
T.C.
SELÇUK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

MANTIKSAL FONKSİYONLARIN

SADELEŞTİRİLMESİ

İbrahim SAVRAN

YÜKSEK LİSANS TEZİ

BİLGİSAYAR MÜHENDİSLİĞİ

ANABİLİM DALI

Konya - 2006

 II

Yüksek Lisans Tezi

Selçuk Üniversitesi Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Yıl: 2006
Sayfa: 82

ÖZET

Mantıksal fonksiyonlarının sadeleştirilmesi tasarımcılara daha kısa zaman süresinde ve

daha sade lojik devreler tasarlama imkânı sağlamaktadır. Fonksiyonların sadeleştirilmesi şu

avantajları bize sunmaktadır:

• Güç tüketimi azaltılması,

• Daha küçük hacim,

• Daha az maliyet,

 Bu konu ile ilgili olarak tek ve çok çıkışlı fonksiyonların sadeleştirilmesi için çeşitli

teknikler geliştirilmiştir. Bu tekniklerin çoğu iki ana aşamada gerçekleştirilir. Birinci

aşamada, asal implikantların tümü belirlenir. İkinci adımda fonksiyonu sadeleşmiş olarak

örtecek, esas asal implikantlar kümesi belirlenir. Anahtarlama fonksiyonlarını sadeleştirecek

algoritmaların tümü O(2n) karmaşıklığına sahiptirler. Araştırmalar göstermiştir ki n’ in çok

yüksek değerlerinde esas asal implikantların tam kümesini belirleme yöntemi pratik olarak

gerçekleştirilemez duruma gelmektedir. Bu yüzden bu doktora tezinde asal implikantların

belli kıstaslara cevap verecek alt kümeleri oluşturularak, doğrudan örtme (direct cover)

prensibine dayanan bir minimumlaştırma yöntemi geliştirilmiştir.

Anahtar Kelimeler - Mantıksal fonksiyon, sadeleştirme, minimumlaştırma, Boole ifadesi, asal

implikant, küp cebri, örtme algoritması, algoritmaların karmaşıklığı, Off-küme tabanlı

minimumlaştırma, doğrudan örtme prensibi.

 III

Master Thesis

Selçuk University Graduate School of

Natural and Applied Sciences

Departman of Computer Engineering

Year: 2006

Page: 82

ABSTRACT

 The Minimization of Boolean functions allows designers these advantages:

• Fewer components

• Reducing the cost of particular system,

• Reducing power consuming,

 Most of single-output and multiple-outputs boolean minimization techniques work on

a two step principle, the first step identifies all of the prime implicants (PI’ s) and the second

step selects the subset of PI’ s that covers the function(s) being minimized. All procedures for

reducing either two-level or multilevel Boolean networks into prime and irredundant form

have O(2n) complexity. Prime Implicants identification step can be computational impractical

as n increases. Thus, in this master thesis, subsets of prime implicants that can prove direct

cover principle which based on determineted criters use for mimimization method.

Keyword(s): logic functions, simplification, mimimization, boolean expression, Prime

implicant, cube algebra, cover algorithm, complexity, direct cover principal.

 IV

TEŞEKKÜR

 Bu yüksek lisans tez çalışmalarım boyunca bana yol gösterip her türlü yardımını

esirgemeyen tez danışmanım değerli hocam Doç. Dr. Şirzad KAHRAMANLI’ ya, akademik

çalışmalarımda bana sabırla çalışmamı tavsiye eden Bilgisayar Mühendisliği Bölüm Başkanı

Prof. Dr. Ahmet ARLAN’ a, tez ve makale araştırma aşamasında bana yol gösteren hocalarım

Arş. Gör. Ömer KAAN BAYKAN’ a ve Arş. Gör. Ömer Harun UĞUZ ’a, yetişmemde emeği

geçen tüm hocalarıma, maddi ve manevi yardımlarını hiçbir zaman esirgemeyen ve daima

beni teşvik eden anneme ve babama teşekkür ederim.

 V

İÇİNDEKİLER

ÖZET..II
ABSTRACT... III
TEŞEKKÜR ... IV
İÇİNDEKİLER.. V
SİMGELER...VII
KISALTMALAR .. VIII
1 GİRİŞ ... 1

1.1 Anahtarlama Fonksiyonlarının Sadeleştirilmesi için Çözüm Yöntemleri.................. 3
1.2 Tezin Amacı ve Önemi .. 4
1.3 Materyal ve Metot .. 6
1.4 Kaynak Araştırması.. 7

2 MANTIK FONKSİYONLARINI SADELEŞTİRME METOTLARI 9
2.1 Fonksiyon Tanımları .. 9
2.2 Karnaugh Haritası Metodu ... 10

2.2.1 KH Metodunun Kullanımı ... 11
2.3 Cebirsel Sadeleştirme Yöntemleri.. 11

2.3.1 Tablo Yöntemi (Quine-McCluskey metodu) ... 11
2.3.1.1 Asal implikantların bulunması ... 12
2.3.1.2 Minimum Aİ kümesinin seçilmesi ... 12
2.3.1.3 QMM kullanım alanları.. 14

2.3.2 Petrick Metodu ... 15
2.3.3 ESPRESSO-II Algoritması .. 16

2.3.3.1 Daraltma işlemi (reduce).. 20
2.3.3.2 Genişletme işlemi (expand).. 20
2.3.3.3 Kofaktör ... 21
2.3.3.4 Espresso algoritması... 22
2.3.3.5 ESPRESSO-II Programı... 23
2.3.3.6 Espresso dosya formatı... 24

3 YAKIN MİNİMALİ ÖRTME ALGORİTMASI ... 26
3.1 İşaretlerin Gösterimi... 27
3.2 YMÖA kullanılan Küp Cebri’ nin Elemanları ve Uygulama biçimleri 28

3.2.1 Küp Cebri Elemanları Ve Uygulama Biçimi ... 29
3.2.2 Küp Cebrinin İşlemleri... 30

3.2.2.1 Koordinatlı çarpma işlemi (�- işlemi)... 30
3.2.2.2 Koordinatlı çıkarma işlemi (# işlemi) ... 33
3.2.2.3 Dönüşümlü Yutma İşlemi .. 35
3.2.2.4 Asal İmplikantların Yerel Belirlenmesi ... 36
3.2.2.5 Koordinatlı Kesişme İşlemi (∩ işlemi)... 37

3.2.3 Yakın-Minimali Örtme Algoritması... 38
3.2.3.1 YMÖA Örneği.. 38

3.3 Küp Cebri İşlemlerinin Temel Bilgisayar İşlemleri Üzerinden Gerçekleştirilmesi . 41
3.4 Yakın Minimali Örtme Algoritması Pseudo Kodu .. 45

4 SADELEŞTİRME ALGORİTMALARININ KARMAŞİKLIK ANALİZİ 47
4.1 Karmaşıklık (Complexity).. 47
4.2 Algoritmalarda Karmaşıklık (Complexity) ve Zaman Karmaşıklığı Analizi........... 48

4.2.1 İşletim Zamanı (Running Time)... 48

 VI

4.2.2 Asimptotik Analiz .. 49
4.2.2.1 Büyük-O Gösterimi (notasyonu).. 49
4.2.2.2 Pratikte Karmaşıklık... 52

4.3 Algoritmaların Karmaşıklık Değerlendirmesi.. 53
4.4 QMM Aralık Değerleri Sayısının Bulunması ve Karmaşıklık Değerlendirilmesi ... 58
4.5 Metodların Karşılaştırılması... 60

5 SONUÇ VE ÖNERİLER ... 67
5.1 Sonuç.. 67
5.2 Öneriler... 69

6 KAYNAKLAR... 70
7 Ek-A YMÖA ALGORİTMASININ PROGRAM KODLARI..................................... 76

 VII

SİMGELER

� Koordinatlı Çarpma (Coordinate Product, Star Product).

Koordinatlı çıkarma (Coordinate Subtraction, Sharp product).

∩ Koordinatlı Kesişme (Coordinate Intersection).

∆ Değişmeli yutma işlemi (commutative absorption operation).

* - d Belirsiz ya da keyfi değer (Don’t Care).

↔ Ancak ve ancak bağlantısı.

∪ Birleşme işlemi.

m Minterm (Çarpım Terimi) .

M Maxterm (Toplam Terimi) .

{0, 1, x} Boolean değişkenin tanımlanma uzayı.

{0,1,d} Boolean fonksiyon tanımlama uzayı.

x Değişken.

n Fonksiyonun bağlı olduğu değişken sayısı.

ki küpün koordinat ekseni.

~

ik ki koordinat ekseni üzerindeki bir değer.

O(g(n)) Karmaşıklık ifadesi.

L Fonksiyon için gerekli olan mintermler,

Q Fonksiyon için yasak olan mintermler,

D Fonksiyon için gereksiz olan mintermler.

SON Doğru mintermlerin kümesi.

SOFF Yanlış mintermlerin kümesi.

SDC Fonksiyonun belirlenmemiş olduğu mintermlerin kümesi.

X Örtülmek için seçilen On-minterm.

AIi(x) X mintermini kapsayan i. asal implikant.

SAI(x) X minterminin kapsadığı tüm asal implikantların kümesi.

EAI(x) X mintermin esas asal implikantı.

F On-kümesi (Espresso Algoritması).

R Off-kümesi (Espresso Algoritması).

D Belirsizler kümesi (Espresso Algoritması).

v Düğüm.

 VIII

KISALTMALAR

AI Asal İmplikant (Prime Implicant).

AİT Asal İmplikantlar Tablosu (Prime Implicant Table).

EAI Esas Asal İmplikant (Essential Prime İmplikant).

DST Dallandırma ve Sınırlandırma Tekniği (Branch and Bound Technique).

KH Karnaugh Haritası.

LSI Büyük Ölçekli Devre (Large Scale Integrated).

VLSI Çok Büyük Ölçekli Devre (Very Large Scale Integrated).

POS Toplam Terimlerinin Çarpımı (Product of Sum).

NPT Örtüdeki çarpım terimlerinin sayısı.

PM Petrik Fonksiyonu.

PLA Programlanabilir Lojik Diziler (Programmable Logic Arrays).

SFs Anahtarlama Fonksiyonları (Switching Functions).

QMM Quine McCluskey Metodu.

YV Yutma Vektörü (Absorption Vector).

KV Kesişme Vektörü (Vector Intersection).

ÇV Çarpım Vektörü (Vector of Product).

SV Çıkarma Vektörü (Vector of Subtraction).

SOP Çarpım Terimlerinin Toplamı (Sum of Product).

NP Belirsiz Polinomal (Non deterministic Polinominal).

YMÖA Yakın-Minimali Örtme Algoritması (Near-Minimal Cover Algortihm).

 1

1 GİRİŞ

Boole cebri olarak bilinen matematiksel sistem üzerine ilk çalışmalar 1854 yılında

George Boole tarafından başlatılmıştır. 1904 yılında Amerikalı Matematikçi E.V. Hungtinton,

Boole cebrine yeni aksiyomlar eklemiştir. 1938 yılında Shannon, Boole cebrini devre

tasarımlarına uygulamıştır. Bunun sonucunda Anahtarlama Cebri (Switching algebra) adı

altında yeni bir bilim dalı ortaya çıkmıştır (Brayton ve ark. 1984).

Dijital tasarımın başladığı 1950’ li yıllarda lojik kapılar (Logic Gates) pahalı devre

elemanlarıydı. Bundan dolayı, verilen lojik fonksiyonu daha az sayıda elektronik elemanla

(kapılar ve diyot, direnç gibi kapıların temel bileşenleri) gerçekleştirmek için yeni tekniklerin

geliştirilmesinin önemi artmıştır. Böylece o yıllarda, lojik fonksiyonların sadeleştirilmesi

araştırmaları çok aktif bir Alan haline gelmiştir. Karnaugh haritaları, iki seviyeli lojik

fonksiyonların (Two-Level Logic Functions) sadeleştirilmesi için manüel olarak

kullanılmıştır. Bu yöntem 1953 yılında Karnaugh tarafından geliştirilmiştir. Daha sonraları,

Quine ve McCluskey (McCluskey 1965) tarafından yeni bir teknik geliştirilmiştir. Bu yöntem

1952 yılında Quine tarafından başlatılmış ve 1956 yılında McCluskey tarafından

geliştirilmiştir. Bu yöntem iki aşamadan oluşmaktadır:

1- Bütün asal implikantların (prime implicants - AI) üretilmesi

2- Minimum örtünün oluşturulması.

Bütün asal implikantların üretilmesi çok etkili bir hale gelse de, Hong ve Ostapko

tarafından IBM’ de geliştirilen MINI (Hong ve ark. 1974) programı, n değişkenli lojik

fonksiyonun asal implikantlarının sayısının 3n/n kadar büyük olabileceğini göstermiştir. Buna

ek olarak, ikinci adım, genellikle dallandırma ve sınırlandırma tekniği ile gerçekleştirilir. Bu

teknik NP-karmaşıklık problemleri sınıfına ait olan minimum örtme probleminin çözümünü

içermektedir. Bu ise etkili kesin bir Algoritma bulma ümidini azaltır. Örnek olarak, minimum

örtme Algoritmasının çalışma zamanı, örtme problemindeki eleman sayılarındaki bir polinom

ile sınırlandırılır. Örtüm probleminin elemanları sayısı lojik fonksiyonunun giriş

değişkenlerinin sayısıyla logaritmik olarak orantılı olabileceğinden, bu tekniklerin kullanımı

orta ölçekteki problemler için bile pratik değildir (10–15 değişken) (Brayton ve ark. 1984).

 2

Lojik fonksiyonların, sadeleştirilmesinden elde edilen çarpım terimlerinin

minimumlaştırılması gerekli fiziksel Alanın üzerinde doğrudan güçlü bir etkisi vardır. Çünkü

her bir çarpım terimi, PLA’ nın bir satırı olarak gerçekleştirilir. Çok Büyük Ölçekli Devre

(VLSI) lojik tasarımı sıklıkla otuzdan daha fazla giriş, çıkış ve çarpım terimli lojik

fonksiyonları içerir. Bu durumda kesin sadeleştirme pratik değildir. Bu gibi durumlarda

gerekli olan en uygun şekle sokma (optimizasyon), farklı tecrübe yaklaşımları, probleme

uygulamaktadır.

Bu yaklaşımlardan bir tanesi klasik lojik sadeleştirme tekniklerinin yapısını takip eder

ve birinci olarak tüm asal implikantları üretir. Bununla birlikte minimum bir örtü üretmek

yerine yakın minimum bir örtü, tecrübelere dayanarak seçilir. Bu prosedür hala çok yüksek

sayıda asal çarpan üretme ihtimali içermektedir. İkinci bir yaklaşım eşzamanlı olarak örtü için

implikantları tanımlar ve seçmeye uğraşır. Bıı grupta birkaç tane Algoritma ileri sürülmüştür

(Hong ve ark. 1974, Rhyne ve ark. 1977).

Son zamanlarda, sezgisel yaklaşımlar, pratik PLA’ ların tasarımında geniş uygulama

alanları bulmuştur. Bunların çok erken ve çok başarılı olması, 1970’ lerin ortasında IBM’ de

MINI programının geliştirilmesine sebep olmuştur (Hong ve ark. 1974). Sonraları sezgisel

sadeleştirme programı PRESTO, Brown tarafından tanıtılmıştır (Brown 1981). Bu, büyük

PLA’ ların minimumlaştırılmasına imkân verdi.

1981 yılının yaz aylarında ESPRESSO-I (Brayton ve ark. 1982) programı

geliştirilmiştir. ESPRESSO-I sırasıyla gelen işleri kontrol etmek için birçok anahtarı olan tek

bir programdır. Bir yıl sonra 1982’ nin yazında ESPRESSO-II geliştirilmiştir. Sadeleştirilmiş

yanlış küme ve totoloji algoritmalarına dayanan iki yeni metot sunulmuştur. Bu metotlarda

verilen sonuçlar Espresso’ nun sonuçları kadar iyidir. (Brayton ve Somenzi 1989) bu

çalışmalarında Quine-McCluskey metoduna benzer bir yöntem sunmuşlardır, (Lin ve

Somenzi 1990) sembolik ilişkilerin basitleştirilmesiyle ilgilenmişlerdir.

Çarpım terimlerinin toplamındaki sadeleştirme ikili (binary) sistem içerisinde önemli

bir yer tutmuştur (Tirumalai ve Butler 1991). Son zamanlarda sunulan çarpım terimlerinin

toplamı şeklinde sadeleştirme yapan Algoritmaların birçoğu doğrudan örtme metodunu

kullanmıştır. Doğrudan örtme metodu üç adım halinde gerçekleştirilir (Tirumalai ve Butler

1991):

 3

a- Mintermin seçilmesi,

b- Asal implikantların üretilmesi

c- Esas asal implikantın seçilmesi ve örtme.

1.1 Anahtarlama Fonksiyonlarının Sadeleştirilmesi için Çözüm Yöntemleri

Kesin (exact) ve segisel (heuristic) SOP minimumlaştırma bilgisayar destekli tasarım

(computer aided design-CAD) Alanında çok iyi araştırılan problemlerden bir tanesidir

(Mishchenco ve Sasao 2003). SOP minimumlaştırma; PLA optimizasyonunda, çok seviyeli

lojik sentezde (muti-level logic synthesis), durum şifrelemede, güç kestirimde, test üretmede

ve diğer Alanlarda kullanılır (Mishchenco ve Sasao 2003). Kesin SOP minimumlaştırma

probleminin üssel doğasından dolayı modem Algoritmalar, (Brayton ve ark. 1984, Coudert ve

Madre 1993, Coudert 1994, McGeer ve ark. 1993) minimum SOP kümesinde yüzlerce çarpım

terimi oluncaya kadar sadeleştirilmek istenen fonksiyonu işleyebilir. Bu arada pratik

uygulamaların ve CAD araçlarının çoğu buluşsal minimumlaştırmaya dayanır (Brayton ve

ark. 1984, Rudell ve Sangiovanni-Vincentelli 1987).

Sezgisel Algoritmaların karmaşıklığı çarpımların sayısında yaklaşık olarak kareseldir

(Mishchenco ve Sasao 2003). Bu Algoritmalar kesin (exact) olanlardan fark edilebilecek

kadar hızlıdır fakat çok çarpımlı fonksiyonlar için yavaş olabilir (Mishchenco ve Sasao 2003).

Sezgisel SOP minimumlaştırmayı hızlandırmak için çeşitli yaklaşımlar önerilmiştir.

Örneğin, Off-kümesinin (Sasao 1985) hesaplaması minimum SOP’ da az sayıda çarpımlı

fonksiyonlar için bile zaman tüketici olabildiği gözlenmiştir (Mishchenco ve Sasao 2003). Bu

yüzden sadeleşmiş off-kümesinin hesaplanması önerilmiştir (Malik ve ark. 1991). Lojik

sentez araçları için optimizasyonda genişçe kullanılan başka hızlandırma şekli, buluşsal

minimumlaştırmanın sadece bir döngüde gerçekleştirilmesidir. Bu tür kısa yolların bedeli

çalışma zamanı problemi hala dururken, daha düşük minimumlaştırma kalitesidir. Bir çok

 4

benchmark için optimizasyon programları buluşsal SOP minimumlaştırmanın uzun çalışma

zamanından dolayı sona ermez. (Mishchenco ve Sasao 2003).

Başka hızlı buluşsal SOP minimumlaştırma Algoritmaları BDD gösterimini kullanır

(Minato 1992). Bu Algoritma, sonuç kalitesinin kritik olmadığı durumlarda dikkat çekecek

derecede iyi çalışır. Ancak (Sasao ve Butler 2001) da gösterilen bu Algoritma (Minato 1992)

minimum SOP lardan daha fazla çarpım içeren artıksız (irredundant) SOP lar üretir

(Mishchenco ve Sasao 2003). Bu yüzden birçok pratik problemler için uygun değildir. İki

seviyeli lojik minimumlaştırma lojik sentezin temel problemidir (Sasao ve Butler 2001).

