantlar bulunur 

F=F-E;    //Bulunan elemanları kümeden çıkar 

D=D+E; 

   F’ in maliyeti düşüyorken  (while) 

{ R=Daralt(F,D);     

F= Genişlet(F,R);      //F kümesini genişlet 

F= Tekrarsız(F,D);  //Başlangıç tekrarsız örtü bulunur 

} 

F=F+E; 

Sonuç=F;      // sonuç olarak F kümesini gönder. 

} 
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2.3.3.5 ESPRESSO-II Programı 

 

ESPRESSO verilen fonksiyonu çarpım terimlerinin toplamı (SOP) şeklinde 

sadeleştiren, çok seçeneği olan bir programdır. ESPRESSO programının kullanım formatı 

aşağıdaki gibidir:  

� Espresso [seçenekler] [dosya] [> çıktı dosyası] 

ESPRESSO programının kullandığı dosya formatı aşağıda gösterilmiştir. Programın 

tanıdığı anahtar kelimeler belirtilmiştir. [d] ondalık bir sayıyı belirtir. [s] bir string 

ifadeyi belirtir.  

 

Verilen bu seçenekler her dosya da olması gereken durumlardır.  

ESPRESSO programında kullanılan seçeneklerden çok kullanılanlar aşağıda 

açıklanmıştır.  

 

—Dexact: Exact minimumlaştırma Algoritması (çarpım terimlerinin minimum sayıda 

olmasını garanti eder ve buluşsal (heuristic) olarak literallerin sayısını minimumlaştırır). 

Genellikle pahalı olabilecek sonuçlar üretir.  

 

—Dsignature: Küp tabanlı kesin (exact) minimumlaştırma Algoritması (çarpım 

terimlerinin minimum sayıda olmasını garanti eder ve buluşsal olarak literallerin sayısını 

minimumlaştırır). Dexact seçeneğine göre daha hızlıdır ve Dexact seçeneğinin takıldığı 

problemleri çözer (Brayton ve ark. 1993, McGeer ve ark. 1993).  

 

—Dso: 1-ler fonksiyonu tek çıkışlı fonksiyon gibi minimumlaştırır. Terimler 

fonksiyonlar arasında paylaştırılmaz. 
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2.3.3.6 Espresso dosya formatı 

 

Espresso algoritması için kabul edilmiş dosya formatı şu şekildedir:  

� .i [d] Giriş değişkeninin sayısını belirtir 

� .o [d] Çıkış değişkeninin sayısını belirtir.  

.e Dosyanın bittiğini gösterir.  

 

 

F(A,B,C,D)= (4, 5, 6, 8, 9, 10, 13)    D(0, 7, 15)  fonksiyonu için oluşturulan giriş dosyası, 

 

 

 

Giriş                            Anlamı:                                              

.i 4    Girişler 

.o 1    Çıkışlar 

.lb a b c d   Giriş Değişkenleri 

.ob f    Çıkış Değişkenleri 

.p 10    Ürün Sayısı 

0 0 0 0  - 

0 1 0 0  1 

0 1 0 1  1 

0 1 1 0  1 

0 1 1 1  - 

1 0 0 0  1 

1 0 0 1  1 

1 0 1 0  1 

1 1 0 1  1 

1 1 1 1  - 

.e 

 

Espresso algoritması ile F(A,B,C,D)= (4, 5, 6, 8, 9, 10, 13) D(0, 7, 15) kabul edilmiş 

dosya formatı şu şekildedir:  
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F(A,B,C,D)= (4, 5, 6, 8, 9, 10, 13) D(0, 7, 15)  fonksiyonu için oluşturulan çıkış dosyası, 

 

Çıkış                     Anlamı:                                              

.i  4    Girişler 

.o 1    Çıkışlar 

.lb a b c d   Giriş Değişkenleri 

.ob f    Çıkış Değişkenleri 

.p 3    Ürün Sayısı 

1 - 0 1  1 

1 0 - 0   1 

0 1 -  -   1 

.e 

F(A,B,C,D)=AC D+AB C +A B 
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3 YAKIN MİNİMALİ ÖRTME ALGORİTMASI 
 

Boole ifadelerinin sadeleştirmesi, mantık devrelerinin ve bilgisayar programlarının 

daha etkili olmasına yol açmaktadır. Minimumlaştırma ifadeleri önemlidir. Çünkü elektrik 

devreleri, verilen Boole ifadelerinin her bir terim veya literallerinin uygulanması için bireysel 

bileşenler içerir. Bu tasarımcıların daha az bileşen kullanmasını ve böylece de belirli 

sistemlerin maliyetlerinin düşmesini sağlamış olur. Tek çıkışlı veya çok çıkışlı Boolean 

minimumlaştırma teknikleri (Mano 1984) anlatılmıştır. Bu tekniklerin birçoğu iki adımda 

çalışır. İlk adımda bütün asal implikantları (prime implicant-Aİ) belirler ve ikinci adımda da 

verilen Boole ifadesini örtecek (kapsayacak) AI’ ların altkümesini seçer (Perkins ve Rhyne 

1988).  

Bütün AI’ ların belirlenmesi sürecinde son sonucun tam olarak belirlenmesi için ayrı 

durumlarda hesaplama yapılabilir. Özellikle, eğer her bir asal implikant tam olarak k tane 0, k 

tane 1 ve k tane belirsiz terim içeriyorsa, AI’ nın tamamlanmış kümesinin gücü M=(3)!/(k!)3 

dür (Kahramanlı ve Başçiftçi 2004). Örneğin k=l,2,3,4 için sırasıyla M=6, 90, 1680 ve 34650 

dır. n değişkenli bir fonksiyon için AI’ ların sayısı 3fl/ kadar büyük olabilir (Kahramanlı ve 

Başçiftçi 2004). Sonuç olarak, AI belirleme adımı değişken sayısı n arttıkça elverişsiz bir 

duruma gelebilir (Perkins ve Rhyne 1988). Açıkça görülmektedir ki ister iki seviyeli veya 

isterse çok seviyeli Boole ifadelerini sadeleştirme prosedürlerinin hepsi tüm durumlarda 0(2v) 

karmaşıklığına sahiptir (Allahverdi ve ark. 2000, Kahramanlı ve Başçiftçi 2003, Kahramanlı 

ve ark. 2005). Burada, tam belirlenmiş Boole fonksiyonunun ON mintermlerini örten AI’ 

ların yerel belirlenmesinin metodu önerilmiştir. n değişkenli Boole ifadelerinin bu tür 

mintermleri maksimum n tek boyutlu küplere dahil edilebilir. Geçici sonuç küpleri kümesinin 

gücü n değerini geçmeyebilir (Allahverdi ve ark. 2000). Böylece, AI’ ların minimum 

kümesini bulmak için O(2n)karmaşıklığı yerine O(n) karmaşıklığı metodu kullanılabilir 

(Kahramanlı ve Başçiftçi 2003, Kahramanlı ve ark. 2005).  

Bu çalışmada, 0ff küme tabanlı doğrudan örtme minimumlaştırma metodu (direct 

cover Minimization Method) tek çıkışlı fonksiyonlar için çarpım terimlerinin toplamı 

formunda sunulmuştur. Var olan doğrudan örtme metotlarında verilen On- küpü içeren yeterli 

asal implikantlar kümesini bulmak için, bu küp her defasında bir koordinat için genişletilir. 

Her genişlemenin doğruluğu, k < 2 Off-küplerin hepsi ile genişletilen küp kesiştirilerek 

kontrol edilir. Bir küpün genişlemesinin polinominal karmaşıklığa sahip olduğu dikkate 
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alındığında, bu yaklaşımın toplam karmaşıklığı O(n)O(2 n) şeklinde olmaktadır. Bu 

polinominal ve üssel karmaşıklığın çarpımıdır. Verilen On-küpü içeren asal implikantların 

tam kümesini elde etmek için önerilen metot, bu On-küp tarafından genişletilen 0ff-küpleri 

kullanır. Bu işlemin karmaşıklığı, yaklaşık olarak bir koordinat için bir On-küpün 

genişletilme karmaşıklığına eşdeğerdir. Bundan dolayı, verilen On-küpü içeren asal 

implikantların tam kümesinin hesaplama işleminin karmaşıklığı yaklaşık olarak O(n) kadar 

azaltılmış olur. Pratik olarak bu yaklaşım bir defada işlenecek olan asal implikant sayısını 

yüzlerce ve binlerce defa azaltmaktadır. Bu ise halen problem olan bellek kapasitesi 

darboğazını kolaylıkla aşma imkânı sağlamaktadır.  

YMÖA çeşitli problemler üzerinde test edilmiş ve standart MCNC benchmarkları 

kullanılarak ESPRESSO ile karşılaştırılmıştır. Bu karşılaştırmalar sonucunda geliştirilmiş 

olan yöntemlerin ESPRESSO’ ya göre önemli bir ölçüde hızlı olduğu ve az bellek kapasitesi 

gerektirdiği görülmüştür. Ayrıca sadeleştirme işlemleri sonucunda karşılaştırılan Algoritmaya 

göre çarpım terimlerinin toplamı şeklinde daha iyi sonuç buldukları belirlenmiştir. 

 

 

3.1 İşaretlerin Gösterimi 

 

n girişli ve m çıkışlı bir çoklu çıkışa sahip Boole fonksiyonu aşağıdaki gibi tanımlanır 

(Kahramanlı ve Başçiftçi 2003):  

 

Giriş: B{0,l },  

Çıkış: Y{0,l,d},  

Fonksiyon f: Bn �Ym 

 

Burada, çıkışta gösterilen d değeri (belirsiz terim) tam belirlenmemiş değer 

manasındadır ve fonksiyonun istenildiği yerinde 0 veya 1 olarak kabul edilebilir. Böyle bir 

fonksiyon AI’ ların listesiyle temsil edilebilir. Her bir AI giriş ve çıkış kısımlarını içerir 

(Kahramanlı ve Başçiftçi 2003, Kahramanlı ve ark. 2005). 
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Giriş kısmı: n sabitler {0,l,x} olabilir; 

Çıkış kısmı: m sabitler {0,l,d} olabilir.  

Giriş kısmı küpe uygulanacak giriş uzayını belirler. Giriş kısmındaki x değeri bu değişken 

için 0 veya 1 değeri olabilir.  

 

Bu tezde, tek çıkışlı Boole fonksiyonları için yeni bir sadeleştirme metodu 

geliştirilmiştir. Tek çıkışlı Boole fonksiyonu aşağıdaki gibi tanımlanır;  

 

Giriş: B={0, l},  

Çıkış: Y={0, l,d}, 

Fonksiyon f: B � Y.  

 

SON: Fonksiyonun değerini 1 yapan ON mintermlerinin kümesi,  

SOFF: Fonksiyonun değerini 0 yapan OFF mintermlerinin kümesi,  

SDC: Belirsiz terim mintermlerinin kümesi.  

 

Bu tezde sunulan Algoritmada SON kümesi ve SOFF kümesi tamamen kullanılmıştır. 

SDC kümesi ise kullanılmamıştır.  

 

3.2 YMÖA kullanılan Küp Cebri’ nin Elemanları ve Uygulama biçimleri 

 

Lojik cebirdeki minimum terimler, küp cebrinin temelini oluşturmaktadır. Ancak küp 

cebrinde değişken sayısı en az üçtür. Üç değişken bir küpü tanımlamaktadır. Küp cebri ile 

geometrik olarak; bir minterm ile bir nokta, iki nokta ile bir hat, dört hattın birleşmesi ile bir 

yüz, altı yüzün birleşmesi ile bir küp tanımlanır  (Nadjafov ve Kahramanov 1973, Güneş 

2000). Bu küpün her bir koordinatı, 3 değişkenli bir Boole fonksiyonunun bir değişkenidir. 
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Küp cehri işlemleri, önce anahtarlama fonksiyonlarının (Switching Functions SFs) en 

son durumunu bulmak için geliştirilmiş ve uygulanmıştır (Roth 1956, Nadjafov ve 

Kahramanov 1973). Yine bu işlem SF’ nin ilk terimlerini (local prime implicants) bulmak 

içinde kullanılmıştır. Daha sonra lojik fonksiyonların minimumlaştırılması üzerinde 

kullanılmıştır (Nadjafov ve Kahramanov 1973).  