Geniş fonksiyon kümeleri için kesin minimum SOP ifadeleri elde edecek Algoritmalar

olmasına rağmen (Coudert 1994), pratik sistemlerin çoğunluğu buluşsal lojik

minimumlaştırma algoritmalarını kullanır.

Sasao ve Butler (2001) fonksiyonların sınıflarını, değişken sayısının sınırsız olduğu

durumlarda en kötü SOP boyutunun minimum SOP boyutuna oranının büyük olduğunu

göstermişlerdir. Sasao ve Butler (2001) verilen fonksiyon için bütün gerekli SOP ifadelerini

üreten algoritmayı göstermişlerdir.

1.2 Tezin Amacı ve Önemi

Bilgisayar devreleri ve programlarının mümkün olduğu kadar basit ve etkili kılınması

yolunda en etkin olan araçlardan biri lojik fonksiyonlarının minimumlaştırılmasıdır. Halen

çoklu miktarda minimumlaştırma yöntemleri mevcuttur. Fakat bunların ürettikleri aralık

sonuçlarının sayısı, değişken sayısına göre üssel bir fonksiyonla belirlenir. Bu durumda

mesela, 20 değişkenli fonksiyonların minimumlaştırılması sırasında meydana çıkabilecek

aralık sonuçlarının sayısı bugün mevcut olan bilgisayarların bellek kapasitesini çok fazla

aşmaktadır. Pratikte 40’ a kadar değişken değeri olan fonksiyonların minimumlaştırılması

ihtiyacı göz önüne alınınca, mümkün olduğu kadar az sayıda aralık sonuçları üreten bir

sadeleştirme algoritmasının elde edilmesine ihtiyaç olduğu şüphesizdir. Bu tezde böyle bir

algoritmanın meydana çıkarılması hedeflenmiş ve gerçekleştirilmiştir.

Bu tezde geliştirilen algoritma sayesinde daha az lojik elemanlar kullanılarak yapılamayan

programlanabilir lojik dizileri (PLA) kolaylıkla tasarlanabilecek ve bu sayede büyük sayısal

 5

sistemlerin tasarlanmasında donanım ve zaman kaybı büyük ölçüde önlenecektir.

Bu tez çalışması yedi bölümden oluşmuştur.

Birinci bölümde: Konunun tarihsel gelişimi anlatılarak, minimumlaştırma

problemlerinin bugünkü durumuna değinilmiştir. Çalışmanın amacı ve önemi açıklanmıştır ve

kaynak araştırmasına yer verilmiştir.

İkinci bölümde: Boolean fonksiyonları minimumlaştırma metotları özet şeklinde

anlatılmıştır. Haritasal ve cebirsel yöntemler gösterilmiş ve bu yöntemlerin avantaj ve

dezavantajlarına değinilmiştir.

Üçüncü bölümde: Geliştirilen algoritmada matematik araç olarak kullanılan küp cebri

anlatılmıştır. Anahtarlama fonksiyonları için yerel basitleştirme algoritmaları için geliştirilen

Yakın Minimal Örtme Algoritması (Near-Minimal Cover Algortihm). Geliştirilen Algoritma

örneklerle açıklanmıştır. Matematik araç olarak kullanılan küp cebri işlemlerinin standart

bilgisayar işlemleri üzerinden gerçekleştirilmesi gösterilmiştir. Algoritmanın daha iyi

anlaşılması için birkaç örnek çözülmüştür.

Dördüncü bölümde: Karmaşıklık değerlendirilmesi yapılmıştır. Quine McCluskey

Metodu ile Yakın Minimum Örtme Algoritması karmaşıklık yönünden karşılaştırılmıştır.

Geliştirilen yöntemler ESPRESSO ile karşılaştırılmış ve sonuçları bu bölümde verilmiştir.

Beşinci bölümde: Bu tez çalışmasından elde edilen sonuçlara değinilerek bu konuda

çalışmak isteyenler için bazı önerilerde bulunulmuştur.

Altıncı bölümde: Bu yüksek lisans çalışmasında yararlanılan kaynaklar verilmiştir.

Yedinci bölümde: Geliştirilen algoritmanın program kodları verilmiştir.

 6

1.3 Materyal ve Metot

Mantık fonksiyonlarının ifade biçimleri, sadeleştirme yöntemleri, Algoritmaları ve

programları kullanılacaktır. Bu yolda elde edilmiş son teorik sonuçlara dayanarak ve minterm

yöntemiyle küp cebri yöntemleri bir arada kullanılarak daha etkin olan yeni bir yöntem

meydana çıkarılacaktır.

Bir lojik fonksiyonun, birden fazla değişik ifadesi bulunabilir. Tüm olası ifadeler

arasından minimum ifade bulunmaya çalışılır. Buradaki minimumluk en iyilik ölçütüne göre

tanımlanabilir (Çırpan 1992). Bu en iyilik ölçülü;

a- En az sayıda lojik kapı gereksinimi

b- Çarpım Terimlerinin Toplamı (sum of product-SOP) biçiminde en az terim,

c- Toplam Terimlerinin Çarpımı (product of sum-POS) biçiminde en az terim,

d- Giriş ile çıkış arasındaki katman sayısının minimumlaştırılması ve dolayısıyla

gecikme zamanını en aza indirebilmeyi sağlamak.

Çarpım terimlerinin toplamı biçimindeki bir fonksiyon, mantıksal değeri

değiştirilmeden hiçbir teriminin çıkartılamayacağı biçimde ise, indirgenemezlik özelliğine

sahiptir. Genelde indirgenemezlik ve minimumluk birbirlerini içermez ya da gerektirmezler.

Sonuç olarak her minimum fonksiyon indirgenemezdir. Fakat her indirgenemez fonksiyon.

minimum fonksiyon değildir (Çırpan 1992).

 7

1.4 Kaynak Araştırması

Allahverdi N.M. ve Kahramanlı Ş.Ş. (1995), Küp cebri elemanları ve uygulama biçimlerini
belirtmişlerdir. Küp cebri işlemlerini göstermişlerdir.

Beckert ve ark. (1997), çok seviyeli lojik devrelerin minimumlaştırılması için yeni

yaklaşımlara değinilmiştir.

Çelikağ M. (1989), çeşitli minimumlaştırma Algoritmaları incelenmiştir. Bu algoritmalar

birbirleri ile karşılaştırılmış ve değerlendirme yapılmıştır.

Çölkesen R. (2002), karmaşıklığın (complexity) tanımını belirtmiş ve çeşitli gösterimlerini

sunmuştur.

Dagenais M.R. ve ark. (1986), çok çıkışlı fonksiyonların tam minimumlaştırılması için

geliştirilen yeni prosedüre değinilmiştir.(McBOOLE prosedürü).

Dietmeyer D.L, (1979), küp cebrini anahtarlama fonksiyonlarının ilk terimlerini (local prime

implicants) bulmak için kullanılmıştır. Daha sonra lojik fonksiyonların minimumlaştırılması

üzerinde kullanılmıştır.

Fiser P. ve Hlavıcka J. (2003), Yeni bir İki seviyeli Boolean sadeleştirme algoritması

geliştirilmiştir (BOOM Boolean Minimizer) .

Kahramanlı S.S. ve Allahverdi N.M. (1993), çok değişkenli l3oolean fonksiyonlar için yeni

bir sadeleştirme algoritması sunulmuştur.

Karnaugh, M.(1953), Lojik devrelerin sentezi için harita metodunu sunmuştur. Haritanın

oluşturulması ve sadeleştirme işlemi için haritanın nasıl kullanılacağı gösterilmiştir.

Mano M. M. (1984), lojik devreler ve lojik fonksiyonlar ile ilgili bilgiler vermiştir. Bir tablo

metodu olan QMM metodu ve K-Haritaları anlatılmıştır. Fonksiyonları minimumlaştırırken

elde edilen aralık sonuçlarının sayısını bulmak için gerekli olan formüller verilmiştir.

McCluskey, E.J.(1956), Boolean fonksiyonları sadeleştirmek için Quine tarafından başlatılan

metodu geliştirmiş ve sunmuştur.

 8

McGeer P.C. ve ark. (1986). Çok çıkışlı fonksiyonların tam sadeleştirilmesi için geliştirilen

yeni prosedüre değinilmiştir (ESPRESSO-SIGNATURE). İşaret küpleri kullanılarak Asal

implikantlar kümesi küçültülmüştür. Karmaşık problemlerde Espresso-II algoritmasına göre

da iyi sonuçlar vermiştir.

Nadjafov E ve Kahramanlı S.S. (1973), küp cebrini anahtarlama fonksiyonlarına

uyarlamışlardır. Daha sonra lojik fonksiyonların minimumlaştırılması üzerinde kullanılmıştır.

Perkins S.R. ve Rhyne T.(1988), Boolean fonksiyonlarının çoklu çıkışları için Asal

İmplikantları belirleme ve seçme Algoritmalarını sunmuşlardır.

Sasao ve Butler 2001 ve Mishchenco ve Sasao 2003, minimumlaştırma problemlerinin

bugünkü durumları hakkında açıklama yapmışlardır.

Tirumalai P.P.ve Butler J.T. (1991), son zamanlarda sunulan toplam terimlerin çarpımı

şeklinde sadeleştirme yapan Algoritmaların birçoğu doğrudan örtme metodunu kullanmıştır.

Bu makalede çeşitli doğrudan örtme metotları açıklanmıştır.

Uçar. (1996), lojik devre tasarımları için çeşitli algoritmaları incelemiş ve bu Algoritmalardan

yeni bir yöntem geliştirmeye çalışmıştır.

 9

2 MANTIK FONKSİYONLARINI SADELEŞTİRME METOTLARI

2.1 Fonksiyon Tanımları

Boole fonksiyonlarında, fonksiyonun değişken sayısına göre sahip olduğu çıkış

durumları değişmektedir. n sayıda değişkene sahip olan fonksiyon 2n sayıda mintermle

ilişkide olur. Bu ilişkinin karakterine göre söz konusu mintermler aşağıdaki gibi çeşitli

gruplara bölünür (Kahramanlı ve Özcan 2002)

� Doğru kümesi: Fonksiyonun değerinin 1’ e eşit olduğu mintermler,

� Yanlış kümesi: Fonksiyonun değerinin 0’ a eşit olduğu mintermler,

� Etkisiz Elemanlar Kümesi: Fonksiyonun değerinin belirsiz olduğu mintermler.

Bu gruplara uygun olarak F, R, D (belirsiz) kümeleri oluşturulur.

Tanım 2.1: Yalnız F ve R kümeleriyle ilişkili olan fonksiyonlara Tam Belirlenmiş

Fonksiyonlar denir,

Tanım 2.2: F, R ve D ile ilişkili olan fonksiyonlara Tam Belirlenmemiş Fonksiyonlar

denir. F, R ve D kümelerinin ölçüleri |F|, |R| ve |D| olarak gösterilirse, F, R ve D kümeleri ile

onlara bağlı olan F fonksiyonu arasında aşağıdaki değer ilişkilerinin olduğu görülebilir

(Kahramanlı ve Özcan2002).

• |F|= 2n, Bu durumda mintermlerin tümünde fonksiyonun değeri 1 olduğu için aslında

fonksiyon değil bir sabit (lojik 1) söz konusudur,

• |R|= 2n, Bu durumda mintermlerin tümünde fonksiyonun değeri 0 olduğu için aslında

fonksiyon değil bir sabit (lojik 0) söz konusudur,

 10

• |F| <2n, |R| < 2n, |D| = 0; |F| + |R| = 2. Bu durumda tam belirlenmiş olan bir fonksiyon

söz konusudur,

• |F| <2n, |R| < 2n, |D| < 2n ise |F| + |R| + |D| = 2n. Bu durumda bu fonksiyona tam

belirlenmemiş fonksiyon denir.

2.2 Karnaugh Haritası Metodu

Her fonksiyonun doğruluk tablosu gösterimi tektir; ancak, cebirsel olarak ifade

edildiğinde değişik şekillerde verilebilir (Mano 2002). Boole fonksiyonları, cebirsel yollarla

sadeleştirilebilirler. Fakat bu minimumlaştırma yönteminin, sistematik kuralları olmadığından

kullanışlı değildir.

Harita metodunun özellikleri sadeleştirilmesine yarayan en basit ve görsel bir

yöntemdir. Bu yöntem doğruluk tablosunun şekillendirilmiş bir biçimi veya Venn

diyagramlarının gelişmiş bir şekli olarak da görülebilir. Karnaugh tarafından geliştirilen bu

metot “Karnaugh Haritası - KH” adıyla bilinir. KH (Karnaugh Haritası) metodu en çok dört,

beş değişkenli fonksiyonların sadeleştirilmesi için kullanılır ve temel olarak,

 (2.1) a)xa(x xa ax f =+=+=

Kuralına dayanır. Değişken sayısı n olan bir fonksiyon için düzenlenen Karnaugh

haritası 2n tane hücreden oluşur. KH metodu, aslında bir fonksiyonun standart formda ifade

edilebileceği tüm şekilleri sunan görsel bir yöntemdir. KH’ de her bir hücreye karşılık gelen

mintermlerin yazılması yerine, onun varlığını bildiren bir işaret konur. Hücreleri işaretleme

yöntemine (Mano 2002, Kahramanlı ve Özcan 2002, Karnaugh 1953) kaynaklarında ayrıntılı

bir şekilde yer verilmiştir.

 11

2.2.1 KH Metodunun Kullanımı

Değişken sayısının dört veya beşi geçmediği durumlar için KH metoduyla

minimumlaştırma uygun bir yöntem olabilir. Değişken sayısı arttıkça, çok sayıdaki hücre,

uygun komşu hücre seçimini zorlaştırır. KH metoduyla minimumlaştırma kullanıcının belirli

kalıpları görebilme yeteneğine dayandığından, aslında bir deneme yanılma yöntemidir. Bu

durum, KH metodunun en belirgin dezavantajıdır. Ayrıca beş veya altı değişkenli

fonksiyonlar için, en uygun seçimin yapılmış olduğundan emin olmak bir hayli zordur. Bu

metodu, bilgisayar programlarına uyarlamak oldukça güçtür.

2.3 Cebirsel Sadeleştirme Yöntemleri

2.3.1 Tablo Yöntemi (Quine-McCluskey metodu)

Quine McCluskey Metodu (QMM), bir fonksiyonun minimum sayıda SOP şeklinde

ifade edilmesini sağlar. Bu Algoritma iki aşamada gerçekleştirilir (Mano 2002, McCluskey

1956, Coudert 1994, Quine W.V.O. 1952):

a- Fonksiyon için bütün asal implikant (Prime Implicant-AI) ları bulmak,

b- Fonksiyonun bütün mintermlerini örtmek (cover) için gereken minimum sayıda

asal implikantlar kümesini seçmek.

Bu aşamalar aşağıda açıklanmıştır.

 12

2.3.1.1 Asal implikantların bulunması

Verilen Boole fonksiyonun AI’ larının bulunması süreci, söz konusu fonksiyonun

minterm listesinin düzenlenmesi ile başlanır. Mintermler, içerdikleri 1’ lerin sayısına göre

gruplara ayrılır. Bu gruplar, mintermlerin içerdikleri 1’ lerin sayısına göre küçükten büyüğe

doğru sıralanır. Bu yöntemle oluşturulabilecek maksimum grup sayısı (m) kombinasyon

hesabı gereği (








0

n
, 









1

n
… 









− in

n
, 









n

n
 (i=0,1…n)) değişkenlerin sayısından bir fazla olabilir

(m=n+1). (Quine 1955).

(2.1) kuralı kullanılarak, i. grubun her bir mintermi ile (i+1). grubun her bir mintermi

arasında yeni terimlerin elde edilip edilemeyeceğine bakılır. Eğer komşu grup mintermleri

arasında sadece bir bitlik farklılık varsa, bu farklılık gösteren bit elde edilecek olan çarpım

teriminde tire (-) işareti ile gösterilir. Gruplar arasındaki

karşılaştırma süreci (i-1) ve in çiftine kadar tekrarlanır. Çarpım terimlerinde k tane değişkeni

eksik olan terimler yani k tane (-) işareti olanlar k-küp olarak adlandırılır. Bu tanıma göre

mintermler 0-küp olarak adlandırılır (Mano 2002, McCluskey 1956, Çelikağ 1989).

0-küp sütunundaki bütün komşu grup mintermlerin karşılaştırılması la l -küp sütunu

oluşturulur. Aynı işlemler 1-küp sütununa uygulanır ve buradan 2-küp sütunu oluşturulur.

Aynı işlemler sütunlar arasında birleşme yapılamayacak duruma gelinceye kadar tekrarlanır.

Bu k-küp sütunların sonunda işaretlenmemiş çarpım terimler, AI’ lardır (Mano 2002,

McCluskey 1956, McCluskey 1986, Çelikağ 1989).

2.3.1.2 Minimum Aİ kümesinin seçilmesi

Esas Asal İmplikantlar kümesinin bulunması: Minimum kümesi, minimum sayıda esas

ve ikincil esas Aİ (essential and secondary essential prime implicant, EAI, İEAI) kümesinden

oluşur. LA!’ lar, Aİ’ lardan seçilir. Eğer fonksiyonun bütün mintermleri, EAI’ lar tarafından

 13

örtülmüyorsa, İEAI’ ların seçilmesi gerekmektedir. Burada örtülmek, fonksiyonu oluşturan

bütün mintermlerin, minimum sayıda AI’ lar tarafından kapsanması demektir. Üstünlük

(dominance) ve denklik (equivalent) kuralları, AI’ ların fazla olanlarını eleyerek, IEAI’ ları

bulmak için kullanılır (Mano 2002, McCluskey 1956, McCluskey 1986, Çelikağ 1989). AI’

ların minimum kümesini bulmayı kolaylaştırmak için Asal İmplikantlar Tablosu (prime

implicant table - AİT) kullanılır (Mano 2002, McCluskey 1956, McCluskey 1986, Çelikağ

1989). AIT’ de, AI’ lar satırlara, mintermler de sütunlara yerleştirilir. Fonksiyonun minimum

şeklini oluşturacak Aİ’ ları belirlemek için önce EAİ’ lar seçilir. Eğer bir minterm sadece bir

Aİ tarafından örtülüyorsa, bu Aİ, EAİ’ dır ve SOP kümesine dahil edilir. Çünkü bu mintermi

örtecek başka bir Aİ yoktur. Bütün EAİ’ lar seçildikten sonra, bütün mintermler örtüldüyse

minimum SOP kümesi oluşturulmuş demektir. Eğer hala bazı örtülmeyen mintermler varsa,

bu mintermleri örtecek olan AI’ ların diğer AI’ lardan seçilmesi gerekir. Bu yolla seçilecek

olan her bir AI, ikincil esas asal implikant (secondary essential prime implicant - İEAI) olarak

adlandırılır.

İEAI kümesinin bulunması: İEAI’ lar, sadeleştirilmiş AİT’ dan seçilir. SAİT’ da

önceden seçilmiş EAI’ lar ve örtülmüş mintermler bulunmaz (McCluskey 1956, Çelikağ

1989, Rudell 1989, Quine 1955).

Baskın satır kuralı (row dominance):

Tanım 1. AH” da bulunan herhangi bir i ve j satırları için, ! satırında bulunan x”

işaretlerinin tümü i satırında da bulunuyorsa, bu iki satır birbirine eşittir. Tanım 2. AİT’ da

bulunan i ve j satırları için,] satırında bulunan bütün “x” işaretleri i satırında da varsa ve i

satırında en az bir tane fazla “x” işareti varsa, i satırı] satırını kapsar denir.

Tanım 3. AI’ nın maliyeti, çarpım terimindeki literalı sayısı ile belirlenir. Çarpım teriminde

daha fazla literali olan daha fazla maliyete sahiptir.

Yukarıdaki tanıma göre i satırı kapsayan satır, j satırı kapsanan satırdır. Kapsanan satır SAİT’

den çıkarılabilir. Eğer iki satır birbirine eşitse bu satırlardan maliyeti fazla olan satır çıkarılır

(Başçiftçi ve ark. 2003).