 

3.2.1 Küp Cebri Elemanları Ve Uygulama Biçimi  

 

n-boyutlu bir küpün her bir tepe noktası ikili kodlarla belirtilir. Bu küp koordinatlarına 

sahiptir. doğal olarak k1 koordinatı (0,1)’ lerle belirtilir ve i1,2,...,n’ dir. Bu yüzden aynı 

zamanda, belirli bir tepe noktasının kodu, bu tepe noktasının cebirsel ifadesini gösterir. Tepe 

noktalarına komşu olan diğer tepe noktaları da n bitlik kodlarla belirlenir. n bitlik kodlar, 

birbirinden sadece 1 hitlik farka sahipse bunlar komşu olarak adlandırılır. Örneğin 0110 kodu 

ile 0100 kodu komşudur (Nadjafov ve Kahramanov 1973, Allahverdi 1999, Güneş 2000).  

 

 

Şekil 3.1. Üç boyutlu kodlanmış küp 

Küpün elemanları; tepe, doğru, yüz, küp, hiperküp şeklinde adlandırılır. Bu elemanlar 

üzerinde bir işlem yaparken gelebilecek belirsiz durumların oluşmaması için, bütün 

koordinatları ve bu koordinatların arasındaki doğruların kullanılması gerekir. Bu amaç için, 

{0,1} kümesine ait olmayan geçersiz koordinatların konumları “ * “ ile belirtilmiştir.  
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3.2.2 Küp Cebrinin İşlemleri  
 

Küp cebri, lojik 0 ve lojik 1 ile yapılan bütün işlemlerin dışında dört işlemi daha 

içermektedir. Bunlar;  

a) Koordinatlı çarpma (star product,  �-operation),  

b) Koordinatlı çıkarma (sharp product  #-operation),  

e) Koordinatlı kesişme ( ∩ -operation)  

d) Dönüşümlü yutma işlemi (commutative absorption operation  ∆- operation)  

işlemleridir (Allahverdi ve Kahramanlı 1995,Güneş 2000).  

 

3.2.2.1 Koordinatlı çarpma işlemi (�- işlemi)  
 

Koordinatlı çarpma işlemi, aynı boyuta sahip iki küp arasında uygulanır. Fakat çarpımı 

yapılacak olan alt küpler, aynı boyutta olmak şartı ile değişik değerde olabilirler. Koordinatlı 

çarpma işlemi iki aşamada gerçekleştirilir. İlk aşamada bir v bileşeninin belirlenmesi için 

çarpım vektörü (vector of product-ÇV) oluşturulur.  

İkinci aşamada, oluşturulan ÇV’ nin koordinat değerlerine göre A ve B küpleri 

koordinatlı çarpıma tabii tutulur (Allahverdi ve Kahramanlı 1995, Allahverdi 1999).  

A ve B küpleri aynı boyuta sahip iki küp olsun  

  

A= a1, a2… an     

B=b1, b2… bn  

 

Bu iki küp arasında koordinatlı çarpma işlemi uygulansın. İlk aşamada v bileşeninin 

belirlenmesi için aşağıdaki işlemler sonucunda çarpım vektörü ÇV oluşturulur;  

 

ÇV = A� B = v1, v2… vn  
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Olmak üzere, vi bileşeninde i ∈{0,1… n} dir. vi bileşeni;  

 

 

• Eğer ai = bi ise vi = ai b olur.  

• Eğer ai = * ve bi ≠ *  ise yi =bi olur. 

• Eğer a i ≠  * ve b = * ise v i  = a olur.  

• Eğer a, b∈{0,1} ve a i ≠  b i ise vi =y olur.  

 

 

ÇV’ nin koordinat değerlerine göre A ve B küplerinin koordinatlı çarpımının sonuçları 

aşağıdaki gibi olmaktadır;  

 

 

a. Eğer herhangi bir vi = y bulunmazsa, A ve B’ nin çarpımı sonucu, A ve B’ nin alt 

küpü olan ÇV olmaktadır (yani A �B =ÇV). 

b. Eğer sadece bir tane i değeri için vi =y bulunuyorsa ve diğer değerler için vi= bi=ai 

ise (burada j∈{l, 2... i-l, i+l... n} dir) A ve B küplerinin koordinatlı çarpımı sonucu, ÇV’ 

de vi yerine * sembolü konularak bulunan bir C küpüdür.  

c. Eğer sadece bir tane vi = y oluşuyor ve ak =* veya bk= * için yk ≠  * ise A ve B 

küplerinin çarpımları sonucu, ÇV’ de v i yerine * sembolü konularak bulunan bir C 

küpüdür. C küpünün bir bölümü A tarafından, diğer bölümü B tarafından örtülür. Bu 

durum C küpünün A ve B küpleri ile ilişkisi olduğunu gösterir.  

 

d. Eğer en az iki tane vi ve vj bileşeni için, vi = vj = y olan A ve B küplerinin 

koordinatlı çarpımı C = φ dir. Burada A ve B küpleri arasında doğrudan bir bağlantı 

yoktur.  



 

 32 

a, b, c, d maddelerine göre Am (m-küp) ile Bl (l-küp) küplerinin çarpılması sonucu 

aşağıdaki durumlar oluşmaktadır.  

1: Her iki A ve B küpüne giren C küpü (Şekil 3.2).  

ÇV=A�B=0** � *0*  

C=A*B=VP=00* 

 

 

 

 

 

 

  

Şekil 3.2. C küpünün ortak olması durumu  

2: (m+l) kenara sahip olan (m+1-küp) ve A ve B küpünün birleşmesinden oluşan C küpü  

 

 

 

 

 

Şekil 3.3. C küpünün birleşim oluşturduğu durum  

 

ÇV=A�B=0*0� 0*1 = 0y* 

011  

010 

000  

001 

A  

000 

001 

100 
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C  

B  

� 

000 

001  
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000  

A  

� 
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000  

001  

C 

011 

001 

B  
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3: A ve B küpleri arasında birleştirilmiş bir köprü olan C küpü.  

 

ÇV=A�B=01* � 1*0  

 

  

 

 

 

 

Şekil 3.5. C küpünün köprü oluşturduğu durum  

 

3.2.2.2 Koordinatlı çıkarma işlemi ( # işlemi)  

 

Koordinatlı çarpmada olduğu gibi, koordinatlı çıkarmada da aynı boyuta sahip iki küp 

kullanılır. Çıkarma işlemi, küplerin aynı taraflarında (nokta, kenar, yüzeylerinde) veya farklı 

taraflarında yapılabilir. Koordinatlı çıkarma işlemi ilk olarak, tepe noktası adreslenmemiş SFs 

nın sınırını hesaplamada kullanılmıştır. Bununla birlikte, SFs nın yerel asal implikantların 

(local prime implicants) bulunmasına uygulanmıştır (Allahverdi ve Kahramanlı 1995, 

Kahramanlı ve Allahverdi 1993, , Kahramanlı ve Allahverdi 1996, Güneş ve ark. 2003, 

Allahverdi 1999).  

A ve B gibi aynı boyuta sahip iki vektör verilsin 

A = a1 a2...an,   B= b1 b2...bn   

Çıkarım Vektörü ÇV= v1 v2...vn şu şekilde bulunur. 

 

*  Eğer bi = x VEYA bi = ai ise vi  = Z 

*  Eğer ai = x VE bi = ai ise vi  = b’i 

011  

010 

100  

110 

A  
 
B  

011 

010  

100 

110 

 
C  

� 
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 *  Eğer ai = b’i  ise vi  = Y   

 

İkinci adım olarak koordinat değerlerine göre sonuç şu şekilde bulunur: 

*  Eğer vi =y ise çıkarım işlemi olamaz: C=A # B=A 

*  Eğer hiç   vi =y yoksa ÇV= vj... vk... vm  ε { 0,1 } varsa çıkarım operasyonu 

Sonucu şu şekildedir: 

 

   {a1 . . .a j -1a j  a j+1 . . .an ,  a 1 . . .ak -1ak  ak+1 . . .an ,  a1 . . .am -1am am+1 . . .an} 

 *  Eğer  i için vi  = Z ise işlem sonucu boş kümedir. C=A # B=∅ 

 

 

 

 

 

 

Koordinatlı Çıkarma İşleminin özellikleri: 

                         Değişme özelliği yoktur. 

           Birleşme özelliği yoktur. 

 Birleşme özelliği üzerinde dağılma özelliği vardır 

Kesişme özelliği üzerinde dağılma özelliği vardır. 

Çıkarma işleminde simetriklik vardır. 

 

         bi  

 ai 
X 1 0 

X Z 0 1 

1 Z Z Y 

0 Z Y Z 

)(##)##( C}{B, #A 

)#()#( CB)# (A 

)#()#( CB)# (A 

)#(# CB)# #(A 

# B #A 

CBACBA

CBCA

CBCA

CBA

AB

==

∩=∩

∪=∪

≠

≠
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3.2.2.3 Dönüşümlü Yutma İşlemi 

 

Bu işlem iki adımda gerçekleşmektedir. 

1-  Vektör Absorbe işlemi 

2-  Koordinat değerlerine bağlı olarak kurallar uygulanarak Sonuca varılır. 

   

 Vektör absorbe işlemi şu kurala göre yapılmaktadır: AV=A∇B= v1,v2... vi... vn 

*  Eğer ai  = bi                                     ise vi = Z 

*  Eğer ai = x VEYA bi ≠ ai ise vi = G 

*  Eğer ai = b’i                                    ise vi = Y 

*  Eğer ai ≠  x VEYA bi = ai ise vi = L 

 

 

            ai 

bi   

X 1 0 

X Z G G 

1 L Z Y 

0 L Y Z 

 

 

  Koordinat değerlerine bağlı olarak Sonuç çıkarma: 

*  Eğer ∃i için vi = Y ise absorbe işlemi yapılamaz C = A∆B = {A,B} 

*  Eğer ∀i için vi = Z ise A=B dir ve Sonuç C = A∆B = A 

*  Eğer (∃i için vi = G) ve ( değil ∃i için vi = L  ) ise C = A∆B = A 

*  Eğer (∃i için vi = L) ve ( değil ∃i için vi = G  ) ise C = A∆B = B 

*  Eğer (∃i için vi = G) ve ( ∃i için vi = L  ) ise absorbe işlemi yapılamaz C = A 

∆ B = {A, B} 
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Ör:  

1. A=X1XX,  B=X1X1 AV= X1XX ∇ X1X1 = ZZZG; C=X1XX  

2. A=XX1X,  B=X011 AV= XX1X ∇ X011 = ZGZG; C=XX1X  

 

 

3.2.2.4 Asal İmplikantların Yerel Belirlenmesi 

 

Teorem: 

Farz edelim ki A= a1a2...aj... an DOĞRU kümesinin elemanı olsun, 

B= bk
1b

k
2... b

k
j... b

k
n ise YANLIŞ kümesi elemanı olsun. 

 

Ki = Ki–1 # Bi i=1,2...m K0 =XX... X 

Böylece DOĞRU kümesindeki her bir eleman için YANLIŞ kümesinin bütün elemanları 

üzerinde bu işlem gerçekleşir. Bu işlem sayesinde ai değeri uygun dönüşümü sağlar. 

 

İspat:  

Eğer ai = bk
i ise herhangi bir j koordinatı için. vi = x # bk

i  = a’i 

Sonuç olarak ai = bk
i olduğunda (ai, b

k
i) ikilisinde fark küpü oluşur (difference cube) yani 

A minterm’ ünü içermez. 

Eğer ai <> x VE bk
i  = x j koordinatı için fark küpü oluşmaz yani bk

i Değeri değişmez. 

Ve yine Eğer ai = b’k
i ise vi = x # bk

i  = b’k
i =a j koordinatı (ekseni ) için fark küpü ai değerini 

kapsar. 

 

Bu teoremi kullanarak şu küp değişimini gerçekleştirebiliriz.  

Eğer bk
i = x ise qk

i  = x 

Eğer ai  = bk
i  ise qk

i  = x 

Eğer bk
i = a’i  ise qk

i = bk
i 
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3.2.2.5 Koordinatlı Kesişme İşlemi ( ∩  işlemi) 

 

Bu işlem iki küp arasında mevcut olabilecek altkübün boş olup olmadığını 

belirlenmesini amaçlamaktadır. C1 ve C2 küplerinin kesişme işlemini sonucu bir vektördür. 

(VK) 

ni21 v...v...v,vVK =  

VK vektörünün değeri şu eşitliklerle verilir: 

Eğer ai = bi ise vi = bi = ai dir. 

Eğer ai = *  ve bi ≠ * ise vi = bi dir. 

Eğer bi = *  ve ai ≠ * ise vi = ai dir. 

Eğer  i ii i b a}1,0{ b , a ≠∈ ve  ise vi =y dir. 

 

 

Kesişme işleminin pseudokodu aşağıda verilmiştir. 

Procedure KOORDİNATLIKESİŞME () 

CL = AL ⊕ BL; 

CR = AR ⊕ BR; 

Sonuç = CL & CR; 

END Procedure; 
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3.2.3 Yakın-Minimali Örtme Algoritması 

 

Bu algoritmanın mantıksal fonksiyonun en sade şekillerinden birini üretir, ama bu 

algoritmayla üretilen Sonuç en sade Sonuç olmayadabilir. Genelde en sade Sonuç için Sdoğru 

kümesinin sıralanması gerekmektedir.  

Algoritmanın adımları şu şekildedir: 

 

1. i değişkenine sıfır ata (i = 0)  

2. Sdoğru kümesinin birinci elemanını al ve i değişkenini artır (i=i+1)  

3. Syanlış kümesinin her bir elemanına bağlı olarak kural x ile verilen dönüşümü 

gerçekleştir. Sonuçlar Q0 kümesinde olsun. 

4. Q0 kümesine absorbe işlemini uygula ve Sonuçlar Q1 kümesini oluştursun  

5. n boyutlu ‘Bütün Küp’ ten (xx... x)koordinat çıkarma işlemini uygula. (n fonksiyona 

giren değişken sayısını gösterir). Sonuc SI olarak adlandır. 

6. SI kümesi elemanlarına ‘BÜYÜK’ ve ‘KÜÇÜK’ işlemlerini uygula. (not: a, b’ den 

daha büyüktür ⇔ Sdoğru#a  < Sdoğru#b )  

7. SI kümesinden bütün ‘küçük’ elemanları  (güçsüz) çıkart Sonuçta tek eleman kalmışsa 

onu veya birkaç taneden birini seç ve bu elemana EI 

8. Sdoğru kümesini yeniden oluştur ve EI elemanını SPI Sonuç kümesine ekle 

9. Eğer Sdoğru  ≠ ∅  ise 2 ye git 

10.  Bitir. 

3.2.3.1 YMÖA Örneği 

 

QM algoritmasında verilen örneği burada çözelim çözümlersek 

 F(a,b,c,d)= ∑m(0, 1, 2, 5, 6, 7, 8, 9, 10, 14)    

 

 Sdoğru = {0, 1, 2, 5, 6, 7, 8, 9, 10, 14}  

 Syanlış = {3, 4, 11, 12, 13, 15}  

   

  h=0000 
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Syanlış Q0 Küp durumu  Q1 

0011 XX11 Birincil XX11 

0100 X1XX Birincil X1XX 

1011 1X11 XX11 tarafından yutulur --- 

1100 11XX X1XX tarafından yutulur --- 

1101 11X1 X1XX tarafından yutulur --- 

1111 1111 XX11 tarafından yutulur --- 

 

 

 Q1={ XX11, X1XX,}  Tam Küpten koordinat çıkarma işlemi: 

S1=XXXX # Q1 =(XXXX #XX11) #X1XX)= {XX0X, XXX0 }#X1XX = {X00X, 

X0X0} 

S1.1=   X00X       

S1.2 =  X0X0 

 

P1=Sdoğru # X00X  ={0000, 0001, 0010, 0101, 0110, 0111, 1000, 1001, 1010, 1110}#X00X 

P1={0010, 0101, 0110, 0111, 1010, 1110}    (6 elemanlı) 

 

P2=Sdoğru # X0X0  ={0000, 0001, 0010, 0101, 0110, 0111, 1000, 1001, 1010, 1110}#X0X0 

Sdoğru={0001, 0100, 0101, 0111, 1001, 1110}  (6 elemanlı) 

 

Her ikisi de eşit güçte oldukları için S1.1 seçebiliriz. Böylece Sdoğru kümemiz şu olur 

Sdoğru={0010, 0101, 0110, 0111, 1010, 1110}    (2, 5, 6, 7, 10, 14) ve SPI kümemize S1.1 

eklenirse: 

SPI={X00X} 

 

Şimdi Sdoğru kümesi Boş küme olmadığı için aynı işlemleri yeniden başlatacaz i=i+1 

i = 2 

 

  h2=0010 
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Syanlış Q0 Küp durumu  Q1 

0011 XXX1 Birincil XXX1 

0100 X10X Birincil X10X 

1011 1XX1 XXX1 tarafından yutulur --- 

1100 110X XXX1 tarafından yutulur --- 

1101 1101 XXX1 tarafından yutulur --- 

1111 11X1 XXX1 tarafından yutulur --- 

 

S2 = XXXX # Q1 =((XXXX #XXX1)#X10X)= (XXX0 # X10X) =  

{ X0X0, XX10 } 

 

S2.1 = X0X0 

Sdoğru = Sdoğru # X0X0= {0010, 0101, 0110, 0111, 1010, 1110}# XXX0 

Sdoğru ={0101, 0110, 0111, 1110}     // 4 elemanlı 

 

S2.2 = XX10 

Sdoğru = Sdoğru# XX10= {0010, 0101, 0110, 0111, 1010, 1110}# XXX0 

Sdoğru ={0101, 0111}    //  2 elemanlı 

S2.2, S2.1 elemanından daha güçlüdür.  

SPI = {X00X, XX10} 

Sdoğru kümesi boş küme olmadığı için aynı işlemler tekrarlanacaktır. i=i+1  

i = 3 

  h3 = 0101 

Syanlış Q0 Küp durumu  Q1 

0011 X01X Birincil X01X 

0100 XXX0 Birincil XXX0 

1011 101X X01X absorbe eder --- 

1100 1XX0 XXX0 absorbe eder --- 

1101 1XXX Birincil 1XXX 

1111 1X1X 1XXX absorbe eder --- 

 

S3 = XXXX # Q1 = (((XXXX # X01X) # XXX0) # 1XXX)  
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     = (({X1XX, XX0X} # XXX0) # 1XXX) = ({X1X1,XX01} # 1XXX) 

     = {01X1,0X01} 

 

S3.1 = 01X1 

S3.2 = 0X01 

P1 = Sdoğru # 01X1  ={ 0101, 0111} # 01X1   

P1 = ∅    S3.1 > S3.2  

P2 = Sdoğru # 0X01  ={0101, 0111} # 0X01   

P2 = {0111} 

S3.1 > S3.2 Olduğu için S3.1 SPI kümesine ekleyelim 

SPI = {X00X, XX10, 01X1} 

 

Sdoğru: SPI kümesini değişkenlerle ifade ettiğimizde: 

F = B’C’ + CD’ + A’BD 

 

 

3.3 Küp Cebri İşlemlerinin Temel Bilgisayar İşlemleri Üzerinden Gerçekleştirilmesi  

 

Bu işlemelerin hepsi küp cebri işlemleri kullanılarak sadeleştirme işlemi paralel bir 

biçimde bir şekilde yapılmaktadır. Seri bir şekilde bu işlemleri gerçekleştirirken 

algoritmaların çözüme ulaşma zamanları artmaktadır. Bu yüzden, bu işlemleri temel 

bilgisayar işlemleri yardımı ile paralel bir şekilde yaparak algoritmaların E çözüm zamanları 

azaltılmaya çalışılmıştır. Bu işlemler sayesinde algoritmaların daha hızlı olması sağlanmıştır. 

Çünkü bu işlemler temel bilgisayar işlemleri kullanılarak paralel bir şekilde yürütülmesi 

sağlanmıştır. Bu bölümde bu işlemlerin nasıl gerçekleştirildiği açıklanacaktır.  

 

Temel bilgisayar işlemlerinin gerçekleştirilmesi sırasında aşağıda gösterilen işlemler 

kullanılacaktır.  
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1) Küplerin koordinat değerlerinin gösterilmesi  

Bir küpün her bir koordinat değeri aşağıda gösterildiği gibi iki bit ile temsil edilmiştir.  

Bir lojik Fonksiyon f: Bn
�{0, 1, x} tanımlanabilir. f Fonksiyonun alabileceği değerler olan 0    

1 için ve x için  dönüşümleri kullanılacaktır.  

Esas koordinatın lojik 0 değeri : 
1

0
0 → ,  

Esas koordinatın lojik 1 değeri :  
0

1
1→ , 

x veya (-) terimi ile gösterilen esas olmayan koordinatın değeri: 
1

1
→x  

 

Burada belirtilen bit çiftleri ile küpün koordinat değerlerinin temsil edilmesi sağlanmıştır. 

Çünkü küpün koordinat değerleri arasında gösterilecek esas olmayan koordinat değerleri için x 

sembolü kullanılmıştır. Bu işareti bir ve sıfır cinsinden ifade edebilmek için bu şekilde bir gösterim 

kullanılmıştır. Örnek olarak A= x01 küpü için aşağıda küpün her bir koordinat değeri iki bit ile 

gösterilmiştir. 

Tablo 3.3. Bir küpün her bir koordinat değerinin iki bit ile gösterilmesi:  

 

Küp Değeri x 0 1 

İki bit ile gösterilir 11 01 10 

 

 

a) Off kümesindeki mintermleri genişletmek için temel bilgisayar işlemleri  

 

Off-küp kümesinde bulunan Bi= bi
1, b

i
2… bi

n e Sof mintermleri On-küp kümesinin  

Ai= ai
1, a

i
2… ai

n ile genişleterek Qi = qi
1, q

i
2… qi

n 
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Bu işlemleri gerçekleştirirken 0ff kümesindeki her bir mintermi On kümesindeki minterm ile bit bit 

karşılaştırma yapmak suretiyle Q1 küpünü elde ederiz. Bu da zaman açısından büyük kayıplara 

uğramamıza neden olur. Bu kuralları temel bilgisayar işlemleri ile aşağıdaki gibi gerçekleştirebiliriz.  

 

On kümesindeki mintermi (A), Off kümesindeki mintermle genişleterek C küpü elde edilir. Bu 

genişletme işlemi için On kümesindeki minterm ile Off kümesindeki minterm bit dizisi çiftleri haline 

dönüştürülürler.  

 

b) İki küpün (A ve B) kesişimini temel bilgisayar işlemleri ile gerçekleştirmek  

 

Uygulanacak iki küp olsun. Aşağıda gösterilen C küpü A ve B küplerinin kesişimi 

sonucunda elde edilen küptür.  

Bi= bi
1, b

i
2… bi

n e Sof mintermleri On-küp kümesinin  

Ai= ai
1, a

i
2… ai

n ile genişleterek  

Ci = Ai ∩ Bi 

 

Bu kesişim işlemi sonucunda elde edilen C küpünün bit dizisi çiftleri CL ve CR bit dizileri A 

ve B küplerinin bit dizilerinin ‘ve” işlemine tabi tutulması ile bulunur. Burada,  

 

CL =Al VE Bl 

CR = Ar VE Br 

 

Elde edilen CL ve CR bit dizileri sonucunda, A ve B küplerinin kesişim değeri 

belirlenmeye çalışılır. C küpünün değerinin belirlenmesi için aşağıdaki işlemler 

gerçekleştirilir. 
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1) Sonucun boş küme olup olmadığının kontrol edilmesi 

Bulunan C1 ve Cr bit dizileri ve C küpü değeri ile A ve B küplerinin kesişim değerinin 

herhangi bir değere veya boş kümeye eşit olup olmadığı aşağıdaki işlemlerle kontrol edilir.  