Baskın sütun kuralı (column dominance):

 14

Tanım 4. AIT’ da bulunan i ve j sütunları için, i sütununda bulunan “x” işaretleri j

sütununda da bulunuyorsa, bu iki sütun birbirine eşittir. (eşit sütunlar)

Tanım 5. AIT’ da bulunan i ve j sütunları için, i sütununda bulunan bütün “x” işaretleri

j sütununda da varsa ve i sütununda en az bir tane fazla “x” işareti varsa, i sütunu j sütununu

kapsar denir.

Yukarıdaki tanıma göre i sütunu kapsayan sütun, j sütunu kapsanan sütundur.

Kapsanan sütun SAİT’ den çıkarılır. Eğer iki sütun birbirine eşitse bu sütunlardan maliyeti

fazla olan sütun çıkarılır (Başçiftçi ve ark. 2003). Bütün sadeleştirme kuralları uyguladıktan

sonra AİT’ de birden fazla minterm kalabilir. Bu tür tablolara periyodik tablo denir. Periyodik

problemler Dallandırma Metoduyla veya Petrik metodu çözülebilir (Çelikağ 1989, Rudell

1989).

2.3.1.3 QMM kullanım alanları

KH metodunda, beş veya altı değişkenli fonksiyonlar için, en uygun seçimin yapılmış

olduğundan emin olmak ve bu metodu, bilgisayar programlarına uyarlamak da bir hayli

zordur. Bu zorluklara QMM çözüm getirir. Bu metot, adım adım uygulanarak fonksiyon için

minimumlaştırılmış ifadeyi standart bir biçimde elde eder. Bu metot, çok değişkenli

fonksiyonlara uygulanabilir ve bilgisayarda programlamaya uygundur. Ancak, rutin ve

monoton işlemlerinden dolayı kullanımı oldukça sıkıcıdır ve hata yapma olasılığı yüksektir.

QMM çok girişli - çok çıkışlı fonksiyonlar için genişletilebilir. Pratik uygulamalarda, çok

çıkışlı problemlerde AI’ ların sayısı çok fazladır. Bundan dolayı, bu metot çok fazla hafızaya

gereksinim duyar (Chai 2000). Giriş değişkeni sayısı fazla olursa, minterm sayısı fazla

olacağından, üretilen AI fazla olacaktır ve bu AI’ ların depolanması için çok fazla hafızaya

ihtiyaç duyacaktır (Chai 2000). Bundan dolayı bu metot, çok değişkenli problemler için

uygun değildir. Bununla birlikte, giriş değişkeni sayısı az olursa diğer metotlara göre daha

hızlı olabilir.

 15

2.3.2 Petrick Metodu

Bir minterm sütununda L tane AI varsa bu mintermi örtmek için L tane farklı AI var

demektir. Bu mintermi örtmek için olası AI’ ların toplamı L tanedir. Periyodik tablodaki N

tane sütun (veya minterm) N tane toplam terimi üretir. AI fonksiyonu veya p-fonksiyon N

tane toplam terimlerinin çarpımı (POS) şeklinde tarif edilir. Her sütun için AI’ lar toplanır ve

diğer sütunların AI’ larının lojik toplamı ile lojik çarpılır. Çarpımlar sonra toplam olarak

düzenlenir. Düzenleme yapıldıktan sonra en az literale sahip olan bileşen veya bileşenler

minimum ifadeyi oluşturur (Çelikağ 1989). Minimum ifade tek olabileceği gibi birden fazla

da olabilir.

Aşağıda bir örnek verilerek Petrick metodu açıklanmıştır.

1. Adım: tablodaki bütün satırları numaralandır.

P1, P2… Pm

2. Adım: sütunlardaki her X için P değerlerini seç.

Birinci sütundaki X içeren P değerlerini seçelim (P1 ve P2)

(P1 + P2)

Bu şekilde devam ederek şu sonuca varırız:

P = (P1 + P2) (P1 + P3) (P2 + P4) (P3 + P5) (P4 + P6) (P5 + P6)

P = (P1 + P2) (P1 + P3) (P4 + P2) (P5 + P3) (P4 + P6) (P5 + P6)

P = (P1 + P2) (P1 + P3) (P4 + P2) (P4 + P6) (P5 + P3) (P5 + P6)

P = (P1 + P2 P3) (P4 + P2 P6) (P5 + P3 P6)

P = (P1 P4 + P1 P2 P6 + P2 P3 P4 + P2 P3 P6) (P5 + P3 P6)

 0 1 2 5 6 7
P1 (0,1) a’b’ X X
P2 (0,2) a’c X X
P3 (1,5) b’c X X
P4 (2,6) bc’ X X
P5 (5,7) ac X X
P6 (6,7) ab X X

 16

PSdoğru = P1 P3 P4 P6 + P1 P4 P5+P1+P2 P3 P6+ P1 P2 P5 P6+P2 P3 P4 P6+ P2 P3 P4 P5+

P2 P3P6 + P2 P3 P5 P6

Bu ifadeler bize sadeleşmiş ifadelerin hepsini ifade eder. Yani P1, P2 ve P3 ye çizgi

çekilerek sadeleştirme yapılır. Eğer her bir terim eşit maliyete sahip olduğu kabul edilirse

(burada eşit), bu fonksiyonda en sade ifade nedir?

İki en sade durum var P1 P4 P5 and P2 P3 P6:

F = a’b’ + bc’ + ac ve F = a’c’ + b’c + ab

2.3.3 ESPRESSO-II Algoritması

ESPRESSO-II, fonksiyonunun doğru kümesini, belirsizler kümesini ve yanlış

kümesini giriş olarak alır (Brayton ve ark. 1984). Bu Algoritma çıkış olarak sadeleştirilmiş bir

örtü verir. ESPRESSO-II minimuma yakın çözümü bulmaktadır ve aşağıda verilen 3 sayıyı

azaltmaya çalışmaktadır (Brayton ve ark. 1984, McGeer ve ark. 1986, Brayton ve ark. 1993,

McGeer ve ark. 1993).

1. NPT: örtüdeki çarpım terimlerinin sayısı.

2. NLI: örtünün giriş kısmındaki terimlerinin sayısı.

3. NLO: örtünün çıkış kısmındaki terimlerinin sayısı.

ESPRESSO-II f (NPT, NLI, NLO) vektörünü kullanarak sadeleştirme süresince (F)’

nin bileşenlerini azaltmaya çalışmaktadır (Brayton ve ark. 1984, McGeer ve ark. 1986). Bu

işleme, son döngü sırasında, bileşenlerin hiçbirisi değişmediğinde son verilir (Brayton ve ark.

 17

1993, McGeer ve ark. 1993). Sadeleştirme işlemine geçmeden önce sadeleştirilecek olan

fonksiyonlara UNWRAP (dağıtma, açma) prosedürü uygulanır. Bu prosedür k tane fonksiyon

tarafından paylaşılan bir küpü, her biri sadece bir fonksiyon tarafından paylaşılan k tane küp

ile yer değiştirir (Brayton ve ark. 1984, Uçar 1996). Her ne kadar bu şekilde optimaldan daha

uzaklaşılsa da böyle bir işlem sonucunda sadeleştirme işlemi girişe daha az bağımlı olur ve

EXPAND prosedüründe küplerin daha yararlı bir şekilde hangi fonksiyon tarafından

paylaşılacağı bulunabilir (Brayton ve ark. 1984). Bu şekilde F (doğru kümesi), D (belirsizler

kümesi) ve R (yanlış kümesi) örtüleri elde edildikten sonra P vektörü hesaplanır. Bu vektörün

bileşenlerinde bir azalma görülemeyinceye kadar genişletme (expand), tekrarsız örtü

(irredundant_cover) ve daraltma (reduce) prosedürleri çalıştırılır. (1)’ nin bileşenlerinde

azalma görülmediğinde LAST_GASP prosedürü çağrılır. Eğer (I’ nin bileşenlerinde azalma

görülürse tekrar daraltma prosedürü çağrılır. ESPRESSO-II sadeleştirme Algoritması altı tane

temel prosedürden oluşur. Bunlar COMPLEMENT, EXPAND, ESSENTIAL_PRIMES,

IRREDUNDANT_COVER, REDUCE, LAST_GASP’ dır. Bunlara ek olarak yukarıdaki altı

algoritmanın pek çoğu önemli bir şekilde TAUTOLOGY algoritmasına dayanır. Bu algoritma

ile elemanları küpler olan bir kümenin, bir küpü örtüp örtmediği belirlenir (Brayton ve ark.

1984).

COMPLEMENT Prosedürü: Bu kısımda birden çok fonksiyon için tümleyen alma

yöntemi verilmiştir. Bu yöntemde monoton fonksiyonun özelliklerinden yararlanılarak

kendisini çağıran (recursive) bir prosedür ile bir fonksiyonun tümleyeni bulunur ve bu işlem

her çıkış için tekrarlanır. EXPAND prosedürü, ESPRESSO-II içinde tümleyen alma

prosedürünü kullanan tek ana prosedürdür. Teker teker fonksiyonların tümleyenlerini alma

işlemi, bazı çarpım terimlerini tekrar kullanacağından daha fazla bellek kullanır. Complement

prosedürü, verilen F ve D örtüleri için R örtüsünü hesaplar. Bu prosedür EXPAND

prosedüründe asal bileşen seçiminde kullanılır (Brayton ve ark. 1984, Uçar 1996, McGeer ve

ark. 1986).

Tanım 1: Bir f fonksiyonunun x, değişkeninin değeri 0’ dan 1’ e değişmesi ile çıkışı da

0 iken 1 (1 iken 0) oluyorsa, fonksiyonu x değişkenine göre monoton artandır (azalandır)

denir.

Tanım 2: Bir fonksiyon bütün değişkenlerine göre monoton artan veya azalan ise bu

fonksiyona monoton fonksiyon denir. (Brayton ve ark. 1984, Uçar 1996, McGeer ve ark.

1986).

 18

EXPAND Prosedürü: Genişletme işleminin amacı F örtüsünden mümkün olduğu

kadar çok sayıda küpün atılmasıdır. Bunun için F örtüsünün küpleri teker teker belirli bir sıra

ile ele alınır ve ele alınan küp ile F örtüsünde bulunan maksimum sayıda küp örtülmeye

çalışılır. Daha sonra genişletme işlemi ile elde edilen asal küpler örtüye dahil edilir. Bu

küplerin E örtüsündeki kapsadıkları küpler örtüden çıkarılır. EXPAND Algoritmasının sonucu

genişletilen küplerin ele alınma sırasına bağlıdır (Brayton ve ark. 1984, McGeer ve ark. 1986,

Uçar 1996).

ESSENTIAL_PRIMES Prosedürü: Burada çözülmesi gereken problem, verilen F

örtüsü için her bir c’, f nin bir asal küpü olmak üzere, verilen bir e’ asal küpü ,/‘ nin bir temel

asal bileşeni olup olmadığının belirlenmesidir. Temel asal bileşenler /‘ nin bütün asal

örtülerinde bulunmalıdır. Bu nedenle EXPAND, REDUCE ve RREDUNDANT_COVER

prosedürleri yürütülürken temel asal bileşenleri örtüden demek, hesaplama zamanını azaltır

(Brayton ve ark. 1984, Uçar 1996, McGeer ve ark. 1986).

IRREDUNDANT_COVER Prosedürü: ESPRESSO-II’ nin EXPAND prosedürünün

uygulaması ile F asal örtüsü elde edilir. Bu örtüde hiçbir küp diğerini kapsamaz. Bununla

birlikte F’ nin minimal örtü olduğu kesin değildir. IRREDUNDANT_COVER prosedürü

verilen F ve D için, F’ nin bazı küplerinden oluşan minimale yakın F2 örtüsünü belirler. Bu

prosedür ile F2 F olan ve mümkün olduğu kadar az küpe sahip E2 örtüsü elde edilmeye

çalışılır. Bu prosedürden sonra bir minimal örtü elde edilir (Brayton ve ark. 1984, Uçar 1996,

McGeer ve ark. 1986).

Şekil 1: RREDUNDANT_COVER prosedürü

(IRREDUNDANT)

1

1

1

1

1

1

1

1

1

1

1

1

A

C 0 0 1 0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

A

C 0 0 1 0

0

0

1

1

 19

REDUCE Prosedürü: IRREDUNDANT_COVER prosedürü ile elde edilen örtüdeki

küpleri teker teker ele alır. 1-ler e EF küpü için, c küpünün (F) D örtüsü tarafından

kapsanmayan mintermlerden oluşan en küçük küp c’ yi bulur. Daha sonra E örtüsünde e küpü

ile c küpünü değiştirir. Yani F(F-R) e olur. Bu şekilde elde edilen önü EXPAND prosedürü ile

daha çok yönde genişletilebilir. Ayrıca F örtüsü bu işlemle daha küçük küplerden oluşur ve

genişletilen küpler tarafından kapsanma olasılığı artar. Bu prosedürün sonucu küplerin ele

alınma sırasına bağlıdır (Brayton ve ark. 1984, Uçar 1996, McGeer ve ark. 1986).

LAST_GASP prosedürü: Bu algoritma sadeleştirilecek olan örtüden birkaç küp daha

çıkarabilmek için kullanılır. LAST_GASP, değiştirilmiş bir REDUCE ve değiştirilmiş

EXPAND prosedürlerini içerir. En son sadeleştirilmeye çalışılan küpler en az sadeleştirme

şansına sahiptir. Bunun sebebi daha önce sadeleştirilerek kısaltılan küpler nedeniyle örtü

zaten az sayıda minterm içermektedir. Sadeleştirilecek küplerin kabaca seçimi, EXPAND

işlemi sonunda örtüdeki küp sayısının azalacağını garanti etmez. LAST GASP prosedüründe

her bir küp maksimum şekilde sadeleştirilir. Daha sonra sadeleştirilen küpler üzerinde

EXPAND işlemi uygulanır. REDUCE prosedürü aynı işlemi yapmaktadır fakat bu prosedürde

küpler belirli bir sıra ile ele alınmaz. Her küp bağımsız olarak ele alınarak REDUCE

prosedürü ile yapılan işlem tekrarlanır (Brayton ve ark. 1984, Uçar 1996, McGeer ve ark.

1986).

TAUTOLOGY Prosedürü: Bir fonksiyonun sabit–1 olup olmadığının belirlenmesi için

ESPRESSO-II tarafından kullanılan temel bir işlemdir. Bu işlem IRREDLNDANTCOVER,

REDUCE, ESSENTİAL PRİMES ve LAST GASP prosedürlerinin temel bölümünü oluşturur.

Bu nedenle etkili bir TAUTOLOGY Algoritması ESPRESSO-II’ nin hızı için önemlidir

(Brayton ve ark. 1984, Uçar 1996, McGeer ve ark. 1986).

Örnek: Şekilde verilen mantıksal fonksiyonun Espresso algoritması ile çözümünün bulunması

Espresso algoritması tarafından ilk bulunan örtü bu şekilde
verilmiştir.

011

010

000

001

100

110

101

111

B

C

A

 20

2.3.3.1 Daraltma işlemi (reduce)

Bir implikanta bir literal (değişken) ekleyerek kapsama alanını azaltma işlemidir.

A XCX implikantı B literali eklenerek yapılan azaltma işlemi

ile ABCX implikantı oluşur.

2.3.3.2 Genişletme işlemi (expand)

Bir implikanttan bir literalin (değişken) çıkartılması işlemi ile implikantın kapsama

alanını genişletme işlemidir.

A BC implikantındanA literalini çıkartırsak oluşan imlikant XBC
olur. Genişletme işleminde hangi literalin çıkarılırsa daha iyi
olacağını seçmek için kofaktor kriteri kullanılır

Tekrarsız implikant eleme işlemi

011

010

000

001

100

110

101

111

B

C

A

011

010

000

001

100

110

101

111

B

C

A

011

010

000

001

100

110

101

111

B

C

A

 21

2.3.3.3 Kofaktör

 Tanım: bir C implikantının xj literaline bağlı olarak oluşturulan kofaktor Kxj olsun Kxj

kofaktoru şu şekilde bulunur:

• xj veyaxj değeri C implikantında yoksa sonuç C dir.

• C\{xj} olur eğer xj literali C implikantında varsa

• C implikantıxj literalini içeriyorsa sonuç ∅ olur eğer

Örnek: F fonksiyonu için b literalinin kofaktor olduğu zaman oluşan sonucu bulalım:

F = abc +bc +cd

 Fb= ac +∅ +cd

 Fb= ac +cd

1

1

1 1

1

1

1

1

1

A

C 00 01 11 10

00

01

11

10

1

 1

1 1

1

1

1

1

1

AB

C 00 01 11 10

00

01

11

10

 b literal
kofaktor (Cb) 1

1

 22

2.3.3.4 Espresso algoritması

1- Hangi küp diğer küp/küpler tarafından kapsanıyorsa onu kümeden çıkar. (REDUCE)

2- Artık küpler Küp’ ten bir değişken çıkartmakla ortaya çıkar.

3- İmplikantları genişlet (EXPAND)

• Genişletilmiş implikantların kapsadığı (örttüğü) diğer implikantları kümeden çıkar

• Sonucun iyi olması genişletme işleminin sırasına bağlıdır.

• Heruistic metotlar en iyi genişletme sırasını bulmaya çalışır.

• 1, 2, 3 işlemlerini sürekli yaparak alternatif prime imlikantları bul ve fonksiyonun

maliyeti düştüğü müddetçe 1, 2, 3 işlemlerini yapmaya devam edilir.

Espresso(F,D) // F Doğru kümesi D don’t Care ve R Yanlış kümesi

{

R=TERS(F+D); //Yanlış kümesini bul

F=Genişlet(F,R); //F kümesini genişlet

F=Tekrarsız(F,D); //Başlangıç tekrarsız örtü bulunur

E=Temel (F,D); // Temel birincil implikantlar bulunur

F=F-E; //Bulunan elemanları kümeden çıkar

D=D+E;

 F’ in maliyeti düşüyorken (while)

{ R=Daralt(F,D);

F= Genişlet(F,R); //F kümesini genişlet

F= Tekrarsız(F,D); //Başlangıç tekrarsız örtü bulunur

}

F=F+E;

Sonuç=F; // sonuç olarak F kümesini gönder.

}

 23

2.3.3.5 ESPRESSO-II Programı

ESPRESSO verilen fonksiyonu çarpım terimlerinin toplamı (SOP) şeklinde

sadeleştiren, çok seçeneği olan bir programdır. ESPRESSO programının kullanım formatı

aşağıdaki gibidir:

� Espresso [seçenekler] [dosya] [> çıktı dosyası]

ESPRESSO programının kullandığı dosya formatı aşağıda gösterilmiştir. Programın

tanıdığı anahtar kelimeler belirtilmiştir. [d] ondalık bir sayıyı belirtir. [s] bir string

ifadeyi belirtir.

Verilen bu seçenekler her dosya da olması gereken durumlardır.

ESPRESSO programında kullanılan seçeneklerden çok kullanılanlar aşağıda

açıklanmıştır.

—Dexact: Exact minimumlaştırma Algoritması (çarpım terimlerinin minimum sayıda

olmasını garanti eder ve buluşsal (heuristic) olarak literallerin sayısını minimumlaştırır).

Genellikle pahalı olabilecek sonuçlar üretir.

—Dsignature: Küp tabanlı kesin (exact) minimumlaştırma Algoritması (çarpım

terimlerinin minimum sayıda olmasını garanti eder ve buluşsal olarak literallerin sayısını

minimumlaştırır). Dexact seçeneğine göre daha hızlıdır ve Dexact seçeneğinin takıldığı

problemleri çözer (Brayton ve ark. 1993, McGeer ve ark. 1993).

—Dso: 1-ler fonksiyonu tek çıkışlı fonksiyon gibi minimumlaştırır. Terimler

fonksiyonlar arasında paylaştırılmaz.

 24

2.3.3.6 Espresso dosya formatı

Espresso algoritması için kabul edilmiş dosya formatı şu şekildedir:

� .i [d] Giriş değişkeninin sayısını belirtir

� .o [d] Çıkış değişkeninin sayısını belirtir.

.e Dosyanın bittiğini gösterir.