 

CL = AL ⊕ BL; 

CR = AR ⊕ BR; 

Sonuç = CL & CR; 

 

Bu işlemler sonucunda elde edilen sonuç küpü sıfıra eşit değilse C küpü hoş kümedir, 

Yani, A ve B küplerinin kesişiminden bir değer elde edilmemiştir. Sonuç küpü sıfıra eşitse A 

ve B küplerinin kesişiminden bir değer elde edilmiş olacaktır. 

 

ii) A ve B küplerinin C sonuç küpü ile karşılaştırılması 

A ve B küplerinin kesişimi sonucunda elde edilen C küpü herhangi bir değere sahipse, bu 

değerin A veya 13 küplerinden hangisine ait olduğunu aşağıdaki işlemler doğrultusunda 

bulabiliriz. Bu işlemler sonucunda kesişim değerinin hangi küpe ait olduğunu bulmakla 

beraber küpler arasındaki kapsama durumları da bulunmuş olmaktadır.  

 

� Eğer Cl = A1 ve Cr=Ar  ise C=A dır. 

� Eğer C = A ise A küpünü çıkar değilse A küpünü tut.  

� Eğer C= B ise B küpünü çıkar değilse B küpünü tut.  

 

Örnek 3.3: A = 0 x 1 ve B= 0 0 1 iki küp olsun. Bu küpler arasındaki kesişme durumunu ve 

birbirini kapsama durumunu temel bilgisayar işlemleri ile gerçekleştirirsek;  

A ve B küplerinden A1, Ar ve Bl - Br bit dizilerini aşağıdaki gibi oluştururuz.  
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Al= 0 1 1 Ar = 1 1 0  

Bl= 0 0 1 Br = 1 1 0  

 

Elde edilen bit dizilerinden 

C1 =A1 VE Bl=0 1 1 VE 0 0 1 = 0 0 1 

Cr =Ar VE Br=1 1 0 VE 1 1 0 = 1 1 0 

 

C=A ∩  B= 0 0 1  

 

i) Sonucun boş küme olup olmadığının kontrol edilmesi  

D=(Cl VEYA Cr) ⊕ 11… 1 D = (001 v 110) ⊕ 111 = 000 olduğu için C φ≠  dir.  

Yani bu işlemler sonucunda A ve B küplerinin kesişiminden bir değer elde edilmiştir.  

Küpler arasındaki kapsarna durumuna bakılırsa, 

Cl=Bl=011  

Cr=Br=110  

 Olduğundan B küpü kapsanmıştır. 

 

3.4 Yakın Minimali Örtme Algoritması Pseudo Kodu 

 

Tahmini minimali Son kümesi boş kümeden farklı olduğu müddetçe genişletme 

işlemi, değişmeli absorbe, koordinatlı çıkarma işlemleri verilen sırayla uygulanır. En son 

olarak asal implikantlar kümesi üzerinde büyük işlemi uygulanarak en büyük asal implikant 

bulunur ve Sespi kümesine eklenir.  
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Procedure NMİNİMAL(Son, Sof)  

 While Son ∈ Φ Do 

SQ0=GENİŞLEME(Son[0], Sof); 

SQ1=DEGİŞMELİABSORBE(SQ0); 

SAI=KOORDİNATLI_ÇIKARMA(SQ1); 

ESPIBÜYÜK (Son, SAI); 

SESPI= SESPI ∪ ESPI; 

END While; 

END Procedure; 
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4 SADELEŞTİRME ALGORİTMALARININ KARMAŞİKLIK ANALİZİ 
 

4.1 Karmaşıklık (Complexity) 

 

Bir programın performansı genel olarak programın işletimi için gerekli olan bilgisayar 

zamanı ve belleğidir. Bir programın zaman karmaşıklığı (time complexity) programın işletim 

süresidir. Bir programın yer karmaşıklığı (space complexity) programın işletildiği sürece 

gerekli olan yer miktarıdır. Bir problemin çözümünde, kullanılabilecek olan algoritmalardan 

en etkin olanı seçilmelidir. En kısa sürede çözüme ulaşan veya en az işlem yapan algoritma 

tercih edilmelidir. Burada bilgisayarın yaptığı iş önemlidir. Bazı durumlarda da en az bellek 

harcayan algoritmanın tercih edilmesi gerekebilir. Ayrıca, programcının yaptığı iş açısından 

veya algoritmaların anlaşılırlıkları bakımından da algoritmalar karşılaştırılabilir. Daha kısa 

sürede biten bir algoritma yazmak için daha çok kod yazmak veya daha çok bellek kullanmak 

gerekebilir.  

 

Rakip algoritmaları yaptıkları iş açısından karşılaştırmak için her algoritmaya 

uygulanabilecek somut ölçüler tanımlanmalıdır. Aynı işi yapan algoritmalardan daha az 

işlemde sonuca ulaşanın (hızlı olanın) belirlenmesi yani daha genel olarak algoritma analizi 

teorik bilgisayar bilimlerinin önemli bir alanıdır.  

 

Yazılımcılar, iki farklı algoritmanın yaptıkları işi nasıl ölçüp karşılaştırırlar? İlk çözüm 

algoritmaları bir programlama dilinde kodlayıp her iki programı da çalıştırarak işletim 

sürelerini karşılaştırmaktır. İşletim süresi kısa olan daha iyi bir algoritma denilebilir mi? Bu 

yöntemde işletim süreleri belirli bir bilgisayara özeldir. Dolayısı ile işletim süresi de bu 

bilgisayara bağlıdır. Daha genel bir ölçüm yapabilmek için olası tüm bilgisayarlar üzerinde 

algoritmanın çalıştırılması gerekir.  

 

İkinci çözüm, işletilen komut ve deyimlerin sayısını bulmaktır. Fakat bu ölçüm 

kullanılan programlama diline göre ve programcıların stiline göre değişim gösterir. Bunun 

yerine algoritmadaki kritik geçişlerin sayısı hesaplanabilir. Her tekrar için sabit bir iş 

yapılıyor ve sabit bir süre geçiyorsa, bu ölçü anlamlı hale gelir.  

Buradan, algoritmanın temelinde yatan bir işlemi ayırarak, bu işlemin kaç kere 

tekrarlandığını bulma düşüncesi doğmuştur. Örnek olarak bir tamsayı dizisindeki tüm 

elemanların toplamını hesaplama işleminde gerekli olan iş miktarını ölçmek için tamsayı 
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toplama işlemlerinin sayısı bulunabilir. 100 elemanlı bir dizideki elemanların toplamını 

bulmak için 99 toplama işlemi yapmak gerekir. n elemanlı bir listedeki elemanların toplamını 

bulmak için n–1 toplama işlemi yapmak gerekir diye genelleştirme yapabiliriz. Böylece 

algoritmaları karşılaştırırken belirli bir dizi boyutu ile sınırlı kalınmaz.  

İki gerçel matrisin çarpımında kullanılan algoritmaların karşılaştırılması istendiğinde, 

matris çarpımı için gereken gerçel sayı çarpma ve toplama işlemlerinin karışımı bir ölçü 

olacaktır. Bu örnekten ilginç bir sonuca ulaşılır: Bazı işlemlerin ağırlığı diğerlerine göre 

fazladır. Birçok bilgisayarda bilgisayar zamanı cinsinden gerçel sayı çarpımı gerçel sayı 

toplamından çok daha uzun sürer. Dolayısı ile tüm matris çarpımı düşünüldüğünde toplama 

işlemlerinin etkinlik üzerindeki etkisi az olacağından ihmal edilebilirler. Sadece çarpma 

işlemlerinin sayısı dikkate alınabilir. Algoritma analizinde genelde algoritmada egemen olan 

bir işlem bulunur ve bu diğerlerini gürültü düzeyine indirger. 

 

 

4.2 Algoritmalarda Karmaşıklık (Complexity) ve Zaman Karmaşıklığı Analizi  

 

4.2.1 İşletim Zamanı (Running Time) 

 

İşletim zamanını girdi boyutunun bir fonksiyonu olarak ele almak tüm geçerli girdileri 

tek değere indirir. Bu da değişik algoritmaları karşılaştırmayı kolaylaştırır. En yaygın 

karmaşıklık ölçüleri “Worst –Case Running Time” (en kötü durum işletim süresi) ve 

“Average-Case Running Time” (ortalama durum işletim süresi)’dir. (Stockmeyer 1990).  

 

En kötü çalışma süresi: 

 

Bu işletim süresi, her girdi boyutundaki herhangi bir girdi için en uzun işletim süresini 

tanımlar. Örnek olarak bir programın en kötü ihtimalle ne kadar süreceğinin tahmin edilmesi 

istenen bir durumdur. n elemanlı bir listede sıralı arama en kötü ihtimalle (aranan 

bulunamazsa) n karşılaştırma gerektirecektir. Yani worst-case running time (işletim zamanı) 

T(n) = n’ dir. Tüm problemlerde sadece en kötü girdi dikkate alındığı için worst-case running 

time değerini hesaplamak göreceli olarak kolaydır. 
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Ortalama çalışma süresi: 

 

Bu işletim süresi, her girdi boyutundaki tüm girdilerin ortalamasıdır. n elemanın her 

birinin aranma olasılığının eşit olduğu varsayıldığında ve liste dışından bir eleman 

aranmayacağı varsayıldığında ortalama işletim süresi (n+1)/2’dir. İkinci varsayım 

kaldırıldığında ortalama işletim süresi [(n+1)/2,n] aralığındadır (aranan elemanların listede 

olma eğilimine bağlı olarak). Ortalama durum analizi basit varsayımlar yapıldığında bile 

zordur ve varsayımlar da gerçek performansın iyi tahminleşememesine neden olabilir.    

 

4.2.2 Asimptotik Analiz 

 

Algoritmaların karşılaştırılmasında asimptotik etkinlikleri de dikkate alınabilir. Girdi 

boyutu sonsuza yaklaşırken işletim süresinin artışı. Asimptotik gösterimin elemanı olan 4 

önemli gösterim vardır: O-notasyonu, o- notasyonu, Ω- notasyonu, θ- notasyonu. Burada 

sadece O gösterimi üzerinde durulacaktır. O gösterimi, fonksiyonların artış oranının üst 

sınırını belirler. O(f(n)), f(n) fonksiyonundan daha hızlı artmayan fonksiyonlar kümesini 

gösterir.     

 

 

4.2.2.1 Büyük-O Gösterimi (notasyonu)   

 

n elemanlı bir listedeki elemanların toplamını bulmak için n-1 toplama işlemi yapmak 

gerekir diye genelleştirme yapmıştık. Yapılan işi, girdi boyutunun bir fonksiyonu olarak ele 

almış olduk. Bu fonksiyon yaklaşımını matematiksel gösterim kullanarak ifade edebiliriz: 

Big-O gösterimi veya büyüklük derecesi (order of magnitude). Büyüklük derecesini 

problemin boyutuna bağlı olarak fonksiyonda en hızlı artış gösteren terim belirler. Örnek 

olarak:  

 

f(n) = n7 + 100n2 + 50 = O(n7) 

 

Fonksiyonunda n' in derecesi n4'tür yani n' in büyük değerleri için fonksiyonu en fazla 

n4 etkiler. Peki, daha düşük dereceli deyimlere ne olmaktadır? n' in çok büyük değerleri için 

n4, 100n2'den ve 50'den çok büyük olacağından daha düşük dereceli terimler dikkate 
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alınmayabilir. Bu diğer terimlerin, işlem süresini etkilemedikleri anlamına gelmez; bu 

yaklaşım yapıldığında n' in çok büyük değerlerinde önem taşımadıkları anlamına gelir. 

 

n, problemin boyutudur. Yığıt, liste, kuyruk, ağaç gibi veri yapılarında eleman sayılarıdır. n 

elemanlı bir dizi gibi... 

 

Bir listedeki tüm elemanların dosyaya yazılması için ne kadar iş yapılır : Cevap, 

listedeki eleman sayısına bağlıdır. 

 

Algoritma 

OPEN (Rewrite) the file 

WHILE more elements in list DO 

 Print the next element 

 

İşlemi yapmak için geçen süre: 

 

(n*(Bir elemanın dosyaya yazılması için geçen süre))+dosyanın açılması sırasında 

geçen süre Algoritma O(n)'dir (Algoritmanın zaman karmaşıklığı O(n)’dir) . Çünkü n tane 

işlem + sadece dosya açılması işlemi vardır. Yüzlerce elemanın dosyaya kaydedildiği 

düşünülürse, dosya açılması sırasında geçen süre miktarı rahatlıkla ihmal edilebilir. Ama az 

sayıda eleman varsa dosya açılması sırasında geçen süre miktarı önem taşıyabilir ve toplam 

süreye katılımı daha fazla olur. 

 

Bir algoritmanın büyüklük derecesi, bilgisayarda işletildiğinde sonucun ne kadar 

sürede alınacağını belirtmez. Bazen de bu tür bir bilgiye gereksinim duyulur. Örnek olarak bir 

kelime işlemcinin 50 sayfalık bir yazı üzerinde yazım denetimi yapma süresinin birkaç saniye 

düzeyinden fazla olmaması istenir. Böyle bir bilgi istendiğinde, Big-O analizi yerine diğer 

ölçümler kullanılmalıdır. Program değişik yöntemlere göre kodlanır ve karşılaştırma yapılır. 

Programın çalıştırılmasından önce ve sonra bilgisayarın saati kaydedilir. İki saat arasındaki 

fark alınarak geçen süre bulunur. Bu tür bir "Benchmark" testi, işlemlerin belirli bir 

bilgisayarda belirli bir işlemci ve belirli kaynaklar kullanılarak ne kadar sürdüğünü gösterir. 
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Bilgisayarın yaptığı işin programın boyutu ile, örnek olarak satır sayısı ile ilgili olması 

gerekmez. N elemanlı bir diziyi 0’layan iki program da O(n) olduğu halde kaynak kodlarının 

satır sayıları oldukça farklıdır:  

 

 

 

 

 

 

 

 

 

1’den n’ e kadar olan sayıların toplamını hesaplayan iki kısa programı düşünelim: 

 

 

 

 

 

 

 

Program 1, O(n)’dir. n=50 olursa programın çalışması sırasında n=5 için harcanan 

sürenin yaklaşık 10 katı süre harcanacaktır. Program 2 ise O(1)’dir. n=1 de olsa n=50’de olsa 

program aynı sürede biter.    

 

Şekil 4.1 Büyük O ifadeleri ve anlamları 

  

 

 

 

 

 

 

 

Şekil 4.1: Büyük O ifadeleri 

Program 1: 
 
Dizi[0] = 0; 
Dizi[1] = 0; 
Dizi[2] = 0; 
Dizi[3] = 0; 
… 
Dizi[n–1] = 0; 

Program 2: 
 
for(int i=0; i<n; ++i) 
 Dizi[i] = 0; 

Program 1: 
 
Toplam = 0; 
for(int i=0; i<n; ++i) 
 Toplam = toplam + i; 

Program 2: 
 
Toplam = n * (n+1) / 2; 

1.1 Fonk

siyon 

1.2 İsim 

1 Sabit 
Log(n) Logaritmik 

n Doğrusal 
nx Polinomal 
xn Üssel 
n! Faktöriyel 
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O(1) : Sabit zaman 

Örnek: n elemanlı bir dizinin i. elemanına bir değer atanması O(1)’dir. Çünkü bir elemana 

indisinden doğrudan erişilmektedir. 

O(n) : Doğrusal zaman 

Örnek: n elemanlı bir dizinin tüm elemanlarının ekrana yazdırılması O(n)’dir. 

Örnek: sıralı olmayan bir dizideki (listedeki) elemanlardan birinin aranması O(n)’dir (en kötü 

durumda da, ortalama durumda da). 

O(log2n) : O(1)’den fazla O(n)’den azdır. 

Örnek: Sıralı bir listenin elemanları içinde ikili arama (binary search) uygulanarak belirli bir 

değerin aranması O(log2n)’dir. 

O(n2) : İkinci dereceli zaman 

Örnek: Basit sıralama algoritmalarının birçoğu (selection sort gibi) O(n2)’dir. 

O(n log2n) : Bazı hızlı sıralama algoritmaları O(n log2n)’dir. 

O(n3): Kübik zaman 

Örnek: Üç boyutlu bir tamsayı tablosundaki her elemanın değerini artıran algoritmadır. 

O(2n) : Üstel zaman, çok büyük değerlere ulaşır. 

 

4.2.2.2 Pratikte Karmaşıklık 

 

 

Değişik artış fonksiyonlarının aldıkları değerlere göre bir tablo, Şekil 4.2’de 

gösterilmiştir. 

 

 

 

 

 

 

 

Şekil 4.2: Değişik fonksiyonların f(n) değişik girdi boyutlarına (n) göre değerleri 

 

Bir programın işletimi n3 adım sürüyorsa ve n=1000 ise, program 10003 adım sürecek 

demektir. Yani 1.000.000.000 adım. 

logn n nlogn n
2
 n

3
 2

n
 

0 1 0 1 1 2 
1 2 2 4 8 4 

2 4 8 16 84 16 

3 8 24 64 512 256 

4 16 64 256 4096 65536 

5 32 160 1024 32768 4294967
296 
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Kullanılan bilgisayar saniyede 1.000.000.000 adımı gerçekleştirebilecek kadar hızlı ise bu 

program tam 1 saniye sürecektir.   

 

 

Şekil 4.2’ deki fonksiyonlardan elde edilmiş bir grafik Şekil 4.3’te görülmektedir.  

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 4.3: Değişik fonksiyonların grafikleri 

  

4.3 Algoritmaların Karmaşıklık Değerlendirmesi 

Bu bölümde Yakın Minimali Örtme Metodunun asal implikantları oluşturan kısmının 

karmaşıklığı karşılaştırmalı olarak hesaplanacaktır. Çünkü bunların esas asal implikant 

belirleme ve örtme kısımları var olanlar ile aynıdır.  

Verilen On-küpü örtmek için asal implikantların yeterli bir kümesini oluşturan belli buluşsal 

metotlar doğrudan örtme prensibini kullanarak aşağıdaki algoritmaya göre çalışırlar (Fiser ve 

Hlavıcka 2003).  

 

1. Yeterli asal implikantlar kümesini elde etmek için bir tane On küp seçmek. 

2. Bu On küpü örten implikantları üretmek 

3. Verilen implikantı, henüz dokunulmamış literallerden (koordinat değerleri) bir 

tanesini çıkararak (x ile değiştirerek) genişletmek 
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n log2n 
n
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n n
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4. Sonucu, Off kümesi ile kesiştirmek 

5. Eğer kesişme işleminin sonucu boş değilse çıkarılan literali geri koymak 

6. Eğer işleme tabi tutulmayan bir literal varsa 3. adıma geri dönmek, değilse devam 

etmek 

7. Genişletilen implikantı, asal implikantlardan bir tanesi olarak kaydetmek 

8. Eğer bütün implikantlar genişletildiyse 11. adıma gitmek değilse devam etmek 

9. Henüz işleme tabi tutulmamış implikantlardan birisini yeni implikant olarak kabul 

etmek 

10. 3. adıma geri dönmek 

11. Örtme problemini çözmek 

 

Bu algoritma SON kümesi boşalıncaya kadar tekrarlanır. Bu algoritmaya dayanarak, 

verilen terimin literalleri (veya koordinatları) birer birer etkisiz duruma getirilir. Bu işlem söz 

konusu terim asal implikant oluncaya kadar sürdürülür. Bu işlemler polinornal zamanda 

(O(n!)) yapılabilir. Bu, matematiksel olarak aşağıdaki gibi formüle edilebilir. On-küpü i esas 

ve n-i esas olmayan (removed) koordinatla ifade edebilmek amacıyla genişletebilmek için i 

tane incelemeye ihtiyaç vardır. Bundan dolayı, genişletilen küpün koordinatlarının hepsi için 

gereken incelemelerin toplam sayısı aşağıdaki gibi ifade edilebilir; 

 

2
)(

2
*)1(

2

1

0

nn

nn

iQ
n

i

+=

+=

=∑
−

=

          (4.1)  

 

Fakat genellikle, incelenen bir küp 0 <m < n koordinatları çıkarıldıktan sonra asal 

implikant olur. Bunu dikkate alarak, incelemelerin beklenen sayılarının genel ifadesi Tablo 
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4.4’ ün birinci ve ikinci sütunlarında sunulan verilerin tümevarımıyla elde edilmiştir. Yani, 

(4.1) deki formül yerine aşağıdaki formül kullanılacaktır.  

 

2
)(*)1(

2

0
mm

nmQ
+−+=          (4.2)  

 

Varsayalım ki, minimumlaştırılan n değişkenli bir fonksiyon, On-kümesi için K1 x 2 

boyutuyla ve 0ff-kümesi için K2 x 2 boyutuyla gösterilmiş olsun.  

Tablo 4.3 n ve m değerlerine bağlı olarak genişletilen küpün  

incelemelerinin sayısı  

 

Esas olmayan  

koordinatların  

sayısı (m)  

Gereken incelemenin sayısı (Q0)  Q0’ in genel ifadesi  

0  n  

1  n+(n–1) 2n-1  

2  n+(n–1)+(n–2)= 3n–3  

3  n+(n–1)+(n–2)+(n–3)= 4n–6  

4  n+(n-l)+(n–2)+(n–3)+(n–4) = 5n-l0 

... ... 

m  
n+(n-l)+(n–2)+(n–3)+(n–4)+…+(n-

m) =n(m+1)-(1+2+3+…+m) 

0Q = n(m+1)- ∑
=

m

i

i
1

 

2
)(*)1(

2

0
mm

nmQ
+−+=  

 

İncelenen On-küplerin maksimum muhtemel sayısı, a < K1 olduğu durumlarda a x 2n 

dir ve genişletilmiş küp ile bire bir karşılaştırılan Off-küplerin sayısı K2 x 2n dir. Sonuç 

olarak, On-küplerin genişletilmesi metoduna dayanarak bir asal implikantın oluşturulmasının 

karmaşıklığı aşağıdaki formül ile ifade edilebilir.  
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)1)(2(2**2**2* 2201 +−== mmnKaKQaQ
nnn     (4.3)  

 

Fakat genellikle, bir minterm birden fazla asal implikant tarafından örtülebilir. Bu 

nedenle sezgisel metotların çoğu d’ nin başlangıç boyutunun her bir terimi için n-d âdete 

kadar asal implikant üretir (Fiser ve Hlavıcka 2003). Her bir izole edilmiş minterm bir tek asal 

implikant tarafından örtüldüğünden, bir minterm için oluşturulmuş asal implikantların 

ortalama sayısı yaklaşık olarak (n-d)/2 ye eşit varsayılabilir. Bütün mintermler için d sıfır 

olduğundan, verilen mintermi örten yeterli sayıda asal implikantların (Fiser ve Hlavıcka 2003) 

oluşturulmasının toplam karmaşıklığı, aşağıdaki formül ile hesaplanabilir:  

 

)1)(2(2*** 12
22 +−= −

mmnKnaQ
n       (4.4)  

 

Diğer taraftan, burada önerilen metot aşağıdaki algoritmada ki gibi çalışır.  

 

1. Asal implikantlar kümesinin tamamını elde etmek için gerekli bir tane On küp 

(minterm) seçmek. Bunu genişletici olarak kullanmak  

2. Genişletilmesi gereken küp olarak birinci 0ff-küpü seçmek  

3. Verilen 0ff-küpü genişletmek (genişletme kuralına göre)  

4. Genişletilen küpü, önceden genişletilmiş olanlarla bire bir karşılaştırmak. Eğer 

genişletilen küp diğerlerini içeriyorsa, kapsanan küpleri silmek. Veya önceden 

üretilmiş küplerden birisi bu küpü içeriyorsa bu küpü silmek  

5. Eğer bütün Off-küpler işleme tabi tutulduysa 8. adıma gitmek değilse devam etmek 

6. Henüz işleme tabi tutulmamış bir sonraki On-küpü seçmek 

7. 3. adıma geri dönmek  
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8. n-küp den genişletilmiş asal küpler kümesini çıkartmak  

9. Asal olmayan küpleri silmek 

10. Örtme problemini çözmek. 