F(A,B,C,D)= (4, 5, 6, 8, 9, 10, 13) D(0, 7, 15) fonksiyonu için oluşturulan giriş dosyası,

Giriş Anlamı:

.i 4 Girişler

.o 1 Çıkışlar

.lb a b c d Giriş Değişkenleri

.ob f Çıkış Değişkenleri

.p 10 Ürün Sayısı

0 0 0 0 -

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 -

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 1 0 1 1

1 1 1 1 -

.e

Espresso algoritması ile F(A,B,C,D)= (4, 5, 6, 8, 9, 10, 13) D(0, 7, 15) kabul edilmiş

dosya formatı şu şekildedir:

 25

F(A,B,C,D)= (4, 5, 6, 8, 9, 10, 13) D(0, 7, 15) fonksiyonu için oluşturulan çıkış dosyası,

Çıkış Anlamı:

.i 4 Girişler

.o 1 Çıkışlar

.lb a b c d Giriş Değişkenleri

.ob f Çıkış Değişkenleri

.p 3 Ürün Sayısı

1 - 0 1 1

1 0 - 0 1

0 1 - - 1

.e

F(A,B,C,D)=AC D+AB C +A B

 26

3 YAKIN MİNİMALİ ÖRTME ALGORİTMASI

Boole ifadelerinin sadeleştirmesi, mantık devrelerinin ve bilgisayar programlarının

daha etkili olmasına yol açmaktadır. Minimumlaştırma ifadeleri önemlidir. Çünkü elektrik

devreleri, verilen Boole ifadelerinin her bir terim veya literallerinin uygulanması için bireysel

bileşenler içerir. Bu tasarımcıların daha az bileşen kullanmasını ve böylece de belirli

sistemlerin maliyetlerinin düşmesini sağlamış olur. Tek çıkışlı veya çok çıkışlı Boolean

minimumlaştırma teknikleri (Mano 1984) anlatılmıştır. Bu tekniklerin birçoğu iki adımda

çalışır. İlk adımda bütün asal implikantları (prime implicant-Aİ) belirler ve ikinci adımda da

verilen Boole ifadesini örtecek (kapsayacak) AI’ ların altkümesini seçer (Perkins ve Rhyne

1988).

Bütün AI’ ların belirlenmesi sürecinde son sonucun tam olarak belirlenmesi için ayrı

durumlarda hesaplama yapılabilir. Özellikle, eğer her bir asal implikant tam olarak k tane 0, k

tane 1 ve k tane belirsiz terim içeriyorsa, AI’ nın tamamlanmış kümesinin gücü M=(3)!/(k!)3

dür (Kahramanlı ve Başçiftçi 2004). Örneğin k=l,2,3,4 için sırasıyla M=6, 90, 1680 ve 34650

dır. n değişkenli bir fonksiyon için AI’ ların sayısı 3fl/ kadar büyük olabilir (Kahramanlı ve

Başçiftçi 2004). Sonuç olarak, AI belirleme adımı değişken sayısı n arttıkça elverişsiz bir

duruma gelebilir (Perkins ve Rhyne 1988). Açıkça görülmektedir ki ister iki seviyeli veya

isterse çok seviyeli Boole ifadelerini sadeleştirme prosedürlerinin hepsi tüm durumlarda 0(2v)

karmaşıklığına sahiptir (Allahverdi ve ark. 2000, Kahramanlı ve Başçiftçi 2003, Kahramanlı

ve ark. 2005). Burada, tam belirlenmiş Boole fonksiyonunun ON mintermlerini örten AI’

ların yerel belirlenmesinin metodu önerilmiştir. n değişkenli Boole ifadelerinin bu tür

mintermleri maksimum n tek boyutlu küplere dahil edilebilir. Geçici sonuç küpleri kümesinin

gücü n değerini geçmeyebilir (Allahverdi ve ark. 2000). Böylece, AI’ ların minimum

kümesini bulmak için O(2n)karmaşıklığı yerine O(n) karmaşıklığı metodu kullanılabilir

(Kahramanlı ve Başçiftçi 2003, Kahramanlı ve ark. 2005).

Bu çalışmada, 0ff küme tabanlı doğrudan örtme minimumlaştırma metodu (direct

cover Minimization Method) tek çıkışlı fonksiyonlar için çarpım terimlerinin toplamı

formunda sunulmuştur. Var olan doğrudan örtme metotlarında verilen On- küpü içeren yeterli

asal implikantlar kümesini bulmak için, bu küp her defasında bir koordinat için genişletilir.

Her genişlemenin doğruluğu, k < 2 Off-küplerin hepsi ile genişletilen küp kesiştirilerek

kontrol edilir. Bir küpün genişlemesinin polinominal karmaşıklığa sahip olduğu dikkate

 27

alındığında, bu yaklaşımın toplam karmaşıklığı O(n)O(2 n) şeklinde olmaktadır. Bu

polinominal ve üssel karmaşıklığın çarpımıdır. Verilen On-küpü içeren asal implikantların

tam kümesini elde etmek için önerilen metot, bu On-küp tarafından genişletilen 0ff-küpleri

kullanır. Bu işlemin karmaşıklığı, yaklaşık olarak bir koordinat için bir On-küpün

genişletilme karmaşıklığına eşdeğerdir. Bundan dolayı, verilen On-küpü içeren asal

implikantların tam kümesinin hesaplama işleminin karmaşıklığı yaklaşık olarak O(n) kadar

azaltılmış olur. Pratik olarak bu yaklaşım bir defada işlenecek olan asal implikant sayısını

yüzlerce ve binlerce defa azaltmaktadır. Bu ise halen problem olan bellek kapasitesi

darboğazını kolaylıkla aşma imkânı sağlamaktadır.

YMÖA çeşitli problemler üzerinde test edilmiş ve standart MCNC benchmarkları

kullanılarak ESPRESSO ile karşılaştırılmıştır. Bu karşılaştırmalar sonucunda geliştirilmiş

olan yöntemlerin ESPRESSO’ ya göre önemli bir ölçüde hızlı olduğu ve az bellek kapasitesi

gerektirdiği görülmüştür. Ayrıca sadeleştirme işlemleri sonucunda karşılaştırılan Algoritmaya

göre çarpım terimlerinin toplamı şeklinde daha iyi sonuç buldukları belirlenmiştir.

3.1 İşaretlerin Gösterimi

n girişli ve m çıkışlı bir çoklu çıkışa sahip Boole fonksiyonu aşağıdaki gibi tanımlanır

(Kahramanlı ve Başçiftçi 2003):

Giriş: B{0,l },

Çıkış: Y{0,l,d},

Fonksiyon f: Bn �Ym

Burada, çıkışta gösterilen d değeri (belirsiz terim) tam belirlenmemiş değer

manasındadır ve fonksiyonun istenildiği yerinde 0 veya 1 olarak kabul edilebilir. Böyle bir

fonksiyon AI’ ların listesiyle temsil edilebilir. Her bir AI giriş ve çıkış kısımlarını içerir

(Kahramanlı ve Başçiftçi 2003, Kahramanlı ve ark. 2005).

 28

Giriş kısmı: n sabitler {0,l,x} olabilir;

Çıkış kısmı: m sabitler {0,l,d} olabilir.

Giriş kısmı küpe uygulanacak giriş uzayını belirler. Giriş kısmındaki x değeri bu değişken

için 0 veya 1 değeri olabilir.

Bu tezde, tek çıkışlı Boole fonksiyonları için yeni bir sadeleştirme metodu

geliştirilmiştir. Tek çıkışlı Boole fonksiyonu aşağıdaki gibi tanımlanır;

Giriş: B={0, l},

Çıkış: Y={0, l,d},

Fonksiyon f: B � Y.

SON: Fonksiyonun değerini 1 yapan ON mintermlerinin kümesi,

SOFF: Fonksiyonun değerini 0 yapan OFF mintermlerinin kümesi,

SDC: Belirsiz terim mintermlerinin kümesi.

Bu tezde sunulan Algoritmada SON kümesi ve SOFF kümesi tamamen kullanılmıştır.

SDC kümesi ise kullanılmamıştır.

3.2 YMÖA kullanılan Küp Cebri’ nin Elemanları ve Uygulama biçimleri

Lojik cebirdeki minimum terimler, küp cebrinin temelini oluşturmaktadır. Ancak küp

cebrinde değişken sayısı en az üçtür. Üç değişken bir küpü tanımlamaktadır. Küp cebri ile

geometrik olarak; bir minterm ile bir nokta, iki nokta ile bir hat, dört hattın birleşmesi ile bir

yüz, altı yüzün birleşmesi ile bir küp tanımlanır (Nadjafov ve Kahramanov 1973, Güneş

2000). Bu küpün her bir koordinatı, 3 değişkenli bir Boole fonksiyonunun bir değişkenidir.

 29

Küp cehri işlemleri, önce anahtarlama fonksiyonlarının (Switching Functions SFs) en

son durumunu bulmak için geliştirilmiş ve uygulanmıştır (Roth 1956, Nadjafov ve

Kahramanov 1973). Yine bu işlem SF’ nin ilk terimlerini (local prime implicants) bulmak

içinde kullanılmıştır. Daha sonra lojik fonksiyonların minimumlaştırılması üzerinde

kullanılmıştır (Nadjafov ve Kahramanov 1973).

3.2.1 Küp Cebri Elemanları Ve Uygulama Biçimi

n-boyutlu bir küpün her bir tepe noktası ikili kodlarla belirtilir. Bu küp koordinatlarına

sahiptir. doğal olarak k1 koordinatı (0,1)’ lerle belirtilir ve i1,2,...,n’ dir. Bu yüzden aynı

zamanda, belirli bir tepe noktasının kodu, bu tepe noktasının cebirsel ifadesini gösterir. Tepe

noktalarına komşu olan diğer tepe noktaları da n bitlik kodlarla belirlenir. n bitlik kodlar,

birbirinden sadece 1 hitlik farka sahipse bunlar komşu olarak adlandırılır. Örneğin 0110 kodu

ile 0100 kodu komşudur (Nadjafov ve Kahramanov 1973, Allahverdi 1999, Güneş 2000).

Şekil 3.1. Üç boyutlu kodlanmış küp

Küpün elemanları; tepe, doğru, yüz, küp, hiperküp şeklinde adlandırılır. Bu elemanlar

üzerinde bir işlem yaparken gelebilecek belirsiz durumların oluşmaması için, bütün

koordinatları ve bu koordinatların arasındaki doğruların kullanılması gerekir. Bu amaç için,

{0,1} kümesine ait olmayan geçersiz koordinatların konumları “ * “ ile belirtilmiştir.

 30

3.2.2 Küp Cebrinin İşlemleri

Küp cebri, lojik 0 ve lojik 1 ile yapılan bütün işlemlerin dışında dört işlemi daha

içermektedir. Bunlar;

a) Koordinatlı çarpma (star product, �-operation),

b) Koordinatlı çıkarma (sharp product #-operation),

e) Koordinatlı kesişme (∩ -operation)

d) Dönüşümlü yutma işlemi (commutative absorption operation ∆- operation)

işlemleridir (Allahverdi ve Kahramanlı 1995,Güneş 2000).

3.2.2.1 Koordinatlı çarpma işlemi (�- işlemi)

Koordinatlı çarpma işlemi, aynı boyuta sahip iki küp arasında uygulanır. Fakat çarpımı

yapılacak olan alt küpler, aynı boyutta olmak şartı ile değişik değerde olabilirler. Koordinatlı

çarpma işlemi iki aşamada gerçekleştirilir. İlk aşamada bir v bileşeninin belirlenmesi için

çarpım vektörü (vector of product-ÇV) oluşturulur.

İkinci aşamada, oluşturulan ÇV’ nin koordinat değerlerine göre A ve B küpleri

koordinatlı çarpıma tabii tutulur (Allahverdi ve Kahramanlı 1995, Allahverdi 1999).

A ve B küpleri aynı boyuta sahip iki küp olsun

A= a1, a2… an

B=b1, b2… bn

Bu iki küp arasında koordinatlı çarpma işlemi uygulansın. İlk aşamada v bileşeninin

belirlenmesi için aşağıdaki işlemler sonucunda çarpım vektörü ÇV oluşturulur;

ÇV = A� B = v1, v2… vn

 31

Olmak üzere, vi bileşeninde i ∈{0,1… n} dir. vi bileşeni;

• Eğer ai = bi ise vi = ai b olur.

• Eğer ai = * ve bi ≠ * ise yi =bi olur.

• Eğer a i ≠ * ve b = * ise v i = a olur.

• Eğer a, b∈{0,1} ve a i ≠ b i ise vi =y olur.

ÇV’ nin koordinat değerlerine göre A ve B küplerinin koordinatlı çarpımının sonuçları

aşağıdaki gibi olmaktadır;

a. Eğer herhangi bir vi = y bulunmazsa, A ve B’ nin çarpımı sonucu, A ve B’ nin alt

küpü olan ÇV olmaktadır (yani A �B =ÇV).

b. Eğer sadece bir tane i değeri için vi =y bulunuyorsa ve diğer değerler için vi= bi=ai

ise (burada j∈{l, 2... i-l, i+l... n} dir) A ve B küplerinin koordinatlı çarpımı sonucu, ÇV’

de vi yerine * sembolü konularak bulunan bir C küpüdür.

c. Eğer sadece bir tane vi = y oluşuyor ve ak =* veya bk= * için yk ≠ * ise A ve B

küplerinin çarpımları sonucu, ÇV’ de v i yerine * sembolü konularak bulunan bir C

küpüdür. C küpünün bir bölümü A tarafından, diğer bölümü B tarafından örtülür. Bu

durum C küpünün A ve B küpleri ile ilişkisi olduğunu gösterir.

d. Eğer en az iki tane vi ve vj bileşeni için, vi = vj = y olan A ve B küplerinin

koordinatlı çarpımı C = φ dir. Burada A ve B küpleri arasında doğrudan bir bağlantı

yoktur.

 32

a, b, c, d maddelerine göre Am (m-küp) ile Bl (l-küp) küplerinin çarpılması sonucu

aşağıdaki durumlar oluşmaktadır.

1: Her iki A ve B küpüne giren C küpü (Şekil 3.2).

ÇV=A�B=0** � *0*

C=A*B=VP=00*

Şekil 3.2. C küpünün ortak olması durumu

2: (m+l) kenara sahip olan (m+1-küp) ve A ve B küpünün birleşmesinden oluşan C küpü

Şekil 3.3. C küpünün birleşim oluşturduğu durum

ÇV=A�B=0*0� 0*1 = 0y*

011

010

000

001

A

000

001

100

101

C

B

�

000

001

C

010

000

A

�

011

010

000

001

C

011

001

B

 33

3: A ve B küpleri arasında birleştirilmiş bir köprü olan C küpü.

ÇV=A�B=01* � 1*0

Şekil 3.5. C küpünün köprü oluşturduğu durum

3.2.2.2 Koordinatlı çıkarma işlemi (# işlemi)

Koordinatlı çarpmada olduğu gibi, koordinatlı çıkarmada da aynı boyuta sahip iki küp

kullanılır. Çıkarma işlemi, küplerin aynı taraflarında (nokta, kenar, yüzeylerinde) veya farklı

taraflarında yapılabilir. Koordinatlı çıkarma işlemi ilk olarak, tepe noktası adreslenmemiş SFs

nın sınırını hesaplamada kullanılmıştır. Bununla birlikte, SFs nın yerel asal implikantların

(local prime implicants) bulunmasına uygulanmıştır (Allahverdi ve Kahramanlı 1995,

Kahramanlı ve Allahverdi 1993, , Kahramanlı ve Allahverdi 1996, Güneş ve ark. 2003,

Allahverdi 1999).

A ve B gibi aynı boyuta sahip iki vektör verilsin

A = a1 a2...an, B= b1 b2...bn

Çıkarım Vektörü ÇV= v1 v2...vn şu şekilde bulunur.

* Eğer bi = x VEYA bi = ai ise vi = Z

* Eğer ai = x VE bi = ai ise vi = b’i

011

010

100

110

A

B

011

010

100

110

C

�

 34

 * Eğer ai = b’i ise vi = Y

İkinci adım olarak koordinat değerlerine göre sonuç şu şekilde bulunur:

* Eğer vi =y ise çıkarım işlemi olamaz: C=A # B=A

* Eğer hiç  vi =y yoksa ÇV= vj... vk... vm ε { 0,1 } varsa çıkarım operasyonu

Sonucu şu şekildedir:

 {a1 . . .a j -1a j a j+1 . . .an , a 1 . . .ak -1ak ak+1 . . .an , a1 . . .am -1am am+1 . . .an}

 * Eğer  i için vi = Z ise işlem sonucu boş kümedir. C=A # B=∅

Koordinatlı Çıkarma İşleminin özellikleri:

 Değişme özelliği yoktur.

 Birleşme özelliği yoktur.

 Birleşme özelliği üzerinde dağılma özelliği vardır

Kesişme özelliği üzerinde dağılma özelliği vardır.

Çıkarma işleminde simetriklik vardır.

 bi

 ai
X 1 0

X Z 0 1

1 Z Z Y

0 Z Y Z

)(##)##(C}{B, #A

)#()#(CB)# (A

)#()#(CB)# (A

)#(# CB)# #(A

B #A

CBACBA

CBCA

CBCA

CBA

AB

==

∩=∩

∪=∪

≠

≠

 35

3.2.2.3 Dönüşümlü Yutma İşlemi

Bu işlem iki adımda gerçekleşmektedir.

1- Vektör Absorbe işlemi

2- Koordinat değerlerine bağlı olarak kurallar uygulanarak Sonuca varılır.

 Vektör absorbe işlemi şu kurala göre yapılmaktadır: AV=A∇B= v1,v2... vi... vn

* Eğer ai = bi ise vi = Z

* Eğer ai = x VEYA bi ≠ ai ise vi = G

* Eğer ai = b’i ise vi = Y

* Eğer ai ≠ x VEYA bi = ai ise vi = L

 ai

bi

X 1 0

X Z G G

1 L Z Y

0 L Y Z

 Koordinat değerlerine bağlı olarak Sonuç çıkarma:

* Eğer ∃i için vi = Y ise absorbe işlemi yapılamaz C = A∆B = {A,B}

* Eğer ∀i için vi = Z ise A=B dir ve Sonuç C = A∆B = A

* Eğer (∃i için vi = G) ve (değil ∃i için vi = L) ise C = A∆B = A

* Eğer (∃i için vi = L) ve (değil ∃i için vi = G) ise C = A∆B = B

* Eğer (∃i için vi = G) ve (∃i için vi = L) ise absorbe işlemi yapılamaz C = A

∆ B = {A, B}

 36

Ör:

1. A=X1XX, B=X1X1 AV= X1XX ∇ X1X1 = ZZZG; C=X1XX

2. A=XX1X, B=X011 AV= XX1X ∇ X011 = ZGZG; C=XX1X

3.2.2.4 Asal İmplikantların Yerel Belirlenmesi

Teorem:

Farz edelim ki A= a1a2...aj... an DOĞRU kümesinin elemanı olsun,

B= bk
1b

k
2... b

k
j... b

k
n ise YANLIŞ kümesi elemanı olsun.

Ki = Ki–1 # Bi i=1,2...m K0 =XX... X

Böylece DOĞRU kümesindeki her bir eleman için YANLIŞ kümesinin bütün elemanları

üzerinde bu işlem gerçekleşir. Bu işlem sayesinde ai değeri uygun dönüşümü sağlar.

İspat:

Eğer ai = bk
i ise herhangi bir j koordinatı için. vi = x # bk

i = a’i

Sonuç olarak ai = bk
i olduğunda (ai, b

k
i) ikilisinde fark küpü oluşur (difference cube) yani

A minterm’ ünü içermez.

Eğer ai <> x VE bk
i = x j koordinatı için fark küpü oluşmaz yani bk

i Değeri değişmez.

Ve yine Eğer ai = b’k
i ise vi = x # bk

i = b’k
i =a j koordinatı (ekseni) için fark küpü ai değerini

kapsar.

Bu teoremi kullanarak şu küp değişimini gerçekleştirebiliriz.