Bu algoritma SON kümesi boşalıncaya kadar tekrarlanır. Bu algoritmaya göre, verilen 

On-küpü örten tüm asal implikantların kümesini üretmede Off-küplerin hepsinin 

genişletilmesi için On-küp ile bire bir karşılaştırılması gereklidir. Bundan dolayı, her bir a x 

2n On-küp, genişletilen K2 x 2n 0ff-küp ile karşılaştırılır. Bununla, yeni genişletilmiş Off-küp 

önceden genişletilmiş olanlarla asal olmayanların silinmesi için karşılaştırılır. Yapılan 

uygulamalar göstermiştir ki buna benzer karşılaştırmaların sayısı n/2’ yi geçmemektedir. 

Sonuç olarak, sunulan metodun karmaşıklığının en kötü zaman değeri:  

12
223 2*)2(*)21(2**2* −+=+= nnn

KnanKaQ     (4.5)  

 

Bu yüzden, burada sunulan asal implikant üretme algoritmasının var olan herhangi bir 

algoritmaya göre aşağıdaki değer kadar daha hızlı gerçekleştirilebilir olmasını beklemek 

mümkündür.  

 
12

2

12
2

3

2

2*)2(*

)1)(2(2***
),( −

−

+

+−
==

n

n

Kna

mmnKna

Q
Q

mnF      (4.6) 

Daha fazla görsellik için, Şekil 4.2’ de m’ nin farklı değerlerine karşılık gelen F(n)’ 

nin eğrileri gösterilmiştir. Yaklaşık olarak m’ nin ortalama değerinin 0.25n alınmıştır. 
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Şekil 4.2: n ve m değerleri artarken F(n,m) çok hızlı artar 

 

4.4 QMM Aralık Değerleri Sayısının Bulunması ve Karmaşıklık Değerlendirilmesi  

 

Fonksiyonun çıkışlarının 1 olduğu kümenin elemanları (mintermleri) içerdikleri 1 

sayısına göre gruplandırılır. n değişkenli fonksiyon için n+1 tane altküme vardır. Birincisi 

sıfırlar altkümesidir, hiç 1 elemanı içermez. Bir tane 1 elemanı içerenler birler altkümesidir. n 

tane 1 elemanı içerenler n. altkümedir. Buradan i. altkümenin i tane 1 elemanı içerdiğini 

söyleyebiliriz. Bundan dolayı i. altkümenin gücü (Mano 2002, Miller 1965),  

Pi=Cn
i          (4.7) 

Bir altkümedeki bütün mintermler bir sonraki altkümenin bütün mintermleri ile 

karşılaştırılır. Örneğin; ikinci altkümenin mintermleri, üçüncü altkümenin mintermleri ile 

karşılaştırılır. i. küme ile (i+1). kümenin karşılaştırılmasının asimptotik değeri ve bütün 

kümelerin birbirleri ile karşılaştırılmasından oluşan toplam asimptotik değeri, sırasıyla 

aşağıdaki formüller ile hesaplanır (Mano 2002, Kahramanlı ve Başçiftçi ) 

 

1+= i

n

i

ni xCCW         (4.8) 

Ve 

m=0.4n 

m=0.3n 
m=0.25n 

m=0.2n 

m=0.1n 
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nT xCCW         (4.9) 

 

 

i. altküme ile (i+l). Altkümenin karşılaştırılmasının sonucunda boş olmayan sonuçların 

asimptotik değeri ve bu sonuçların toplam asimptotik değeri aşağıdaki formüller ile hesaplanır 

(Mano 2002, Kahramanlı ve Başçiftçi) 

 

i

ni  xCi)-(n  R =         (4.10)  

Ve 

) xCi)-(n(  R n
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=         (4.11) 

 

Yukarıda da değinildiği gibi, bütün karşılaştırmaların asimptotik değeri ve boş 

olmayan bütün sonuçlar (AAA) ve (AAA) da gösterilen ve aşağıda tekrar verilen formüller ile 

hesaplanır.  
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Aşağıda 20 değişkene kadar olan değerler bir tablo halinde verilmiştir. Tablo 4.4. 

YMÖA ile QMM’ nun karmaşıklık karşılaştırılması  
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Tablo 4.4. YMÖA ile QM Metodunun karmaşıklık analizi 

 

Quine-McCluskey metodu YMÖA 

Toplam Geçici Sonuçlar Boş Olmayan Geçici Sonuçlar 
Değ. 

Say. 
Asimptotik Değer  

(Wt) 
0(2n) Karmaş. Asimptotik  

(Rt) 
0(2n) Karmaş. 

Geçici 

Sonuç. 

Sayısı 

1 1 0,5*21 1  0,50*21 1 

2 4 1,0*22  4  1,00*22 2 

3 15 1,9*23  12  1,50*23 3 

4 56 3,5*24  32  2,00*24 4 

5 210 6,6*25  80  2,50*25 5 

6 792  12,4*26  187  2,92*26 6 

7 3.003  235*27  414  3,23*27 7 

8 11.440  44,7*28  893  3,49*28 8 

9 43.758  85,5*29  1.930  3,77*29 9 

10 167.960  164,0*210  4.246  4,15*210 10 

11 646.646  315,7*211  9.516  4,65*211  11 

12 2.496.144  609,4*212  21.542  5,26*212  12 

13 9.657.700  1.178,9*213  48.764  5,95*213  13 

14 37.442.160  2.285,3*214  109.581  6,69*214  14 

15 145.422.675  44379*215  243.554  7,43*215  15 

16 565.722.720  8.632,2*216  534.891  8,16*216  16 

17 2.203.961.430  16.814,9*217  1.161.526  8,86*217  17 

18 8.597.496.600  32.796,8*218  2.497.440  9,53*218  18 

19 33.578.000.610  64.045,0*219  5.325.568  10,16*219  19 

20 131.282.408.400 125.200,7*220 11.280.076 10.76*220  20 

 

4.5 Metodların Karşılaştırılması  
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Geliştirilmiş olan Yakın Minimali Örtme Algoritması (YMÖA), ESPRESSO-II 

algoritması ile karşılaştırılmıştır. Karşılaştırma kriteri olarak üç ana durum belirlenmiştir.  

Bunlar: 

 

� Algoritmaların çözüm sonucunda buldukları çarpım terimlerinin toplam ifadesinin 

sayısı (SOP Sayısı),  

� Algoritmaların çözüme ulaşma süreleri,  

� Algoritmaların çözüme ulaşırken kullandıkları bellek kapasitesi 

 

Gerçekleştirilen bu karşılaştırmalar aşağıdaki Tablo 4.5 Tablo 4.6 ve Tablo 4.7’ de 

verilmiştir.  

 

� YMÖA algoritması C++ programlama dilinde kodlanmıştır. 

� Espresso-II algoritması da C programlama dilinde kodlanmıştır.  

 

Bütün algoritmalar aynı dosya formatını kullanmıştır. Yani YMÖA ve Espresso-II 

algoritmaları için aynı benchmarklar kullanılmıştır. Algoritmaları aynı şartlarda 

karşılaştırabilmek için Espresso-II algoritmasının belirlediği durumlar dikkate alınmıştır. 

Karşılaştırmalar tek çıkışlı fonksiyonlar kullanılarak yapılmıştır. Benchmarkların 

karşılaştırılması için tam tanımlanmamış ve tam tanımlanmış fonksiyonlar kullanılmıştır. 

Fonksiyonların tam tanımlanmış veya tam tanımlanmamış fonksiyonlar olduğunu belirtmek 

için Espresso-II algoritmasının. type seçeneği kullanılmıştır. Bu seçenekte (.type fdr) 

fonksiyonun durumunu belirlemektedir. Bu seçenekteki f doğru kümesi için, r yanış kümesi 

için ve d belirsizler kümesi için kullanılmaktadır.  

 

Karşılaştırmaların gerçekleştirilmesini kolaylaştırmak için Visual Basic programlama 

dilinde ara yüz programı hazırlanmıştır.  

 

Aşağıdaki tablolarda benchmarklara ait, giriş değişken sayısı, SON sayısı, SOF sayısı, 

SOP sayısı, algoritmaların sadeleştirme zamanları ve kullandıkları bellek kapasiteleri 

verilmiştir.  

 

Tablo 4.5. Standart MCNC benchmarkları için SOP sayısı  
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Aİ sayısı 

B
en

ch
m

ar
kl

ar
 

D
eğ

iş
ke

n 

sa
yı

sı
 

E
sp

.  
 

Z
am

an
 

Y
M

Ö
A

 

za
m

an
 

N

E

A

A
 

Addm4 9 18 18    1 

b11 12 12 13  0,923 

br2 12 9 9 1 

Life 9     16 19 0,842 

EX5 8   14 14 1 

ex51 9 25 25 1 

EXPS 9     20 16 1,25 

m2 10   11 11 1 

max5 9       23 23 1 

P3 8   18 21 0,857 

prom1 9       22 21 1,047 

z9sym 9      18 18 1 

root 9     16 15 1,066 

SY0 20       136 143 0,961 

T10 10    125 130 0,960 

test2    11      261 287 0,909 

test3    10      133 135 0,985 

T4       18   35 35 1 

 

 

Performans ve sonuç kalitesini karşılaştırmak için standart MCNC Benchmarkları 

YMÖA algoritması ve ESPRESSO tarafından sadeleştirilmiştir.  

 

 

Karşılaştırmalar Intel P4 2.26 Ghz işlemcili ve 256 MB RAM belleği olan standart bir 

kişisel bilgisayarda gerçekleştirilmiştir. Tablo 4.5’ de verilen on sekiz farklı tek-çıkışlı 

fonksiyon kullanılmıştır.  
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Fonksiyonlara ait olan değişken sayıları, SON sayıları ve SOF sayıları tablolarda 

verilmiştir. Çarpım terimlerinin toplamı ifadesi şeklinde verilen sonuçlar (SOP sayısı) 

açısından algoritmalar karşılaştırıldığında  

Tablo 4.5’ den elde edilen bilgiler şöyledir: 

 

Yakın Minimali Örtme Algoritması ile Espresso-II karşılaştırıldığında; fonksiyonların 

%45’ inde eşit sayıda SOP sayısına sahip oldukları görülmüştür. Bu algoritmalardan 

Espresso, fonksiyonların % 38,75’ inde daha iyi sonuç bulurken YMÖA % 16,66’ inde daha 

iyi sonuç bulmuştur. SOP sayılarının ortalama değerlerine göre YMÖA ile Espresso’ yu 

karşılaştırdığımızda Espresso’ nun daha iyi sonuç bulduğu fonksiyonlarda ortalama % 4,3 

daha az SOP bulmuştur. Burada Espresso algoritmasının daha iyi sonuç bulduğu görülse de 

YMÖA ile Espresso algoritmalarının çözüme ulaşma yöntemleri farklıdır. YMÖA olabilecek 

ihtimal sonuçları bulurken Espresso algoritması kesin olan sonuçları bulmaya çalışmaktadır. 

Bu şartlarda dahi YMÖA’ nın daha iyi sonuç bulduğu fonksiyonların olması bu algoritmanın 

güçlü ve geliştirilebilecek yönlerinin olduğunu göstermektedir. 
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Tablo 4.6. Standart MCNC Benchmarkları için çalışma zamanları  

 

Çalışma zamanı 

(milisaniye) 

B
en

ch
m

ar
kl

ar
 

D
eğ

iş
ke

n 
sa

yı
sı

 

E
sp

.  
 

Z
am

an
 

Y
M

Ö
A

 

za
m

an
 N

E

Z

Z
 

ADDM4 9 43,750 28,120    1,554 

b11 12 60,937 23,435   2,599 

br2 12 60,930 23,435       2,589 

Life 9     64,065 25,002       2,562 

ex5 8   43,750 26,562 1,647 

ex51 9 25,000 43,750 0,571 

Exps 9     62,500    25,122  2,499 

m2 10   62,584  26,255       2,451 

max5 9       64,065       26,562      2,411 

P3 8   60,935       25,240       2,437 

prom1 9       60,937   23,437       2,6 

Z9sym 9      23,437      43,750 0,535 

Root 9     62,500      23,437       2,666 

sy0 20       10,625       25,000       4,249 

t10 10    60,937       26,562       2,294 

test2    11      15,312       51,562       2,969 

test3    10      70,312       26,562       2,647 

t4       11   60,937       25,000       2,437 

 

 

Tablo 4.6’ da görüldüğü gibi, bu benchmarkları YMÖA ve Espresso tarafından 

sadeleştirilmiştir. YMÖA ve Espresso’ nun sadeleştirme işlemlerini yaparken ihtiyaç 

duydukları zaman açısından değerlendirilmesi Tablo 4.6’ da gösterilmiştir. Bu 

değerlendirmeye göre; 
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Yakın Minimum Örtme Algoritması ile Espresso Algoritmasını karşılaştırıldığında 

YMÖA’ sının sadeleştirme işlemlerini çok daha hızlı gerçekleştirdiği görülmektedir. 

Fonksiyonların % 88,8’ sında YMÖA daha hızlı bir şekilde sadeleştirme yapıp sonuca 

ulaşmıştır. Bu iki algoritma açısından bakıldığında YMÖA’ sı Espresso algoritmasına göre 

çok daha hızlıdır. Ortalama olarak YMÖA Espresso’ ya göre 2,31 kat daha hızlı sadeleştirme 

yapmaktadır. 

 

Tablo 4.7. Standart MCNC benchmarklar için bellek kullanım durumları  

 

Bellek Kullanımı  
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A
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ADDM4 9 151552 274432 0,552 

b11 12 282624 307200 0,92 

BR2 12 262144 278528 0,941 

Life 9 442368 479232 0,930 

EX5 8 8192 90112 0,1 

ex51 9 180224 237568 0,758 

EXPS 9 294912 311296 0,947 

m2 10 372736 409600 0,91 

MAX5 9 577536 622592       0,927 

P3     8   671744 708608   0,945 

PROM1   9       745472 724992   1,028 

Z9sym   9      778240 806912 0,964 

root    9 851968 880640 0,967 

SY0   20 917504 950272 0,965 

T10      10 937984 970752       0,966 

TEST2    11 1028096 1114112 0,922 

TEST3    10 1257472 1265664 0,993 

T4       11 1331200 1363968 0,975 
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Algoritmaların sadeleştirme yaparken kullandıkları bellek alanı bakımından 

değerlendirilmesi yapıldığında, Espresso’ un YMÖA’ na göre %5,5 fonksiyonda daha iyi 

olduğu görülmesine rağmen %94,5 fonksiyonda YMÖA daha az bellek alanı kullanmıştır. 
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5 SONUÇ VE ÖNERİLER 

  

5.1 Sonuç 

 

Bu tez çalışmasında anahtarlama fonksiyonlarını sadeleştirmek için iki tane yeni 

yöntem sunulmuştur. Bu yöntem Yakın-Minimali Örtme Algoritması (YMÖA) dır. 

 

Sunulan yöntemde küp cebri işlemleri kullanılmaktadır. Sunulan algoritma küp 

cebrinin koordinatlı çıkarma, koordinatlı kesişim ve dönüşümlü yutma işlemleri 

kullanılmıştır. Bu işlemlerin gerçekleştirilmesi seri bir şekilde yapılmaktadır. Seri gerçekleşen 

bu işlemler çözüme ulaşma süresini artırmaktadır. Bu işlemlerden koordinatlı kesişim ve 

dönüşümlü yutma işlemleri temel bilgisayar işlemleri üzerinden paralel bir şekilde 

gerçekleştirilmiştir. Bu sayede algoritmaların daha hızlı bir şekilde çözüme ulaşmaları 

sağlanmıştır. Çünkü küp cebri işlemlerini gerçekleştirebilmek için yapılacak 

karşılaştırmaların hepsi bit bit yapılmaktadır. Temel bilgisayar işleri üzerinden 

gerçekleştirildiğinde ise sayıların karşılaştırılması yapılmıştır. Veya sonuçların elde 

edilmesinde Ve (And), Veya (Or), Değil (Not). Veya Değil (Exor) lojik işlemleri 

kullanılmıştır. Bu sayede bit bit karşılaştırma yapmaktan kaçınılmıştır.  

 

 Sunulan YMÖA da verilen fonksiyonun ON kümesi mintermlerinden bir tanesini 

rasgele seçilmekte ve bu mintermi kapsayan asal implikantlar (AI) oluşturulmaktadır. YMÖA 

büyük implikantı seçme işlemi kullanılarak esas asal implikantlar (EAI) bir bir seçilmektedir. 

Belirlenen asal implikant için eşit sayıda minterm örtülürse üretilmiş AI’ lardan bir tanesi 

seçilmektedir. Bu işlemlerin yapılması ile fonksiyonun sadeleşmiş halini temsil edecek esas 

asal implikantlar belirlenmiş olur. Sunulan YMÖA önemli bir şekilde var olan metotlardan 

hızlı çalışmaktadır ve daha az bellek kapasitesine ihtiyaç duymaktadır. Çünkü minimum 

sayıda geçici sonuçlar üreterek işleme tabi tutmaktadır. Bu özellikler sunulan yönetimi özlü 

ve son derece verimli yapmaktadır.  

 

Geliştirilen algoritma olan Yakın Minimali Örtme Metodunun asal implikantları 

oluşturan kısmının karmaşıklığı karşılaştırmalı olarak hesaplanmıştır. Çünkü bunların esas 

asal implikant belirleme ve örtme kısımları var olanlar ile aynıdır. Verilen algoritma C++ 

programlama dilinde kodlanmıştır. Karşılaştırması yapılacak olan Espresso programı da C 
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programlama dilinde kodlanmıştır. Sunulan algoritmada ve karşılaştırması yapılan Espresso 

programında aynı dosya yapısı kullanılmıştır. Programların kullanımını kolaylaştırmak için 

Visual Basic programlama dilinde ara yüz programı yazılmıştır. Karşılaştırmalarda tek çıkışlı 

fonksiyonlar kullanılmıştır. Karşılaştırması yapılan fonksiyonlar tam tanımlanmamış veya 

tam tanımlanmış fonksiyonlardır. Algoritmaların karşılaştırması üç duruma göre yapılmıştır. 

Bunlar, algoritmaların verilen fonksiyonları sadeleştirdikten sonra elde ettikleri çarpım 

terimlerinin toplamı (SOP) sayısına göre, algoritmaların sadeleştirme zamanları ve bellek 

kullanma durumlarıdır. 

Performans ve sonuç kalitesini karşılaştırmak için on sekiz farklı tek-çıkışlı fonksiyon 

YMÖA ve ESPRESSO tarafından sadeleştirilmiştir. Fonksiyonlara ait olan değişken sayıları 

tablolarda verilmiştir. Çarpım terimlerinin toplamı ifadesi şeklinde verilen sonuçlar (SOP 

sayısı) açısından algoritmalar karşılaştırıldığında YMÖA ile Espresso algoritması 

sonuçlarında; fonksiyonların %75’ inde eşit sayıda SOP sayısına sahip oldukları, Espresso 

programının fonksiyonların %18,75’ inde daha iyi SOP sayısı bulduğu, YMÖA’ nında 

fonksiyonların %6,25’ inde daha iyi SOP sayısı bulduğu görülmüştür. Algoritmaların 

buldukları SOP sayılarına göre; Espresso’ nun daha iyi sonuç bulduğu fonksiyonlarda 

ortalama %9,7 daha az SOP bulurken, YMÖA’ nın daha iyi sonuç bulduğu fonksiyonlarda 

ortalama %45 daha az SOP bulunmuştur.  

YMÖA algoritmasının ve Espresso’ nun fonksiyonları sadeleştirme zamanlarına göre 

karşılaştırıldığında; YMÖA’ sının sadeleştirme işlemlerini çok daha hızlı gerçekleştirdiği 

görülmektedir. Fonksiyonların %89,6’ sında YMÖA daha hızlı bir şekilde sadeleştirme yapıp 

sonuca ulaşmıştır. %10,4’ ünde ise algoritmaların sonuca ulaşma zamanları eşittir. Ortalama 

olarak YMÖA Espresso’ ya göre 7,9 kat daha hızlı sadeleştirme yapmaktadır.  

Algoritmaların kullandıkları bellek alanı bakımından karşılaştırıldığında, Espresso’ 

nun YMÖA’ na göre %16,7 fonksiyonda daha iyi Olduğu görülmesine rağmen %83,3 

fonksiyonda YMÖA tarafından daha az bellek alanı kullanılmıştır. Algoritmaların daha az 

bellek alanı kullandıkları fonksiyonlardaki durumlarına bakıldığında ise YMÖA %13,2 daha 

az bellek alanı kullanırken Espresso %9 daha az bellek alanı kullanmıştır.  
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5.2 Öneriler  

 

Bu yüksek lisans tez çalışmasında geliştirilen algoritma tek çıkışlı fonksiyonlara 

uygulanmıştır. Bu çalışmanın bir sonraki adımı olarak çok çıkışlı fonksiyonlar için bu 

algoritmalar geliştirilebilir. Bu algoritmaların çok çıkışlı fonksiyonlar için geliştirilmesi ile 

çok çıkışlı diğer algoritmalarla çözüme ulaşma zamanları, kullandıkları bellek alanı ve SOP 

sayıları durumlarına göre karşılaştırılabilirler. Tek çıkışlı fonksiyonlar ile çok çıkışlı 

fonksiyonların ortak noktaları araştırılarak bu algoritmaların verimlilikleri incelenebilir.  

YMÖA verilen fonksiyonun SON kümesinden hedef mintermi seçerken rasgele seçim 

yapılarak bu mintermi kapsayacak asal implikantlar bulunmaktadır. Hedef mintermi seçerken 

izole edilmiş mintermler belirlenebilir ve daha sonra bunların arasından bir tanesi seçilebilir. 

Hedef mintermi seçmek için başka bir prosedür olarak komşuluk faktörleri dikkate alınarak 

geliştirilebilir. Bu prosedür için önce bütün mintermler için komşuluk faktörleri hesaplanır. 

Daha sonra en düşük komşuluk faktörüne sahip olan minterm seçilir. Bu işlem, sonucun kesin 

olması istenen durumlarda iyi sonuçlar vermesi beklenirken sadeleştirme zamanı açısından da 

kötü sonuçlar ortaya koyabilir.  

Bu tez çalışmasında sunulan algoritmalarda küp cebri işlemleri kullanılmıştır. Bu 

işlemler seri bir şekilde gerçekleştirildiği için bunlardan koordinatlı kesişim ve dönüşümlü 

yutma işlemleri temel bilgisayar işleri üzerinden gerçekleştirilerek paralel bir duruma 

getirilmiştir. Bu paralel işlemler sayesinde algoritmalar önemli bir şekilde hızlanmıştır.  
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7 Ek-A     YMÖA ALGORİTMASININ PROGRAM KODLARI 

 
/**************************************************************************

Standart Kütüphaneler 
**************************************************************************/ 
#include<stdio. h> 
#include<stdlib. h> 
#include<STRING.H> 
#include<MATH. H> 
/************************************************************************* 

Değişken Dosyası 
**************************************************************************/ 
#include "DEGISKEN.CPP" 
/************************************************************************* 

Temel Fonksiyonlar Dosyası 
**************************************************************************/ 
#include "T2FONK.CPP" 
void GENISLETME() 
{  unsigned f; 
 Sofsimdiki=Sofkok; 
 Q0kok=NULL; 
 for(f=1;f<Yeleman;f++) 
 { Q0islenen =(struct sinif *)calloc(1,sizeof(struct sinif)); 
  F_GENISLETME(); 
  if (Q0kok==NULL) 
  {  Q0kok = Q0islenen; 
   Q0simdiki = Q0islenen; 
  } 
 