Eğer bk
i = x ise qk

i = x

Eğer ai = bk
i ise qk

i = x

Eğer bk
i = a’i ise qk

i = bk
i

 37

3.2.2.5 Koordinatlı Kesişme İşlemi (∩ işlemi)

Bu işlem iki küp arasında mevcut olabilecek altkübün boş olup olmadığını

belirlenmesini amaçlamaktadır. C1 ve C2 küplerinin kesişme işlemini sonucu bir vektördür.

(VK)

ni21 v...v...v,vVK =

VK vektörünün değeri şu eşitliklerle verilir:

Eğer ai = bi ise vi = bi = ai dir.

Eğer ai = * ve bi ≠ * ise vi = bi dir.

Eğer bi = * ve ai ≠ * ise vi = ai dir.

Eğer i ii i b a}1,0{ b , a ≠∈ ve ise vi =y dir.

Kesişme işleminin pseudokodu aşağıda verilmiştir.

Procedure KOORDİNATLIKESİŞME ()

CL = AL ⊕ BL;

CR = AR ⊕ BR;

Sonuç = CL & CR;

END Procedure;

 38

3.2.3 Yakın-Minimali Örtme Algoritması

Bu algoritmanın mantıksal fonksiyonun en sade şekillerinden birini üretir, ama bu

algoritmayla üretilen Sonuç en sade Sonuç olmayadabilir. Genelde en sade Sonuç için Sdoğru

kümesinin sıralanması gerekmektedir.

Algoritmanın adımları şu şekildedir:

1. i değişkenine sıfır ata (i = 0)

2. Sdoğru kümesinin birinci elemanını al ve i değişkenini artır (i=i+1)

3. Syanlış kümesinin her bir elemanına bağlı olarak kural x ile verilen dönüşümü

gerçekleştir. Sonuçlar Q0 kümesinde olsun.

4. Q0 kümesine absorbe işlemini uygula ve Sonuçlar Q1 kümesini oluştursun

5. n boyutlu ‘Bütün Küp’ ten (xx... x)koordinat çıkarma işlemini uygula. (n fonksiyona

giren değişken sayısını gösterir). Sonuc SI olarak adlandır.

6. SI kümesi elemanlarına ‘BÜYÜK’ ve ‘KÜÇÜK’ işlemlerini uygula. (not: a, b’ den

daha büyüktür ⇔ Sdoğru#a < Sdoğru#b)

7. SI kümesinden bütün ‘küçük’ elemanları (güçsüz) çıkart Sonuçta tek eleman kalmışsa

onu veya birkaç taneden birini seç ve bu elemana EI

8. Sdoğru kümesini yeniden oluştur ve EI elemanını SPI Sonuç kümesine ekle

9. Eğer Sdoğru ≠ ∅ ise 2 ye git

10. Bitir.

3.2.3.1 YMÖA Örneği

QM algoritmasında verilen örneği burada çözelim çözümlersek

 F(a,b,c,d)= ∑m(0, 1, 2, 5, 6, 7, 8, 9, 10, 14)

 Sdoğru = {0, 1, 2, 5, 6, 7, 8, 9, 10, 14}

 Syanlış = {3, 4, 11, 12, 13, 15}

 h=0000

 39

Syanlış Q0 Küp durumu Q1

0011 XX11 Birincil XX11

0100 X1XX Birincil X1XX

1011 1X11 XX11 tarafından yutulur ---

1100 11XX X1XX tarafından yutulur ---

1101 11X1 X1XX tarafından yutulur ---

1111 1111 XX11 tarafından yutulur ---

 Q1={ XX11, X1XX,} Tam Küpten koordinat çıkarma işlemi:

S1=XXXX # Q1 =(XXXX #XX11) #X1XX)= {XX0X, XXX0 }#X1XX = {X00X,

X0X0}

S1.1= X00X

S1.2 = X0X0

P1=Sdoğru # X00X ={0000, 0001, 0010, 0101, 0110, 0111, 1000, 1001, 1010, 1110}#X00X

P1={0010, 0101, 0110, 0111, 1010, 1110} (6 elemanlı)

P2=Sdoğru # X0X0 ={0000, 0001, 0010, 0101, 0110, 0111, 1000, 1001, 1010, 1110}#X0X0

Sdoğru={0001, 0100, 0101, 0111, 1001, 1110} (6 elemanlı)

Her ikisi de eşit güçte oldukları için S1.1 seçebiliriz. Böylece Sdoğru kümemiz şu olur

Sdoğru={0010, 0101, 0110, 0111, 1010, 1110} (2, 5, 6, 7, 10, 14) ve SPI kümemize S1.1

eklenirse:

SPI={X00X}

Şimdi Sdoğru kümesi Boş küme olmadığı için aynı işlemleri yeniden başlatacaz i=i+1

i = 2

 h2=0010

 40

Syanlış Q0 Küp durumu Q1

0011 XXX1 Birincil XXX1

0100 X10X Birincil X10X

1011 1XX1 XXX1 tarafından yutulur ---

1100 110X XXX1 tarafından yutulur ---

1101 1101 XXX1 tarafından yutulur ---

1111 11X1 XXX1 tarafından yutulur ---

S2 = XXXX # Q1 =((XXXX #XXX1)#X10X)= (XXX0 # X10X) =

{ X0X0, XX10 }

S2.1 = X0X0

Sdoğru = Sdoğru # X0X0= {0010, 0101, 0110, 0111, 1010, 1110}# XXX0

Sdoğru ={0101, 0110, 0111, 1110} // 4 elemanlı

S2.2 = XX10

Sdoğru = Sdoğru# XX10= {0010, 0101, 0110, 0111, 1010, 1110}# XXX0

Sdoğru ={0101, 0111} // 2 elemanlı

S2.2, S2.1 elemanından daha güçlüdür.

SPI = {X00X, XX10}

Sdoğru kümesi boş küme olmadığı için aynı işlemler tekrarlanacaktır. i=i+1

i = 3

 h3 = 0101

Syanlış Q0 Küp durumu Q1

0011 X01X Birincil X01X

0100 XXX0 Birincil XXX0

1011 101X X01X absorbe eder ---

1100 1XX0 XXX0 absorbe eder ---

1101 1XXX Birincil 1XXX

1111 1X1X 1XXX absorbe eder ---

S3 = XXXX # Q1 = (((XXXX # X01X) # XXX0) # 1XXX)

 41

 = (({X1XX, XX0X} # XXX0) # 1XXX) = ({X1X1,XX01} # 1XXX)

 = {01X1,0X01}

S3.1 = 01X1

S3.2 = 0X01

P1 = Sdoğru # 01X1 ={ 0101, 0111} # 01X1

P1 = ∅ S3.1 > S3.2

P2 = Sdoğru # 0X01 ={0101, 0111} # 0X01

P2 = {0111}

S3.1 > S3.2 Olduğu için S3.1 SPI kümesine ekleyelim

SPI = {X00X, XX10, 01X1}

Sdoğru: SPI kümesini değişkenlerle ifade ettiğimizde:

F = B’C’ + CD’ + A’BD

3.3 Küp Cebri İşlemlerinin Temel Bilgisayar İşlemleri Üzerinden Gerçekleştirilmesi

Bu işlemelerin hepsi küp cebri işlemleri kullanılarak sadeleştirme işlemi paralel bir

biçimde bir şekilde yapılmaktadır. Seri bir şekilde bu işlemleri gerçekleştirirken

algoritmaların çözüme ulaşma zamanları artmaktadır. Bu yüzden, bu işlemleri temel

bilgisayar işlemleri yardımı ile paralel bir şekilde yaparak algoritmaların E çözüm zamanları

azaltılmaya çalışılmıştır. Bu işlemler sayesinde algoritmaların daha hızlı olması sağlanmıştır.

Çünkü bu işlemler temel bilgisayar işlemleri kullanılarak paralel bir şekilde yürütülmesi

sağlanmıştır. Bu bölümde bu işlemlerin nasıl gerçekleştirildiği açıklanacaktır.

Temel bilgisayar işlemlerinin gerçekleştirilmesi sırasında aşağıda gösterilen işlemler

kullanılacaktır.

 42

1) Küplerin koordinat değerlerinin gösterilmesi

Bir küpün her bir koordinat değeri aşağıda gösterildiği gibi iki bit ile temsil edilmiştir.

Bir lojik Fonksiyon f: Bn
�{0, 1, x} tanımlanabilir. f Fonksiyonun alabileceği değerler olan 0

1 için ve x için dönüşümleri kullanılacaktır.

Esas koordinatın lojik 0 değeri :
1

0
0 → ,

Esas koordinatın lojik 1 değeri :
0

1
1→ ,

x veya (-) terimi ile gösterilen esas olmayan koordinatın değeri:
1

1
→x

Burada belirtilen bit çiftleri ile küpün koordinat değerlerinin temsil edilmesi sağlanmıştır.

Çünkü küpün koordinat değerleri arasında gösterilecek esas olmayan koordinat değerleri için x

sembolü kullanılmıştır. Bu işareti bir ve sıfır cinsinden ifade edebilmek için bu şekilde bir gösterim

kullanılmıştır. Örnek olarak A= x01 küpü için aşağıda küpün her bir koordinat değeri iki bit ile

gösterilmiştir.

Tablo 3.3. Bir küpün her bir koordinat değerinin iki bit ile gösterilmesi:

Küp Değeri x 0 1

İki bit ile gösterilir 11 01 10

a) Off kümesindeki mintermleri genişletmek için temel bilgisayar işlemleri

Off-küp kümesinde bulunan Bi= bi
1, b

i
2… bi

n e Sof mintermleri On-küp kümesinin

Ai= ai
1, a

i
2… ai

n ile genişleterek Qi = qi
1, q

i
2… qi

n

 43

Bu işlemleri gerçekleştirirken 0ff kümesindeki her bir mintermi On kümesindeki minterm ile bit bit

karşılaştırma yapmak suretiyle Q1 küpünü elde ederiz. Bu da zaman açısından büyük kayıplara

uğramamıza neden olur. Bu kuralları temel bilgisayar işlemleri ile aşağıdaki gibi gerçekleştirebiliriz.

On kümesindeki mintermi (A), Off kümesindeki mintermle genişleterek C küpü elde edilir. Bu

genişletme işlemi için On kümesindeki minterm ile Off kümesindeki minterm bit dizisi çiftleri haline

dönüştürülürler.

b) İki küpün (A ve B) kesişimini temel bilgisayar işlemleri ile gerçekleştirmek

Uygulanacak iki küp olsun. Aşağıda gösterilen C küpü A ve B küplerinin kesişimi

sonucunda elde edilen küptür.

Bi= bi
1, b

i
2… bi

n e Sof mintermleri On-küp kümesinin

Ai= ai
1, a

i
2… ai

n ile genişleterek

Ci = Ai ∩ Bi

Bu kesişim işlemi sonucunda elde edilen C küpünün bit dizisi çiftleri CL ve CR bit dizileri A

ve B küplerinin bit dizilerinin ‘ve” işlemine tabi tutulması ile bulunur. Burada,

CL =Al VE Bl

CR = Ar VE Br

Elde edilen CL ve CR bit dizileri sonucunda, A ve B küplerinin kesişim değeri

belirlenmeye çalışılır. C küpünün değerinin belirlenmesi için aşağıdaki işlemler

gerçekleştirilir.

 44

1) Sonucun boş küme olup olmadığının kontrol edilmesi

Bulunan C1 ve Cr bit dizileri ve C küpü değeri ile A ve B küplerinin kesişim değerinin

herhangi bir değere veya boş kümeye eşit olup olmadığı aşağıdaki işlemlerle kontrol edilir.

CL = AL ⊕ BL;

CR = AR ⊕ BR;

Sonuç = CL & CR;

Bu işlemler sonucunda elde edilen sonuç küpü sıfıra eşit değilse C küpü hoş kümedir,

Yani, A ve B küplerinin kesişiminden bir değer elde edilmemiştir. Sonuç küpü sıfıra eşitse A

ve B küplerinin kesişiminden bir değer elde edilmiş olacaktır.

ii) A ve B küplerinin C sonuç küpü ile karşılaştırılması

A ve B küplerinin kesişimi sonucunda elde edilen C küpü herhangi bir değere sahipse, bu

değerin A veya 13 küplerinden hangisine ait olduğunu aşağıdaki işlemler doğrultusunda

bulabiliriz. Bu işlemler sonucunda kesişim değerinin hangi küpe ait olduğunu bulmakla

beraber küpler arasındaki kapsama durumları da bulunmuş olmaktadır.

� Eğer Cl = A1 ve Cr=Ar ise C=A dır.

� Eğer C = A ise A küpünü çıkar değilse A küpünü tut.

� Eğer C= B ise B küpünü çıkar değilse B küpünü tut.

Örnek 3.3: A = 0 x 1 ve B= 0 0 1 iki küp olsun. Bu küpler arasındaki kesişme durumunu ve

birbirini kapsama durumunu temel bilgisayar işlemleri ile gerçekleştirirsek;

A ve B küplerinden A1, Ar ve Bl - Br bit dizilerini aşağıdaki gibi oluştururuz.

 45

Al= 0 1 1 Ar = 1 1 0

Bl= 0 0 1 Br = 1 1 0

Elde edilen bit dizilerinden

C1 =A1 VE Bl=0 1 1 VE 0 0 1 = 0 0 1

Cr =Ar VE Br=1 1 0 VE 1 1 0 = 1 1 0

C=A ∩ B= 0 0 1

i) Sonucun boş küme olup olmadığının kontrol edilmesi

D=(Cl VEYA Cr) ⊕ 11… 1 D = (001 v 110) ⊕ 111 = 000 olduğu için C φ≠ dir.

Yani bu işlemler sonucunda A ve B küplerinin kesişiminden bir değer elde edilmiştir.

Küpler arasındaki kapsarna durumuna bakılırsa,

Cl=Bl=011

Cr=Br=110

 Olduğundan B küpü kapsanmıştır.

3.4 Yakın Minimali Örtme Algoritması Pseudo Kodu

Tahmini minimali Son kümesi boş kümeden farklı olduğu müddetçe genişletme

işlemi, değişmeli absorbe, koordinatlı çıkarma işlemleri verilen sırayla uygulanır. En son

olarak asal implikantlar kümesi üzerinde büyük işlemi uygulanarak en büyük asal implikant

bulunur ve Sespi kümesine eklenir.

 46

Procedure NMİNİMAL(Son, Sof)

 While Son ∈ Φ Do

SQ0=GENİŞLEME(Son[0], Sof);

SQ1=DEGİŞMELİABSORBE(SQ0);

SAI=KOORDİNATLI_ÇIKARMA(SQ1);

ESPIBÜYÜK (Son, SAI);

SESPI= SESPI ∪ ESPI;

END While;

END Procedure;

 47

4 SADELEŞTİRME ALGORİTMALARININ KARMAŞİKLIK ANALİZİ

4.1 Karmaşıklık (Complexity)

Bir programın performansı genel olarak programın işletimi için gerekli olan bilgisayar

zamanı ve belleğidir. Bir programın zaman karmaşıklığı (time complexity) programın işletim

süresidir. Bir programın yer karmaşıklığı (space complexity) programın işletildiği sürece

gerekli olan yer miktarıdır. Bir problemin çözümünde, kullanılabilecek olan algoritmalardan

en etkin olanı seçilmelidir. En kısa sürede çözüme ulaşan veya en az işlem yapan algoritma

tercih edilmelidir. Burada bilgisayarın yaptığı iş önemlidir. Bazı durumlarda da en az bellek

harcayan algoritmanın tercih edilmesi gerekebilir. Ayrıca, programcının yaptığı iş açısından

veya algoritmaların anlaşılırlıkları bakımından da algoritmalar karşılaştırılabilir. Daha kısa

sürede biten bir algoritma yazmak için daha çok kod yazmak veya daha çok bellek kullanmak

gerekebilir.

Rakip algoritmaları yaptıkları iş açısından karşılaştırmak için her algoritmaya

uygulanabilecek somut ölçüler tanımlanmalıdır. Aynı işi yapan algoritmalardan daha az

işlemde sonuca ulaşanın (hızlı olanın) belirlenmesi yani daha genel olarak algoritma analizi

teorik bilgisayar bilimlerinin önemli bir alanıdır.

Yazılımcılar, iki farklı algoritmanın yaptıkları işi nasıl ölçüp karşılaştırırlar? İlk çözüm

algoritmaları bir programlama dilinde kodlayıp her iki programı da çalıştırarak işletim

sürelerini karşılaştırmaktır. İşletim süresi kısa olan daha iyi bir algoritma denilebilir mi? Bu

yöntemde işletim süreleri belirli bir bilgisayara özeldir. Dolayısı ile işletim süresi de bu

bilgisayara bağlıdır. Daha genel bir ölçüm yapabilmek için olası tüm bilgisayarlar üzerinde

algoritmanın çalıştırılması gerekir.

İkinci çözüm, işletilen komut ve deyimlerin sayısını bulmaktır. Fakat bu ölçüm

kullanılan programlama diline göre ve programcıların stiline göre değişim gösterir. Bunun

yerine algoritmadaki kritik geçişlerin sayısı hesaplanabilir. Her tekrar için sabit bir iş

yapılıyor ve sabit bir süre geçiyorsa, bu ölçü anlamlı hale gelir.

Buradan, algoritmanın temelinde yatan bir işlemi ayırarak, bu işlemin kaç kere

tekrarlandığını bulma düşüncesi doğmuştur. Örnek olarak bir tamsayı dizisindeki tüm

elemanların toplamını hesaplama işleminde gerekli olan iş miktarını ölçmek için tamsayı

 48

toplama işlemlerinin sayısı bulunabilir. 100 elemanlı bir dizideki elemanların toplamını

bulmak için 99 toplama işlemi yapmak gerekir. n elemanlı bir listedeki elemanların toplamını

bulmak için n–1 toplama işlemi yapmak gerekir diye genelleştirme yapabiliriz. Böylece

algoritmaları karşılaştırırken belirli bir dizi boyutu ile sınırlı kalınmaz.

İki gerçel matrisin çarpımında kullanılan algoritmaların karşılaştırılması istendiğinde,

matris çarpımı için gereken gerçel sayı çarpma ve toplama işlemlerinin karışımı bir ölçü

olacaktır. Bu örnekten ilginç bir sonuca ulaşılır: Bazı işlemlerin ağırlığı diğerlerine göre

fazladır. Birçok bilgisayarda bilgisayar zamanı cinsinden gerçel sayı çarpımı gerçel sayı

toplamından çok daha uzun sürer. Dolayısı ile tüm matris çarpımı düşünüldüğünde toplama

işlemlerinin etkinlik üzerindeki etkisi az olacağından ihmal edilebilirler. Sadece çarpma

işlemlerinin sayısı dikkate alınabilir. Algoritma analizinde genelde algoritmada egemen olan

bir işlem bulunur ve bu diğerlerini gürültü düzeyine indirger.

4.2 Algoritmalarda Karmaşıklık (Complexity) ve Zaman Karmaşıklığı Analizi

4.2.1 İşletim Zamanı (Running Time)

İşletim zamanını girdi boyutunun bir fonksiyonu olarak ele almak tüm geçerli girdileri

tek değere indirir. Bu da değişik algoritmaları karşılaştırmayı kolaylaştırır. En yaygın

karmaşıklık ölçüleri “Worst –Case Running Time” (en kötü durum işletim süresi) ve

“Average-Case Running Time” (ortalama durum işletim süresi)’dir. (Stockmeyer 1990).

En kötü çalışma süresi:

Bu işletim süresi, her girdi boyutundaki herhangi bir girdi için en uzun işletim süresini

tanımlar. Örnek olarak bir programın en kötü ihtimalle ne kadar süreceğinin tahmin edilmesi

istenen bir durumdur. n elemanlı bir listede sıralı arama en kötü ihtimalle (aranan

bulunamazsa) n karşılaştırma gerektirecektir. Yani worst-case running time (işletim zamanı)

T(n) = n’ dir. Tüm problemlerde sadece en kötü girdi dikkate alındığı için worst-case running

time değerini hesaplamak göreceli olarak kolaydır.