  Q0simdiki->sonraki = Q0islenen; 
  Q0simdiki = Q0simdiki->sonraki; 
  Sofsimdiki=Sofsimdiki->sonraki; 
 } 
} 
//---------------- 
void DEGISMELI_YUTMA() 
{ 
 unsigned Cr, Cl, f, elenir=1; 
 Q1kok =(struct sinif*)calloc(1,sizeof(struct sinif)); 
 Q1=Q1kok->sonraki; 
 Q1simdiki=Q1kok; 
 Q0islenen=Q0kok; 
 for(f=1;f<Yeleman; f++) 
 {  Q1=Q1kok->sonraki; 
  Q1simdiki=Q1kok; 
  while(Q1!=NULL) 
  { 
   elenir=0; 
   if(F_DEGISMELI_YUTMA(Q1->R,Q1->L,Q0isl->R,Q0is->L) 
    ==0) 
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   { elenir=1; 
    break; 
   } 
   if(F_DEGISMELI_YUTMA(Q1->R,Q1->L,Q0isle->R,Q0islenen->L) 
    ==1) 
   { if(Q1simdiki==Q1) 
    { Q1->R=Q0islenen->R; 
     Q1->L=Q0islenen->L; 
     elenir=1; 
     break; 
    } 
    Q1simdiki->sonraki=Q1->sonraki; 
    free(Q1); 
    Q1=Q1simdiki->sonraki; 
    continue; 
   } 
   Q1simdiki=Q1; 
   Q1=Q1->sonraki; 
  } 
  if( !elenir | (Q1kok->sonraki==NULL)) 
  { Q1yeni=(struct sinif*) calloc(1,sizeof(struct sinif)); 
   Q1yeni->R=Q0islenen->R; 
   Q1yeni->L=Q0islenen->L; 
   Q1simdiki->sonraki=Q1yeni; 
   Q1simdiki=Q1yeni; 
  } 
  Q0islenen=Q0islenen->sonraki; 
} } 
unsigned KOORDINATLI_KESISME(unsigned Ar, unsigned Al, unsigned Br, unsigned Bl) 
{ 
 unsigned Cr, Cl; 
 Br = OZELVEYA(Br, sabit); 
 Cr = OZELVEYA(Ar, Br); 
 Bl = OZELVEYA(Bl, sabit); 
 Cl = OZELVEYA(Al, Bl); 
 Cr = OZELVEYA(Cr, sabit); 
 Cl = OZELVEYA(Cl, sabit); 
 return VE(Cr, Cl); 
} 
void elemanekle(unsigned R,unsigned L) 
{  K1yeni=(struct sinif *)calloc(1,sizeof(struct sinif)); 
 K1son2->sonraki=K1yeni; 
 K1son2=K1yeni; 
 K1son2->R = R; 
 K1son2->L = L; 
} 
void KOORDINATLI_CIKARMA() 
{ unsigned sonuc, D, E; 
 K1kok=(struct sinif*)calloc(1,sizeof(struct sinif)); 
 K1kok->R = K1kok->L=sabit; 
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 K1=K1gecici=K1son2=K1kok; 
 Q1=Q1kok->sonraki; 
 while(Q1!=NULL) 
 { 
  while(K1!=K1gecici->sonraki) 
  { 
   sonuc=KOORDINATLI_KESISME(K1->R,K1->L,Q1->R,Q1->L); 
   if (sonuc!=0) 
   { elemanekle(K1->R,K1->L); 
    Sil=K1; 
    K1=K1->sonraki; 
    free(Sil); 
    continue; 
   } 
   D = VE(K1->R, K1->L); 
   E = VE(Q1->R, Q1->L); 
   D = OZELVEYA(D ,E); 
   E =OZELVEYA(K1->R, K1->L); 
   E=OZELVEYA(E, sabit); 
   D = VE(D,E); 
 
   if (D!=0) 
   { for (i=0; i < bituzunluk; i++ ) 
    { E=(unsigned)pow(2, (double)i); 
     if(E & D) 
     if (VE((unsigned)pow(2, (double)i), Q1->L)) 
      elemanekle(K1->R, VE(~E,K1->L)); 
     else 
      elemanekle(VE(~E,K1->R),K1->L); 
    } 
   } 
   Sil=K1; 
   K1=K1->sonraki; 
   free(Sil); 
  } 
  Sil=Q1; 
  Q1=Q1->sonraki; 
  free(Sil); 
 
  K1gecici=K1son2; 
 } 
} 
void DOSYA_OKU(char *argv[]) 
{ unsigned tam,D; 
 if (((kaynakdosya = fopen(argv[1], "r+b")) == NULL) 
   ||((SPIdosya = fopen(argv[2], "w+b")) == NULL)) 
 { printf("\n...HATA... DOSYALARIN ACILMASINDA HATA OLUSTU...\n"); 
  exit(0); 
 } 
 kontrol=fscanf(kaynakdosya, "%s%s", kaynakbilgi, kaynakbilgi); 
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 bituzunluk=atoi(kaynakbilgi); 
 fprintf(SPIdosya, "%s %s", kaynakbilgi, kaynakbilgi); 
   Kontrol=fscanf(kaynakdosya, "%s%s", kaynakbilgi, kaynakbilgi); 
   Deleman=atoi(kaynakbilgi); 
 Kontrol=fscanf(kaynakdosya, "%s%s", kaynakbilgi, kaynakbilgi); 
  Yeleman=atoi(kaynakbilgi); 
 tam=sabit<<bituzunluk; 
 
 Sonkok=(struct sinif *) calloc(1,sizeof(struct sinif)); 
 Sofkok=(struct sinif *) calloc(1,sizeof(struct sinif)); 
 
 Sonsimdiki=Sonkok; 
 Sofsimdiki=Sofkok; 
 
 Yeleman=0; 
 while (!feof(kaynakdosya)) 
 { 
  Kontrol=fscanf(kaynakdosya, "%s %s", kaynakbilgi, fonkdeger); 
  İslenen=(struct sinif *) calloc(1,sizeof(struct sinif)); 
  if(fonkdeger[0] == '1') 
  { 
   Sonsimdiki->sonraki=islenen; 
   Sonsimdiki =islenen; 
 
   Sonsimdiki->R = VEYA(tam, atoi(kaynakbilgi)); 
   D = OZELVEYA(Sonsimdiki->R, sabit); 
   Sonsimdiki->L = VEYA(tam, D); 
  } 
  else if(fonkdeger[0]=='0') 
  { 
   Sofsimdiki->sonraki=islenen; 
   Sofsimdiki=islenen; 
 
   Sofsimdiki->R=VEYA(tam, atoi(kaynakbilgi)); 
   D =OZELVEYA(Sofsimdiki->R, sabit); 
   Sofsimdiki->L=VEYA(tam, D); 
   Yeleman++; 
  } 
 } 
 Sonkok=Sonkok->sonraki; 
 Sofkok=Sofkok->sonraki; 
} 
void main(int arc, char *argv[]) 
{ 
 DOSYA_OKU(argv); 
 while(1<2) 
 { 
  if (Sonkok==NULL) 
  {  return; 
  } 
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  Else 
  { 
   GENISLETME(); 
   DEGISMELI_YUTMA(); 
   KOORDINATLI_CIKARMA(); 
   F_BUYUK_ASAL_IMP(); 
  } 
 } 
} 
/************************************************************************* 

Değişken Dosyası 
**************************************************************************/ 
FILE *kaynakdosya,*SPIdosya; 
unsigned i, Sofadet; 
int fsimdiki, bituzunluk, Deleman, Yeleman, kontrol, fonkbitti; 
unsigned const sabit= 65535; 
struct sinif 
{ unsigned R,L, 
 absorbesayisi; 
 struct sinif *sonraki; 
} 
struct sinif 
{ unsigned long R,L, 
 absorbesayisi; 
 struct sinif *sonraki; 
} 
struct sinif 
{ unsigned char R,L, 
 absorbesayisi; 
 struct sinif *sonraki; 
} 
*K1kok=NULL, *K1yeni=NULL, *K1=NULL, 
*K1gecici=NULL, *K1simdiki=NULL, *K1son2=NULL, 
*Q0kok=NULL, *Q0simdiki=NULL, *Q0islenen=NULL, 
*Q1kok=NULL,  *Q1gecici=NULL, *Q1yeni=NULL, 
*Q1simdiki=NULL, *Q1islenen=NULL, *Q1=NULL, 
*K1islenen=NULL,  *Sonkok=NULL, *Sofkok=NULL, 
*Sofsimdiki=NULL,  *Sonkok2=NULL, *Sonsimdiki=NULL, 
*Sonsimdiki2=NULL,*islenen=NULL, *Sil=NULL, 
*islenen2=NULL,  *Boskok=NULL; 
char Rtxt[50], Ltxt[50], kaynakbilgi[30], fonkdeger[30]; 
 
 
 
 
 
 
 
/************************************************************************* 

Temel Fonksiyonlar Dosyası 
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**************************************************************************/ 
unsigned VE(unsigned a, unsigned b) 
{ unsigned c; 
 c= a & b; 
 return c; 
} 
unsigned VEYA(unsigned a, unsigned b) 
{ unsigned c; 
 c= a | b; 
 return c; 
 
} 
unsigned OZELVEYA(unsigned a, unsigned b) 
{ unsigned c; 
 c= a ^ b; 
 return c; 
 
} 
void F_GENISLETME()  
{ 
 unsigned D; 
 D= OZELVEYA(Sonkok->L, Sofsimdiki->L); 
 D= OZELVEYA(D, sabit); 
 Q0islenen->L = VEYA(D,Sofsimdiki->L); 
 Q0islenen->R = VEYA(D,Sofsimdiki->R); 
} 
int F_DEGISMELI_YUTMA(unsigned Ar, unsigned Al, unsigned Br, unsigned Bl) 
{ 
 unsigned Cr, Cl; 
 Cr=VE(Ar, Br); 
 Cl=VE(Al, Bl); 
 if((Cr==Br)&(Cl==Bl)) 
  return 0; 
 if((Cr==Ar)&(Cl==Al)) 
  return 1; 
 return 2; 
} 
 
int F_KOORDINATLI_KESISME(unsigned Ar, unsigned Al, unsigned Br, unsigned Bl) 
{ unsigned Cr, Cl; 
 Br = OZELVEYA(Br, sabit); 
 Cr = OZELVEYA(Ar, Br); 
 Bl = OZELVEYA(Bl, sabit); 
 Cl = OZELVEYA(Al, Bl); 
 Cr = OZELVEYA(Cr, sabit); 
 Cl = OZELVEYA(Cl, sabit); 
 return VE(Cr, Cl); 
} 
void F_BUYUK_ASAL_IMP() 
{  unsigned f, Cr, Cl; 
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 Sonsimdiki=Sonkok; 
 K1kok=K1; 
 while (Sonsimdiki!=NULL) 
 { K1=K1kok; 
  while(K1!=NULL) 
  {  Cr=VE(K1->R, Sonsimdiki->R); 
   Cl=VE(K1->L, Sonsimdiki->L); 
   if((Cr==Sonsimdiki->R)&(Cl==Sonsimdiki->L)) 
    K1->absorbesayisi++; 
   K1 = K1->sonraki; 
  } 
  Sonsimdiki=Sonsimdiki->sonraki; 
 } 
 K1simdiki= K1= K1kok; 
 while(K1simdiki!=NULL) 
 { if((K1simdiki->absorbesayisi >=K1->absorbesayisi))K1=K1simdiki; 
  K1simdiki = K1simdiki->sonraki; 
 } 
 fprintf(SPIdosya,"%u%u",K1->R,K1->L); 
 Sonkok2=NULL; 
 İslenen=Sonkok; 
 while (islenen!=NULL) 
 { Cr=VE(K1->R, islenen->R); 
  Cl=VE(K1->L, islenen->L); 
  if(!((Cr==islenen->R) & (Cl==islenen->L))) 
  { islenen2=(struct sinif*)calloc(1,sizeof(struct sinif) ); 
   if(Sonkok2==NULL) 
   {  Sonkok2=islenen2; 
    Sonsimdiki2=Sonkok2; 
   }else 
   { Sonsimdiki2->sonraki=islenen2; 
    Sonsimdiki2=islenen2; 
   } 
 
   Sonsimdiki2->R=islenen->R; 
   Sonsimdiki2->L=islenen->L; 
  } 
  İslenen=islenen->sonraki; 
 } 
 while(Sonkok!=NULL) 
 { Sil=Sonkok; Sonkok=Sonkok->sonraki; free(Sil);} 
 Sonkok=Sonkok2; 
 Sonkok2=NULL; 
 K1son2=K1=NULL; 
} 