 49

Ortalama çalışma süresi:

Bu işletim süresi, her girdi boyutundaki tüm girdilerin ortalamasıdır. n elemanın her

birinin aranma olasılığının eşit olduğu varsayıldığında ve liste dışından bir eleman

aranmayacağı varsayıldığında ortalama işletim süresi (n+1)/2’dir. İkinci varsayım

kaldırıldığında ortalama işletim süresi [(n+1)/2,n] aralığındadır (aranan elemanların listede

olma eğilimine bağlı olarak). Ortalama durum analizi basit varsayımlar yapıldığında bile

zordur ve varsayımlar da gerçek performansın iyi tahminleşememesine neden olabilir.

4.2.2 Asimptotik Analiz

Algoritmaların karşılaştırılmasında asimptotik etkinlikleri de dikkate alınabilir. Girdi

boyutu sonsuza yaklaşırken işletim süresinin artışı. Asimptotik gösterimin elemanı olan 4

önemli gösterim vardır: O-notasyonu, o- notasyonu, Ω- notasyonu, θ- notasyonu. Burada

sadece O gösterimi üzerinde durulacaktır. O gösterimi, fonksiyonların artış oranının üst

sınırını belirler. O(f(n)), f(n) fonksiyonundan daha hızlı artmayan fonksiyonlar kümesini

gösterir.

4.2.2.1 Büyük-O Gösterimi (notasyonu)

n elemanlı bir listedeki elemanların toplamını bulmak için n-1 toplama işlemi yapmak

gerekir diye genelleştirme yapmıştık. Yapılan işi, girdi boyutunun bir fonksiyonu olarak ele

almış olduk. Bu fonksiyon yaklaşımını matematiksel gösterim kullanarak ifade edebiliriz:

Big-O gösterimi veya büyüklük derecesi (order of magnitude). Büyüklük derecesini

problemin boyutuna bağlı olarak fonksiyonda en hızlı artış gösteren terim belirler. Örnek

olarak:

f(n) = n7 + 100n2 + 50 = O(n7)

Fonksiyonunda n' in derecesi n4'tür yani n' in büyük değerleri için fonksiyonu en fazla

n4 etkiler. Peki, daha düşük dereceli deyimlere ne olmaktadır? n' in çok büyük değerleri için

n4, 100n2'den ve 50'den çok büyük olacağından daha düşük dereceli terimler dikkate

 50

alınmayabilir. Bu diğer terimlerin, işlem süresini etkilemedikleri anlamına gelmez; bu

yaklaşım yapıldığında n' in çok büyük değerlerinde önem taşımadıkları anlamına gelir.

n, problemin boyutudur. Yığıt, liste, kuyruk, ağaç gibi veri yapılarında eleman sayılarıdır. n

elemanlı bir dizi gibi...

Bir listedeki tüm elemanların dosyaya yazılması için ne kadar iş yapılır : Cevap,

listedeki eleman sayısına bağlıdır.

Algoritma

OPEN (Rewrite) the file

WHILE more elements in list DO

 Print the next element

İşlemi yapmak için geçen süre:

(n*(Bir elemanın dosyaya yazılması için geçen süre))+dosyanın açılması sırasında

geçen süre Algoritma O(n)'dir (Algoritmanın zaman karmaşıklığı O(n)’dir) . Çünkü n tane

işlem + sadece dosya açılması işlemi vardır. Yüzlerce elemanın dosyaya kaydedildiği

düşünülürse, dosya açılması sırasında geçen süre miktarı rahatlıkla ihmal edilebilir. Ama az

sayıda eleman varsa dosya açılması sırasında geçen süre miktarı önem taşıyabilir ve toplam

süreye katılımı daha fazla olur.

Bir algoritmanın büyüklük derecesi, bilgisayarda işletildiğinde sonucun ne kadar

sürede alınacağını belirtmez. Bazen de bu tür bir bilgiye gereksinim duyulur. Örnek olarak bir

kelime işlemcinin 50 sayfalık bir yazı üzerinde yazım denetimi yapma süresinin birkaç saniye

düzeyinden fazla olmaması istenir. Böyle bir bilgi istendiğinde, Big-O analizi yerine diğer

ölçümler kullanılmalıdır. Program değişik yöntemlere göre kodlanır ve karşılaştırma yapılır.

Programın çalıştırılmasından önce ve sonra bilgisayarın saati kaydedilir. İki saat arasındaki

fark alınarak geçen süre bulunur. Bu tür bir "Benchmark" testi, işlemlerin belirli bir

bilgisayarda belirli bir işlemci ve belirli kaynaklar kullanılarak ne kadar sürdüğünü gösterir.

 51

Bilgisayarın yaptığı işin programın boyutu ile, örnek olarak satır sayısı ile ilgili olması

gerekmez. N elemanlı bir diziyi 0’layan iki program da O(n) olduğu halde kaynak kodlarının

satır sayıları oldukça farklıdır:

1’den n’ e kadar olan sayıların toplamını hesaplayan iki kısa programı düşünelim:

Program 1, O(n)’dir. n=50 olursa programın çalışması sırasında n=5 için harcanan

sürenin yaklaşık 10 katı süre harcanacaktır. Program 2 ise O(1)’dir. n=1 de olsa n=50’de olsa

program aynı sürede biter.

Şekil 4.1 Büyük O ifadeleri ve anlamları

Şekil 4.1: Büyük O ifadeleri

Program 1:

Dizi[0] = 0;
Dizi[1] = 0;
Dizi[2] = 0;
Dizi[3] = 0;
…
Dizi[n–1] = 0;

Program 2:

for(int i=0; i<n; ++i)
 Dizi[i] = 0;

Program 1:

Toplam = 0;
for(int i=0; i<n; ++i)
 Toplam = toplam + i;

Program 2:

Toplam = n * (n+1) / 2;

1.1 Fonk

siyon

1.2 İsim

1 Sabit
Log(n) Logaritmik

n Doğrusal
nx Polinomal
xn Üssel
n! Faktöriyel

 52

O(1) : Sabit zaman

Örnek: n elemanlı bir dizinin i. elemanına bir değer atanması O(1)’dir. Çünkü bir elemana

indisinden doğrudan erişilmektedir.

O(n) : Doğrusal zaman

Örnek: n elemanlı bir dizinin tüm elemanlarının ekrana yazdırılması O(n)’dir.

Örnek: sıralı olmayan bir dizideki (listedeki) elemanlardan birinin aranması O(n)’dir (en kötü

durumda da, ortalama durumda da).

O(log2n) : O(1)’den fazla O(n)’den azdır.

Örnek: Sıralı bir listenin elemanları içinde ikili arama (binary search) uygulanarak belirli bir

değerin aranması O(log2n)’dir.

O(n2) : İkinci dereceli zaman

Örnek: Basit sıralama algoritmalarının birçoğu (selection sort gibi) O(n2)’dir.

O(n log2n) : Bazı hızlı sıralama algoritmaları O(n log2n)’dir.

O(n3): Kübik zaman

Örnek: Üç boyutlu bir tamsayı tablosundaki her elemanın değerini artıran algoritmadır.

O(2n) : Üstel zaman, çok büyük değerlere ulaşır.

4.2.2.2 Pratikte Karmaşıklık

Değişik artış fonksiyonlarının aldıkları değerlere göre bir tablo, Şekil 4.2’de

gösterilmiştir.

Şekil 4.2: Değişik fonksiyonların f(n) değişik girdi boyutlarına (n) göre değerleri

Bir programın işletimi n3 adım sürüyorsa ve n=1000 ise, program 10003 adım sürecek

demektir. Yani 1.000.000.000 adım.

logn n nlogn n
2
 n

3
 2

n

0 1 0 1 1 2
1 2 2 4 8 4

2 4 8 16 84 16

3 8 24 64 512 256

4 16 64 256 4096 65536

5 32 160 1024 32768 4294967
296

 53

Kullanılan bilgisayar saniyede 1.000.000.000 adımı gerçekleştirebilecek kadar hızlı ise bu

program tam 1 saniye sürecektir.

Şekil 4.2’ deki fonksiyonlardan elde edilmiş bir grafik Şekil 4.3’te görülmektedir.

Şekil 4.3: Değişik fonksiyonların grafikleri

4.3 Algoritmaların Karmaşıklık Değerlendirmesi

Bu bölümde Yakın Minimali Örtme Metodunun asal implikantları oluşturan kısmının

karmaşıklığı karşılaştırmalı olarak hesaplanacaktır. Çünkü bunların esas asal implikant

belirleme ve örtme kısımları var olanlar ile aynıdır.

Verilen On-küpü örtmek için asal implikantların yeterli bir kümesini oluşturan belli buluşsal

metotlar doğrudan örtme prensibini kullanarak aşağıdaki algoritmaya göre çalışırlar (Fiser ve

Hlavıcka 2003).

1. Yeterli asal implikantlar kümesini elde etmek için bir tane On küp seçmek.

2. Bu On küpü örten implikantları üretmek

3. Verilen implikantı, henüz dokunulmamış literallerden (koordinat değerleri) bir

tanesini çıkararak (x ile değiştirerek) genişletmek

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n

f(
n

)

log2n

n

n log2n
n

2 2
n n

3

 54

4. Sonucu, Off kümesi ile kesiştirmek

5. Eğer kesişme işleminin sonucu boş değilse çıkarılan literali geri koymak

6. Eğer işleme tabi tutulmayan bir literal varsa 3. adıma geri dönmek, değilse devam

etmek

7. Genişletilen implikantı, asal implikantlardan bir tanesi olarak kaydetmek

8. Eğer bütün implikantlar genişletildiyse 11. adıma gitmek değilse devam etmek

9. Henüz işleme tabi tutulmamış implikantlardan birisini yeni implikant olarak kabul

etmek

10. 3. adıma geri dönmek

11. Örtme problemini çözmek

Bu algoritma SON kümesi boşalıncaya kadar tekrarlanır. Bu algoritmaya dayanarak,

verilen terimin literalleri (veya koordinatları) birer birer etkisiz duruma getirilir. Bu işlem söz

konusu terim asal implikant oluncaya kadar sürdürülür. Bu işlemler polinornal zamanda

(O(n!)) yapılabilir. Bu, matematiksel olarak aşağıdaki gibi formüle edilebilir. On-küpü i esas

ve n-i esas olmayan (removed) koordinatla ifade edebilmek amacıyla genişletebilmek için i

tane incelemeye ihtiyaç vardır. Bundan dolayı, genişletilen küpün koordinatlarının hepsi için

gereken incelemelerin toplam sayısı aşağıdaki gibi ifade edilebilir;

2
)(

2
*)1(

2

1

0

nn

nn

iQ
n

i

+=

+=

=∑
−

=

 (4.1)

Fakat genellikle, incelenen bir küp 0 <m < n koordinatları çıkarıldıktan sonra asal

implikant olur. Bunu dikkate alarak, incelemelerin beklenen sayılarının genel ifadesi Tablo

 55

4.4’ ün birinci ve ikinci sütunlarında sunulan verilerin tümevarımıyla elde edilmiştir. Yani,

(4.1) deki formül yerine aşağıdaki formül kullanılacaktır.

2
)(*)1(

2

0
mm

nmQ
+−+= (4.2)

Varsayalım ki, minimumlaştırılan n değişkenli bir fonksiyon, On-kümesi için K1 x 2

boyutuyla ve 0ff-kümesi için K2 x 2 boyutuyla gösterilmiş olsun.

Tablo 4.3 n ve m değerlerine bağlı olarak genişletilen küpün

incelemelerinin sayısı

Esas olmayan

koordinatların

sayısı (m)

Gereken incelemenin sayısı (Q0) Q0’ in genel ifadesi

0 n

1 n+(n–1) 2n-1

2 n+(n–1)+(n–2)= 3n–3

3 n+(n–1)+(n–2)+(n–3)= 4n–6

4 n+(n-l)+(n–2)+(n–3)+(n–4) = 5n-l0

... ...

m
n+(n-l)+(n–2)+(n–3)+(n–4)+…+(n-

m) =n(m+1)-(1+2+3+…+m)

0Q = n(m+1)- ∑
=

m

i

i
1

2
)(*)1(

2

0
mm

nmQ
+−+=

İncelenen On-küplerin maksimum muhtemel sayısı, a < K1 olduğu durumlarda a x 2n

dir ve genişletilmiş küp ile bire bir karşılaştırılan Off-küplerin sayısı K2 x 2n dir. Sonuç

olarak, On-küplerin genişletilmesi metoduna dayanarak bir asal implikantın oluşturulmasının

karmaşıklığı aşağıdaki formül ile ifade edilebilir.

 56

)1)(2(2**2**2* 2201 +−== mmnKaKQaQ
nnn (4.3)

Fakat genellikle, bir minterm birden fazla asal implikant tarafından örtülebilir. Bu

nedenle sezgisel metotların çoğu d’ nin başlangıç boyutunun her bir terimi için n-d âdete

kadar asal implikant üretir (Fiser ve Hlavıcka 2003). Her bir izole edilmiş minterm bir tek asal

implikant tarafından örtüldüğünden, bir minterm için oluşturulmuş asal implikantların

ortalama sayısı yaklaşık olarak (n-d)/2 ye eşit varsayılabilir. Bütün mintermler için d sıfır

olduğundan, verilen mintermi örten yeterli sayıda asal implikantların (Fiser ve Hlavıcka 2003)

oluşturulmasının toplam karmaşıklığı, aşağıdaki formül ile hesaplanabilir:

)1)(2(2*** 12
22 +−= −

mmnKnaQ
n (4.4)

Diğer taraftan, burada önerilen metot aşağıdaki algoritmada ki gibi çalışır.

1. Asal implikantlar kümesinin tamamını elde etmek için gerekli bir tane On küp

(minterm) seçmek. Bunu genişletici olarak kullanmak

2. Genişletilmesi gereken küp olarak birinci 0ff-küpü seçmek

3. Verilen 0ff-küpü genişletmek (genişletme kuralına göre)

4. Genişletilen küpü, önceden genişletilmiş olanlarla bire bir karşılaştırmak. Eğer

genişletilen küp diğerlerini içeriyorsa, kapsanan küpleri silmek. Veya önceden

üretilmiş küplerden birisi bu küpü içeriyorsa bu küpü silmek

5. Eğer bütün Off-küpler işleme tabi tutulduysa 8. adıma gitmek değilse devam etmek

6. Henüz işleme tabi tutulmamış bir sonraki On-küpü seçmek

7. 3. adıma geri dönmek

 57

8. n-küp den genişletilmiş asal küpler kümesini çıkartmak

9. Asal olmayan küpleri silmek

10. Örtme problemini çözmek.

Bu algoritma SON kümesi boşalıncaya kadar tekrarlanır. Bu algoritmaya göre, verilen

On-küpü örten tüm asal implikantların kümesini üretmede Off-küplerin hepsinin

genişletilmesi için On-küp ile bire bir karşılaştırılması gereklidir. Bundan dolayı, her bir a x

2n On-küp, genişletilen K2 x 2n 0ff-küp ile karşılaştırılır. Bununla, yeni genişletilmiş Off-küp

önceden genişletilmiş olanlarla asal olmayanların silinmesi için karşılaştırılır. Yapılan

uygulamalar göstermiştir ki buna benzer karşılaştırmaların sayısı n/2’ yi geçmemektedir.

Sonuç olarak, sunulan metodun karmaşıklığının en kötü zaman değeri:

12
223 2*)2(*)21(2**2* −+=+= nnn

KnanKaQ (4.5)

Bu yüzden, burada sunulan asal implikant üretme algoritmasının var olan herhangi bir

algoritmaya göre aşağıdaki değer kadar daha hızlı gerçekleştirilebilir olmasını beklemek

mümkündür.

12

2

12
2

3

2

2*)2(*

)1)(2(2***
),(−

−

+

+−
==

n

n

Kna

mmnKna

Q
Q

mnF (4.6)

Daha fazla görsellik için, Şekil 4.2’ de m’ nin farklı değerlerine karşılık gelen F(n)’

nin eğrileri gösterilmiştir. Yaklaşık olarak m’ nin ortalama değerinin 0.25n alınmıştır.

 58

0

200

400

600

800

1000

1200

1 4 7 10 13 16 19 22 25 28 31

n

F
(n

)

Şekil 4.2: n ve m değerleri artarken F(n,m) çok hızlı artar

4.4 QMM Aralık Değerleri Sayısının Bulunması ve Karmaşıklık Değerlendirilmesi

Fonksiyonun çıkışlarının 1 olduğu kümenin elemanları (mintermleri) içerdikleri 1

sayısına göre gruplandırılır. n değişkenli fonksiyon için n+1 tane altküme vardır. Birincisi

sıfırlar altkümesidir, hiç 1 elemanı içermez. Bir tane 1 elemanı içerenler birler altkümesidir. n

tane 1 elemanı içerenler n. altkümedir. Buradan i. altkümenin i tane 1 elemanı içerdiğini

söyleyebiliriz. Bundan dolayı i. altkümenin gücü (Mano 2002, Miller 1965),

Pi=Cn
i (4.7)

Bir altkümedeki bütün mintermler bir sonraki altkümenin bütün mintermleri ile

karşılaştırılır. Örneğin; ikinci altkümenin mintermleri, üçüncü altkümenin mintermleri ile

karşılaştırılır. i. küme ile (i+1). kümenin karşılaştırılmasının asimptotik değeri ve bütün

kümelerin birbirleri ile karşılaştırılmasından oluşan toplam asimptotik değeri, sırasıyla

aşağıdaki formüller ile hesaplanır (Mano 2002, Kahramanlı ve Başçiftçi)

1+= i

n

i

ni xCCW (4.8)

Ve

m=0.4n

m=0.3n
m=0.25n

m=0.2n

m=0.1n

 59

)(
1

0

1∑
−

=

+=
n

i

i

n

i

nT xCCW (4.9)

i. altküme ile (i+l). Altkümenin karşılaştırılmasının sonucunda boş olmayan sonuçların

asimptotik değeri ve bu sonuçların toplam asimptotik değeri aşağıdaki formüller ile hesaplanır

(Mano 2002, Kahramanlı ve Başçiftçi)

i

ni xCi)-(n R = (4.10)

Ve

) xCi)-(n(R n

1

0
T

i
n

i

∑
−

=

= (4.11)

Yukarıda da değinildiği gibi, bütün karşılaştırmaların asimptotik değeri ve boş

olmayan bütün sonuçlar (AAA) ve (AAA) da gösterilen ve aşağıda tekrar verilen formüller ile

hesaplanır.

)(
1

0

1∑
−

=

+=
n

i

i

n

i

nT xCCW (4.12)

Ve

) xCi)-(n(R n

1

0
T

i
n

i

∑
−

=

= (4.13)

Aşağıda 20 değişkene kadar olan değerler bir tablo halinde verilmiştir. Tablo 4.4.

YMÖA ile QMM’ nun karmaşıklık karşılaştırılması

 60

Tablo 4.4. YMÖA ile QM Metodunun karmaşıklık analizi

Quine-McCluskey metodu YMÖA

Toplam Geçici Sonuçlar Boş Olmayan Geçici Sonuçlar
Değ.

Say.
Asimptotik Değer

(Wt)
0(2n) Karmaş. Asimptotik

(Rt)
0(2n) Karmaş.

Geçici

Sonuç.

Sayısı

1 1 0,5*21 1 0,50*21 1

2 4 1,0*22 4 1,00*22 2

3 15 1,9*23 12 1,50*23 3

4 56 3,5*24 32 2,00*24 4

5 210 6,6*25 80 2,50*25 5

6 792 12,4*26 187 2,92*26 6

7 3.003 235*27 414 3,23*27 7

8 11.440 44,7*28 893 3,49*28 8

9 43.758 85,5*29 1.930 3,77*29 9

10 167.960 164,0*210 4.246 4,15*210 10

11 646.646 315,7*211 9.516 4,65*211 11

12 2.496.144 609,4*212 21.542 5,26*212 12

13 9.657.700 1.178,9*213 48.764 5,95*213 13

14 37.442.160 2.285,3*214 109.581 6,69*214 14

15 145.422.675 44379*215 243.554 7,43*215 15

16 565.722.720 8.632,2*216 534.891 8,16*216 16

17 2.203.961.430 16.814,9*217 1.161.526 8,86*217 17

18 8.597.496.600 32.796,8*218 2.497.440 9,53*218 18

19 33.578.000.610 64.045,0*219 5.325.568 10,16*219 19

20 131.282.408.400 125.200,7*220 11.280.076 10.76*220 20

4.5 Metodların Karşılaştırılması

 61

Geliştirilmiş olan Yakın Minimali Örtme Algoritması (YMÖA), ESPRESSO-II

algoritması ile karşılaştırılmıştır. Karşılaştırma kriteri olarak üç ana durum belirlenmiştir.

Bunlar:

� Algoritmaların çözüm sonucunda buldukları çarpım terimlerinin toplam ifadesinin

sayısı (SOP Sayısı),

� Algoritmaların çözüme ulaşma süreleri,

� Algoritmaların çözüme ulaşırken kullandıkları bellek kapasitesi

Gerçekleştirilen bu karşılaştırmalar aşağıdaki Tablo 4.5 Tablo 4.6 ve Tablo 4.7’ de

verilmiştir.

� YMÖA algoritması C++ programlama dilinde kodlanmıştır.

� Espresso-II algoritması da C programlama dilinde kodlanmıştır.

Bütün algoritmalar aynı dosya formatını kullanmıştır. Yani YMÖA ve Espresso-II

algoritmaları için aynı benchmarklar kullanılmıştır. Algoritmaları aynı şartlarda

karşılaştırabilmek için Espresso-II algoritmasının belirlediği durumlar dikkate alınmıştır.

Karşılaştırmalar tek çıkışlı fonksiyonlar kullanılarak yapılmıştır. Benchmarkların

karşılaştırılması için tam tanımlanmamış ve tam tanımlanmış fonksiyonlar kullanılmıştır.

Fonksiyonların tam tanımlanmış veya tam tanımlanmamış fonksiyonlar olduğunu belirtmek

için Espresso-II algoritmasının. type seçeneği kullanılmıştır. Bu seçenekte (.type fdr)

fonksiyonun durumunu belirlemektedir. Bu seçenekteki f doğru kümesi için, r yanış kümesi

için ve d belirsizler kümesi için kullanılmaktadır.

Karşılaştırmaların gerçekleştirilmesini kolaylaştırmak için Visual Basic programlama

dilinde ara yüz programı hazırlanmıştır.

Aşağıdaki tablolarda benchmarklara ait, giriş değişken sayısı, SON sayısı, SOF sayısı,

SOP sayısı, algoritmaların sadeleştirme zamanları ve kullandıkları bellek kapasiteleri

verilmiştir.

Tablo 4.5. Standart MCNC benchmarkları için SOP sayısı

 62

Aİ sayısı

B
en

ch
m

ar
kl

ar

D
eğ

iş
ke

n

sa
yı

sı

E
sp

.

Z
am

an

Y
M

Ö
A

za
m

an

N

E

A

A

Addm4 9 18 18 1

b11 12 12 13 0,923

br2 12 9 9 1

Life 9 16 19 0,842

EX5 8 14 14 1

ex51 9 25 25 1

EXPS 9 20 16 1,25

m2 10 11 11 1

max5 9 23 23 1

P3 8 18 21 0,857

prom1 9 22 21 1,047

z9sym 9 18 18 1

root 9 16 15 1,066

SY0 20 136 143 0,961

T10 10 125 130 0,960

test2 11 261 287 0,909

test3 10 133 135 0,985

T4 18 35 35 1

Performans ve sonuç kalitesini karşılaştırmak için standart MCNC Benchmarkları

YMÖA algoritması ve ESPRESSO tarafından sadeleştirilmiştir.

Karşılaştırmalar Intel P4 2.26 Ghz işlemcili ve 256 MB RAM belleği olan standart bir

kişisel bilgisayarda gerçekleştirilmiştir. Tablo 4.5’ de verilen on sekiz farklı tek-çıkışlı

fonksiyon kullanılmıştır.

 63

Fonksiyonlara ait olan değişken sayıları, SON sayıları ve SOF sayıları tablolarda

verilmiştir. Çarpım terimlerinin toplamı ifadesi şeklinde verilen sonuçlar (SOP sayısı)

açısından algoritmalar karşılaştırıldığında

Tablo 4.5’ den elde edilen bilgiler şöyledir:

Yakın Minimali Örtme Algoritması ile Espresso-II karşılaştırıldığında; fonksiyonların

%45’ inde eşit sayıda SOP sayısına sahip oldukları görülmüştür. Bu algoritmalardan

Espresso, fonksiyonların % 38,75’ inde daha iyi sonuç bulurken YMÖA % 16,66’ inde daha

iyi sonuç bulmuştur. SOP sayılarının ortalama değerlerine göre YMÖA ile Espresso’ yu

karşılaştırdığımızda Espresso’ nun daha iyi sonuç bulduğu fonksiyonlarda ortalama % 4,3

daha az SOP bulmuştur. Burada Espresso algoritmasının daha iyi sonuç bulduğu görülse de

YMÖA ile Espresso algoritmalarının çözüme ulaşma yöntemleri farklıdır. YMÖA olabilecek

ihtimal sonuçları bulurken Espresso algoritması kesin olan sonuçları bulmaya çalışmaktadır.

Bu şartlarda dahi YMÖA’ nın daha iyi sonuç bulduğu fonksiyonların olması bu algoritmanın

güçlü ve geliştirilebilecek yönlerinin olduğunu göstermektedir.

 64

Tablo 4.6. Standart MCNC Benchmarkları için çalışma zamanları

Çalışma zamanı

(milisaniye)

B
en

ch
m

ar
kl

ar

D
eğ

iş
ke

n
sa

yı
sı

E
sp

.

Z
am

an

Y
M

Ö
A

za
m

an
 N

E

Z

Z

ADDM4 9 43,750 28,120 1,554

b11 12 60,937 23,435 2,599

br2 12 60,930 23,435 2,589

Life 9 64,065 25,002 2,562

ex5 8 43,750 26,562 1,647

ex51 9 25,000 43,750 0,571

Exps 9 62,500 25,122 2,499

m2 10 62,584 26,255 2,451

max5 9 64,065 26,562 2,411

P3 8 60,935 25,240 2,437

prom1 9 60,937 23,437 2,6

Z9sym 9 23,437 43,750 0,535

Root 9 62,500 23,437 2,666

sy0 20 10,625 25,000 4,249

t10 10 60,937 26,562 2,294

test2 11 15,312 51,562 2,969

test3 10 70,312 26,562 2,647

t4 11 60,937 25,000 2,437

Tablo 4.6’ da görüldüğü gibi, bu benchmarkları YMÖA ve Espresso tarafından

sadeleştirilmiştir. YMÖA ve Espresso’ nun sadeleştirme işlemlerini yaparken ihtiyaç

duydukları zaman açısından değerlendirilmesi Tablo 4.6’ da gösterilmiştir. Bu

değerlendirmeye göre;

 65

Yakın Minimum Örtme Algoritması ile Espresso Algoritmasını karşılaştırıldığında

YMÖA’ sının sadeleştirme işlemlerini çok daha hızlı gerçekleştirdiği görülmektedir.

Fonksiyonların % 88,8’ sında YMÖA daha hızlı bir şekilde sadeleştirme yapıp sonuca

ulaşmıştır. Bu iki algoritma açısından bakıldığında YMÖA’ sı Espresso algoritmasına göre

çok daha hızlıdır. Ortalama olarak YMÖA Espresso’ ya göre 2,31 kat daha hızlı sadeleştirme

yapmaktadır.

Tablo 4.7. Standart MCNC benchmarklar için bellek kullanım durumları

Bellek Kullanımı

(bayt)

B
en

ch
m

ar
kl

ar

D
eğ

iş
ke

n
sa

yı
sı

E
sp

.

B
el

le
k

Y
M

Ö
A

B
el

le
k N

E

B

B

ADDM4 9 151552 274432 0,552

b11 12 282624 307200 0,92

BR2 12 262144 278528 0,941

Life 9 442368 479232 0,930

EX5 8 8192 90112 0,1

ex51 9 180224 237568 0,758

EXPS 9 294912 311296 0,947

m2 10 372736 409600 0,91

MAX5 9 577536 622592 0,927

P3 8 671744 708608 0,945

PROM1 9 745472 724992 1,028

Z9sym 9 778240 806912 0,964

root 9 851968 880640 0,967

SY0 20 917504 950272 0,965

T10 10 937984 970752 0,966

TEST2 11 1028096 1114112 0,922

TEST3 10 1257472 1265664 0,993

T4 11 1331200 1363968 0,975

 66

Algoritmaların sadeleştirme yaparken kullandıkları bellek alanı bakımından

değerlendirilmesi yapıldığında, Espresso’ un YMÖA’ na göre %5,5 fonksiyonda daha iyi

olduğu görülmesine rağmen %94,5 fonksiyonda YMÖA daha az bellek alanı kullanmıştır.

 67

5 SONUÇ VE ÖNERİLER

5.1 Sonuç

Bu tez çalışmasında anahtarlama fonksiyonlarını sadeleştirmek için iki tane yeni

yöntem sunulmuştur. Bu yöntem Yakın-Minimali Örtme Algoritması (YMÖA) dır.

Sunulan yöntemde küp cebri işlemleri kullanılmaktadır. Sunulan algoritma küp

cebrinin koordinatlı çıkarma, koordinatlı kesişim ve dönüşümlü yutma işlemleri

kullanılmıştır. Bu işlemlerin gerçekleştirilmesi seri bir şekilde yapılmaktadır. Seri gerçekleşen

bu işlemler çözüme ulaşma süresini artırmaktadır. Bu işlemlerden koordinatlı kesişim ve

dönüşümlü yutma işlemleri temel bilgisayar işlemleri üzerinden paralel bir şekilde

gerçekleştirilmiştir. Bu sayede algoritmaların daha hızlı bir şekilde çözüme ulaşmaları

sağlanmıştır. Çünkü küp cebri işlemlerini gerçekleştirebilmek için yapılacak

karşılaştırmaların hepsi bit bit yapılmaktadır. Temel bilgisayar işleri üzerinden

gerçekleştirildiğinde ise sayıların karşılaştırılması yapılmıştır. Veya sonuçların elde

edilmesinde Ve (And), Veya (Or), Değil (Not). Veya Değil (Exor) lojik işlemleri

kullanılmıştır. Bu sayede bit bit karşılaştırma yapmaktan kaçınılmıştır.

 Sunulan YMÖA da verilen fonksiyonun ON kümesi mintermlerinden bir tanesini

rasgele seçilmekte ve bu mintermi kapsayan asal implikantlar (AI) oluşturulmaktadır. YMÖA

büyük implikantı seçme işlemi kullanılarak esas asal implikantlar (EAI) bir bir seçilmektedir.

Belirlenen asal implikant için eşit sayıda minterm örtülürse üretilmiş AI’ lardan bir tanesi

seçilmektedir. Bu işlemlerin yapılması ile fonksiyonun sadeleşmiş halini temsil edecek esas

asal implikantlar belirlenmiş olur. Sunulan YMÖA önemli bir şekilde var olan metotlardan

hızlı çalışmaktadır ve daha az bellek kapasitesine ihtiyaç duymaktadır. Çünkü minimum

sayıda geçici sonuçlar üreterek işleme tabi tutmaktadır. Bu özellikler sunulan yönetimi özlü

ve son derece verimli yapmaktadır.

Geliştirilen algoritma olan Yakın Minimali Örtme Metodunun asal implikantları

oluşturan kısmının karmaşıklığı karşılaştırmalı olarak hesaplanmıştır. Çünkü bunların esas

asal implikant belirleme ve örtme kısımları var olanlar ile aynıdır. Verilen algoritma C++

programlama dilinde kodlanmıştır. Karşılaştırması yapılacak olan Espresso programı da C

 68

programlama dilinde kodlanmıştır. Sunulan algoritmada ve karşılaştırması yapılan Espresso

programında aynı dosya yapısı kullanılmıştır. Programların kullanımını kolaylaştırmak için

Visual Basic programlama dilinde ara yüz programı yazılmıştır. Karşılaştırmalarda tek çıkışlı

fonksiyonlar kullanılmıştır. Karşılaştırması yapılan fonksiyonlar tam tanımlanmamış veya

tam tanımlanmış fonksiyonlardır. Algoritmaların karşılaştırması üç duruma göre yapılmıştır.

Bunlar, algoritmaların verilen fonksiyonları sadeleştirdikten sonra elde ettikleri çarpım

terimlerinin toplamı (SOP) sayısına göre, algoritmaların sadeleştirme zamanları ve bellek

kullanma durumlarıdır.

Performans ve sonuç kalitesini karşılaştırmak için on sekiz farklı tek-çıkışlı fonksiyon

YMÖA ve ESPRESSO tarafından sadeleştirilmiştir. Fonksiyonlara ait olan değişken sayıları

tablolarda verilmiştir. Çarpım terimlerinin toplamı ifadesi şeklinde verilen sonuçlar (SOP

sayısı) açısından algoritmalar karşılaştırıldığında YMÖA ile Espresso algoritması

sonuçlarında; fonksiyonların %75’ inde eşit sayıda SOP sayısına sahip oldukları, Espresso

programının fonksiyonların %18,75’ inde daha iyi SOP sayısı bulduğu, YMÖA’ nında

fonksiyonların %6,25’ inde daha iyi SOP sayısı bulduğu görülmüştür. Algoritmaların

buldukları SOP sayılarına göre; Espresso’ nun daha iyi sonuç bulduğu fonksiyonlarda

ortalama %9,7 daha az SOP bulurken, YMÖA’ nın daha iyi sonuç bulduğu fonksiyonlarda

ortalama %45 daha az SOP bulunmuştur.

YMÖA algoritmasının ve Espresso’ nun fonksiyonları sadeleştirme zamanlarına göre

karşılaştırıldığında; YMÖA’ sının sadeleştirme işlemlerini çok daha hızlı gerçekleştirdiği

görülmektedir. Fonksiyonların %89,6’ sında YMÖA daha hızlı bir şekilde sadeleştirme yapıp

sonuca ulaşmıştır. %10,4’ ünde ise algoritmaların sonuca ulaşma zamanları eşittir. Ortalama

olarak YMÖA Espresso’ ya göre 7,9 kat daha hızlı sadeleştirme yapmaktadır.

Algoritmaların kullandıkları bellek alanı bakımından karşılaştırıldığında, Espresso’

nun YMÖA’ na göre %16,7 fonksiyonda daha iyi Olduğu görülmesine rağmen %83,3

fonksiyonda YMÖA tarafından daha az bellek alanı kullanılmıştır. Algoritmaların daha az

bellek alanı kullandıkları fonksiyonlardaki durumlarına bakıldığında ise YMÖA %13,2 daha

az bellek alanı kullanırken Espresso %9 daha az bellek alanı kullanmıştır.

 69

5.2 Öneriler

Bu yüksek lisans tez çalışmasında geliştirilen algoritma tek çıkışlı fonksiyonlara

uygulanmıştır. Bu çalışmanın bir sonraki adımı olarak çok çıkışlı fonksiyonlar için bu

algoritmalar geliştirilebilir. Bu algoritmaların çok çıkışlı fonksiyonlar için geliştirilmesi ile

çok çıkışlı diğer algoritmalarla çözüme ulaşma zamanları, kullandıkları bellek alanı ve SOP

sayıları durumlarına göre karşılaştırılabilirler. Tek çıkışlı fonksiyonlar ile çok çıkışlı

fonksiyonların ortak noktaları araştırılarak bu algoritmaların verimlilikleri incelenebilir.

YMÖA verilen fonksiyonun SON kümesinden hedef mintermi seçerken rasgele seçim

yapılarak bu mintermi kapsayacak asal implikantlar bulunmaktadır. Hedef mintermi seçerken

izole edilmiş mintermler belirlenebilir ve daha sonra bunların arasından bir tanesi seçilebilir.

Hedef mintermi seçmek için başka bir prosedür olarak komşuluk faktörleri dikkate alınarak

geliştirilebilir. Bu prosedür için önce bütün mintermler için komşuluk faktörleri hesaplanır.

Daha sonra en düşük komşuluk faktörüne sahip olan minterm seçilir. Bu işlem, sonucun kesin

olması istenen durumlarda iyi sonuçlar vermesi beklenirken sadeleştirme zamanı açısından da

kötü sonuçlar ortaya koyabilir.

Bu tez çalışmasında sunulan algoritmalarda küp cebri işlemleri kullanılmıştır. Bu

işlemler seri bir şekilde gerçekleştirildiği için bunlardan koordinatlı kesişim ve dönüşümlü

yutma işlemleri temel bilgisayar işleri üzerinden gerçekleştirilerek paralel bir duruma

getirilmiştir. Bu paralel işlemler sayesinde algoritmalar önemli bir şekilde hızlanmıştır.

 70

6 KAYNAKLAR

Allahverdi N.M. and Kahramanlı S.S., 1995, Routing Algorithm in Hypercube with

Application Cube Algebra.

Allahverdi N.M., Kahramanlı Ş.Ş., Erciyeş K., 2000, A Fault Tolerant Routing Algorithm

Based On Cube Algebra For Hypercube Systems. Journal of Systems Architecture 46, pp.

201–205.

Atallah M. J., 1998, Algorithms and Theory of Computation Handbook, CRC Press.

Başçiftçi F., Kahramanlı Ş., Tütüncü K., Saraçoğlu R., 2003, Quine McCluskey Lojik

Fonksiyonları Sadeleştirme Metodu, II. Ulusal Meslek Yüksekokulları Sempozyumu, 15-17

Ekim, s.365-378, Ege Üniversitesi, İzmir.

Bovet DP., Crescenzi P., 1994, Introduction to the Theory of Complexity. Prentice Hall,

Eaglewood Cliffs, New Jersey.

Brayton, R., Hachtel, G.D.. Hemachandra, L.. Newton, A.R. and Sangiovanni Vincentelli,

A.L., 1982, A Comparison Of Logic Minimization Strategies Using ESPRESSO. An APL

Program Package For Partioned Logic Minimization. Proc. Int. Symp. On Circ. And Sys., pp:

43-49, Rome, May.

Brayton, R.K., Hachtel, G.D., McMullen, C., Sangiovanni-Vincentelli, A.L., 1984, Logic

Minimization Algorithms For VLSI Synthesis. ISBN 0–89838–164–9, Kluwer Academic

Publishers.

Brayton R.K., McGeer P.C., Sanghavi J., Sangiovanni-Vincentelli, A.L., 1993, A New Exact

Minimizer for Two-Level Logic Synthesis, Kluwer Acadernic Publishers, pp: 1-31.

Bryant, R.E., 1986, Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Trans. On Computer, 35 pp: 677–691, Aug.

 71

Bryant R.E., 1995, Binary Decision Diagrams and Bey. En. Tech. for. Ver. The Proc. Int.

Conf. On CAD, pp: 236–243, Nov.

Chai, L., 2000, ESOP Circuit Minimization Based On The Function On-Set. Master of

Sciences, Mississippi State University.

Coudert O., Madre J. C., 1993, Towards a Symbolic Logic Minimization Algorithms. Proc.

VLSI Design, Jan.

Coudert O., 1994, Two-Level Logic Minimization: An Overview, Integration, the VLSI

Journal, 17–2, pp: 97–140, Oct.

Çelikağ M.., 1989, An implementation and Assessment of Some of the Boolean Function

Minimization Methods. Master Thesis, Middle East Technical University.

Çırpan H.A., 1992, Lojik Fonksiyonların Bilgisayarla Basitleştirilmesi İçin Algoritmalar.

Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, İstanbul Üniversitesi.

Çölkesen R., 2002, Veri Yapıları ve Algoritmalar. Papatya Yayıncılık, Mayıs 2002, ISBN:

975–6797–23–1

Dagenais M.R., Agarwal V.K., Rumin N.C., 1986, McBOOLE: A New Procedure for Exact

Logic Minimization. IEEE Transactions On Computer Aided Design, Vol. CAD, No:1, Jan.

Dietmeyer D.L., 1979, Logic Design of Digital Systems. Boston, Bacon.

Fiser P., Hlavıcka J., 2003, BOOM - A Heuristic Boolean Miniınizer. Joumal of Computing

and Informatics, pp: 1001–1033 jun.

Gurunath B., Biswas N.N., 1989, An Algorithm for Multiple Output Minimization. IEEE

Transactions On CAD, Vol. 8, No:9, Sep.

Güneş S., 2000, Hiperküp Paralel İşlem Sisteminde Arızaya Toleranslı Veri İletimi

Yöntemlerinin Analizi Ve Simülasyonu. Doktora Tezi, Selçuk Üni. Fen Bilimleri Enstitüsü.

 72

Hong, S.J., Cam, R.G. and Ostapko, D.L., 1974, MINI: A Heuristic Approach For Logic

Minimization. IBM J. of Res. and Dev., Vol..18, pp: 443-458, Sep.

Jacob J., Mishehenko A., 2001, Unate Decomposition of Boolean functions. Proc. IWLS, pp:

66–71.

Johnson baugh R., Schaefer M., 2004, Algorithms. Pearson Prentice Hall.

Kahramanlı S.S. and Allahverdi N.M., 1993, Compact Method of Minimization of Boolean

Functions with Multiple Variables. Proc. Inter. Symp. Application of Computers, Selçuk

University, Konya, Turkey, 433–440.

Kahramanlı Ş., Allahverdi N., 1996, An Algebraic Approach to Transformations on

Hypercube System. Mathematical and Computational Applications, pp: 50–59.

Kahramanlı, Ş., Özcan, M., 2002, Lojik Tasarımın Temelleri ve Uygulamaları. Atlas Yayın

Dağıtım. İstanbul.

Kahramanlı Ş., Başçiftçi F., 2003. Boolean Functions Simplification Algorithm Of O(n)

Complexity. Mathematical Computational Applications, Volume 8 Num: 3, pp:271-278.

ISSN:1300-686X

Kahramanlı Ş., Başçiftçi F., Savran 1., 2005, O(n) Karmaşıklığında Anahtarlama

Fonksiyonlarını Sadeleştirme Algoritması. 4. Uluslararası İleri Teknolojiler Sempozyumu,

Selçuk Üniversitesi, Konya, 28–30, Eylül, s: 214–219

Karnaugh, M., 1953, A Map Method for Synthesis of Combinational Logic Circuits. Trans.

Comm. And Electronics, Vol: 72

Kruse R.L., 1987, Data Structures And Program Design. Prentice Hall.

Lee, C.Y., 1959, Representation of Switching Circuits by Binary Decision Diagrams. Bell

System Technical Joumal, pp: 985–999, June.

 73

Lin B., Somenzi F., 1990, Minimization of Symbolic Relations. IEEE İni. Conf. on Computer

Aided Design, pp: 88–91.

Malik S., Wang A.R., Brayton R.K., Sangiovanni-Vincentelli A., 1988, Logic Verification

Using Binary Decision Diagrams in a Logic Synthesis Environment. The Proc. Int. Conf. on

CAD, pp: 6–9.

Malik A.A., Brayton R.K., Newton A.R., Sangiovanni-Vincentelli A., 1991, Reduced Offset

for Two Level Multi-Valued Logic Minimization. IEEE Trans. on Computer-Aided Design,

CAD, pp: 413–426.

Mano M. M., 1984, Digital Design, Prentice-Hall Int. Ed. Mano, M.M., 2002, Sayısal

Tasarım. Literatür Yayıncılık, İstanbul.

McCluskey, E., 1956, Minimization of Boolean Functions. Beli System Technical Journal,

Vol. 35, No.5, pp: 1417-l444.

McCluskey, E.J., 1965, Introduction To The Theory Of Switching Circuit. McGraw Hill,

McCluskey, E.J., 1986, Logic Design Principles with Emphasis on Testable Semicustom

Circuits., Englewood Cliffs, New Jersey, Prentice-Hall.

McGeer P., Jagesh S., Robert Brayton, Alberto Sangiovanni Vincentelli, 1986, Espresso-

Signature: A New Exact Minimizer for Logic Functions. University of California al Berkeley,

CA 94720.

McGeer P., Sanghavi J, Brayton, R.K., Sangiovanni-Vincentelli, 1993, ESPRESSO

SIGNATURE: A New Exact Minimizer for Logic Functions. IEEE Transactions on VLSI,

Vol. 1, No. 4, pp: 432–440.

McGeer P., Sanghavi 3., Brayton R., Sangiovanni-Vincentelli A., 1993, ESPRESSO

SİGNATURE: A new exact Minimizer for Logic Functions. Proc. DAC 93, pp. 618- 624.

 74

Minato, S. 1992, Fast Generation of Irredundant Sum-Of-Product Forms From Binary

Decision Diagrams. Proc. 92, pp: 64–73.

Mishchenco A., Sasao T., 2003, Large-Scale SOP Minimization Using Decomposition and

Functional Properties. DAC, June 2–6, pp: 49–154.

Nadjafov E.M. and Kahramanov S.S., 1973, On the Synthesis of Multiple Output Switching

Scheme. Scientific Notes of Azerbaijan Institute of Petroleum and Chemistry, Baku,

Azerbaijan. Vol. IX, No 3 pp: 65–69.

Perkins S.R., Rhyne T., 1988, An Algorithm for Identifying and Selecting The Prime

Implicants of a Multiple-Output Boolean Function. İEEE Transactions On Computer Aided

Design, Vol. 7, No:1 1, Nov.

Pomper G. and Armstrong J.A., 1981, Representation of Multi Valued Functions Using the

Direct Cover Method. IEEE Trans. Comput, pp. 674–679, Sept.

Quine W.L., 1952, The problem of Simplifying Truth Functions. Amerikan Mathematics

Monthly, Vol. 59, pp: 521–531.

Quine, W.L., 1955, A Way of Simplifying Truth Functions. Amerikan Mathematics Monthly,

Yol. 62, No. 9, pp: 627–631.

Roth J.P.,1 956, Algebraic Topological Methods for the Synthesis of Switching Systems in n-

variables. The Ins. for Adv. Study, Princeton, New Jersey.

Roth, J.P., 1980, Computer Logic, Testing and Verification. Computer Sciences Press.

Rudell R.L. and Sangiovanni-Vincentelli A., 1987, Multiple-Valued Minimization for PLA

Optimization. IEEE Trans. CAD. Vol. 6(5), pp: 727–750, Sep.

Rudell R.L. 1989, Logic Synthesis for VLSI Design. PhD. Thesis, M89/49.

Rudell R.L., 1993, Dynamic Variable Ordering for Binary Decision Diagrams. The

Proccedings İnternational Conference on Computer-Aided Design, pp: 42- 47, Oct.

 75

Sasao T., 1985, An Algorithm to Derive the Complement of a Binary Function With

Multiple-Valued inputs. IEEE Trans. Comp. Vol. C- 34, No. 2, pp: 131–140, Feb.

Sasao T., Butler J.T., 2001, Worst and Best Irredundant Sum-of-Product Expressions. IEEE

Transactions on Computers, Vol. 50(9), pp. 935–947.

Savoj. Malik A.A., Brayton R.K., 1989, Fast Two-Level Logic Minimizer for Multi-Level

Logic Synthesis. IEEE Int. Conf. on Computer Aided Design, pp: 426–429.

Tirumalai P.P., Butler J.T., 1991, Minimization Algorithms for Multiple-Valued

Programmable Logic Arrays. IEEE Transactions on Computers, Yol. 40(2), pp: 167–177.

Uçar 0., 1996, Lojik Devre Tasarımı Algoritmaları, İstanbul Teknik Üniversitesi, Fen

Bilimleri Enstitüsü, Yüksek Lisans Tezi.

Umans C., 2001, The Minimum Equivalent DNF Problem and Shortest Implicants. Journal of

Computer and System Sciences, 63, pp: 597–611.

 76

7 Ek-A YMÖA ALGORİTMASININ PROGRAM KODLARI

/**

Standart Kütüphaneler
**/
#include<stdio. h>
#include<stdlib. h>
#include<STRING.H>
#include<MATH. H>
/***

Değişken Dosyası
**/
#include "DEGISKEN.CPP"
/***

Temel Fonksiyonlar Dosyası
**/
#include "T2FONK.CPP"
void GENISLETME()
{ unsigned f;
 Sofsimdiki=Sofkok;
 Q0kok=NULL;
 for(f=1;f<Yeleman;f++)
 { Q0islenen =(struct sinif *)calloc(1,sizeof(struct sinif));
 F_GENISLETME();
 if (Q0kok==NULL)
 { Q0kok = Q0islenen;
 Q0simdiki = Q0islenen;
 }

 Q0simdiki->sonraki = Q0islenen;
 Q0simdiki = Q0simdiki->sonraki;
 Sofsimdiki=Sofsimdiki->sonraki;
 }
}
//----------------
void DEGISMELI_YUTMA()
{
 unsigned Cr, Cl, f, elenir=1;
 Q1kok =(struct sinif*)calloc(1,sizeof(struct sinif));
 Q1=Q1kok->sonraki;
 Q1simdiki=Q1kok;
 Q0islenen=Q0kok;
 for(f=1;f<Yeleman; f++)
 { Q1=Q1kok->sonraki;
 Q1simdiki=Q1kok;
 while(Q1!=NULL)
 {
 elenir=0;
 if(F_DEGISMELI_YUTMA(Q1->R,Q1->L,Q0isl->R,Q0is->L)
 ==0)

 77

 { elenir=1;
 break;
 }
 if(F_DEGISMELI_YUTMA(Q1->R,Q1->L,Q0isle->R,Q0islenen->L)
 ==1)
 { if(Q1simdiki==Q1)
 { Q1->R=Q0islenen->R;
 Q1->L=Q0islenen->L;
 elenir=1;
 break;
 }
 Q1simdiki->sonraki=Q1->sonraki;
 free(Q1);
 Q1=Q1simdiki->sonraki;
 continue;
 }
 Q1simdiki=Q1;
 Q1=Q1->sonraki;
 }
 if(!elenir | (Q1kok->sonraki==NULL))
 { Q1yeni=(struct sinif*) calloc(1,sizeof(struct sinif));
 Q1yeni->R=Q0islenen->R;
 Q1yeni->L=Q0islenen->L;
 Q1simdiki->sonraki=Q1yeni;
 Q1simdiki=Q1yeni;
 }
 Q0islenen=Q0islenen->sonraki;
} }
unsigned KOORDINATLI_KESISME(unsigned Ar, unsigned Al, unsigned Br, unsigned Bl)
{
 unsigned Cr, Cl;
 Br = OZELVEYA(Br, sabit);
 Cr = OZELVEYA(Ar, Br);
 Bl = OZELVEYA(Bl, sabit);
 Cl = OZELVEYA(Al, Bl);
 Cr = OZELVEYA(Cr, sabit);
 Cl = OZELVEYA(Cl, sabit);
 return VE(Cr, Cl);
}
void elemanekle(unsigned R,unsigned L)
{ K1yeni=(struct sinif *)calloc(1,sizeof(struct sinif));
 K1son2->sonraki=K1yeni;
 K1son2=K1yeni;
 K1son2->R = R;
 K1son2->L = L;
}
void KOORDINATLI_CIKARMA()
{ unsigned sonuc, D, E;
 K1kok=(struct sinif*)calloc(1,sizeof(struct sinif));
 K1kok->R = K1kok->L=sabit;

 78

 K1=K1gecici=K1son2=K1kok;
 Q1=Q1kok->sonraki;
 while(Q1!=NULL)
 {
 while(K1!=K1gecici->sonraki)
 {
 sonuc=KOORDINATLI_KESISME(K1->R,K1->L,Q1->R,Q1->L);
 if (sonuc!=0)
 { elemanekle(K1->R,K1->L);
 Sil=K1;
 K1=K1->sonraki;
 free(Sil);
 continue;
 }
 D = VE(K1->R, K1->L);
 E = VE(Q1->R, Q1->L);
 D = OZELVEYA(D ,E);
 E =OZELVEYA(K1->R, K1->L);
 E=OZELVEYA(E, sabit);
 D = VE(D,E);

 if (D!=0)
 { for (i=0; i < bituzunluk; i++)
 { E=(unsigned)pow(2, (double)i);
 if(E & D)
 if (VE((unsigned)pow(2, (double)i), Q1->L))
 elemanekle(K1->R, VE(~E,K1->L));
 else
 elemanekle(VE(~E,K1->R),K1->L);
 }
 }
 Sil=K1;
 K1=K1->sonraki;
 free(Sil);
 }
 Sil=Q1;
 Q1=Q1->sonraki;
 free(Sil);

 K1gecici=K1son2;
 }
}
void DOSYA_OKU(char *argv[])
{ unsigned tam,D;
 if (((kaynakdosya = fopen(argv[1], "r+b")) == NULL)
 ||((SPIdosya = fopen(argv[2], "w+b")) == NULL))
 { printf("\n...HATA... DOSYALARIN ACILMASINDA HATA OLUSTU...\n");
 exit(0);
 }
 kontrol=fscanf(kaynakdosya, "%s%s", kaynakbilgi, kaynakbilgi);

 79

 bituzunluk=atoi(kaynakbilgi);
 fprintf(SPIdosya, "%s %s", kaynakbilgi, kaynakbilgi);
 Kontrol=fscanf(kaynakdosya, "%s%s", kaynakbilgi, kaynakbilgi);
 Deleman=atoi(kaynakbilgi);
 Kontrol=fscanf(kaynakdosya, "%s%s", kaynakbilgi, kaynakbilgi);
 Yeleman=atoi(kaynakbilgi);
 tam=sabit<<bituzunluk;

 Sonkok=(struct sinif *) calloc(1,sizeof(struct sinif));
 Sofkok=(struct sinif *) calloc(1,sizeof(struct sinif));

 Sonsimdiki=Sonkok;
 Sofsimdiki=Sofkok;

 Yeleman=0;
 while (!feof(kaynakdosya))
 {
 Kontrol=fscanf(kaynakdosya, "%s %s", kaynakbilgi, fonkdeger);
 İslenen=(struct sinif *) calloc(1,sizeof(struct sinif));
 if(fonkdeger[0] == '1')
 {
 Sonsimdiki->sonraki=islenen;
 Sonsimdiki =islenen;

 Sonsimdiki->R = VEYA(tam, atoi(kaynakbilgi));
 D = OZELVEYA(Sonsimdiki->R, sabit);
 Sonsimdiki->L = VEYA(tam, D);
 }
 else if(fonkdeger[0]=='0')
 {
 Sofsimdiki->sonraki=islenen;
 Sofsimdiki=islenen;

 Sofsimdiki->R=VEYA(tam, atoi(kaynakbilgi));
 D =OZELVEYA(Sofsimdiki->R, sabit);
 Sofsimdiki->L=VEYA(tam, D);
 Yeleman++;
 }
 }
 Sonkok=Sonkok->sonraki;
 Sofkok=Sofkok->sonraki;
}
void main(int arc, char *argv[])
{
 DOSYA_OKU(argv);
 while(1<2)
 {
 if (Sonkok==NULL)
 { return;
 }

 80

 Else
 {
 GENISLETME();
 DEGISMELI_YUTMA();
 KOORDINATLI_CIKARMA();
 F_BUYUK_ASAL_IMP();
 }
 }
}
/***

Değişken Dosyası
**/
FILE *kaynakdosya,*SPIdosya;
unsigned i, Sofadet;
int fsimdiki, bituzunluk, Deleman, Yeleman, kontrol, fonkbitti;
unsigned const sabit= 65535;
struct sinif
{ unsigned R,L,
 absorbesayisi;
 struct sinif *sonraki;
}
struct sinif
{ unsigned long R,L,
 absorbesayisi;
 struct sinif *sonraki;
}
struct sinif
{ unsigned char R,L,
 absorbesayisi;
 struct sinif *sonraki;
}
*K1kok=NULL, *K1yeni=NULL, *K1=NULL,
*K1gecici=NULL, *K1simdiki=NULL, *K1son2=NULL,
*Q0kok=NULL, *Q0simdiki=NULL, *Q0islenen=NULL,
*Q1kok=NULL, *Q1gecici=NULL, *Q1yeni=NULL,
*Q1simdiki=NULL, *Q1islenen=NULL, *Q1=NULL,
*K1islenen=NULL, *Sonkok=NULL, *Sofkok=NULL,
*Sofsimdiki=NULL, *Sonkok2=NULL, *Sonsimdiki=NULL,
*Sonsimdiki2=NULL,*islenen=NULL, *Sil=NULL,
*islenen2=NULL, *Boskok=NULL;
char Rtxt[50], Ltxt[50], kaynakbilgi[30], fonkdeger[30];

/***

Temel Fonksiyonlar Dosyası

 81

**/
unsigned VE(unsigned a, unsigned b)
{ unsigned c;
 c= a & b;
 return c;
}
unsigned VEYA(unsigned a, unsigned b)
{ unsigned c;
 c= a | b;
 return c;

}
unsigned OZELVEYA(unsigned a, unsigned b)
{ unsigned c;
 c= a ^ b;
 return c;

}
void F_GENISLETME()
{
 unsigned D;
 D= OZELVEYA(Sonkok->L, Sofsimdiki->L);
 D= OZELVEYA(D, sabit);
 Q0islenen->L = VEYA(D,Sofsimdiki->L);
 Q0islenen->R = VEYA(D,Sofsimdiki->R);
}
int F_DEGISMELI_YUTMA(unsigned Ar, unsigned Al, unsigned Br, unsigned Bl)
{
 unsigned Cr, Cl;
 Cr=VE(Ar, Br);
 Cl=VE(Al, Bl);
 if((Cr==Br)&(Cl==Bl))
 return 0;
 if((Cr==Ar)&(Cl==Al))
 return 1;
 return 2;
}

int F_KOORDINATLI_KESISME(unsigned Ar, unsigned Al, unsigned Br, unsigned Bl)
{ unsigned Cr, Cl;
 Br = OZELVEYA(Br, sabit);
 Cr = OZELVEYA(Ar, Br);
 Bl = OZELVEYA(Bl, sabit);
 Cl = OZELVEYA(Al, Bl);
 Cr = OZELVEYA(Cr, sabit);
 Cl = OZELVEYA(Cl, sabit);
 return VE(Cr, Cl);
}
void F_BUYUK_ASAL_IMP()
{ unsigned f, Cr, Cl;

 82

 Sonsimdiki=Sonkok;
 K1kok=K1;
 while (Sonsimdiki!=NULL)
 { K1=K1kok;
 while(K1!=NULL)
 { Cr=VE(K1->R, Sonsimdiki->R);
 Cl=VE(K1->L, Sonsimdiki->L);
 if((Cr==Sonsimdiki->R)&(Cl==Sonsimdiki->L))
 K1->absorbesayisi++;
 K1 = K1->sonraki;
 }
 Sonsimdiki=Sonsimdiki->sonraki;
 }
 K1simdiki= K1= K1kok;
 while(K1simdiki!=NULL)
 { if((K1simdiki->absorbesayisi >=K1->absorbesayisi))K1=K1simdiki;
 K1simdiki = K1simdiki->sonraki;
 }
 fprintf(SPIdosya,"%u%u",K1->R,K1->L);
 Sonkok2=NULL;
 İslenen=Sonkok;
 while (islenen!=NULL)
 { Cr=VE(K1->R, islenen->R);
 Cl=VE(K1->L, islenen->L);
 if(!((Cr==islenen->R) & (Cl==islenen->L)))
 { islenen2=(struct sinif*)calloc(1,sizeof(struct sinif));
 if(Sonkok2==NULL)
 { Sonkok2=islenen2;
 Sonsimdiki2=Sonkok2;
 }else
 { Sonsimdiki2->sonraki=islenen2;
 Sonsimdiki2=islenen2;
 }

 Sonsimdiki2->R=islenen->R;
 Sonsimdiki2->L=islenen->L;
 }
 İslenen=islenen->sonraki;
 }
 while(Sonkok!=NULL)
 { Sil=Sonkok; Sonkok=Sonkok->sonraki; free(Sil);}
 Sonkok=Sonkok2;
 Sonkok2=NULL;
 K1son2=K1=NULL;
}

